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ABSTRACT
The main effort of this study is concentrated on
ascertaining the role of partial redistribution(FRD) functions
in the process of spectral line formation. The effects of

and R redistribution

angle averaged RI,F\H,F\'IH v with

isotropic phase function are studied. We have compared these
results with those obtained wsing complete redistribution
(CRD). Transfer equation with plane parallel geometry is
solved using the Discrete space theory technique of Grant and
Hunt (1969). Various types of boundary conditions are

considered. The following results are the new and important

conclusions of this study.

In this study, we find that for a purely scattering
optically thick medium, Rx function produces deeper absorption
profile compared to other functions. The redistribution
function Rxxis more coherent than Rv and Rv is more coherent
than Rxn: in the wings. The more non—coherent the
redistribution function is, the higher would bethe emergent
intensity in the Doppler core. If thermal sources are present
in the medium and if there is incident radiation on the lower
boundary, all the redistribution functions give the same
intensity in the core. But in the wings, the more non—~coherent
the redistribution is, the higher would be the intensity. The

presence of continuous opacity makes the spectral lines appear

weak.Their effects are mare pronounced compared to that of the
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thermal sources in the medium and are present for any type of
redistribution mechanism. In high optical depth situations,

the er type of redistribution allows the photons to diffuse

I

to the line centre and increase the intensity there.

In the third chapter, coherent and naon-coherent
electron scattering combined with complete and partial
redistribution by atoms are studied for some parametrized
models. Since this problem is characterized by two freguency
scales, one for the atoms and the other for the electrons, two
types of frequency guadrature are required to cover the effect
of both the processes. Though the basic equations are solved
within the framework of Discrete space theory, the freguency
quadrature paoints, normalization, segmenting the problem into
core and wing regions and the iteration procedure all follow
that of Auer and Mihalas (1968). We obtain the following new
result: If the coherent electron scattering is the only
continuous opacity source, we find that the more non-coherent
the redistribution by atoms is, the higher the value of the
mean intensity in the wings for optically thick media. The
non—coherent electron scattering combined with PRD fills up
the core and hence one gets higher fluxes in the core compared

to coherent electron scattering.

We investigate the deviation of absorption and
emission profiles from each other for a two level atom with
angle averaged redistribution functions. The correct

expression for the source function derived by Baschek,Mihalas
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and Oxenius (1981) is used to solve consistently for the
emission profile and the radiation field. From this study, we
get the following new and important results: The absorption
and emission profiles do not deviate from each other in the
Doppler core for any redistribution function even if the
stimulated emission term is important. The deviation of
absorption and emission profiles in the wing is more for
coherent type of redistribution function. Rzu: redistribution
gives identical absorption and emission profiles and so one
can approximate Rxn by CRD for all practical purposes.

The effects of small macroscopic velocity fields on
Ca Il H and K lines are given in chapter 5. The atomic model
chosen contains the lower most five levels and the continuum.
radiative transfer equation and statistical equilibrium
equations are solved simultaneously using equivalent two level
atom method. A schematic chromospheric type of atmosphere is
considered. The emergent profiles are calculated for the
systematic expanding velocities 0.0, 0.5 and 1.0 (velocities
at the puter boundaries expressed in mean thermal units). We
obtain the following significant results: Even though the
velocities are small, they seem to affect the shapes of the H
and K profiles considerably. A single peak emission instead of
a double. peaked emission is obtained for the K line with v
= 1 and u= 0.79. ( u = cos@® , @ is the angle of the ray ¢to
the normal at the surface.). The small velocities do not

affect the infrared triplet lines significantly.



CHAFTER 1

INTRODDUCTION

1.1 Why study spectral lines 7

Ever since Fraunhofer obtained the solar spectrum, the
study of spectral lines became one of the major activities of
Astrophysics. It has been realised that the study of spectral
lines is a valuable diagnostic tool to infer the physical
conditions of the gaseous material present in the stars. The
long column densities, low pressures and large temperature
gradients are some of the unique features akin to the stellar
atmospheres. Though excellent text books, review articles and
research papers have been written on this topic, it still
remains as an exciting field due to the variety of physical
conditions which the celestial bodies offer. The spectra of
Quasars, Seyfert galaxies, Wolf-Rayet stars are to name, a few
of the observations which open new avenues into the study of
Astronomy. Wilson-Bappu effect still remains' as an enigma.
From all these one can conclude that there is a compelling

reason to study spectral line formation.

1.2 Method employed to solve the transfer equation.

The radiative transport in spectrai lines is described



by the radiative transfer equation which is an
integro-differential eguation with two point boundary
conditions for simple plane parallel geometry and steady state
situation. Several numerical methods exist to solve this
equation each one having its own advantages and
disadvantages. These methods are described in a book titled

‘Methods in radiative transfer’ edited by Kalkofen (1984).

Ambartzumian (1942) enunciated the principle of
invariance in semi-infinite homogeneous media. This was later
extended to finite,homogeneocus plane parallel scattering media
by Chandrasekhar (195Q), which helped in solving large class
of problems involving the radiative transfer. Following Wick
(194%), Chandrasekhar also replaced the scattering integral by
a discrete sum and solved the resulting system of linear
differential equations. This formed the basis for most of the

subsequent work in radiative transfer theory.

Using Discrete space theory technique developed by
Redheffer (1962), Preisendorfer (1265) and Van de Hulst
(1965), Grant and Hunt (196%9a) developed a numerical method to
solve radiative transfer equation in inhomogeneous media. In a
subsequent paper (196%b), they also formulated simple
conditions for their procedure to be stable and also give
non~-negative solution. This technique provides us with
efficient means for computing internal and emergent radiant
intensity in the presence or in the absence of internal

radiation sources. Our familiarity with this method and the



flexibility 1t provides uws to i1nclude quite a number of
physical processes are the resons to use this method to handle

the problems considered in this work.

1.2 Description of the problems in this study

Our study pertains to certain effects of partial
redistribution functions on resonance lines and alsoc the
effect of small macroscopic velocity fields on Ca II H and K
lines. The problems considered in this work are described

below in some detail.

Arthur Schuster (1903) proposed the scattering of
radiation to be a viable mechanism in the formation of

spectral lines in stellar atmospheres.

Radiation field becomes nonlocal due to, the scattering
process and this sets the nonlocal thermodynamic equilibrium
(Non LTE) condition in stellar atmosphere. The coupling of
radiation field and the number density of different atomic
states is another aspect of Non LTE. Thomas (1965) proved the
existence of Non LTE in the outer pants of the stellar
atmosphere. We have used the Non LTE theory to study the

transfer of line radiation.

In earlier workse on line transfer, scattering was
assumed to be strictly coherent in the observer’s frame of
reference (Milne,1928). In stellar atmospheres,the Doppler

redistribution in frequency produced by the thermal motion of



the atoms has to be talen into account. The above process
combined with the assumption that there 1is nao correlation
between the frequencies of the absorbed and emitted photons,
make them completely redistributed (CRD) over the spectral
line. Neither of these two extreme situations is achieved in
stellar atmospheres and so one has to consider the
redistribution of photons in frequency in some detail. This is
known as partial redistribution (FRD) mechanism in the

literature.

In the process of scattering, an atom is excited from
one bound level to another by the absorption of a photon, and
decays radiatively back to the original state with the
emission of a photon. Different laboratory frame
redistribution (LFR) functions exist for describing the line
scattering under different conditions. They are denoted as Rf
sz and Rtn in Hummer’'s (1962) notation. The influence of RI
and Ru redistribution functions on source functions in
semi—-infinite and finite isothermal atmospheres was studied by
Hummer (1969). Large differences were found to exist in the
wings of the lines between the CRD and PRD mechanisms. The
role of Rt’ Rnand Rnx functions in finite and semi-infinite
media were studied by Vardavas (1976 a,bsc). By taking
elaborate atomic and atmospheric models, and a combination of
Rngnd R:u: functions to describe the redistribution,
Shine,Milkey and Mihalas (1975) explained many of the

observational aspects of solar Ca II H and K 1line profiles.

Rasri (1979) found the PRD mechanisem to influence the emission



reversal of Mg Il Kk line. Heinzel (1981) derived the LFR which
describes the scattering of radiation when both the atomic
levels are radiatively broadened and denoted it as Rv. This
function is moderately coherent in the wings and so it serves
as an intermediate case between highly coherent R and

XX

non—coherent Rxn functions.

Since there is a revival of interest in these partial
redistribution functions, we have considered some schematic
line formation problems which provide us some useful
information about the redistribution of photons in spectral
lines. In the second chapter of this thesis we have discussed
the effect of R, R_, R and R functions on line

x xx IXX v
formation. We have compared these results with those obtained

vusing CRD. We have considered various types of scattering

media and boundary conditions.

Chandrasekhar (1948) drew attention to the possibility
of broadening of lines by electron scattering. Even though the
electron scattering is non-coherent in stellar atmospheric
conditions, most of the calculations so far assume that it is
coherent. Auer and Mihalas (1968) studied both coherent and
non—-cocherent electron scattering with complete redistribution
by atoms. We have extended this work to include partial
redistribution by atoms.8o in the third chapter, coherent and
non—coherent electron scattering combined with complete and
partial redistribution by atoms are studied for some

parametrized models so that the underlying physical processes



can be understood.

The emission profile wv is defined as the fraction of
all atoms in the upper state that if they decay Padiatively’
emit photons of frequency v as seen in the laboratory frame.
If the absorption and emission are regarded as two independent
processes (CRD situation), the equality of absorption and
emission profiles is assured. If there 1is any correlation
between absorption and the subsequent emission, then the
emission profile is dependent on the radiation field‘7and the
two profiles need not be identical (Oxenius, 1965). Sub-state
formalism of Milkey and Mihalas (1973) enables a quantitative
study of this problem. Stenitz and Shine (1973) investigated
the assumption of equality of absorption and emission profiles
for a two level atom with Doppler redistribution. Baschek,
Mihalas and Oxenius (1981) showed that the formulation given
by Mihalas (1978) of the stimulated emission term is
incorrect. They gave the correct expression for the
statistical equilibrium equations for the angle averaged
isotropic redistribution function. We have used their
expression for the source function to study the deviation of
absorption and emission profiles for various redistribution
functions. We have used the iteration technique to solve the

emission profile and the radiation field.

Asymmetric profiles with a single peak emission of the
Ca II K line were observed at high spatial resolution studies

of sun (Pasachoff,1970)., To account for the asymmetric



profiles, Athay (1970) assumed velocity fields in the regions

of line formation. He concluded that ¢to obtain the Hz
v

enhancement, either the layers where Kz is formed are moving

upward with velocities of 3-7 kms-‘ or the K‘ layers are
moving downward with velocities of 10-20 kms Y. Line formation
in moving media was studied by FKulander (1968, Kalkofen
(1970) and several other workers. Feraiah (1978) gave an
algorithm for solving transfer equation including velocity
fields in spherically symmetric expanding media. This program
can also be used to study plane parallel geometry with very
few changes. We have used this code with the necessary
modifications to study the effect of velocities on Ca II H and
¥ lines. We have chosen 5 level atom with continuum as our
atomic model and a chromospheric type of temperature rise is
assumed. We have solved the coupled transfer and statistical
equilibrium equations.There are several methods to solve multi
level equations. One of the well known methods is the
equivalent two level atom (ETLA) method. This was employed by
Linsky and Avrett (1270) to study the formation of Ca II H and
K lines in the guiescent Solar atmosphere. A more powerful
method is the linearization technique of Auer and
Mihalas (19469). Integral equation approach was extended to
include the linearization technigque by Kalkofen (1974). We
have used the ETLA which allows an easy treatment of small
macroscopic velocities and also the specific intensity can be

directly obtained.



CHAFPTER 2

THE EFFECT OF PARTIAL FREQUENCY REDISTRIBUTION

FUNCTION Rx’ Ru ,Rnx » AND Rv ON THE SPECTRAL

LINE FORMATION

2.1 Introduction

In the earliest analyses of spectral lines_it was assumed

)
that the scattering of photons by atoms is coherent. In
stellar atmospheres, the: spectral line is produced by an
ensemble of atoms with a thermal velocity distribution.
Therefore, it is necessary to take into account the Doppler
redistribution in frequency produced by the random motion
of the atoms. By taking 1into account the Doppler
redistribution and also assuming that there is no correlation
between the frequencies of the absorbed and emitted photons,
one sees that the photons are completely redistributed over
the spectral line. This is better than the coherent scattering
assumption. However, to account for the correct description of
the frequency redistribution, one has to consider the
correlation between the absorbed and emitted frequencies of
photon. Unno (1952)derived such a redistribution function, for

the case when both the atomic levels between which the



transition occurs, have zero natural width. Henyey (1941)
obtained a redistribution function which describes the
scattering when the upper level is radiatively broadened.
Radiation and collision damping with complete redistribution
in the atom’s frame combined with thermal Doppler broadening
gives a redistribution denoted by Rxnf The function Rxn:and

the other redistribution functions were studied by Hummer

(1962). In his notation, Unno’'s function was denoted as Rx and

Henyey ‘s as R!f

Source functions become frequency dependent when the

redistribution functions are used in the radiative transfer

calculations. Such frequency dependent source functions are
studied by Hummer (1969) in semi-infinite and finite
isothermal atmospheres. In the wings, large differences were

found to exist between the complete redistribution (CRD) and
partial redistribution (PRD) source functions. The effects of
photon frequency and angular redistribution on line formation
using Rx" Rn and Rnx functions and their role in finite and

semi—infinite plane parallel media were studied by Vardavas
(1976 a,b,c). He made a comparison of the above results with
CRD and also with the results of angle averaged
redistribution functions. The differences between the emergent
intensity profiles using CRD with a Voigt absorption profile
and Rrulfunction was found to be negligible (Vardavas,1976b).

