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ABSTRACT ---------

The main effort of this study is concentrated on 

ascertaining the role of partial redistribution(PRD> functions 

in the process of spectral line formation. The effects of 

angle avet~aged R R Rand R I' II' III V 
t~edistt~ibution with 

isotropic phase function are studied. We have compared these 

results with those obtained using complete redistribution 

(eRD) • Transfer equation with plane parallel geometry is 

solved using the Discrete space theory technique of Grant and 

Hunt (1969) • Various types of boundary conditions 

consid~red. The following results are the new and important 

conclusions of this study. 

In this study, we find that for a pu~ely scattering 

optically thick medium, RI function produces deeper absorption 

profile compared to other functions. The redistribution 

function R is more coherent than Ry and R is more coherent II v 

than R in the wings. :u:x The more non-cohet~en t the 

redistribution function is, the higher would bethe emergent 

intensity in the Doppler core. If thermal sources are present 

in the medium and if there is incident radiation on the lower 

boundary, all the redistribution functions give the same 

intensi ty, in the core. But in the wings, the more non-coherent 

the redistribution is, the higher would be the intensity. The 

presence of continuous opacity makes the spectral lines appear 

weak. Their effects are more pronounced compared to that of the 



thermal sources in the medium and are present for any type of 

redistribution mechanism. In high optical depth situations, 

the R type of redistribution allows the photons to diffuse 
III 

to the line centre and increase the intensity there. 

In the third chapter, coherent and non-coherent 

electron scattering combined with complete and partial 

redistribution by atoms are studied for some parametrized 

models. Since this problem is characterized by two frequency 

scales, one for the atoms and the other for the electrons, two 

types of frequency quadrature are required to cover the effect 

of both the processes. Though the basic equations are solved 

within the framework of Discrete space theory, the frequency 

quadrature points, normalization, segmenting the problem into 

core and wing regions and the iteration procedure all follow 

that of Auer and Mihalas (1968). We obtafn the following new 

result: If the coherent electron scattering is the only 

continuous opacity source, we find that the more non-coherent 

the redistribution by atoms is, the higher the value of the 

mean intensity in the wings for optically thick media. The 

non-coherent electron scattering combined with PRD fills up 

the core and hence one gets higher flUxes in the core compared 

to coherent electron scattering_ 

We investigate the deviation of absorption and 

emission profiles from each other for a two level atom with 

angle avera9~d redistribution functions. The corr~ct 

expression for the source function derived by Baschek,Mihalas 



III 

and Oxenius (1981) is used to solve consistently for the 

emission profile and the radiation field. From this study, we 

get the following new and important results: The absorption 

and emission profiles do not deviate from each other in the 

Doppler core for any redistribution function even if the 

stimulated emission term is important. The devi.tion of 

absorption and emission profiles in the wing is more for 

coherent type of redistribution function. R redistribution xxx 

gives identical absorption and emission profiles and so one 

can approximate R by eRD for all practical purposes. xxx 

The effects of small macroscopic velocity fields on 

Ca II Hand K lines are given in chapter 5. The atomic model 

chosen contains the lower most five levels and the continuum. 

radiative transfer equation and statistical equilibrium 

equations are solved simultaneously using equivalent two level 

atom method. A schematic chromospheric type of atmosphere is 

considered. The emergent profiles are calculated for the 

systematic expanding velocities 0.0, 0.5 and 1.0 (velocities 

at the outer boundaries expressed in mean thermal units). We 

obtain the following significant results: Even though the 

velocities are small, they seem to affect the shapes of the H 

and K profiles considerably. A single peak emission instead of 

a double· peaked emission is obtained for the K line with v 

~ 1 and p = 0.79. ( ~ = cos8 , 8 is the angle of the ray to 

the normal at the surface.). The small velocities do not 

affect the infrared triplet lines significantly. 
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CHAPTER 1 

INTRODUCTION 

1.1 Why study spectral lines? 

Ever since Fraunhofer obtained the solar spectrum, the 

study of spectral lines became one of the major activities of 

Astrophysics. It has been realised that the study of spectral 

lines is a valuable diagnostic tool to infer the physical 

conditions of the gaseous material present in the stars. The 

long column densities, low pressures and large temperature 

gradients are some of the unique features akin to the stellar 

atmospheres. Though excellent text books, review articles And 

research papers have been written on this topiC, it still 

remains as an exciting field due to the variety of physical 

conditions which the celestial bodies offer. The spectra of 

Quasars, Seyfert galaxies, Wolf-Rayet stars are to name, a few 

of the observations which open new avenues into the study of 

Astronomy. Wilson-Bappu effect still remains as an enigma. 

From all these one can conclude that there is a compelling 

reason to study spectral line formation. 

1.2 Method employed to solve the transfer equation. 

The radiative transport in spectral lines is described 



by the radiative transfer equation 

integra-differential equation with two 

which 

point 

2 

is an 

boundary 

conditlons for simple plane parallel geometry and steady state 

situation. Several numerical methods exist to solve this 

equation each one having its own advantages and 

disadvantages. These methods are de~cribed in a book titled 

'Methods in radiative transfer' edited by Kalkofen (1984). 

Ambartzumian (1942) enunciated the principle of 

invariance in semi-infinite homogeneous media. This was later 

extended to finite,homogeneous plane parallel scattering media 

by Chandrasekhar (1950), which helped in solving large class 

of problems involving the radiative transfer. Following Wick 

(1943), Chandrasekhar also replaced the scattering integral by 

a discrete sum and solved the resulting system of linear 

differential equations. This formed the basis for most of the 

subsequent work in radiative transfer theory. 

Using Discrete space theory technique 

Redheffer (1962), Preisendorfer (1965) and 

developed by 

Van de Hulst 

(1965), Grant and Hunt (1969a) developed a numerical method to 

solve radiative transfer equation in inhomogeneous media. In a 

subsequent paper (1969b), they also formulated 

conditions for their procedure to be stable and also 

non-negative solution. This technique provides us 

efficient means for computing internal and emergent radiant 

intensity in the' presence or in the absence of internal 

simple 

~ive 

with 

radiation sources. Our familiarity with this method and the 
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flexibility It provIdes us to Include quite a number of 

physical processes are the resons to use this method to handle 

the problems considered in this work. 

1.3 Description of the pt'oblems in this stLldy 

Our study pertains to certain effects of partial 

redistrIbution functions on resonance lines and also the 

effect of small macroscopic velocity fields on Ca II Hand K 

lines. The problems considered in this work are described 

below in some detail. 

Arthur Schuster (1905) proposed the scattering of 

radiation to be a viable mechanism in the formation of 

spectral lines in stellar atmospheres. 