Similar conclusion was arrived at by Finn (1967). Rn
redistribution function which is strongly coherent in the
wings was shown to lower the line profile outside the Doppler

core. (Hummer, 19469} Vardavas, 1976c). Angle dependent and angle
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averaged Rx redistribution functions were studied in
spherically symmetric expanding media by Feraiah (1978) . In
moving media, he obtained F Cygni type of profiles. Milkey and
Mihalas (1973) wused a combination of th and Rxn

redistribution functions in explaining solar Lyman—o

resonance line profile.

As far as subordinate lines are concerned, Heinzel (1981)
derived the correct laboratory frame Pedistribution function
(LFR) for the scattering of radiation assuming both the atomic
levels are radiatively broadened. This LLFR denoted as Rv is
based on GQuantum mechanical results of Omont Smith and Cooper
(1972) . Rv can be applied to low density ‘media like
chromospheres, gaseous nebula etc where collisions are few. In
a subsequent paper, Heinzel and Hubeny (1982) extended the LFR
‘of Heinzel (1981) to include collisional broadening of both
the levels. Some transfer effects of Rv have been discussed by
Hubeny and Heinzel (1984). Mohan Rao, Rangarajan and Peraiah
(1984) discussed the effects of partial redistribution

functions RI 'Rn and an on source functions.

The above work has been extended in this chapter to
include optical depth effects and also the Rx redistribution
function. Comparison of these results with those obtained
using CRD with Doppler and Voigt absorption profiles is made
here. Various types of scattering media are considered. The
effect of different boundary conditions on the emergent
intensity profiles is also studied here. In 2.2 we describe

briefly the various redistribution functions employed in this
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work. Basic equations and computational procedure are given ain

s
a

.%. Discussion of the results is made in 2.4.

2.2 FRedistribution functions

~)
-—

2.2, 1 Atomic frame redistribution functions

The absorption profile in the atomic frame is given by,
say, f( &) where ¥’'is the frequency of the incoming photon.
pt ¥, £ ) gives the probability that a photon absorbed in the
frequency range (£'y '+ d¥f’) is emitted into the range ( ¥,
¥ + df ) while the angular phase funct&qn gl n";,n ) describes
the probability that a photon is scattered from solid angle
dw’ in direction n® into solid angle dw in direction n. All
these functions are normalized to unity. The joint probability
that a photon ¢ ', n*) is absorbed and a photon ( ¥ , n) is
emitted is known as the atomic frame redistribution r{ ', T )
( Hummer, 1962 ).

dw‘de

r(g,%)d¥’'df = I I NdE'p(¥,Hd¥- a7 An (2.1)

If we consider a two level atom (see figure 1) with
both levels perfectly sharp, then the absorption and emission
can take place at only the line centre frequency to. Therefore

the absorption profile is given by Dirac delta function 1
(') d¥’ = 6(!'—(03 d¥’ (2.2a)

Since the emission takes place at the same frequency, the

emission probability is
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pt &', Z ) df = & (Z'— Z) dZ (2.2b)
/N 71N &
he he hg, = hu
N No E

Fig. 1 1 and J are the lower and upper states. ', ¥ and ¢

o
are the absorption, emission and line centre
frequencies measured in atom‘s frame. h is the
Flanck constant. Line centre frequency :o = vy

where Lo is laboratory frame frequency.

Let us suppose that the upper state is radiatively
broadened. Then the absorption profile is described by the

Lorentz profile,

S d¥’

(&) dE’ =
n [ (2 —:°>2 + &2 1

(2.3a)

where & = F‘ / 4n and F; is the radiative damping width of the

upper state.

Since we have not considered any collisional
reshuffling of electrons in the upper state in this case,we
find that the emission probability is again given by the Dirac

delta function.



p (&', £)dl = & ( ¥ -F ) df (2.3b)
B I E +hx
PARN E;
hE he h& =hv_
N N E

Fig 2. Same as Fig. 1 with upper state radiatively broadened.

In the next case,let us envision an atom with two
states and the upper state is broadened by collisions also.
The absorption profile is given by

f(g’) df’ = 6 d% (2. 4a)

mcC (g —z°>2 + & 3

Now & denotes the combined width of collisions and radiation

(see Fig. 3)

———————————————————————————————————————————————— E +hx
i
——————————————————————————————————————————— ———— E +h
PAEN inE
E
1IN\ J
hE’ h¥ htonhvo
N N\l E

Fig. 3 Same as Fig. 2 but the wupper level is broadened

collisionally in addition.
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In this situatlon)the frequency of the emitted photon
will have no correlation with that of the absorbed photon. The
probability of emission at any particular freguency is
then proportional to the number of atoms which are capable of

emitting at that freguency and hence to the absorption profile

itself. Therefore we have

7 r (to—c'>2 + &2 1

Now let us go to a more general situation i.e. both the

states are radiatively broadened.

———————— S — E +hx "
1N J
7S oF
he* he hg =hv
[y ——— —-—_——-——————-}--—/ ———————————— - — _—— —_—— Ei‘+hx n
S P E

Fig. 4 The statee i and § are radiatively broadened. Other

symbols have their usual meaning.

Woolley and Stibbs (1933) showed that the atomic frame

redistribution in such cases is given by
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2
- 2
P&y =_1 1 4 6i+6j)

2 ‘9 2 C 2 2 2 2
114 L(X--¥) +46] [ (¥ vo) +(6L+6j) L vo) +(6{+63 ]

656
4+ v 1
n? C(g-v )%+ (5 +6 ) 230 (2-2") 244673
o] 1 J i
(2.3
s &
. bt 3 1
n* LE-2 ) %+a8t80(2 -v ) BH(s+6) B
i o i J
2
Y 1
F . 2 2 2 2
14 (@4 vo) +(61+6j) N 4 vo) +(61+6j) ]
61, 6jare the damping parameters for the lower and upper

states respectively.

2.2.2 Laboratory frame redistribution functions

To obtain the laboratory frame redistribution functions
which describe the scattering of photons by atoms in a
detailed way one has to consider the Doppler shift introduced
by the thermal motion of atoms in addition to the atomic frame
redistribution functions mentioned above. Since the Doppler
shift depends on the velocity distribution of atoms,
Maxwellian velocity distribution 1is generally employed. To
find the net result for the entire ensemble of atoms, we must
average over the velocity distribution. The derivations for
the first three cases mentioned above are given by Hummer
(1962). Far the case of ry Heinzel (1981) has derived

the laboratory frame redistribution function.
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Here we sketch briefly the steps reqguired to derive the
angle averaged laboratory frame redistributi--m functions. A
detailed description is given in ‘Erellar atmospheres’ by

Mihalas (1978).

Suppose an atom moving with a velocity v, which remains
fixed during the c:attering process,absorbs a photon (v ,n")
a'd emits a photon (v»,n) as measured in the laboratory frame.
Neglecting the aberration of directions in transforming from
the atom’'s frame to the laboratory frame, the corresponding

atom’'s frame frequencies for the absorption and emission are

P

' = v - vo(v « n)/c (2. 6a)

and I = v - vo(v . m/c (2. 6b)

Then,the Joint probability of absorption of a photon (¥',n’)
with subsequent emission of & photon (¥,n) measured in the
atom’'s frame is fEHIPpZ',8g(n,nd¥'df(dw’' /4n) (dw/4m).
Transforming this expression to the laboratory frame via
equations (2.6 a,b) we can write

R(v'yn' jw,n = f(v‘—vov.n‘/c)p(u'-vov.n'/c,v—vov.n/c)g(n',n)
(2.7)
For convenience,expressing velocities in dimensionless thermal

units o

us= vv = (m /2kT) v (2.8)

thermal

where m. is the mass of an atom. Let us introduce the Doppler

width

472

W = (volc)(ZkT/m‘) = vo(v /¢c) (2.9)

thermal

Rewriting equation (2.7) using the Doppler units defined in

equations (2.8) and (2.9):
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R (v»,mjv,m = f(v -wa. NIp(P' —wu. N ,Y - wau. ng(n’',n
(2.10)

Choose an orthonarmal triad (n‘,nz,n.) such that u = un,_. Then

u.n= gt and au.n’” = p'u, where pg= n ., n. and ' = n° ., n

(Y
An element of solid angle may be written dw

dudg whetre ¢ is
the azimuthal angle around n_. The phase function g(n’',n) can
be expressed in general as g(u',u ¢ . Thus angle averaging

equation (2.10) we have

21 N an

R (v, = (16751 IdéJ-dp’f(v'—wp‘u) Id¢'g(p',p,¢')
[ o) -4

1 (2.11)
x .I du plv' —wp'u, v»-wi)

-4

2
Defiming Glp' ) = <4n>"I glp’ 1, @’dde’ (2.12)
T o
we get
- 1 1
Ru(v’,v) = % J dp’ Flv' —wpu’u) J.du gl W p(r —wa' u, v—wial)
-1 ~1 (2.13)

For isotropic scattering g(u' , ) = %. Employing this result

in the above equation we get,

1 1
R (0,0 = %-J- dp’ F(V’~wp'w) Idp PV =W U, -wit)  (2.14)
u

-1 -1

If the scattering is coherent in the atomic frame,

pl{y’ — wp'Uu, ¥ — W) = & [v'. - » = Wl - W ] (2.15)

Because the range of integration for pn° and p is only
(-1,1),it is clear that for a given value of u, the

singularity of the & function will be outside the range of
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integration for sufficiently large values of v - v] and
Ru(v',v> will, accordingly, be zero. Fhysically this
corresponds to the fact that an atom moving with velocity u
can change a photon’‘s frequency by no more than 2uw, this
maximum shift occurring if the propagation vectors of the
incoming and outgoing photons lie along the velocity vector

and are oppositely directed. Let y = wpt, and write

Wit

I = (ww) ! I 6[y - (v — ¥+ wa'u) ] dy 2.16)

—Wu
The integral will equal (1/wu) if —wu X » — V' + wp'u = wu,
and will be zero otherwise. Define A(x) such that A = 1 if

-1 £ x <1, and A = O otherwise. Then equation (2.14) can be

rewritten using equation (2.16) as
1

J f(v'—wup‘)A[P';(wu)—‘(v-v')]du'
-1 (2.172

1

R (v, (dwu)
u

If u is sufficiently small, then

(v—v‘)/wul Z 1 and A

will vanish for all values of u’. Thus there is a minimum
speed Ui for which scattering from »° ¢to » can occur.
Define » = max(v’,») and » = min(¥ ,»).. The requirement

that the argument of the A-function fall in the range (-1,1)
yields

u .= (- /2w = |v - ¥ |/2w (2.18)

miLn

For u <u ., , R will be zero., For u > u_. , a contribution to
mvn u ! min

Ru will come from part of the range of integration over u'.

-1 = p S - [(5 - g)/uu]

Now introducing the Neaviside function l(x.xb),defined such
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that & = 1 when x > X and O otherwise and also substituting
y = v - wup' in equation (2.17) we get
VU
R (w0 = Bwiu® ™ Bu- |o-v /2w, O f fiy)dy
v—wu
(2.19)

Finally averaging over the Mauwellian velocity distribution

2
F(wdu = 7% ™ (4mud du (2.20)

we get the following expression for coherence in the atom’s

frame (cases I and Il1 as described below)

}Paad s 1N
[+ ] 2 -
R (v ,») = (n*"* w‘)"J du e ™ J- Fly)dy (2.21)
umtn ;—wu

Transforming RA(v',v) to Doppler units,

’

x" = (V' - )/W 3} x = (Vv-v )/w
o o

R (x' 4y = w2 R (v’ ,w) (dv’/dx’) (dy/dx) (2.22)

RESULTS FOR SPECIFIC CASES

(a) Case I: This corresponds to the scattering of a

photon by an atom with two perfectly sharp states and so

Jy) = é(y—vo); U in now becomes effectively
ur = max ( [x |, |>])- Then from equations (2.21) and (2.22)
@ 2
R_(x,2) = ﬂ71/2 J e du = l-erfc(u' ) (2.23)
z 2 min
u

min
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where the complimentary error function is defined ad

a0

- .
erfci(x) = 2n /2 J el 4z (2.23a)
x
Substituting for u’” .,
muny
g ’ - 1 -~ ) ¢ -
Rp(xyxy = = erfc[&am(|x|,|x |)] 2.24)
The profile of absorption function is given by,
®
Peix') = J Rix",x)dx (2. 25
-0
@(x) can also be derived from first principles. Thus
considering the equations (2.14) and (2.20)
< 3 g 1 1 o
Ppv’) = A u2 e - duj}(v'—wu’u)dy'J Jﬁ(v'—wu'u;v—wuu) dv dp
1 0 -1 -1
(2.26)

Since F is the emission probability,the inner integral over v
in the above equation gives unity and the integral over u, a
factor of 2. Therefore the above equation reduces to,
1
(2.27)

©

. 2 2 _-u? . . .

(') = — u e du v —wu'u) du
yr o -1

é(y—vo). Therefore equation (2.27) becomes,

For case I, f(y) =

1
j 6(v’—v°—wu'u) du’
-1

(2.28)

@ 2
Slv) = 2 I u® e du
vr o

The integral over p'exists only when umh‘z |(v —vo)/wl and is
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equal to 1/wu. Thus we get after transforming to Doppler units

1 —uz 1 -x*
P(x*) = ———-I 2u e du = — e (2.29)
vn v

The complimentary error function in equation (2.23a) is
evaluated using the Rational approximation method given in
‘Mathematical functions’® by Abramovitz and Stegun (1974) .This
Rx function describes an idealized situation. Normally one of
the atomic states will be broadened. S5till it is useful to
study this limiting case, for, it demonstrates the effects of
Doppler redistribution alone as seen by an observer in the
laboratory frame examining an ensemble of moving atoms.
RI(x',x)/¢(x‘) which is plotted in Fig 5(a) is the probability
of emission at frequency x per absorption when the absorption

is at x'. This is in good agreement with that given in Mihalas

(1978) .

We see from Figure 35(a) that a photon absorbed at
frequency x° is emitted with equal probability at all x such
that —]x'] = |x] = |x'] and with exponentially decreasing
praobability beyond this range. In the atom’'s frame, absorption
and emission occur at only the line centre frequency.
Therefore if an atom is absorbing at frequency x'° means that
it is moving with a velocity of x’ Doppler units. The photon
which is absorbed has an equal probability of being emitted in
all directions because of isotropic phase function. Therefore

it has equal probability of being emitted in the above range.
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(b Case II: Here the lower level is sharp and the upper
level is radiatively broadened. The absorption profile in the
atom's frame is given by the expression (2.3a). Transforming
1t to laboratory frame and substituting that expression in

equation (2.21) we get,

o® v+Hwu
2 8/2 -4 --le - 2 2 -1
F(n(v',v) = (wmnm ) & Jdu e J dy [(y—-vo) + & ]
u . -wu
min

converting to Doppler units we have

[+ o]

1 -u* -1 ETH -1 Jx -
R__(x',x) = sr2 e tan — - tan x- 4 du
IX 1 a . a .

Jx*-x|/2 ! !

(2.30)

where X = max( Ix|, |x"|) and x = min(|x], |x°'|) and a.‘i = &/w ,
is the damping constant for upper level. A typical value of
2 % 107> for a is chosen.

DERIVATION OF PROFILE FUNCTION

Now the absorption coefficient in the atomic frame is given by
equation (2.3a). Substituting that after suitable

transormations in equation (2.27) we get,

) 1

1
Ly . 26 2 -u® dp’ (2.31)
v 8/2 J-u € du J. (v‘—vo—wy’u)’ + &%

0 -1

Substituting y = »° — wpg'u in the above egquation we get,

00 P’ +wlr

2
Plv') = 26 Iu e Y du J- 1 dy
. 3/2 - 2 6.
o) poowr YTVt

wn
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Converting to Doppler units and integrating over y we get,

a . w

3 2
, - —-u -1 X'+ 1 _ -1 xX'— u
¢(x ) ——’/2 J d(e ) [ tan [ '—T— ] tan [ T ]
n o) J 3

Integrating the above eguation by parts we get,

a . w 2

: e—u du
@ix") = I = H(a , x ) (2.32)
nS/z (x’—u)2 + a: J

8}
k3

-—

where H is the Voigt function. This scattering process applies
to resonance lines in 1low density media where collisional
broadening of upper level is negligible like that of Hydrogen
Lyman - a in the interstellar medium. From the plot of
Rlxur,x)/¢(x‘) in fig S(b) we see the coherency for the wing

photons and also that they have the least probability of being
emitted at the line centre. In Doppler core,Rn behaves like
other redistribution functions. Most of the atoms will be
moving with low velocities and they absorb near the line
centre. Once they absorb near line centre, they are going to
emit in the Doppler core according to the mechanism described
for Rz function. Absorption in the atom’'s frame follows a
Lorentzian distribution which allows the photons to be
absorbed in the wings away from the 1line centre. Since the
emission process is coherent, the emission also takes place in
the line wing. Emitted ‘frequency is not doppler shifted
because of the low velocities involved. Therefore we see in
the line core, there is Doppler redistribution and strong
non-coherence, while in the wing the scattering is more nearly
coherent for Rxf Fig S(b) is in complete agreement with that

of Heinzel and Hubeny (1983).
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Case III: Here we consider the collisional broadening of the
upper level. Substituting the forms for absorption and
emission coefficients from equations (2.4a) and (2.4b) in
equation (2.14) and making the appropriate transformations, we
get,
1 . 1
1 (&/m)du (&/ ) dp
R (Ve ¥ = ITJ 2 2 J. 2z .2
ety + _
—1 (V' —Wwu'u vo) & - (V—wpu vo) + &
Averaging over a Mauwellian velocity distribution and
converting to Doppler units we have
o
5 2 X' o+ u X' = u
- = -u -1 -1
R (X', %) = n 2 e tan [ 3 ] tan [ = ]]
III J J
)
-1 X + u -1 X = u
x tan - tan du
a a
J J
(2.33)

Absorption profile is defined in a similar way as in the case
-X -
of R_e R__(x',2)/¢(x’) for a = 2 x 10 and 10 = are
IX TXI J
plotted in figures 5(c) and S(d). We see that the wing photons
get completely redistributed and they have a high probability
of being emitted at the line centre. This is due to the fact
that the emission in the atom’'s frame follows Lorentzian

distribution which peaks at line centre frequency. Fig S(d) is

in good agreement with that of Finn (1967).

When the lower and upper levels are broadened by
radiative damping, the angle dependent laboratory frame

redistribution is given by (Heinzel,1981),



V)
cn

R (x',mn"3x'n = 1 H ( a sec d ' x 1 X sec e )
v 2 2 el
4 si1n ©
+ %’
x H ( ajsec g , x S x sec g )y + Ev(x’,x,e)]
(2.34)
where ® is the angle of scattering. n' and n denaote the

directions of the flight of the absorbed and emitted photons
and they satisfy the relation cos € = n.n’. The function Ev is

given by

2

. _ _ o

E (X 4%, © - sin &/2 ReIet A XTI T
v o

(2.35)

where A(t) = D( Z + t cos&/2 + ‘ﬁ sec®/2 ) - D( Z + t cos®/2)

(2.36)
7 = sec &/2 (a - t X2 X,
j 2
w = cz_L + cz‘i - LXx (2.37)

w' = a + a - ILx'
i J
D(aw = H(p,q) + ¥ K(p,q) ] w=p -1 g

ab
2
Kip,q) = —2-.[ et 2Pt Lin(2qt) dt
3 o

aiand ajbeing the damping constants for lower and upper
levels respectively. a = aj = 10—315 chosen for our
purposes. The common Voigt functions H(p,q) and K(p,q) are
computed using the method due to Matta and Reichel (1971).

Evaluation of E~term

The integral in equation (2.35) can be approximated

with a numerical quadrature as (Heinzel, 1981)



ti+h
: " v .2 - I
E, 0, x, & = 513;211~Re T J. et [ gTWt | TEwE ] A(t) dt
24 L=0 t

where to is 0 and h is the integration step. The complex

function A{(t) can be expanded as

2
Alt) = A(t ) + a(t-t 1A (t) + e (t--t,)2 A_(t) + .......
i I S SR 2 i 2 i
(2.39)
with A (t) =D (Z + at, + aa"a) - D (Z + at))
1 i i i 1 1 i
Az(t) = D (Z + at, + a’'a) - D (Z + at) (2,.40)
18 “~ 1 1 “ 18
a = cos 6/2 , a’ = sin /2
The complex derivatives of D(u) follow the recurrence
relations (Heinzel, 1978)
D, (u) = 2u D(w) - 2/vn
D,(w) = 2u'D1(u) + 2D (W) (2.41)

In the above reference (Heinzel,1981),the terms up to only the
first order are given. But to obtain accurate results we find
that one has to consider 2nd order terms. Here we are
showing explicitly for the first time, the forms of the second
order terms. Inserting equation (2.3%9) into equation (2.38)

and relating terms up to second order we obtain

sin &/2 M
E (X yx, @ = ZY————=Re ¥ Act) [¢i(w) + P (W) ]
ﬁ it=0

2
[} a [
+ o Al(t.‘) [\v.‘(w) + \vi(w )]+ = Aytti) [n.‘(w) + n.‘(w )]}

(2.42)



t +h
2 . 2
¢ (w) = I " TENE ¢ = Lg,_—e” [erfc(ttm) - er*fc(t,‘+w+h)]
t,
1
t +h
1
- -t ~2wt _
v (W) = I (t-t)dt
t
| 8
wz 2 2
_e —(t +w) —(t+ W+ h)
2 e - B - (w+t )@ (W)
1 A 8
(2.43)
t  +h
\' 2
-— -—T2
7. (W) =I et "Wt (i ) %4¢
9 v
t,
A 8
Wz 2 2
= € —(ti+w) —<ti+ w + h)
2 e (ti+W) - e (ti+w+h)
¢i(w) 2
T e—m—— - (w+ti) Q (W) —2vi (W) (w +t )
“ v (2.44)

We evaluated ¢, and n functions in separate modules and
substituted the values in the summation (2.42) to obtain the

E  function.
v

The angle averaged expression can be obtained by

24
R (X920 = 8n° I Ry(X's%® sin © de (2.45)

e
The corresponding absaorption profile is

-
Plx’) -'-‘J- Rv(x',x) dx = H(ai+aj s X)) (2.46)

"
L
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We employed Gaussian quadrature points with 20 angles to
evaluate the integral in equation (2.45)., Equation (2.46) can

be derived in the same lines as that of equation (2.32).

From the expression for the atomic frame redistribution

g (eq.2.3) we see that it has maxima at &' = ¥ and €& = ¢

o]

Line centre frequency {o in atom’s frame transforms to L in
laboratory frame, and does not change in magnitude. The
underlying physics is discussed by Mihalas (1978). We see
that the same trend is reflected in the LFR which can be
discerned from fig S(e). Rv(x‘,x)/¢(x‘) is plotted in fig 5Se.
From this figure, we see that a photon when absorbed in the
wings, has a high probability of being emitted in the wing as
well as at the centre. The wing emission is similar to that of
Rxxfunction and the emission at the centre resembles that of
R .

III

2.2.3. Symmetry properties of the LFRs

We see that the equations (2,24),((2.30),(2.33) and

(2.34) satisfy the following relations:

Ri(—x',—x) = Ri(x',x) H Ri(x‘,x) = Ri(x,x‘) i=I,II,I1II,V
Rx, In(:ac',x) = Rx,nx(x s —2) (2.47)
These symmetry relations can be used to advantage while
calculating the redistribution functions. Because of them,
nearly one fourth of the redistribution matrix elements only

need to be computed.
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Basic equations and the computational procedure.

The eguation of transfer for a two level atom with

plane parallel geometry is given by

dl{x =) .
u J;f » Hs = KL(z) [ £+ Pixd S(xyz) — Y(3 =) (2.48)

- ke -

and for the oppositely directed beam

dI(x,—p,z) . 1T A
- s Xy T Hy = HL(z)[? + P{xD LS(x,z) - Id{(x,—p,2) (2.49)
- =
where I(x,uyz) is the specific intensity at angle 8 = cm*s—1 1y

[ 4 e (0O,1) ] at the geometrical point =z and frequency
x = (v - vo)/As, As being some standard freguency interval.
8 is the angle between the ray and the normal to the surface

at z. The source function S(x,z) is given by

MX)SUXJ)+!EC
Pix) + 3

S(x,z) = (2.50)

where 8L and Sc refer to the source functions in the line and

continuum respectively. The line source function is given by

] |
S (x,z) = 2=%) Rix',) 1(z,% ') du’ dx’ + B
L’ 2¢(5) ' T
-0 =1

(2.351)

where £ is the probability per scatter that a photon is
destroyed by collisional de-excitation. B is the PFPlanck
function. We have set Sc = B =1 in all cases. B is the ratio

of continuous opacity per Doppler width to the line opacity.

The above equations are solved within the framework of

Discrete space theory technique (Grant and Peraiah, 1972). The
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computer code given by Feraiah (1978) is modified to explo:it
the symmetry properties of the problem and also to include any
type of redistribution function with the 1least number of
changes in the program. Gaussian gquadrature points are used
for fregquency and angular mesh. 24 frequency points and two
angles are chosen. Since the solution to these equations is
symmetric with respect to the line centre, only the positive
frequency grid is considered. For evaluation of the scattering
integral in equation (2.351) the technique described by

Adams, Hummer and Rybicki (1971) is adopted.