Radiation field becomes nonlocal due tO,the scattering 

process and this sets the nonlocal thermodynamic equilibrium 

(Non LTE) condition in stellar atmosphere. The coupling of 

radiation field and the number density of different atomic 

states is another aspect 01 Non LTE. Thomas (1965) proved the 

existence of Non LTE in the outer parts of the stellar .. 
atmosphere. We have used the Non LTE theory to study the 

transfer of line radiation. 

In earl ier works on 1 ine tt"ansfer, scattering was 

assumed to be strictly coherent in the observer's frame of 

reference (Milne,1928). In stellar atmospheres,the Doppler 

redistribution in frequency produced by the thermal motion of 



the atoms has to be talen into account. The above process 

combined with the assumption that there is no correlation 

between the frequencies of the absorbed and emitted photons, 

make them completely redistributed (CRO) over the spectral 

llne. Neither of these two extreme situations is achieved in 

stellar atmospheres and so one has to cons idet' the 

redistribution of photons in frequency in some detail. This is 

known as partial redistribution (PRD) mechanism in the 

1 i tet'ature. 

In the process of scattering, an atom is excite~ from 

one bound level to another by the absorption of a photon, and 

decays radiatively bacK to the original state with the 

emission of a photon. Different 

redistribution (LFR) functions eKist for describing the line 

scattering under different conditions. They are denoted as R , 
J: 

RlJ:o and RUI in Hummer's (1962) notation. The influence of Rl 

and Ru redistribution functions on source functions in 

semi-infinite and finite isothermal atmospheres was studied by 

Hummer (1969). Large differences were found to exist in the 

wings of the lines between the eRD and PRO mechanisms. The 

role of R. Rand R functions in finite and semi-infinite 
I II us: 

media were studied by Vardavas (1976 a,b,c). Sy taking 

elaborate atomic and atmospheric models, and a combination of 

describe the redistribution, 

Shine,~ilkey and Mihalas (1975) explained many at the 

observational aspects of solar Ca II Hand K line profiles. 

Basri (1979) found the PRD mechanism to influence the emission 



reversa~ of Mg II k llne. Hein=el (1981) derived the LFR which 

describes the scattering of radlation when both the atomlc 

levels are radiatively broadened and denoted it as R. v This 

function is moderately coherent in the wings and so it serves 

as an intermediate case between highly coherent Rand 
Xl 

non-coherent R functions. 
XIX 

Since there is a revival of interest in these partial 

redistribution functions, we have considered some schematic 

line formation problems which provide us some useful 

information about the redistribution of photons in spectral 

lines. In the second chapter of this thesis we have discussed 

R ~nd Ry functions on line 
IXI 

formation. We have compared these results with those obtained 

using CRD. We have considered various types of scattering 

media and boundary conditions. 

Chandrasekhar (1948) drew attention to the possibility 

of broadening of lines by electron scattering_ Even though the 

electron scattering is non-coherent in $tel1~r atmospheric 

conditions, most of the calculations so f~r assume that it is 

coherent. Auer and Hihalas (1968) studied both coherent and 

non-coherent electron scattering with complete redistribution 

by atoms. We have extended this work to include parti~l 

redi$tribution by atoms.So in the third chapter, coherent and 

non-coherent electron scattering combined with complete and 

partial redistribution by atoms are studied for some 

parametrized models SO that the underlying physical processes 
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can be understood. 

The emission profile ~ is defined as the fraction of v 

all atoms in the uppet' state that if they decay radiatively" 

emit photons of frequency v as seen in the laboratory frame. 

If the absorption and emission are regarded as two independent 

processes (CRD Situation), the equality of absorption and 

emission profiles is assured. If there is any correlation 

between absorption and the subsequent emission, then the 

emission pr'ofi Ie is dependent on the r'adiation field? and the 

two profiles need not be identical (Oxenius,1965). Sub-state 

formalism of Milkey and Mihalas (1973) enables a quantitative 

study of this problem. Stenitz and Shine (1973> invest igated • 

the assumption of equality of absorption and emission profiles 

for a two level atom with Doppler redistribution. Baschek, 

Mihalas and Oxenius (l981) showed that the formulation given 

by Mihalas (1978) of the stimulated emission term is 

i ncot'rec t. They gave the cOt't'ec t eXpt'ession for the 

statistical equilibrium equations for the angle averaged 

isotropic redistribution function. We have used their 

expression for the source function to study the deviation of 

absorption and emission profiles for various redistribution 

functions. We have used the iteration technique to solve the 

emission profile and the radiation field. 

Asymmetric profiles with a single peak emission of the 

Ca II k line were observed at high spatial resolution studies 

of sun (Pasacho1f,1~70). To account for the asymmetric 
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profiles, Athay (1970) assumed velocity fields in the regions 

of line formation. He concluded that to obtain the V 
'zv 

enhancement, either the layers where K is formed are moving z 
-s upward with velocities of 3-7 kms or the K layers are • 

-s moving downward with velocities of 10-20 kms • Line formation 

in moving media was studied by Kulander (1968), Kalkofen 

(1970) and seve~al other workers. Peraiah (1978) 

algorithm for solving transfer equation including velocity 

fields in spherically symmetric expanding media. This program 

can also be used to study plane parallel geometry with very 

few changes. We have used this code with the necessary 

modifications to study the effect of velocities on Ca II Hand 

K lines. We have chosen 5 level atom with continuum as our 

atomic model and a chromosphet~ic type of temperature rise is 

assumed. We have solved the coupled transfer and st~tistical 

equilibrium equations.There are several methods t~ .olve multi 

level equations. One of the well known methods is the 

equivalent two level atom (ETLA) method. This was employed by 

Linsky and Avrett (1970) to study the formation of Ca II H .nd 

K lines in the quiescent Solar atmosphere. A more powerful 

method is the linearization technique of Auer and 

Mihalas (1969). Integral equation appro.ch was extended to 

include the linearization technique by Kalkofen (1974). We 

have used the ETLA which allows an easy 'treatment of .m.ll 

macroscopic velocities and also the specific intensity can be 

directly obtained. 
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CHAPTER 2 

THE EFFECT OF PARTIAL FREQUENCY REDISTRIBUTION 

FUNCTION R p R p R p AND R ON THE SPECTRAL 
~ II III V 

LINE FORMATION 

2.1 Introduction 

In the earliest analyses of spect~al lines,it was assumed 

that the scattering of photons by atoms is coherent. In 

stellar atmospheres, the- spectral line is produced by an 

ensemble of atoms with a thermal velOCity distribution. 