2.4 Results and discussion.

2.4.1 Optically thin pure scattering medium (&£ = 0)

Fig &6 gives the emergent intensity as a function of
frequency for a purely scattering. atmosphere. The CRD case
with Doppler and Voigt absorption profiles {(damping parameter
a = 2x10—3) are also plotted for the purpose of comparison.
Boundary conditions considered are:

Ity gyt = T) = 1 H I{xy~pyT = 0) = 0
Total optical depth considered is = 155. The criterion for
determining whether the medium is effectively optically thick
or thin is given by {(Hummer,1965)

&T >> 1 for Doppler profile.

o(T/a)*® 5> .1 for Voigt profile.
Since the wings are optically thin, the photons escape in the
wings freely and the emergent‘intensity is nearly the same as
the incident intensity. The intensity profiles due to R ’

Ru and Rv are nearly the same.
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The source function at various depth points is plotted
in fig 7 as a function of frequency. We see that the emergent
source function differs from CRD by an order of magnitude in
the wings for Rn,and Rv. For a purely scattering medium with
small optical depth,there is a substantial contribution to the
scattering integral from radiation in the wings. This
tontribution is enhanced by the fact that Rxx1and Rv emergent
soutrce functions are higher in the wings compared to CRD. RII
soutce function lies higher than Rv since Ru}s more coherent

in the wings as seen from figure 7(a).

Deeper in the medium, the radiation in the wings does
not differ very much from the core. This ie because the
incident radiation has not undergone much of absorption in the
core. From figure 7(b) it is clear that the differences
between the source function values in the wings are reduced
for Rnﬁ Rv and CRD and also that they do not deviate very

much from the values corresponding to the line centre.

2.4.2 Optically thin scattering medium with thermal sources.

When thermal sources (& = 10_3 s, B = 1) are added

throughout to the above medium the spectral line becomes
shallow with higher intensity at the line centre. The ratio
(R) of the intensity due to the pure scattering medium to that

of the medium with thermal soyrces is given by

I(x, 14y T = 0) pure scattering medium

Rix,uw =

I(x, T = 0) medium with thermal sources



Table 1 Ratio R as defined in the text at different

frequencies and angles.

x R (x,

o 0.318 1.12 1.89 2.6 3.27 3.9 .97
0.21] 0.71 0.72 0.78 0.96 0.99 1.00 1.00
0.78] 0.72 0.73 0.88 0.99 1.00 1.00 1.00

When analysing the above table one should remember that
the medium with thermal sources (& »® ©0) has in addition
incident radiation at the lower boundary. From the higher
layers where optical depth is low (at line core), we get the
radiation from thermal sources. Since the radiation field
is unattenuated, we get higher intensity at line core compared
to a pure scattering medium where radiation comes from deeper
layers and is absorbed giving ue a deeper absorption profile.
The line wings are optically thin and hence the radiation
escapes easily whatever be the sources in the medium. Therefore
the wing intensities do not differ for the two different types
of media. Both the media do not have continuous source

function because we have assumed £ = 0.

2.4.3. Pure scattering medium with high optical depth

when the total optical depth at the line centre is

increased to 5x104, the emergent intensity profile at u = 0,78
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for a purely scattering medium is different for different
redistribution functions as shown in fig 8. Rx produces deeper
profile compared to other functions. This is because Rx has
Doppler absorption profile and hence most of the absorption
occurs at the line centre while there is less absorption in
the wings. Therefore there is no chance for the photons from
the wings to be re-emitted at the line centre and this results
in less intensity at the core. The same reason makes the wings
to be transparent to photons which gives higher intensity in
the wings for RI compared to others. For the other
redistribution functions, absorption in the wings does take
place because of high optical depth due to the Voigt
absorption profile given by these redistribution functions.The
high coherency displayed by Rn function does not allow the
photons to diffuse from the wings to the centre. Therefore the
more noncoherent the redistribution is, the higher would be
the emergent intensity at the core for a purely scattering
medium with high optical depth which can be seen from the

above figure. The emergent intensity follows the same

behaviour at pu = 0.21.

2.4.4. Optically thick scattering medium with thermal sources.

Thermal emission dominates the picture when thermal
sources are added to the above medium. The photons are
re—emitted accordiﬁg to Doppler redistribution in the core.
Therefore all the redistribution functions give the same
intensity in the core.The diffusion of energy takes place from

the core to the wing according to the particular type of
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redistribution function. Rxxdoes not allow ¢this diffusion
easily and so it produces 1less intensity in the wings.
Therefore, for this case also, the more non-coherent the
redistribution is, the higher will be the intensity in the

wings which can be seen from figure 9.

Z2.4.5. Medium with only internal sources.

The above result can be illustrated in a more dramatic
way if we remove the direct radiation source and have only
thermal sources. Roundary conditions are:

IT (ot =T) = 0 ; I (T =T) =0

£ = 1(.')-—3 y B

1 (throughout the medium)

The emergent inkensity is plotted in figures 10 and 12 for
optically thin and thick cases. The ratios of emergent source
functions at different frequencies for the case T = 155 is

given in table 2.

Table 2. Ratios of emergent source functions at different

frequencies for T = 1355

x SL(RV)/SL(RH) SL(RV) /SL(Rn)
0.38 0.99 1.02
1.89 0.98 1.03
X.89 1.80 0.72

S5.97 8.18 0.68
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The partial coherency impedes the escape of photons through
the wings. Therefore the efficiency of transfer of photons to
the wings depends on the noncoherency of the redistribution
mechanism. RI and Rln:being more noncoherent, transfer more

photons to the wings. The tesult for Rxx is in gualitative

agreement with that of Hummer (19469) and qu with that of

Vardavas (127&b). Similar emergent praofiles have been obtained

by Hubeny and Heinzel (1984) but for T = 104 and &£ = 10—4.

2.4.6. Continuous absorption

To see the effect of continucus absorption on line
transfer with Rv redistribution,we considet certain cases with
e = 3= 10—3 and Sc = B = ], We also have some cases of
very high optical depths of the order of 10é. We have covered
a wide range of thermal sources. This kind of study is useful
in understanding the formation of strong resonance lines like
Ca II H and K, Hydrogen Lyman o etc. There 1is no input
radiation to the medium. The frequency dependent source
function at various optical depths is given in fig 13(a).

Making use of the assumption Sc = B and substituting equation

(2.51) into equation (2.50) we have

@ 1
S(x) = 3515%-;‘-3 J J Rix'y30 I(x ,zyp') dp dx’ + Z(x)B
—o ~1 (2.52)
+ £ ¢ x)
where T(x) = ﬂﬂ+ ¢(¢x) (2.33)

In the far wings, Z(x) » 1 and therefore S(x) — B at all
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optical depths. In the wings, the intensity can be
approximated by I(x,p) 2> BRT/u . These characteristics are
reflected both in source function (fig 13 (a)) as well as in
the emergent intensity profiles (fig 13 (b)). we see from
these figures that in the wings the line transfer is dominated

by the overlying continuous absorption.

k.eeping all the parameters 1like boundary condition,
contribution from external source and continuous opacity same,
we find Rxx redistribution gives lesser intensity in the wing
compared to Rtnf Coherent nature of Rn redistribution
function prohibits the photons which are absorbed at the 1line
centre to be emitted in the wing. Therefore R!xredistribution
function produces less intensity in the wing compared to Rxnf
If there is some input radiation at one boundary we find that
the input escapes through the wings because 'the wings are
optically thin. This drains the photons at the line centre and
hence the intensity at the line centre is less compared to the

case of pure thermal sources. The above characteristics are

seen in figure 14.

The effects of continuous opacity and thermal sources
are seen in figure 15. Continuous opacity generally makes the
emergent intensity profile to be a  weak 1line. When the
continuous opacity is absent, a very weak emission reversal is
also seen. We also get extended wings when the continuous
opacity is absent. The line becomes weak because of the
addition of continuous sources of photons which are emitted

according to Planck distribution. When large amount of
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Same as gigure (1) for (1& medium with incident intensity as1,
T = 5.,10°, P =0, €= 107

’ 2 6mod1um with only thormal sources
u.“,'r-s.w ' B =0, & = 107

e A3) swmo s (2) f'or = 0
(4) puxée scattoering moedium with incldent intensity as 1, R
/5 - = 0,
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continpuous opacity and thermal sources are present, the line
gets saturated and the higher optical depths do not affect the
emergent intensity profile. When thermal sources are reduced,
we find that the line centre intensity drops down. Eut the
wing is unaltered. When the continuous opacity source is
reduced, we get a deep absorption profile with broad wings.
This effect is continued to be reflected in figure 16 also.
R:n: redistribution increases the line centre intensity

because of the easy diffusion of photons from line wing ¢to
centre. We finally get a very deep absorption profile with
very extended wing for purely scattering atmospheres with

large optical depths.



CHAPTER 3

THE EFFECT OF COHERENT AND NON-COHERENT

ELECTRON SCATTERING WITH ATOMIC PARTIAL

FREQUENCY REDISTRIBUTION ON LINE FORMATION

3. 1. Introduction

Compton (1923 put forward a suggestion that the
scattering of light by electrons may account for the observed
displacement of the lines in the splar spectrum towards the
red near the limb. This is because the photons near the 1limb
suffer more scattering than those near the centre. This idea
was investigated by Dirac (1923) who derived the angle
dependent redistribution function for the electron scattering
taking into account the thermal motion of the electrons. He
arrived at the conclusion that a shift of the lines can not be
produced by such a scattering mechanism. Nevertheless it is a
well known fact that the scattering of radiation by electrons
plays an important role in the atmospheres of early stars due
to the high number density of electrons. Electron scattering
is one of the main source of opacity in these stars.
Chandrasekhar (1948) drew attention to the possibility of
broadening of 1lines by electron scattering. This was
investigated by Milnch (1948) who considered the case of a
semi—~infinite atmosphere in which an absorption 1line is
formed, covered by a finite layer of electrons. With these

assumptions,he obtained line profiles with shallower cores and
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broader wings since the photons are scattered from the
continuum into the line core. His assumption of the existence
of an absorption line deep in the atmosphere and ignoring the
effect of electrons was questioned by Gebbie and Thomas
(1968). A more realistic situation is one in which scattering
and absorption in the line, scattering by electrons and
absorption in the continuum all occur simultaneously. Auer and
Mihalas (1968) considered such a case. They assumed the
electron scattering to be coherent and non—-coherent and atomic
scattering to be always described by a complete
redistribution (CRD) mechanism for a Doppler absorption
profile. If the electron scattering coefficient exceeds
continuous absorption,they obtained measurable changes in the
line profile between coherent and non-coberent electron
scattering. For strong resonance lines formed in early type
stars, one has to consider the partial frequency
redistribution of photons by atoms as well as coherent or
non—coherent scattering by electrons which they bave not

considered.

We have incorporated partial frequency redistributicn
(FRD) function of atoms into the calculations of spectral
lines from the media in which atoms and electrons together
participate in absorbing, emitting or scatterinc the photons.
In this chapter, coherent and non-coherent electron scattering
combined with complete and partial frequency redistribution by

atoms is studied for parametrized models, so that the



underlying physics can be discerned. In the next section, we
briefly describe the electron scattering function and in
section 3.3 we give the detailed account of the method to

solve the problem. In section %.4 we discuss the results.

3.2, Electron scattering redistribution functions

The angle dependent laboratory frame redistribution

function is given by (Mihalas, 1978),

4

R 1
Re(v',n'.v,n) = g(n',n mc™ * exp -mcz(v—v'fi
4nkT (1-cos®) v’ 4kT (1~cos®) v°

(3. 1)

This expression is valid for all wavelength regions of
electromagnetic spectrum except for short wavelengths. In
other words, the above formula can be applied in the limit

that Compton effects are negligible (i.e. E:E << 1 ). v,

mc

are frequencies of the incoming and scattered waves. n’ and n
denote the incoming and scattered directions. k is the
Boltzmann constant. c is velocity of light. m and T are the
electron mass and temperature. ® is the scattering angle,
g(n',n is the phase function which is normally assumed to be

either isotropic or dipole.

The angle averaged redistribution function can be

obtained by either integrating the expression given by
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equation (3.1) or from the first principles. Auer and Mihalas
(1968) derived the angle averaged redistribution function from
the first principles. Here we give the alternate method:

To normalize the above equation we have to divide it by 16n2.
(See equation 2.7 of Mihalas (1978)). Also substituting the

following relations (assuming isotropic scattering)

v ~l
w = Eg t%I- H g(in',m = 1
. ®
(1l -~ cos ® = 2 sin26/2 H (v — v’) = Av
we have for a normalized redistribution function
) \ (o ®
R 'yn'32,m = - exp| -
320 wR sin ©/2 anwtsinte/2
(3.2)
n
R(v' , v = an’J R(v',n'ju,n sin @ d@ (3.3)
[+] h i

Angle averaging equation (3.2) using equation (3.3) we get

n
1 2 2 . 2
R(v ,» = J’ o~ (A1) 7/ (4w sin &/2) _ . e/2 de
2wyt
Let v = sin &/2 ., Tharefore,
1 PR FPPRE BN
R(¥V ,V) = —ee J- ] dy
wym

o
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Let (Au)z/(4w2yz) = zz . Then R becomes

Ry, )

I
n
F—.
N
4t
omaad
a

1

ierfc I v-v ' (3.4)
2w

where ierfc (z) is the integral of the complimentary error

function.

o]

2
ierfc(z) -= J erfc (x) dx =

e % - z erfc(z) (2.5)

1
. vn

Finally the electron redistribution function as a function of

frequencies expressed in atomic Doppler units is

R® (", 20 = [1;] jerfc [ l x - x I ] (3. 6)
20w

w is the ratio of electron to atomic Doppler widths and is
given by © x 43 A*? where A is the atomic weight of the atom
under consideration. @ is chosen as B80 which corresponds
roughly to that of Helium atoms. x° and x are the frequencies
of the absorbed and emitted photons expressed 'in atomic
Doppler units. In Fig. 1 the function Re(ﬁ) is plotted against
Bwhere = |y -y’ | and y and y’' are frequencies expressed
in electron Doppler units. We can not compare this with a

function like Gaussian because that is a function of



Figure 1 The angle averaged Redistribution function with
isotropic phase function for eslectron scattering as a
function of = |y..y'|/w where W is the electron

Doppler widtll Eo gloyaic dDOppler widBv ratlo,
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freguency exptressed i1n atomic Doppler units which is BO times
smaller than electron Doppler units and so falls off too
steeply for comparison purposes. From now onwards superscrapt

e’ is used to denote electron redistribution and ‘a’ for

atomic redistribution function.

Fig. 1 is in good agreement with that of Hummer and
Mihalas (1967). Frequency edpressed in atomic Doppler units
enter in the calculations of radiative transfer. 6o, if we
transform Re(y - y') to Re(x',x) we find that,over a few
atomic Doppler widths, Re(x',x) remains constant. Therefore
the contribution from non—-coherent electron scattering remains
constant in the Doppler core of the line. We also see from the
Fig. 1 that the non-coherent electron scattering may
influence in the wing to very large atomic Doppler units away
frrom the 'line centre. This is due ¢to the large ratio of

electron to atomic Doppler widths.

. 3. Method of solution

The radiative transfer equation for a two level atom

including noncoherent electron scattering is given by

Hgy&i“ﬂ)=—w + oy, P p,z) + x, £P(XE
dz c e L, 10
+ ™
L%i zl Ra(x',x)I(x',p',z)dp'dx‘
o

+ k B +
c

+1 o
+ o, IJ- Re(x',x)l(x',u',z)dp'dx' (3.7)

-1 —
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where PC and og are the continuous absorption and electron
scattering coefficients for unit volume. X1 1S the atomic
absorption coefficient at the line centre. £, ¢ and B have the
same meaning as in the previous chapter. Ra(x',x) and Retx',x)
denote the atomic and electron redistribution functions
respectively. For the problem of coherent electron scattering
we have

RE(x*,20dx’ = & (x' - x) dx’ (3.8

where &(x'—x) denotes the Dirac delta function.

Though the above equation (%.7) is solved within the
framework of Discrete space theory, the choice of quadrature
points,normalization,segmenting the problem into core and wing
regions and the iteration procedure are all followed according
to Auer and Mihalas (1948), Since modification of the methaod
due to Grant and Peraiah (1972) is necessary to tackle this
problem,an account of the method is given below:

Defining

-] k

e c
p = ' A= , and =R +71 we get
e X0 c X4 e c

+ ‘-‘—gl""i M2 o g+ @l T Ikt pyz) + £d(0B

1 ]
+ 5 J. J.Ra(x‘,x)I(x',p',z)dx'dp’ + nCB
...1 —

1 a
ﬂ; e

+ 5 I I R™(x’y2) I{x, u’,z)dx"du’
-1 -~

(3.9
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Since this problem has symmetric solution with respect

to the lime centre,we need to consider only half the freguency

grid.
I b4 z
+ E—g-:(x’ MiZ) o L a4 0 1 1kt uyz) + sdGOE
X197
1 o
+ L:_‘Ej j [F:a(x',x) + R¥(-x', x ]I(x',p',z)dx'dp' R:
-1 Q
A 1 ©
e e . e ' . ' . '
+;2—— J J [R‘ (x’,x) + R (—x",5) ]I(x,u.,z)dxdp
-1 O
(3.10)

The frequency integration is split into two regions. One is
the core region where the interval is [O,x%] and the other is
the wing region where the interval is Cxa s © 1. Reason for
such a demarkation is due to the fact that the problem is
characterized by two intrinsic frequency scales, one for the
atoms and the other for electrons. Coverage in the line must
be fine enough for taking the atomic redistribution into
account. Coverage in the wings should extend to 4 electron
Doppler widths which correspand to around 320 atomic Doppler
widths. Here the frequency quadrature can have a larger mesh
size. Hence the equation is split into two parts, one for the
core and the other for the wing tregion. The equation for the

core region can be written as



+ ’i‘-—gé(x'i M) o L L B+ @0 1 I(xt uyz) + epl0H
lo
1 xo
- %‘?I J- [Ra(x',x) + R¥ (=%, 3 ]I(x’,p',z)dx'dp' + f_E
-1 "0
1 x

o
[ Re(x',x) + Re(—x',x) ]I(x‘,p‘,z)dx'dp' +D1(x,z)

<

O £ x < xo =3 (X.11)

where

1 O
plisx, =) = L}EI J [Ra(x',x) + R*(-x*, %0 ]I(x‘,p',z)dx‘dp'
-1 x
[+ ]

1 o
ﬁé ] e
+ 5 J. J [l? (x" %) + R (—=x', ]I(x',u',z)dx'du'

-1 x
)

(X.12)
In the above equation, the first term on the right hand side
denotes the continuous absorption. The second term represents
the thermal sources and the first scattering integral denotes
the photons which are reshuffled within the spectral 1line by
the atomic scattering process. Next term is the contribution
from the continuous sources to the pool of photons. The second
scattering integral represents the photons which are
reshuffled by electron scattering process. The term D1 is
described after equation (3.14) in the text. For the wing

region the transfer equation becomes



I+
It

= - [ B+ ¢ I I(x,t p,z) + £P(xE

Ra(x‘,x) + R (=2, 20 }I(x',u',z)dx'dp' + B

J Re(x',x) + K (=x', 20 ]I(x',u',z)dx'du' +D% (x, 2)

xOSxSm (Z%.13)

where

2 1-¢£ ' "o a a
D" (x,z) = = I I [ R (xfyx) + R (~x',x) ]I(x',u',z)dx'dy'

1 x
ﬁg ° e e
+ 5 J J. [R (x*y2) + R (—=x',x) ]I(x‘,u‘,z)dx'dp'
-1 0

(3.14)

In the above equations X, marks the division between the core
and the wing. D1 and D2 are respectively thesource terms for
photons being scattered from the wings into the core and from
the core into the wings. Equations (3.11) and (3.13) are
coupled together through D1 and therms. This coupling arises
due to the noncoherent electron scattering which redistributes
the photons from the core to the wing and wing to the core of
the spectral line. Following Auer and Mihalas (196B) the
interval [xb, wl is limited to [xb, xi'] and the remainder is

handled analytically assuming Ix = Ix for x > x %0 that 1

X
[§

may be taken out of the integral. Mathamatically this reduces

to
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J- I [F\'e(x',x) + RS (-x', » ]I(x',u',z)dx'dp'

-1 x
o

1 x1
e ” e ’
= J J. [ RT(x"yx) + R (=x", x) ]I(x’,u',z)dx'du'
-1 x
]

[}
1 (V')

+ I I(x',u',z)dp'j [F\'e(x‘,x) + RS (-x', » ]dx'

-1 x
7}

1 x
t e e
I J [:R (xfy2) + R (=x', ]I(x',u',z)dx'du'
-1 X
o

1

+ 2| i%erfc | ¥ 7 X l + iferfc | X7 X, | I(x*ypu*yzd)dp’
2w 2w
~1
(3.15)
where
o -
ilerfc(z) = J ierfc(z) dzf = % [ z% + % ]erfc(z) ~- e
2 2vn

(3.16)

The integrals are reduced to summation over weighted values of
the function. The equation (3.9) can be written at frequency

x. and ‘ﬁ and depth z as



¥ a1’ .
g3 _beien . *
zlo d=- [ﬁn ¢i.n] i..j,h+ cn i.n E'v\*.ﬁ\.,n E‘n
(1 — .c“) I J a +
+ = R, .a ,C, |1, , +1., ,
- F':t?’:s voet v ) [L ed.em L ’h]
ﬁe,n X J a + _ 1,2
— £ f R. .a .C.[I.. RS S ]+D
<~ i'=4a i*=1 [ R § i J | SR R i7,3%.n i,n
(Z.17)
+ —_
I and I are two oppositely directed beams. Defining
+ Ii +
i.j.n B (X *F Hy ‘n)
RS € R ®(x, ,x) + RY®(-x, ,x) (3.18)
AN PR Y 1 A 8 i A 8 1
¢hﬂ = ¢ (xi +Z )
h
rIi(x, y 2, z))
+ 1 i n
+ - +
I = } (xi L “2 ! zn)
A8 , ]
*
+
LI(X""'“J'Zn)-'JXI
i -
’ 2 L I I L]
‘ z -.I.lc
C’ﬂ = R R E RN ; Mm= “j ij
L:‘ Cy =m==eC,
4y x g

where 5 and 1 are the total number of angles and frequencies

considered in the region of the spectral line.
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;- 4 - [ f+ ¢i,n]1\.n+ £¢L,h Bn * ﬁE Bn
lo
(1—& ) b
. n T RS a C [Ii + It ] (3.19)
2 =, i, i m i',n i’ .,n
3 L10=1
+ + =
+ —"— ¢ RS, (a,cCc 15, 417 + pls?
2 Lt =gt cbE m i’',n i’,n i.n

Integrating the above equations over the depth interval

fz ,z ]l we have
n n+i

+ + +
M (I, - I Y+ T (3 + ¢.) .
m L, N+ L,n Nnerd 2 L n+4/2 L ,n+4./2
1,2
= (B _+ed) E + T D!
Nn+4/2 C T nra/2 n+4i/2 N+ /2 L, n+d /2 ,
(3.20)
X e +
+ 3 T £f RS, .a ,C_ (I + I )
@, N+i/2 ned/2 i=4a | TR S 8 m L,hr4/2 L,n+di/ /2
x c + -
+ (1 - & T b R, .a ,C . + I,
—_— nti-72 T ,1 i m L,N+4./2 L,n+d /2
<~ . =4
and
M (I, - I ) + T + ¢ 1,
m i1,n L, Nn+d nq-t/z(ﬂ ¢\. LES Vd BRES . L X W |
= T (3 +e¢.) E + T 91'2
n+eas2 | C i ned /2 nedsn n+di /2 L, nedas 2 (3.21)
I e . _
+ T x R a, C + I, )
ﬁ..nvt/z neice U, i’,i i' m i,net/2 i,nri/2
i
x a + _
+ - & T .a_ ,C I, + I, . )
d4-o N2 }_" R'\‘.v. i’ m ( i,neer 2 i,nre/2
2 i’=4

Here the optical depth T is defined as

T (3.22)

=
nris2 x lo,.nearz

iti T
rontd and nesr2 refer to quantities at T v T and .

where n+12 refers to the average over the shell in the medium



bounded by the layers Tnand Tove * Physical quantities like
the absorption x , intensity I etc are averaged. Mm contains
angular guadrature roots and the matrices a and C contain
frequency and angular quadrature weights. The geometry with

the boundary conditions chosen is given in the following

diagram.
é
1V (p, r=0) =0
T
‘ I
T ///
»
T
ned
e L=cos8
T
N+4
17 (p, T=T) =t

In the above equations we can combine the angular and frequency
quadrature weights as
e T 45 (3.23)
Wp =k =j+ (L - a) 1 €k f£K =132 %9
Here i and j refer to frequency and angular points. There are
r total number of frequency and J total npumber of angular
pointe chosen. PFProfile function and the redistribution
functions were suitably normalized according to the procedure
outlined by Auer and Mihalas (1968).

Let us define the following quantities:
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I“-— [Ik] ’ ¢n+l./z— [ﬁ+ ¢k] 61:!:'
n n+i/2
(2.24)
= (3 + £¢ ) B 5 + 01’2
n+is2 k  ntds2  nedr2 ki’ n+i/2

3.3.1. Definition of Re and D matrices for coherent and

non—coherent electron scattering

Coherent electron scattering :

Since the terms in D are small we Tfirst set the D

e . .
vector to be a zero vector. R 1is given by

RJ 0
e ﬂe RJ
R [ S (3.25)
2 .
0 .
R
1 J

< IXX

where x is the total number of freguency points in the

region
considered.
1 1 IIIIIII1 1
1 1Illlllll1
R = " W ® ® A N B &K PBFE (3-26)
L 1 1!----..!1 o Jx’
where J is the total number of angles considered. Here core

and wing are decoupled from each other as far as the electron

redistribution is concerned. So the equations (3.11) and

(3.13) can be solved separately without involving any

iteration scheme.
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Non-coherent electron scattering |

First iteration ; Core solution

Let us denote the number of frequencies in the core and the

wing as 1 and x1t respectively. Then

1
N+l 2

4 4 - —
Ldp 31, ;. d''=0  (3.27)

wl 2

Here D1 is a zerp vector because of lack of information about
the wing solution in the first instance. To evaluate the D1
term, we should know the radiation field in the wing. Since we
have not yet solved for the radiation field in the wing, we
make this term a zero vector in the first iteration. To

. th .
compensate for this, we add an extra term to the »  column in

the Re matrix which is described below:

RJRJ..-‘---..‘..RJ

R® = . (3.28)

R R IIIIIIIIIIIIR -
L J J J_ IXT

Now the x"h column block in the RE matrix becomes

x, + x

i I
2w I]

xi < xo (3.29)

X, — X

i b ¢
2w

I + izerfc

(R)Y .. = (R _ ) |, +2[izer~fcl
F 1+, I J I
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where (Ra)ix in the R.H.S. are the usual electron
redistribution values. The extra term corresponds to a
constant value assumed for the specific intensity in the

wings which is equal to its value at the last point in the
core. The above equations (Z.27-3.29) are used in equation

3.11) to obtain the core solution.