Therefore, it is necessary to take into account the Doppler 

redistribution in 

of the atoms. 

frequency produced by the random motion 

By taking into account the Doppler 

redistribution and also assuming that there is no correlation 

between the frequencies of the absorbed and emitted photons, 

one sees that the photons are completely redistributed over 

the spectral line. This is better than the coherent scattering 

assumption. However, to account fer the correct description of 

the ft"'eq~lency redistribution, one has to consider the 

correlation between the absorbed and emitted frequencies of 

photon. Unno (1952)derived such a redistribution function, for 

the case when both the atomic levels between which the 



s 

transition occurs, have zero natural width. Hen yey ( 1941 ) 

obtained a redistribution function which describes the 

scattering when the upper level is radiatively broadened. 

Radiation and collision damping with complete redistribution 

in the atom's frame combined with thermal Doppler broadening 

gives a redistribution denoted by R • The function Rand 
~l~ ~~~ 

the other redistribution functions were studied by Hummer 

(1962). In his notation, Unno's function was denoted as R~ and 

Henyey's as R • 
:II 

Source functions become frequency dependent when the 

redistribution functions are used in the radiative transfer 

calculations. Such frequency dependent source functions are 

studied by Hummer (1969) in semi-infinite and finite 

isothermal atmospheres. In the wings, large differences were 

found to exist between the complete redistribution (CRD) and 

partial redistribution (PRD) source functions. The effects of 

photon frequency and angular redistribution on line formation 

using R~, Ru and R:II~ functions a.nd their role in finite and 

semi-infinite pla.ne parallel media were studied by Vardavas 

(1976 a,b,c). He made a comparison of the above results with 

eRD and also with the results of angle averaged 

redistribution functions. The differences between the emergent 

intensity profiles using CRD with a Voigt absorption profile 

and RUJ function was found to be negligible (Vardavas,1976b). 

Similar conclusion was arrived at by Finn (1967). Ru 

redistribution function which is strongly coherent in the 

wings was shown to lower the line profile outside the Doppler 

core. (Hummer,1969, Vardavas,1976c). Angle dependent and angle 
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R redistribution functions were 
I 

stLldied in 

sphet~ically symmetric expanding media by Peraiah (1978)~ In 

moving media, he obtained P Cygni type of profiles. Milkey and 

Mihalas (1973) used a combination of Rand R 
II III 

redistribution functions in explaining solar Lyman-a 

resonance line profile. 

As far as subordinate lines are concerned, Heinzel (1981) 

derived the correct laboratory frame redistribution function 

(LFR) for the scattering of radiation assuming both the atomic 

levels are radiatively broadened. This LFR denoted as R is 
v 

based on Quantum mechanical results of Omont Smith and Cooper 

<1972>' can be applied to low density' media like 

chromospheres, gaseous nebula etc where collisions are few. In 

a subsequent paper, Heinzel and Hubeny (1982) extended the LFR 

~f Heinzel (1981) to include collisional broadening of both 

the levels. Some transfer effects of Ry have been discussed by 

Hubeny and Heinzel (1984). Mohan Rao, Rangarajan and Peraiah 

( 1984) discussed the effects of partial redistribution 

and R on source functions. 
IXI 

The above work has been extended in this chapter to 

include optical depth effects and also the Rz redistribution 

function. Comparison of these results with those obtained 

using CRD with Doppler and Voigt absorption profiles is made 

here. Various types of scattering media are considered. The 

effect of dif1erent boundary conditions on the emergent 

intenSity profiles is also studied here. In 2.2 we describe 

briefly the various redistribution functions employed in this 
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work. Basic equations and computational procedure are given 1n 

2.3. Discussion of the results is made in 2.4. 

2.2 Redistribution functions 

2.2.1 Atomic frame redistribution functions 

The absorption profile in the atomic frame is given by, 

say, f( ~') where ~'is the frequency of the incoming photon. 

pC ~', ( ) gives the probability that a photon absorbed in the 

frequency range «(', ('+ d~') is emitted into the range (~, 

( + d( ) while the angular phase funct~~n g( n-,n describes 

the probability that a photon is scattered from solid angle 

dw' in direction n· into solid angle dw in direction n. All 

these functions are normalized to unity. The joint probability 

that a photon ( (', n-) is absorbed and a photon ( ( , n) is 

emitted is known as the atomic frame redistribution r( {', ( ) 

( Hummer, 1962 ). 

= J J I«(')d{'p«(' ~)d{' ~'~ 
, 4" 4" 

(2. 1> 

If we consider a two level atom (see figure 1) with 

both levels perfectly sharp, then the absorption and emission 

can take place at only the line centre frequency (0. Therefore 

the' absorption profile is given by Dirac delta function I 

f({') d{' = 6«'-( ) d{' o 
(2.2a) 

Since the emission takes place .t the same frequency, the 

emission probability is 
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= 6 (~'- ~) d~ <2.2b) 

./ , /' , E, 
J 

h t" ht' ht' = hv 
0 0 

,/ , ./ E, 
\. 

Fig. 1 i and j are the lower and upper states. t", ~ and ~o 

are the absorption, emission and line centre 

frequencies measured in atom's frame. h is the 

Planck constant. Line frequency = v 
o 

where Vo is laboratory frame frequency. 

Let us suppose that the upper state is radiatively 

broadened. Then the absorption profile is described by the 

Lorentz profile, 

f(t') d(' = 
6 d(' <2.3a) 

where 6 = r I 4n and r' is the radiative damping width of the • • 
upper state. 

Since we have not considered ilny collisional 

reshuffling of electrons in the upper .tate in this case,wa 

find that the emi •• ion probability is again given by the Dirac 

delt'a function. 



p ( ~', 1! ) d 1! = 6 ( 1!' -~ ) d 1! 

------------------------------------------------/, 

h~' h~ 

,/ 

/'-

h~ =hv o 0 

'-/ 
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(2.3b) 

E .+hx' 
J 

E. 
J 

E. 
\. 

Fig 2. Same as Fig. 1 with upper state radiatively broadened. 

In the next case, let us envision an atom with two 

states and the upper 5tate is broadened by collisions also. 

The absorption profile is given by 

f(~') d~' = r') r') 

tt ( (~. -~ )~ + 6' ] 
o 

<2.4a) 

Now 6 denotes the combined width of collisions and r~diation 

(see Fig. 3) 

Ethx 

--------------------- -------------------------- E.+hx' /'- J 

----------+----------------~----------------/~'_--------------- E j 

h(' 

,/ '-/ _________ L-______________ ~ ______________ ~~ ____________ E. 
\. 

'Fig. 3 Same as Fig- 2 but the upper level is broadened 

collision.lly in addition. 
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In this situatlon)the frequency of the emitted photon 

will have no correlation with that of the absorbed photon. The 

probability of emission at any particular frequency is 

then proportional to the number of atoms which are capable of 

emitting at that frequency and hence to the absorption profile 

itself. Therefore we have 

cS d~' 

n [ (t -t') 2 + 62 J 
o 

(2.4b) 

Now let us go to a more general situation i.e. both the 

states are radiatively broadened. 