First iteration ;3 wing solution

~

-2
The term D° occurring in eguation (3.13) becomes Di in
equations (J.20) and (3.21) which 1is evaluated in the

following way:

- 2 - 2
"
d) d(x, , u) )
2 2
2 - d d " (x, , M)
D * d:= t z (3.30)
-: -
d 2
SR TN | d (xi. i “J) dyxe
ar = . ; RE( y+RS (2., —x.,) (1t +17¢
CELRLE e U R b L A

xo < xi < xx‘ (3.31)

where the superscript e on 1¥ and 17 refers to the core

solution obtained in the present iteration.

e e e .2 X, ~x
R (x.t,xn) = R (xt.xn) + R (m:i . x“)+2[1 er'fcl i wul

X X
+i2erfcl ‘2”“” (3.32)
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The last term in equation (3.3Z2) corresponds to the analytical
term from equation (3.15). Equations (3.30-3.32) are used in
the R.H.S of equation (3.13) to solve for the radiation field
in the wing region of the line. One can very easily recognise
that equation (Z.31) is nothing but the discretized form of
equation (3.14). The terms corresponding to R®  have been
dropped because those matrix elements are very small.

Second iteration 3 Core solution

In this case

- 4 - ra?
d‘ d (’ﬁ r My ) W
1 d; t -
ol at = . (3.33)
‘. 1 -
ded -d(xt,H_,).'
N Id B - e L IV -~
di. = ;' ;. (R (xi_’xi,')+R (x_‘,xi.,))ai,cj. (I‘..j' + Ii-"i.)
v =4 } =4
1 [+ ]

where RE(xvaﬁi) is given by equation (3.32). The superscript

won I and I  refers to the wing snlutions of the previous
itgratinn. a is the quadrature weights. Now R (xi,xl) does
not contain any extra term because equation (3.34) takes into
account the wing contribution to the core solution in the

scattering integral.
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Second iteration ; wing solution

2 , .
di and Re ‘s are defined as in equation (3.31) and (3.32)

Higher 1terations

For the core solution, equation (3.34) and for wing
solution, quantities given by equations (3.31) and (3.32) are
followed. Xq is chosen as S and x as I20. Frequency
guadrature roots and weights are chosen according to Auer and
Mihalas (1968). The iterations of the solutions for the core
and wing parts are carried out till a convergence 1is reached
for the frequency X between core and wing solutions,

Typically 5 iterations are required; 3 for core and 2 for wing

solutions.

Now putting the terms in the equations (3.20) and
(3.21) into matrix form and using the matrix definitions of

(3.24) we obtain

H{:I:+1 B I: ] * Tn,‘,:¢“,‘,,l:,‘,, = Tn+4/zsn*1/z * ii%EL
"muz[R“ W I +1 ) ]+ Pe T [Re TINS S I ]
neLsR 2 n+d /g neds2 (3. I5)
M [ I; N I:w; ]+ Tn¢1/1¢n¢1/ll:¢£/l = Tn+1zzsnu./z * 'S_L%ﬂ
T a + - ﬁg e + -
n+1/zﬁ? W (I +I )n"/z]+ 5—-T“"”I% W (I +1 )n"/:] 3. 369

where
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M
m
Mmo= (3.37)
™M
b m -
using the Diamond rule,viz,
+ 1+ + - .
etz - 2 It T2 (3.38)
Equations (3.35) and (3.36) can be combined to give
mel o - 2R - P k%W - SR - AT R 1t
2 2 —_— 4 -—_ ne+d
2 P
*
- ST R%W - BT R% M+ [¢ - SR - f_._R'w] -
4 “ 2 n J
M- I fo - 2 rou - Pa rou ST k%W + PuT R%W 1*
3 5 - ry n
2 .
_ *
ﬁ} R + .7 R M- [¢ - ;R“w - _”_.R'w] I~
4 2 n+L
§ [ J
R
=]
-+ (3.39)
LS
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Defining the following auxiliary matrices

(Z.40)
-1 -1, 178
Q=M+0G; T=M-06 3 A=[F’ Q- Q F]
equation (3.39) can be rewritten as
[+ 7 [ b + ] 5 +
In" t(n+1,n) r{n,n+1) (In X
= +
| I“ i | r(n+1,n) t(nyn+1) | _In+1_ i L i
(3.41)

Transmission (t) and reflection (r) matrices now becaome
tin+l,n) = tn,n+1) = A | P ir + @7tp ]
L

r(n+l,n) = rin,n+l) = A [I + Q7 ]

and the internal source vectors
£t =¢t=¢g =TA[P—1+Q—1]

where I refers to the identity matrix of suitable size. Now
the equations are in the standard form to use the Discrete

space theory technique described by Grant and Hunt (1969 a,b).
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A detailed account of this procedure 1is given by Feraiah
(1271). The numerical method described so far is codified into

a computer program to obtain the solution.

Z.4. Results and discussion

The method outlined in section 3.3 is quite general and
can handle any arbitrary variation of all the parameters. The
specific intensity obtained has second order accuracy.
Computer memory and time are praobably the constraints in using
this method. These problems are overcome with the advent of
fast computers having virtual memory operating systems.

Boundary conditions chosen are:

+
I ('1'Nﬂ sy M) = 1 g I (O, = O

for all freguencies.

Two different optical A depths are chosen. One
corresponds to effectively optically thin (T = 155) and the
other optically thick (T = § x 104) situations. Criterion for
effectively optically thick and thin are given in chapter 2.
The ratio of continuous absorption to line absorption (ﬂE) is
chosen as O and 10-3. Different ratios of electron scattering
to line absorption coefficients are considered (ﬁ; =

2 4

10~ ,10_3, and 10" ). Both coherent and non-coherent electron

scattering with CRD and PRD for redistribution by atoms are

the different physical situations considered.
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Z.4.1. Coherent electron scattering without continuous

absorption

The emergent mean intensity as a function of frequency
for coherent electron scattering media where redistribution of
photons by atoms is either partial or complete is given in
Fig. 2. In the following discussion, the core means Doppler
core measured in atomic Doppler widths and not the core
solution referred to, in section 3.3. The result for CRD with
Doppler absorption profile (DAF) is in complete agreement with
that of Auer and Mihalas (1968). For high optical depth media,
we see that the partial frequency redistribution Rx: ’ Rxn
and Rv give higher mean intensity in the wings compared to CRD
with Doppler absorption profile. Although the above functions
have Voigt absorption profile (VAP) which increases the
opacity in the wings substantially, the probability that a
photon is scattered from the core into the wings 1is also
strongly increased. Hence there is higher mean intensity in
the wings for the redistribution functions. Among the profiles
given by the FRD functions, we find that the more non—coherent
the redistribution is,the higher the value of mean intensity
in the wings. This is due to the fact that the non—coherency
increases the transfer of photons from the core to the wing.
For an optically thin medium,(T = 155) the wings are
transparent, and the directly transmitted radiation dominates

the solution. This being almost the same for all
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redistribution functions, emergent profiles obtained are
graphically unresolvable. When the thermal SOUrces are
decreased (e = 10 ° to 10 ") The same trend is retained with a

decrease in mean intensity throughout the profile which can be

seen from Figure 3.

3.4.2. The effect of continuous absorption with coherent

electron scattering

In Figures 4-8, the ordinate gives emergent fluxes in
units of continuum and the abscissa gives the frequency
relative to the line centre in atomic Dappler widths. The
result for DAF (Fig 4) is in quantitative agreement with that
of Auer and Mihalas (1948). For optically thick media, the
line develops an emission hump when the electron scattering is
‘more than the continuous absorption ' irrespective of the
redistribution mechanism employed (Fig. 4). In the wings the
opacity is mainly due to continuous absorption and electron
scattering. The 1line core appears in absorption due to
scattering. The scattering pumps the photons from the core to
other frequencies. The transition region between the core and
the wing receives substantial amount of photons from the core.
The contribution from the core falls off in the wing and also
the continuous absorption and electron scattering decreases
the intensity in the wing. Hence we see an emission hump in
the transition region. When the total optical depth of the

medium is reduced, we see almost an absorption 1line with a
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very small emission component. These charecteristics are
reflected in Fig. 4. When the thermal sources are reduced
(Fig.5), there are less number of photons to be redistributed
into the transition region between core and the wing.

Conseguently we do not find a substantial emission hump.

3.4.3. Caomparison of solutions faor different electron

scattering coefficients

When the electron scattering coefficient is teduced,
the opacity in the wing is reduced and this results in higher
absolute flux values in the wing. Absolute flux at line centre
will not be affected because of the high line absorption
coefficient at the centre. Therefore the relative flux in the
core will be more for a larger electron scattering
coefficient. Hence we get deeper and broader lines for small

ﬁé’s. Figures 4 and 5 illustrate this result.

2.4.4. Non—coherent electron scattering

The combined effect of various atomic redistribution
functions and non—-coherent electron scattering on emergent
flux profiles is plotted in figures 6—8..The result for DAP
(Fig. &) is in complete agreement with that of Auer and
Mihalas (1948). Non-coherent electron scattering combined with
PRD by atoms give higher flux values in the core compared to

4
coherent electron scattering for the parameters T =5 x 10,
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£ = 10’2, B = 10"~ and B, = 1077 (Fig 4,6). When € is reduced
to 10—3, we find that there is no significant difference
between the flux profiles due to coherent and non-coherent
electron scatterings. The same result holds good when the

total optical depth of the medium is reduced.



CHAPTER 4

EFFECT OF EMISSION PROFILE ON LINE FORMATION

4.1 Introduction

The emission profile v, is defined as the fraction of
all atoms in the upper state that, if they decay radiatively,
emit photons of frequency v as seen in the laboratory frame

(Mihalas, 1978).

For a resonance line photon, we know a priori (i.e.
without a dependence on the radiation field and/or level
populations) the functional form of the absorption profile.
This 1is due to the inherent assumption of Maxwellian
velocity distribution for the atoms in the lower level , which
is quite valid in the stellar atmospheric conditions. If the
absorption and emission can be regarded as two independent
processes, the equality of absorption and emission profiles is
assured. If there is any correlation between the absorption
and the subsequent emission, we see that the emission profile
is dependent on the radiation field. SBince such a correlation
exists in partial redistribution formalism, we find that the
absorption and emission profiles need not be identical. Our
aim is to find the deviation between the absorption and
emission profiles when the partial redistribution functions

are used in radiative transfer calculations.

Oxenius (1965) showed that the emission profile not



only depends on the radiation field, but also on the velocity

distributions of the atoms in the ground and excited states

Even though his formalism is physically consistent, is not
suitable for numerical calculations. On the other hand, the
sub-state formalism of Milkey and Mihalas (1973) enables a
quantitative study. Steinitz and Shine (1973) investigated the
assumption of the equality of the absorption and emission
profiles for a two level atom with Doppler redistribution.
Baschek, Mihalas and Oxenius (1981) showed that the
formulation given by Mihalas (1978) of the stimulated emission
term is incorrect. The error committed in the calculations
presented thus far in the literature is of no importance
because the stimulated emission term is negligible in all the
cases. They gave correct expressions for the statistical

equilibrium egquations for angle averaged isotropic

redistribution fuhctions.

We note that the above expressions are in conformity
with that of the equations of Steinitz and Shine (1973). Since
we are interested in angle averaged redistribution of the
radiation field in the present study,we will closely follow

the above formalism.We have obtained the emission profile when

the stimulated emission is not negligible. In the case of

non—coherent redistribution of the photons, we expect a close

equality between absorption and emission profiles. But the

opposite case of a redistribution which is highly coherent in

the wings is expected to make the absorptien and esission
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profiles quite different from each other. 50,such a situation
is studied. In section 4.2, the form of frequency dependent
source function and the method of sclution are given. Here we
shall show the equality of the expressions of Steinitz and
Shine (19732)and Baschek,Mihalas and Oxenius (1981) for the
source functions. Since the formalism of Steinitz and Shine
(1973) enable us to define emission profile in a simple way,we

have adopted this method. In section 4.3, we discuss the

results briefly.

4,2, The source function includingrthe emission profile.