"'" 
E +hx' 

j 

------~--------------~------------~~------------E. /. "' J 

h~' 

''''' ------- --------------------------- ------------- E +hx" ;. 

''''' ----------------------------------~~----------- E. \. 

Fig. 4 The states i and j are radiatively broadened. Other 

symbols have their usual meaning. 

Woolley and Stibbs (1953) showed that the atomic fram. 

redistribution in such cases is given by 
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4(26,+6,> 
\. J 

6,6, 
\. J + 1 

z n 

(2.5) 
6,6, 

+ \. J 1 
2 n 

6~ 
+ \. 1 

2 n 

6, , 6, are the damping parameters for the lower and upper 
\. J 

states respectively. 

2.2.2 Laboratory frame redistribution functions 

To obtain the laboratory frame redistribution functions 

which describe the scattering of photons by atoms in a 

detailed way one has to consider the Doppler shift introduced 

by the thermal motion of atoms in addition to the atomic frame 

redistribution functions mentioned above. Since the Doppler 

shift depends on the velocity distribution of atoms, 

Maxwellian velocity distribution is generally employed. To 

find the net result for the entire ensemble of atoms, we must 

average over the velocity distribution. The derivations for 

the first three cases mentioned above are given by Hummer 

(1962). For the case of r v ' Heinzel (1981> has derive!! 

the laboratory frame redistribution function. 
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Here we s~etch briefly the steps required to derive the 

detailed description is given in 'Etellar atmospheres' by 

Mihalas (1978). 

Suppose an atom moving with a velocity v, which remains 

fi::ed dLwing the 'E :attet~ing pt'ocess, a,bsot'bs a photon (v',n') 

~,d emits a photon (v,n) as measured in the laboratory frame. 

Neglecting the aberration of directions in transforming from 

the atom's frame to the laboratory frame, the corresponding 

atom's frame frequencies for the absorption and emission are 

and 

~' = v' - v (v • n') Ic o 
~ = v - v 0 (v • n) Ic 

ThenJthe joint probability of absorption of. photon 

(2.6a) 

(2.6b) 

«',n') 

with subsequent emission of a photon «,n) measured in the 

atom's fr-ame is 1« . ) P < ( , , () g ( n' , n) d ( • d ( (d (,,)' 14 n) (d cuI 4 n) • 

Transforming this expression to the laboratory frame via 

equations (2.6 a,b) we can write 

R ( v' , n' ; v, n) = I ( v' - v 0 v. n' I c ) P ( 1.1' - V 0 v. n' Ie, v- v 0 v. hi c ) g ( n' , n) 

(2.7) 

For convenience,expressing velocities in dimensionless thermal 

units ........ 
u = v/v - (m 12kT) v 

t.h.1'1'I'ICiL A 
(2.8) 

where mA is the mass of an atom. Let u. introduce the Doppler 

width 

w == (vO/c) (2kT/m.)· ..... • - v (v h Lie) _ 0 t. .1'1'1'1. (2.9) 

Rewriting equation (2.7) using the Doppler units defined in 

equations (2.8) and (2.9). 
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R (v',n';v,n) = I(v'-wu. n')p(v' - wu. n',v - wu. n)g(n',n) 

(2.10) 

Choose an orthonormal trlad (n ,n ,n ) such that u = un . Then 
, 2 • • 

u • n = 1-'-1 and u • n' = 1-1' u whet~e 1-1 = n • nand 1-1' = n' • n • • 
An element of solid angle may be written dc.u = d~¢I whet"e t/J is 

the azimuthal angle around n •• The phase function g(n',n) can 

be expressed in general as g(p',p,~. Thus angle averaging 

equation (2. 10) we have 

'") -1 
R (v', v) = <16" ..... ) 

.. 

s J d 1-1' / ( v ' -w 1-1' u ) 

-t. 

x J dlJ P (v'-w#J"u, V-W,...l) 

-s 
an 

aft J dt/l'g(p', 1-1, t/I') 

o 

Defi.R in9 9(1-1'" ... ) • (4n)-s J g(#J',#J,t/I')dt/l' 

o 

we get 

1 1 

(2.11> 

(2.12) 

Ru<v',v) = ~ J dl-l'/<v'-WI-I'u) 

-1 

J dl-l g<#J', l-I)p(v'-wI-I'U, v-wJ.A.l) 

-1 (2.13) 

1 For isotropic scattering g(I-I',I-I) • 2. Employing this result 

in the above equation we get, 

R (v', v) 
u == 

1 

~ J d J.J I / ( v' -w 1-1' u ) 

-1 

1 J dl-l P (v' -w#J'u, V-WI-Ll) 

-1 

If the scattering is coherent in the atomic frame, 

p<v' - W",'u, V - WJ.I.l) II; 6 [V" - v - wU(I-I' IJ)] 

(2.14) 

(2.15) 

Because the range of integration for IJ' and J.J is only 

<-l,l),it is clear that for a given value of u, the 

singularity of the 6-function will be outside the range of 
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Integratlon for sufficiently l~rge values of lv' ~nd 

R (v' v) will, 
1.1 ' 

accot"'dingly, be Physically this 

corresponds to the fact that an atom moving with velocity u 

can change a photon's frequency by no more than 2uw, this 

maximum shift occurring if the propagation vectors of the 

incoming and outgoing photons lie along the velocity vector 

and at'e oppositely dit'ected. Let y = WJ.4..I, a.nd write 

wu 

I = (wul- 1 J 
-wu 

6 [ y - (v - v' + wp' u) ] dy (2.16) 

The integral will equal (1/wu) if -wu ~ v - v' + wp'u ~ wu, 

and will be ~ero otherwise. Define A(x) such that A = 1 if 

-1 ~ x ~ 1, and A = 0 otherwise. Then equation (2.14) 

rewritten using equation (2.16) as 

1 

R (v', v) = 
u 

(4wul -. J 1( ... · - .. U~· l A~''': (wul -. ( ......... l ]cI~' 
-1 

If u is sufficiently small,then I (v-v' ) Iwu I Ie: 1 

will vanish for all values of p' • Thus there is a 

speed u 
1ft\. n' for which 5cattering from v' to v can 

can be 

'(2.17) 

and A 

minimum 

OCCUl" • 

- max (v', v) and min (v' ,~) .• The requirement Define v E v • 
that the argument of the A-function fall in the range (-1, 1> 

yields 

U. • (v - ~) 12w == Iv - v' 1/2w 
Ift~ ... 

(2.18) 

For U < umi.n' R will be zero. For u > u . , a contribution to 
u m~n 

R will come from part of the range of tnt_gration over ~'. 
u 

-1 :s IJ' :s 1 - [(V - !') IWU] 
Now introducing the H.aut.t~ I~tton .Cx.xo>,dafined such 
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that ~ = 1 when x > Xo and 0 othet~Wlse and also substitLlting 

y s V'- wu~' in equation (2.17) we get 

R (v' v) 
LI ' = 

V+WLI 

2 2 -j, I (4w LI) §(u-lv-v'I/2w, O) _ 

v-wu 
(2.19) 

Flnally averaging over the Maxwellian velocity distribution 

2 -.""'2 -u 2 = rt e (4rtLl )du (2.20) 

we get the following expression for coherence in the atom's 

frame (cases I and II as described below) 

Transforming R <v',v) to Doppler units, .. 
x' = (v'-v )/114 ; 

o 
x = (v-v ) Iw o 

R (x', x) = 1142 R (v', v) (dv' Idx') (dv/dx) 

RESULTS FOR SPECIFIC CASES 

(2.21) 

(2.22) 

(a) Case I: This corresponds to the scattering of a 

photon by an atom with two perfectly sharp states and so 

fey> = 6(y-v ). 
o ' 

new becomes effectively 

u·mi." = max ( Ix' I, Ixl>. Then from equ4i.tions <2.21> 4i.nd (2.22) 

• -u e du 

u . 
m'-n 

- !..erfC(u' ) 2 mln 
(2.23) 



where the complimentary error functIon is defIned a~ 

00 

et'fc (x) = 2n- 1/2 J 
x 

Substituting for u' 
mi. .... 

R (x' x) 
J: ' 

_Z2 
e dZ 

The profile of absorption function is given by, 

0) 

t/J ( x·) = J R ( x' , x) d x 

-0) 

t/J(x) can also be derived from first 

considering the equations (2.14) and (2.20) 

1 1 0) 

principles. 

20 

<2.23a) 

(2.24) 

(2.25) 

ThLIS 

I'/1(V') = 1 

-Iii 
e _LIZ du J/( v' -wJ..f' u) diJ' J Jp (v' -WJ..f' u; v-wI-l-'> dv dp 

-1 -1 0 

(2.26) 

Since P is the emission probability,the inner integral over v 

in the above equation gives unity and the integral over 1-', a 

factor of 2. Therefore the above equation reduces to, 

l'/1(v') = 2 -
-In 

1 

a J -u e du I( v' -wI-" u) 

-1 

<2.27) 

For case I, j<y) = 6(y-vo ). The~'e1'ore equation (2.27) becomes, 

(2.28) 

The integral over iJ'exists only When u. ~ I<v'-vo)/wl and is 
ft'l1.n 
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equal to l/wu. Thus we get after transformlng to Doppler units 

00 

1 I 
2 

1 ' It 
¢( x·) 2u 

-u -x (2.29 ) = -- e du = -- e 
rn rn 

x' 

The complimentary error function in equation (2.23a) is 

evaluated using the Rational approximation method given in 

'Mathematical functions' by Abramovitz and Stegun (1974). This 

R function describes an idealized situation. Normally one of 
I 

the atomic states will be broadened. Still it is useful to 

study this limiting case, for, it demonstrates the effects of 

Doppler redistribution alone as seen by an observer in the 

laboratory frame examining an ensemble of moving atoms. 

R1(x',x)/_<x') which is plotted in Fig 5(a) is the probability 

of emission at frequency x per absorption when the absorption 

is at x'. This i$ in good agreement with that given in Mihalas 

(1978) • 

We see from Figure 5(a) that a photon absorbed at 

frequency x' is emitted with equal probability at all x such 

that -Ix' I S Ixl S Ix' I and with exponentially decreasing 

probability beyond this range. In the atom's frame, absorption 

and emission occur at only the line centre frequency. 

Therefore if an atom is absorbing at frequency x' means that 

it is moving with a velocity of x' Doppler units. The photon 

which is absorbed has an equal probability of being emitted in 

all directions because of isotropic phase function. Therefore 

it has equal probability of being emitted in the above range. 
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(b) Case II: Here the lower level is sharp and the upper 

level is radiatively broadened. The absorption profile in the 

atom's frame is given by the expression (2. 3a) • Tt"'ansfot~ming 

lt to laboratory frame and substituting that expression in 

equation (2.21) we get, 

R (v', v) 
II 

Q) 

-LI 
dLi e J Z 

u . 
WI '-1"'1 

converting to Doppler units we have 

1 
R ( x' ,x) = ...... Z 

II 11 

(2.30) 

where x E max( lxi, lx' p and x II! mine lxi, lx' I> and Q. = 6/w 
- J 

, 
is the damping constant for upper level. A typical value of 

2 )( 10-3 for Q. is chosen. 
J 

DERIVATION OF PROFILE FUNCTION 

Now the absorption coefficient in the atomic frame is given by 

equation (2.3a). Substituting that after SUitable 

transormations in equation (2.27) we get, 

¢(v') =-
1 

t 
1 (2.31) 

Substituting y = v' - WIJ'u in the above equation we get, 

26 
...... a 

Wfr 

~ J a -u u, • 

o 

'V'+WU 

du J 1 dy 

V'-wu 



Convet~t 1 ng to Dopp let~ units and integt~ating over y 

a, 00 

[ [ X':jU ] 

J 

J 
2 

-1 
~(x' ) dee -Ll 

tan - tan -1 = a/a 
n 

0 

Integrating the above equation by parts we get, 

~(x') = 
a, 

J 

a/2 
n 

00 

J 
-00 

2 -u 
e dLI = H ( Q, , x' ) 

J 

23 

we get, 

]] [ x'- LI 

Q. 
J 

(2.32) 

where H is the Voigt function. This scattering process applies 

to resonance lines in low density media where collisional 

broadening of upper level is negligible like that of Hydrogen 

Lyman - 0 in the interstellar medium. From the plot of 

R (r,x)/_Cx') in fig 5(b) we see the coherency for the wing 
II 

photons and also that they have the least probability of being 

emitted at the line centre. In Doppler core,R behaves like 
II 

other redistribution functions. Mo~t of the atoms will be 

moving with low velocities and they absorb near the line 

centre. Once they absorb near line centre, they are going to 

emit in the Doppler core according to the mechanism described 

for RJ function. Absorption in the .tom's frame follows a 

Lorentzian distribution which allows the photons to be 

absorbed in the wings away from the line centre. Since the 

emission process is coherent, the emission also takes place in 

the line wing- Emitted frequency is not doppler shifted 

because of the low velocities involved. Therefore we see in 

the line cora, there is Doppler redistribution and strong 

non-coherence, while in the wing the scattering is more nearly 

coherent for R • Fig ~(b) is in complete agreement with that 
XI 

of Heinzel and Hubeny (1983). 
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Case III: Here we consider the collislonal broadenlng of the 