The transfer equation for a two level atom without

continuous absorption can be written as,

dI
M 3) _ .
== = &, (I,-5.) (4.1)

where Sv can be written as,

3

s = 2hv w (v)
v 2 g, N
c 2 1 _ o w»
9; N2
2hvo/ 2 [91“2Vv /7 9,M @,
- : (4,2)
1 - 9" ¥y,
9:My U

where o (V) = v, / ¢b’ wiv) , ¢(v) being the emission and



n. &re the number densities of the

absorption profiles, nl, -

lower and upper levels respectively. The other symbols have

their usual meaning. Our aim is to express the number
densities by some tractable parameters. The statistical
equilibrium equations for a two level atom taking the

absorption and emission profiles properly into account become

(Raschek et.al , 1981)

"2¥u[ P21 * Bazy J-Jv‘ ¥y dv’ + Coy ]

’ , *
= ni[la12 IJ"" R(v'yv)dv’ + Cy, ¥, ] (4.3)
and
ny + n, = Natom (4.4)
Isotropy, angle averaging, and a near Maxwellian

velocity distribution for the atoms in the upper states are
the assumptions made in the above equations. The fact that the
spontaneous and stimulated emission profiles are same (Dirac,
1958) is also used in arriving at equation (4.3). R(v’',w) is
the angle averaged redistribution in the observer’s frame.
A21,321 and 312 are the Einstein spontaneous emission, induced
emission and absorption coefficients. Equation (4.3)
represents the number of atoms which can emit at frequency v.
The firet term in the L.H.S of equation (4.3) represents the
number of atoms which emit spontaneously. The integral in the
second term accounts for all atoms which can be depleted by

induced emissions over all frequencies. 021 and Q12 are the
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collisional de-excitation and excitation rates. The first term
on the R.H.S of equation (4.3%) gives the number of atoms which
absorb at frequency v and emit at frequency w. vi is the
natural excitation profile which is the same as the absorption
profile ¢v . The absorption profile has been defined in
equation (2.9) as the integral over frequency of the

redistribution function. Equation (4.4) represents the

conservation of atoms. Integrating equation (4.3) over v we

get,
“2[ A21 * Bay JJv'V’v'd"' * C2; ] = “1[312 IJv"’v'd" * C12]
(4.95)
Defining,
I Jv,vv,dv‘ = Je H J.JD,R(v W dv = J‘
and J.Jv.¢v,dv = Ja (4, 6)
we get from the equation(4.3)the following relation :
-1
no¥,  Byodad, *Cyo (4.7)
ny %y Az *Boyde* Coy

3 o
Zhw = ..2. B
f21 = T2 B21 ; B2 g, “21

and the thermodynamic relations,
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* hw
“i2 _ 2] _ 92 S !
c, n g ’ v 2 hov
21 1 1 [ —
kT
e ~ 1
we get the numerator of the equation (4.2) as
-1 ,
A21 [J ¢:v + £ Eiv ] / 921 + BZIJE + (:‘,21 (4.8)
€24 - :¥
where £ = = 1 - e
A2y
From equation 4.5 we get,
Ny Agy * Byl + Cpy
n, @~ B__J +¢C 4.9
1 127 a 12
Using equation (4.9) and the definition of o, we get the
denominator of equation (4.2) as,
_hy
A + B J - oJ + C 1 -~ we kT
21 21 e v a 21
A2y * Bayde * Cy (4.10)
Dividing equation (4.8) by equation (4,10) we get,
..1 ,
Sv = tv [Jn¢v +cB] (4.11)
-1
B21 €21 - E:'
where & = 1+ — (J - J )+ ~—~—~(1-0we Y
v A21 e Vv a A21 v
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Equation (4.11) was obtained by BRaschek, Mihalas and Oxenius
(1981). We shall show below that the expression used by
Steinitz and Shine (1973) is the same as equation (4,11) for

the source function.

4.2.1. Steinitz and Shine formalism

Steinitz and Shine (1973) assumed the emission profile
to consist of scattering and collisional parts. The usual
assumption of the equality between the emission profile due to
collisional transitions and the absorption profile is made.
Therefore,

VEQII(V) = ¢ (v . (4.12)
For frequency dependent light, the probability per. absorption
is,

J(u IR(L, ) (4.13)

J
a

Ja is the normalization factor as defined in equation (4.6).

Integrating the equation (4.13) over the initial states v ’

we get the frequency dependence of the scattering.

(4.14)

J.(v)
v (p) =

scatt Ja

Finally the emission profile is defined as the weighted
mean of the collisional emission and scattering emission

profiles:
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J_+ £'B._ ¢ (v)
n v
v (v = (4.15)
J_ + £'R
a v

3
3

-

;: ratio is obtained from equation (4.5). Substituting
1

3
[ lf'.J

ratioc and the definitior of v, in equation (4.2) we obtain an

alternative form for Sv' Now Sv is given by,

J‘ / ¢v + & Bv

S = (4.16)
v 1+ & + L Eqw
o
where
P,
o = Zh¥ (4.17)
CL
and
® .
E(w) = () J J .o, [ —_ -1 ] dv'+ £'B [i - W ]
VY W, v v
(4.18)

Equation (4.16) was derived by Steinitz and Shine (1973).

4.2.2 Equality of equation (4.146) and equation (4.11).

Substituting equation (4.18) into equation (4.16) we

get,



1 © . r
1 +'+ = . . , _
o {mv IJv'¢ © ;‘i. gy 9V + &’B (1 mv)]
v

21 1 )
hv/kT
e -

)
1

.-1 ,
Ta®y Ai-‘ B,
> “Ro7kT
1+ 2L (3 —wg )+ 2L (1-0e ) (4.19)
A21 e Vv a A21 %)

Now we see that equation (4.19) is the same as equation (4.11)

my

Equation (4.19) reduces to the correct form for CRD when we
assume y,, = ¢v .

From equation (4.16) we get,

+ &°B
v (4.20)

c‘,l 't.n.

1
r

1+ & + p( E

where

-1
p="2= [eh""‘T-—1] ; B, mB § j =J /B (42D

Qi

We use the equation (4.20) for the source function along with

the definition of emission profile giveh by equation (4.15.
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These definitions make it easier to evaluate the emission
profile and this formalism is very suitable for studying

parametrized models in which we are interested.

4,2.3. Definition of optical depth.

The optical depth for a simple two level atom is given

by,
hv°
-3 - — - 2
drv oy n1912¢v n2821vv dz (4.22)
Defining
Ja Je
A and o = §— (4,23)
and using equation (4.5) we obtain,
pli_ + & ) w
a »
dTv = ATv { i - T pde T o (15D ] (4.24)
where
hv°
Arv = - EE—'nl 812 ¢b Az (4.25)
4.2.4, The procedure for salvingﬁthe transfer equation.

We do not know Je @ priori and so we employ an
iteration procedure to obtain the emission profile amrd the
radiation field consistently., The total optical depth at the

line centre is fixed as 2000 ¥ m . Using this optical depth



scale and the CRD source function, the transfer eqguation is
solved in plane parallel geometry using Feraiah’'s code. Having
known the radiation field, we use it in the definitions of LA
Je, Ja and Jn to obtain these quantities. New optical depth
scales can be constructed from equation (4.24). The 1line
centre optical depth remains more or less the same because @,
at the line centre is almopst unity. Now we use equation (4.20)
for source function. With these definitions for source
function and optical depth scale we solve the transfer
equation once again to determine the new emission profile and
the radiation field. This iteration procedure is continued
till we reach a 1% agreement for the emission profile and the
radiation field between any two successive iteration values.
It takes normally S5 iterations for p=2.0 and 3 iterations for
e=0.2.

We see that the parameter P gives the measure of
the importance of stimulated emission. When p > 1, the
stimulated emission is important. We have used the values 2.0
and 0.2 for p. & is assumed to be 10_3. This fixes the
contribution from the thermal sources. When p 1is high i.e.
when stimulated emission term is dominant term, the procedure
outlined is unsuitable for solving the problem. Linearization
technique given by Milkey and Mihalas (1973) is praobably more
appropriate in these situations. When the p is increased to
convergent

S5 it requires a large number of iterations and a

solution is difficult to obtain.
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24 frequencies and 2 angles are employed. The frequency
grid is chosen as x = (0y6) where x is measured in Doppler
units. Necessary modifications are made in Peraiah’'s code to

solve this particular problem.

4.3, Results and discussion.

We considered a medium with pure thermal sources and no
incident radiation. Bv is set equal to 1. In Fig. 1 we have
plotted the final emergent intensities at u = 0.78 for several
redistribution functions and for p = 2.0. The result for Rx
agrees with that of Steinitz and Shine. Though in the core,
all the different redistribution functions give the same
intensity, we see large differences in the wing. The emergent
intensity due to an function closely matches with that of
CRD. Even an enhanced stimulated emission does not make the
emergent intensity due to an deviate from CRD. Fig. 2
gives the final emergent intensities at wu = 0.78 for Rx’ Rn

and an for p = 0.2. Now we have reduced the contribution
from stimulated emission term. These cases require fewer
iterations for convergence. Now we see that the absorption in
the core is strengthened and also the differences between the
emergent intensities due to various redistribution functions
in the wing is also reduced. So the stimulated emission
enhances the differences between various redistribution

functions and hence the emission profile differs more from

absorption profile. This result is illustrated in the next
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figure. In Fig. 3 we have plotted the ratio of emission to
absorption profiles at the outermost shell of the medium for
P = 2.0 and 0.2. CRD gives the ratio of 1 throughout the
medium which is as it should be. This acts as a check for our
numerical computations. Rxn:function gives & ratio which is

very close to 1. Even though Rxn:# ¢(x')P(x) in the wings

(Finn, 1967), the non coherency makes the ratio v, / ¢v to be
almost 1. This result seems to hold good for the extreme
situations which we have considered and so may be quite
general. The coherency in the wing for Rn:make the photons tg
be emitted selectively in the wings. This makes the ratio
vv/¢b to be quite different from 1. RI is less coherent than
Rn in the wings (see Fig. Sychapter 2) and so this ratio
does not deviate from 1 as much as for Ru . This ratio is

closer to 1 when the contribution from the stimulated emission

is reduced.

In the core, for all the cases we see that vb/¢b does
not deviate from I even if the stimulated emission term is
important. We can conclude that in the Doppler core, one can
approximate the redistribution functions to CRD and for all
practical purposes, one can approximate Rxn:by CRD with Voigt
absorption profile even when we formulate the transfer
equation taking into account the difference between absorption

and emission profiles.
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CHAPTER 5

EFFECT OF SMALL MACROSCOPIC VELOCITIES ON

Ca II H AND K LINES

S.1. Introduction

Linsky and Avrett (1970) reviwed theoretical and
observational studies of the profiles of Ca II H and kK and
infrared triplet lines in the sun, which included some of
their calculations. They took five levels plus continuum as
their atomic model to represent Ca II ion. Integral equation
approach was used for the calculation of line source function.
Complete redistribution was assumed in their computations.
Shine, Milkey and Mihalas (1975) studied the effect of partial
frequency redistribution on the formation of Ca II H and K
lines' in the solar atmosphere. They found the PRD results to
be in better agreement with the observations. The calculations
described above are based on a static atmosphere. Consequently

the computed profiles were symmetric.

Asymmetric profiles with a single peak emission of the
K lines were observed at high spatial resolution studies
(Fasachoff,1970). To account for the asymmetric profile, Athay
(1970} assumed velocity fields in the regions of line
formation. He concluded that to obtain K:v enhancement,  either
the layers where Kz is formed are moving upward  with

velocities of 3-7 km s—l or the K.tayern.ar. moving downward
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with velocities of 10-20 kms | but he tends to favour the
second alternative. He assumed a three level atom mddel with
continuum. He used the integral equation technique generalized
for a multi level atom. Basri,Linsky and Eriksson (1981) used
& comoving partial frequency redistribution code to model the
outer atmospheres of cool type stars. They obtained a highly
asymmetric profile of Ca II K line which agrees with the

observation of this line in 3 Dra.

Line formation in moving media was studied by Abhyankar
(1964) and Kulander (1968). Feraiah (1978) gave an algorithm
for solving the transfer equation including velocity fields in
spherically symmetric expanding media. Rangarajan,Mohan Rao
and Peraiah (1981) investigated the effect of velocities of

1

the order of 2 km s = and 4 km 5_1 in an expanding atmosphere

with chromospheric type of temperature increase.

This chapter is based on the above work. Here we
present the profiles of Ca II H & K (3946BA,3933A) and infrared
triplet 1lines (B48%A,8662A and 8542A) formed in slowly
expanding media. Five levels with continuum is taken as the
atomic model. The formalism of Grant and Peraiah (1972) for
the two level atom mopdel is extended to include multi level
atom model. Transfer equation is solved in observer’'s rest
frame using Peraiah‘s code (1978). Profiles are computed for
systematic expanding velocities, v = 0.5 and 1.0 {(expressed in

mean thermal units) Profiles calculated in static media
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(v = 0.0) are also shown for comparison purposes. Since we
have not incorporated a realistic atmospheric model with
micro-turbulent velocities and continuous absorption, we
can not compare our results with observations directly.
Nevertheless the study underlines the importance of velocities
in determining the shapes of lines. This study also
demonstrates the easy extension of Discrete space theory
technique to solve transfer equation when a number of physical
processes are included. In section 5.2, we give the atomic
madel chosen and the method of calculation of various rates,

We discuss the computational procedure in section 5.3. Section

5.4 contains the results.

S 2. Atomic model

Atomic model chosen is represented in Fig. 1. We have
; 2 2 2
taken the 4 Sg/z ground level , 4 Puz and 4 P./: upper
levels, 32D and 3 2D metastable levels and the
82 s/2
continuum. Temperature (Te) and the electron number density

(ne) distributions for our atmosphere are given in figures (2)

and (3).

Collisional and radiative excitational and
de—excitational processes are considered. Photoionization,
photo-recombination, collisional ionization and recombination

between the continuum and all the levels are also included.
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Fhotoionization rates are calculated according to the

formula

[+ o]
R. = 4nJ av S (v J (2) (5.1)
ik — v
v hy

i
i denotes the lower level and k refers to the continuum. z is
the height of the atmospheric layer. We approximate
Jv(Z) = Bv(Z) where Bv(z) is the Flanck function. a%(v) is the
photoionization cross section and is taken from Peach’'s tables
(1967). Recombination rates follow from the detailed balance

arguments and they are given by

*
i
k
n *
where [i?i ] is the LTE (Local Thermodynamic Equilibrium)
k

population density ratio obtained from Saha-Bol tzmann

relation.