uppet~ level. Substituting the forms for absorption and 

emIssion coefficients from equations C2.4a) and (2.4b) in 

equation (2.14) and ma~ing the appropriate transformations, we 

get, 

R (v' , v) 
III 

Avet'ag ing 

convet-ting 

R (x', x) 
III 

1 
(6/ n) d /-l' 1 

= ! J I (V'-wI-J'u-V ) 2: 6 2 + -1 0 -1 

ovet' a Mcl.>:well ian velocity 

to Dopp 1 et~ l.ln i ts we have 

00 

!Ii 

J 
:It 

[ -1 [ x' 
+ \..\ - - -u 

2: e tan = n Q. 
J 

(l 

)( . [
tan -1 -1 tan 

(oln)d/-l 

2: 
0 2 (v-w~-v ) + 

0 

dis t t' i but i on and 

r' - u ]] ] -1 - tan 
Q. 

J 

- u 

d. 
J 

(2.33) 

Absorption profile is defined in a similar way as in the case 

of R • R (x' x) I ¢( X') for a. = 
II :11:1 ' J 

2 x and are 

plotted in figUres 5(c) and 5(d). WQ see that the wing photons 

get completely redistributed and they have a high probability 

of being emitted at.the line centre. This is due to the fact 

that the emission in the atom's frame follows Lorentzian 

distribution which peaks at line centre frequency. Fig 5(d) is 

in good agreement with that of Finn (1967). 

When the lower and upper levels are broadened by 

radiative damping, the angle dependent laboratory frame 

redistribution is given by CHeinzel,1981), 



R (x' n'· x' n) 1 
[ H 

e x + x' e = a sec sec ) v ' , 
411 

2 
Ell J 2 2 2 Sln 

H ( 
Ell x + x' e 

) E v ( x' , x, EI) ] x Q. sec 2" sec 
2 

+ 
J 2 

(2.34) 

where e is the angle of scattering. n' and n denote the 

directions of the flight of the absorbed and emitted photons 

and they satisfy the relation cos e = n,n', The function E is 
v 

given by 

E (x', x, 8) = 
v 

sin 9/2 

rn 
-2w't 

e ] .1.( t) dt 

(2,35) 

whet'e ~(t) = D( Z + t cos9/2 + a. sec:9/2 ) - D( Z + t c:os9/2) 
\. 

Z = sec: 9/2 (a. -
J 

w = a. + a. - tx 
\. J 

w· = a. + a. - txt 
\. J 

D «(,,) = H(p,q) + t 

J«p,q) = 2 

rn 

(2.36) 

t x + x' 
) 

2 

(2.37) 

K(p,q) c.>=p-tq 

sin(2qt) dt 

a. and a. being the damping constants for lower and upper 
\. J 

levels respec:tively. a. = a. = 
\. J 

our 

purposes, The common Voigt functions H(p,q) and K(p,q) are 

c:omputed using the method due to Matta and Reichel (1971). 

Evaluation of E-term 

The integral in equation (2.35) can be approximated 

with a numerical quadrature as (Heinzel,1981) 



t.+h 
\. 

E (x', x, &) 
v 

~ sin 8/2 
.. 

J Re E 
_t a 

[ e -Z ... t + -2w't ] t.( t ) dt e e 
rn i.=o 

t. 
\. 

(2.38 ) 

where t is 0 and h is the integration step. The complex o 

function ACt) can be expanded as 

.6. ( t ) ::::.6. (t .) + 01 ( t - t . ) .6.1 (t.) + 
\. . \. \. 

wi th 

a = cos 6/2 

Z 
01 

2 
( t-t .> 2 6,., ( t . ) + 

\. ,,\. 

at, ) 
\. 

a' = sin 8/2 

The complex derivatives of D(u) follow the 

relations (Heinzel, 1978) 

D1 (u) = 2u D(u) - 21m 

D2 (u) = 2u,D 1 (u) + 2D(u) 

....... 
(2.39) 

(2.40) 

~~ecur~'ence 

(2.41) 

In the above reference (Heinzel,1981),the terms up to only the 

first order are given. But to obtain accurate results we find 

that one has to consider 2nd order terms. Here we are 

showin9 explicitly for the first time, the forms of the second 

order terms. Insertin9 equation (2.39) into equation (2.38) 

and relating terms up to second order we obtain 

= sin 8/2 Re E {A( ti.) 
-(ii i.-o 

+ .. AI (t,) ["" (,,) + ",,("')] + ;. ~(t,) [lI,( .. ) + lI,(",)]} 
(2.42) 



t/>. (w) 
\. 

"11'. (w) 
\. 

1).(W) 
\. 

t +h 
i. 

= J 
z 

e -t -2wt dt = 
t. 

\. 

t +h 
i. z 

= J -t -2wt e (t-t.)dt 

= 

t. 
\. 

2 
W 

e 
""2 

t +h i, 

[ 

2 
-(t.+W) 

e \. 

= J 2: 
-t -2wt e 

t. 
\. 

2 
W 

e -(t.+W) 

\. 

e 
- (t.+ 

\. 

= -r [ 
2: 

e \. (ti,+W)- e 

w + h)' ] _ 
(w+t.)t/>.(W) 

\. \. 

(2.43) 

-(t.+ 
\. 

w + h)2 ] 
(t i,+w+h) 

.+ 
tI>. (W) 

\. 

2 (w+ti.) 2 ~ (w) -2'¥'i. (w) (w +t 
i. 

) 

(2.44) 

We evaluated ~,. and n functions in separate modules and 

substituted the values in the summation (2.42) to obtain the 

E function. v 

The angle averaged expression can be obtained by 

It 

R v (x' ,x) = 8 ff2 J R v ( X I , x, 8) sin 8 de 

o 

The corresponding absorption profile i& 

~(x' ) 

(II) 

= I R ( x' • x) d x = H ( a. +a. , x') v ... J -­.... 

(2.4S) 

(2.46) 
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We employed Gaussian quadrature points with 20 angles to 

evaluate the integral in equation (2.45). Equation (2.46) can 

be derived in the same lines as that of equation (2.32). 

From the expression for the atomic frame redistribution 

rv (eq.2.5) we see that it has maxima at C' = C and ~ = ~o. 

Line centre frequency ( in atom's frame transforms to v in 
o 0 

laboratory frame, and does not change in magnitude. The 

underlying physics is discussed by Mihalas (1978). We see 

that the same trend is reflected in the LFR which can be 

discet~ned ft~om fig S(e). Ry<x', x) I.(x') is plotted in 1'ig Se. 