Collisional recombination rates are calculated from the
formula given in Linsky’s Ph.D. thesis (1969) with the
corrections for the inclusion of both the D levels. Detailed

balance arguments give the collisional ionization rates by the

formula



)
an

Spontaneous emission rates (Einstein A values) between the

bound levels are taken from the Wiese tables (1969).

Collisional excitation and de-excitation rates are calculated

according to Giovanelli (1967). Multiplet relations are used

to get rates for the sub-levels. To calculate the fine
2

structure transition rates C (4 P - 42F ) and
/2 172
2

2
C(3 Da/z - = D'/z) , Dumont 's(1967) cross sections are used
and they are derived by treating the collisions to be elastic

and collisions with protons to be dominant.

5. 3. Computational procedure

The transfer eguation which we have considered is

u c%(x,y,z) = kx..(z) i, 1y 2) [S(x,z) - I(x,y,z)] {(5.4)

Qo

and for the oppositely directed beam

-u g-i-""“""z’ =k, (2) $x ) [s;cx,z) - I(x,-p,z)] (5.5)

where the symbols have been described in earlier chapters. Now

we see that the profile function becomes angle dependent.



el adY
—
a5

The equations (5.4) and (5.5) are transformed into the

optical depth scale where

hvy
dt = -k_(z)dz = —2 [n (z)B. - n (2)E ]dz (5. 6)
L L 1y ¥} ul

4mAv

D
Ehland Eulare the Einstein absaorption and induced emission
coefficients for the transition between the lower level (v
and the upper level (uW). n, and n, are the number densities of

the lower and upper levels of the transition. v, is the line

centre frequency. Avn is the Doppler width defined as

1/2

v
Av = 2 [2—’-‘-1] (S.7)
D [ad m

The profile function @¢i{x, 4 z) is defined by
Pix, L, z) = i(i&yv,z) (5.8)
where x = (v -~ v )/Avn and v is the velocity measured in mean
thermal units. When there is velocity field, the frequency of
the line photon is shifted by
x' = x - w(T) (S5.9)

v(t) is the velocity at the point .

We have used complete redistribution with Voigt profile
3

.

function H(a,x). Damping parameter ‘a’ is assumed to be 10~
throughout the medium. The formulation of multilevel transfer
problem using PRD type of scattering mechanism in the presence

of velocity fields is yet to be completed within the framewark
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of Discrete space theory technigque. Complete linearization
method is probably an ideal setup for the above mentioned
formulation. When we attempted this task,we found that we need
to have fast computers to get the results, because of the
requirement of large memory to store the matrices. 8Since at
present we do not have access to such machines, here we
present only CRD results which we could do within our

available resources.

The statistical equilibrium equations for a multi-level

atom are given by

n.t[ L (B, J ,+C + R, +C,

ij i i

+ T (A +R, .3..+c..>]
i) i) 1 i)

j>i j<i
(5.10)
= J J + +
‘E.n,(Aji+BjiJij+Cji) + .z'nj(BjiJieri) nk(‘Rk,t Cki)
J >t J<L
In the above expression, the radiative transitions are

significant only for permitted transitions. J is defined in

equation (5.17).

£n. +n_ =N (5.11)

where Nc; is the number of Ca+ ions and M is the number of
levels considered. qu- at the outermost shell is chosen to
be 10? and the number density in the medium is varied
according to-the equation of continuity. We divided the medium

into 5 shells.



We have employed equivalent two level atom approach to
write the expression for the source function (Mihalas,1978).
Considetr a line formed between levels 1l and u. The line source

function is given by

Z‘hv: n, 2hv: 1
Sh_l = 3 5 = = 5T (5.12)
c u c u t
g. "N g n
i L u

The rate equation for the lower level in a multi level

environment is

nl(EtLu I¢vJvdv +Clu +‘<|, A Z. + F cC.Yy +R_+C

)
A 1
i 1i 1< jmu ity tk k

*
-n (A + B, J¢vJvdv +C)=n, (R, +C) (5.13)

+f nA.Z. +% nC.V,
PR AE LI L T L

and for the uppe+r level we have

+ + +
nu(Bul J.¢vJvdv + Cul +u§u¢lﬂAuizui +u§j CU.)'YU.i Ruk Cuk Aul)

*
- nl( Blu j ¢vJvdv + Clu) = nu (Rhu+cuk) +u§j n.iA.iquu

+F n.C.YV. (5.14)
U)i“‘. 1T V4 wa

where the quantities with % as superscripts denote the LTE

values. Zﬁ and Yij are the net radiative and collisional



brackets defined by

Z.=1-J (nB .-nB)/nA. =1~ (J.. / S.) (5.15)
i iy i Jit ij ij
and
n. c ..
Y, = 1 - 3 it (5.16)
(8 n .c..
i)
where
J = I¢ J (v dv (5.17)
“) v )

If we eliminate analytically the population ratio appearing in

the expression for source function we get

[+ o} 1
'.-‘.»h‘I = [I J- V) I (v, gy z)dp dv + (c'+e)Bv(TE)] /(1+c'+77)
(o] -

1

(5.18)

c‘Bv is the thermal source term which represents photons that
are created by collisional excitation followed by radiative
de—excitation. v is measured from the line centre. The term &'
in the denominator is the sink term that represents those
photons that are destroyed by collisional de—-excitation
following a photoexcitation for strong resonance lines like

Ca IT H and K. #£*' is given by

~-hv/kT
[ - — 3 &
® = C l(i e )/4a '] (5- 19)

The effects of. radiatkion Tfield due to other lines are

described by terms: % and €. They are expressed as
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9
= - 1 .
n [ aa [ & ] aa, ] / [ Aul(a:a‘) ] (5. 20)

a =R + C + L A .Z . + F C Y . (5. 22)
1 Lk Lk il Li Li 1< ju Ly 1
*
= 23
a, n, (Rkl+Clk) + 2‘ njAlejl +.: n_t(:u\’i.l (5.23)
L« j™u i<l
= 2
T = Rt Cux® E AT, YL CLY; (5.24)
u>iMt (TR
*
a =n (R +C )+ ) > njAjquu + 2. nC Y 529
u< ur L
Velocity at each shell is given by
Vin) = V(@A) + [V‘B’ - ‘”A’] * n (5.26)

where A,B are the inner and outer
atmosphere. n denotes the number of the
total number of layers, Velocity is

Doppler units. We have set V(A) = 0 and

boundaries of the
shell and N is the
measured in thermal

v(B) = 0, 0.5 and 1.

Equations (5.4),(5.3) and (5.10) are solved with the following

boundary conditions:
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The incident radiation at the top of the atmosphere is
zet+ro. The incident radiation at the lower boundary of the

atmosphere is assumed to be Bv(Te= 4620°k).

The above equations are solved iteratively. The LTE
number densities are chosen to be initial values for
calculating the optical depths from the relation (S5.6). To
calculate the radiation field in any line, ® and » have to be
specified, which depend upon the radiation field of other
lines. To compute H line radiation field, the radiation field
in other lines are assumed to be Flanckian. While computing
the K line, we substitute the computed H 1line intensities,
keeping the unknown radiation fields in infrared triplet lines
as Planckian. This procedure is continued till the intensities

of all the five lines are calculated.

To get the number densities in the levels, we
substitute the mean intensities of all the five lines in the
statistical equilibriuﬁ equations. This new number densities
are used to calculate the optical depth. Since we know the
radiation field in all the lines, we substitute those values
to campute the net radiative brackets which are used in the
source function expression. Iterations are continued till the
number densities converged upto a deviation of less than\l% of

the previous iteration values.
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S.4. Results

Emergent intensities of K line for the various
velocities when u = 0.79 are plotted in figure 4. The total
optical depth at the line centre with the chosen atmospheric
model is &18. We find a symmetric profile with a double peaked
emission for the static case, and for non—zero velocities, we
find blue shift and asymmetry in the profiles. When the
velocity at the outer boundary is one mean thermal unit, only
a single peak in the red side (Km) with a blue shift of K.
minimum is obtained. K. absorption features broaden with
velocities. A similar trend is seen in the limb (g = ©.21)
also (Fig. 5). We also find Km‘is slightly higher than sz
when V = 0.5. Emergent intensities of H line at a= 0.79 for
various velocities are plotted in Fig. 6. H 1line intensities
are consistently higher than than K line intensities. This is
due to the lesser optical depth of H line which is only 322 in
our model. Both H and K lines exhibit similar trends. Narrow
emission peaks occur for V = 0.5. Emergent intensities of 8662
line for ¢ = 0.79 and 0.21 are given in figures 8 and 9.
Figures 10 and 11 show the emergent intensities of the line
8542 for g = 0.79 and 0.21 respectively. Emergent intensity

profiles of 8498 are plotted in figures 12 and 13,

All the infrared triplet lines are in absorption except
for 8498 line at p = 0.79. This line is the weakest due to the

l1east optical depth at the line centre. With velocities, we
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find all lines to be blue shifted. Near the limb, the velocity

effects in the line profiles are negligible.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1, Summary of the results.

In this chapter we are stating the results of our study
briefly. These results have been illustrated by figures and
explained in detail separately in each chapter of this thesis.
Some of these results have been in quantitative agreement with

that of other workers wherever such comparisons are possible.

We find that the redistribution functions affect the
spectral line formation and the extent of the effects depend
on the boundary conditions, optical thickness at the line
centre and the scattering properties of the merdium. From the
various schematic line formation problems with different types
of redistribution functions which we have studied, we come to
a conclusion that the degree of coherency in the wings which
the particular type of redistribution exhibits determines the
transfer of radiation in strong resonance lines. Therefore the
partial redistribution effects have to be taken into account
when studying such lines. For the optically thin 1lines when
the continuous absorption is present the redistribution
effects are negligible. The presence of continuous opacity
makes the spectral lines weak irrespective of the

redistribution mechanism.
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When only coherent electron scattering is present, the
partial redistribution of the photons by atoms affects the
wings of the lines. If continuous absorption is alsoc present,
the coherent electron scattering and the continuous absorption
are the competing mechanisms which determine the shape of the
lines. When the continuous absorption is more than the
electron scattering, we get broader profiles irrespective of
the redistribution mechanism. FPartial redistribution by atoms
gives shallower line profiles compared to coherent electron

scattering.

The emission and absorption profiles are equal at the
Doppler core even if stimulated emission is important. The
deviation of the emission profile from the absorption profile
is more for coherent type of redistribution. an

redistribution carr be approximated by complete redistribution

for all practical purposes.

Even if small macroscopic velocities are present in the
atmosphere, they affect the Ca II H an K lines. A single peaked
emission instead of double peaked emission is obtained for K
line when the velocity at the ocuter boundary of a schematic
chromospheric type of atmosphere is one mean thermal unit. The
small velocities do not produce any appreciable asymmetry in

Ca II triplet lines.
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6.2, Future work
So far we have considered only plane parallel
atmospheres. When the thickness of the atmosphere is

comparable to the radius of the star, the assumption of plane
parallel atmosphere is not valid. Then we can represent the
atmosphere as spherically symmetric medium to start with. A
study of the effect of the redistribution functions on line
formation in such atmospheres will throw more 1light on the
spectra of giants and supergiant stars. One of the existing
methods (Feraiah, 1972, Schmid-burgk, 1973, Hummer and
Rybicki, 1971) to solve the transfer equation in such systems

may be suitable for such a study.

The ultraviolet observations of spectral lines from
early type stars suggest that the radiation driven winds may
be present in these stars. The mass loss from these stars can
be quantitatively studied in a consistent way only 1if we
consider velocity fields in the regions of line formation. Now
there is coupling between radiative transfer, statistical
equilibrium, hydrodynamic, energy and momentum equations. The
radiation and the velocity fields can be obtained in a
consistent way only if we solve the above set of equations. As
a first approximation, one can probably assume certain
velocity laws and compute the radiation field. Even then it is
very difficult to solve the transfer equation because the

velocity fields in these stars exceed the sonic aspeed by



110

several times. Now the comoving frame transfer equation may
come in handy and there are several existing methods to solve
this equation (Mihalas et al 1976, Feraiah, 1280, Peraiah,
1983). The physical processes are easier to track in the
comoving frame and by solving this equation one can get the
source function values which can be substituted in the formal

solution to obtain the fluxes in the observer’'s frame.

The redistribution functions for multi-level atom are
derived by Hubeny (1981). A quantitative study ascertaining
the effect of these on several lines which can be calculated
simultaneously by considering multi-level atoms is another

problem yet to be solved.

Line formation in turbulent media has many applications
in the field of astrophbysics. The treatment of this problem by

Heidelberg group (1974) may be suitable for further study.

The parametric study provides us the information on the
effect of each individual process. After such a study, it is
easy to discriminate the unimportant physical processes from
the important ones and selectively include them along with
realistic model atmospheres and model atoms in the spectral
line calculations, so that one can compare the theoretical
results with the observations +to derive some meaningful
information. we propose to undertake some of the

aforementioned problems in the future.
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