Ft~om this figLlt'e, we see that a pho-ton when absorbed in the 

wings, has a high probability of being emitted in the wing as 

well as at the centre. The wing emission is similar to that of 

R function and the emission at the centre resembles that of 
:II 

R 
:III 

2.2.3. Symmetry properties of the LFRs 

We see that the equations (2.24), (2.30), (2.33) and 

<2.34) satisfy the following relations. 

; R.(x',x) = R.(x,x') 
\. \. 

i. = I, II, III,V 

R ( x' ,x) = R ( x' , - x) 
:I, 0:1 1:, u:r 

(2.47) 

These symmetry relations can be used to advantage while 

calculating the redistribution functions. Because of them, 

nearly one fourth of the redistribution matrix elements only 

need to be computed. 
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" -::-..:.. . "-'. Basic equations and the computational procedure . 

The equation of transfer for a two level atom with 

plane parallel geometry is given by 

d I (x, /J, z) = K (z) 
J.J dz L [ ~ + ~ (x> ] [s ( x, z ) I ( x, 1-1, Z ) ] (2.48) 

and for the oppositely directed beam 

- J.J ~! ( x, - J.J, z ) = K L ( z) r + f'/> (x> ] [S ( x, Z ) I (x, -1-1, z) ] (2.49) 

whet'e I (x, J,J, z) -1 is the specific intensity at angle e = cos 1-1, 

[ 1-1 e (0,1) ] at the geometrical point z and frequency 

x = (v - v ) / f:e., f:e. being some standard freqLlency interval. 
o 

e is the angle between the ray and the normal to the surface 

at z. The sOLirce function Sex,z) is given by 

s(x,z) = ~(x) SL(X,z) + ~e 
f/I( x) + f3 

(2.50) 

where Sand S refer to the source functions in the line And 
L e 

continuLim respectively. The line sOLirce function is given by 

U) 1 

I J 
-U) -1 

R(x',x) l(z,x',I-I') dl-J' dx' + eEl 

(2.51> 

where & is the probability per scatter that a photon is 

destroyed by collisional de-excitation. B is the Planck 

function. We have set Se ~ B = 1 in all cases. P is the ratio 

of continuous opacity per Doppler width to the line opacity. 

The above equations are solved within the framework of 

Discrete space theory technique (Grant and Peraiah, 1972). The 
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computer code given by Peraiah (1978) is modified to explolt 

the symmetry properties of the problem and also to include any 

type of redistribution function with the least number of 

changes in the program. Gaussian quadrature points are used 

for frequency and angular mesh. 24 frequency points and two 

angles are chosen. Since the solution to these equations is 

symmetric with respect to the line centre, only the positive 

frequency grid is considered. For evaluation of the scattering 

integral in equation (2.51) the technique described by 

Adams,Hummer and Rybicki (1971) is adopted. 

2.4 Results and discussion. 

2.4.1 Optically thin pure scattering medium (& = 0) 

Fig 6 gives the emergent intensity as a function of 

frequency for a purely scattering. atmosphere. The eRD case 

with Doppler and Voigt absorption profiles (damping parameter 

-~ a = 2xl0 ~) are also plotted for the purpose of comparison. 

Boundary conditions considered arel 

I(x,~,T = T) - 1 

Total optical depth considered is - 155. The criterion for 

determining whether the medium is effectively optically thick 

or thin is given by (Hummer,1965) 

~T »1 for Doppler profile. 

~(T/4)~/a ».1 for Voigt profile. 

Since the wings are optically thin, th~ photons escape in the 

wings freely and the emergent intensity ts nearly the same AS 

the incident intensity. The intensity profiles due to Rs ' 

Rand R are nearly the SAme. 
D v 
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The source function at various depth points is plotted 

in fig 7 as a function of frequency. We see that the emergent 

source function differs from CRD by an order of magnitude in 

the wings for Rand R • For a purely scattering medium with 
II Y 

small optical depth, there is a substantial contribution to the 

scattering integral from radiation in the wings. This 

contribution is enhanced by the fact that Rand R emergent 
J:I v 

source functions are higher in the wings compared to CRD. R n 

source function lies higher than Ry since R is more coherent n 

in the wings as seen from figure 7(a). 

Deeper in the medium, the radiation in the wings does 

not differ very much from the core. This is because the 

incident radiation has not undergone much of absorption in the 

core. From figure 7(b) it is clear that the differences 

between the source function values in the wings are reduced 

for R , Rand CRD and also that they do not deviate very 
J:I y 

much from the values corresponding to the line centre. 

2.4.2 Optically thin scattering medium with thermal sources. 

When thet"mal sources (& -= 10-3 B-1) are added 

throughout to the above medium the spectral line becomes 

shallow with higher intensity at the line centre. The ratio 

(R) of the intensity due to the pure scatter~ng medium to that 

of the medium with thermal s04rce. is given by 

I(x,~,T - 0) pure scattering medium 
R (x, IJ) = 

I(X,~,T - 0) medium with thermal sources 
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Table 1 Ratio R as defined in the text at different 

frequencies and angles. 

i\ 
R ( x, IJ) 

0.318 1. 12 1.89 2.6 3.27 3.9 3.97 

0.21 0.71 0.72 0.78 0.96 0.99 1.00 1.00 

0.78 0.72 0.73 0.88 0.99 1. 00 1.00 1.00 

When analysing the above table one should remember that 

the medium with thermal sources (& ~ 0) has in addition 

incident r.diation at the lower boundary. From the higher 

layers where optical depth is low (at line core), we get the 

radiation from thermal sources. Since the radiation field 

is unattenuated, we get higher intensity at line core compared 

to a pure scattering medium where radiation comes from deeper 

layers and is absorbed giving us a deeper absorption profile. 

The line wings are optically thin and hence the radiation 

escapes easily whatever be the sources in the medium. Therefore 

the wing intensities do not differ for the two different types 

of media. Both the media do not have continuous source 

fUnction bec.use we have assumed ~ = O. 

2.4.3. Pure scattering medium with high optical depth 

when the total optical depth at the line centre is 

4 
increased to 5x10 , the emergent intensity profile at ~ - 0.78 
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for a purely scattering medium is different for different 

redistribution functions as shown in fig 8. R produces deeper 
x 

profile compared to other functions. This is because RI has 

Doppler absorption profile and hence most of the absorption 

occurs at the line centre while there is less absorption in 

the wings. Therefore there is no chance for the photons from 

the wings to be re-emitted at the line centre and this results 

in less intensity at the core. The same reason makes the wings 

to be transparent to photons which gives higher intensity in 

the wings for R compared 
J 

to others. For the other 

redistribution functions, absorption in the wings does take 

place because of high optical depth due to the Voigt 

absorption profile'given by these redistribution functions.The 

high coherency displayed by R function does not allow the 
XI 

photons to diffuse from the wings to the centre. Therefore the 

more noncoherent the redistribution is~ the higher would be 

the emergent intensity at the core for a purely scattering 

medium with high optical depth which can be seen from the 

above figure. The emergent intensity follows the same 

behaviour at ~ = 0.21. 

2.4.4. Optically thick scattering medium with thermal sources. 

Thermal emission domin~tes the picture when thermal 

sources are added to the above medium. The photons are 

re-emitted according to Doppler redistribution in the core. 

Therefore all the redistribution functions give the sama 

intensity in the core. The diffusion of .nargy takes place from 

the core to the wing according to the particular type of 
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redistribution function. R does not allow this diffuslon 
:II 

easily and so it produces less intensity in the wlngs. 

Therefore, for this case also, the more non-coherent the 

t"edistt'ibution is, the higher'" will be the intensity in the 

wings which can be seen from figure 9. 

2.4.5. Medium with only internal sources. 

The above result can be illustrated in a more dramatic 

way if we remove the direct radiation source and have only 

thermal sources. Boundary conditions are: 

+ I (X,~,T = T) = 0 ; I ( x, #-" T = T) = 0 

-3 
.& = 10 ,B = 1 (throughout the medium) 

The emergent in.ensity is plotted in figures 10 and 12 for 

optically thin and thick cases. The ratios of emergent source 

functions at different frequencies for the case T = 155 is 

given in table 2. 

Table 2. Ratios of emergent source functions at different 

frequencies for T = 155 

x S (R ) IS (R ) 
I.. Y I.. U 

5 (R ) IS (R ) 
L Y L n 

0.38 0.99 1.02 

1.89 0.98 1. 0:;5 

3.89 1.80 0.72 

5.97 8.18 0.68 
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The partial coherency impedes the escape 01 photons through 

the wings. Therefore the efficiency of transfer of photons to 

the wings depends on the noncoherency of the redistribution 

mechanIsm. Rand R being more noncoherent, transfer more 
I III 

photons to the wings. The result for R is 
:II 

in qualit ... tive 

agreement with that of Hummer (1969) and R with 
III 

that of 

Vardavas (1976b). Similar emergent profiles have been obtained 

4 -4 by Hubeny and Heinzel (1984) but for T = 10 and & = 10 • 

2.4.6. Continuous absorption 

To see the effect of continuous absorption on line 

transfer with R redistribution,we consider certain cases with v 
-3 

.I: = (3 = 10 and Sc: == B = 1. We also have some cases of 

very high optical depths of the order of 106 • We have covered 

a wide range of thermal sources. This kind of study is useful 

in understanding the formation of strong resonance lines like 

Ca II Hand K, Hydrogen Lyman a etc. There is no input 

radi~tion to the medium. The frequency dependent source 

function at various optical depths is given in fig 13(a). 

Making use of the assumption Sc == B and substituting equation 

(2.51) into equation (2.50) we have 

S (.x) = 

where 

1 - (x.). 
2 ~(x) 

CI') 1 J J R(x', x) 

-CI') -1 

(x) I: 

(2.52) 

(2.53) 

In the ftJ.r wings, «x) ~ 1 4lnd therefore S(x) - B .t .11 
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optical depths. In the wings, the intensity can be 

appt~o:dmated by I(x,#J> :%B(1T/1J These characteristics are 

reflected both in source function (fig 13 (a» as well as in 

the emergent intensity profiles (fig 13 (b». we see from 

these figures that in the wings the line transfer is dominated 

by the overlying continuous absorption. 

Keeping all the parameters like boundary condition, 

contribution from external source and continuous opacity same, 

we find R redistribution gives lesser intensity in the wing 
J:I 

to R . 
ZII 

Coherent natut"'e of R redistribution 
ZI 

function prohibits the photons which are absorbed at the line 

centre to be emitted in the wing. Therefore R redistribution 
:11 

function produces less intensi ty in the wing compat~ed to Rxu. 

If there is some input radiation at one boundary we find that 

the input escapes through the wings because 'the wings are 

optically thin. This drains the photons at the line centre and 

hence the intensity at the line centre is less compared to the 

case of pure thermal sources. The above characteristics are 

seen in figure 14. 

The effects of continuous opacity and thermal sources 

are seen in figure 15. Continuous opacity generally makes the 

emergent intensity profile to be a' weak line. When the 

continuous opacity is absent, a very weak emission reversal is 

also seen. We also get extended wings when the continuous 

opacity is absent. The line becomes weak becau.e of the 

addition of continuous sources of photons which are emitted 

according to Planck distribution. When l.rge amount 01 
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continuous opacity and thermal sources are present, the line 

gets saturated and the higher optical depths do not affect the 

emergent intensity profile. When thermal sources are reduced, 

we find that the line centre intensity drops down. But the 

wing is unaltered. When the continuous opacity source is 

reduced, we get a deep absorption profile with broad wings. 

This effect is continued to be reflected in figure 16 also. 

R redistribution increases the line centre intensity 
XXI 

because of the easy diffusion of photons from line wing to 

centre. We finally get a very deep absorption profile with 

very extended wing for purely scattering atmospheres with 

large optical depths. 
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In t t~oduc t ion 

Compton (1923) put forward a suggestion that the 

scattering of light by electrons may account for the observed 

displacement of the lines in the solar spectrum towards the 

red near the limb. This is because the photons near the limb 

suffer more scattering than those near the centre. This idea 

was investigated by Dirac (1925) who derived the angle 

dependent redistribution function for the electron scattering 

taking into account the thermal motion of the electrons. He 

ar'rived at the conclLlsian' that a shift of the lines can not be 

produced by such a scattering mechanism. Nevertheless it is a 

well known fact that the scattering of radiation by electrons 

plays an important role in the atmospheres of early stars due 

to the high number denSity of electrons. Electron scattering 

is one of the main source of opacity in these stars. 

Chandrasekhar (1948) drew attention to the possibility of 

broadening af lines by electron scattering. This was 

investigated by M~ch (1948) who considered the case of a 

semi-infinite atmosphere in which an absorption line is 

formed, covered by a finite layer of electrons. With these 

assumptions,he obtained line profiles with shallower cores and 
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broader wlngs since the photons are scattered from the 

continuum into the line core. His assumption of the existence 

of an absorption line deep in the atmosphere and ignoring the 

effect of electrons was questioned by Gebbie and Thomas 

(1968). A more realistic situation is one in which scattering 

and absorption in the line, scattering by electrons and 

absorption in the continuum all occur simultaneously. Auer and 

Mihalas (1968) considered such a case. They assumed the 

electron scattering to be coherent and non-coherent and atomic 

scatter'ing to be always described by complete 

redistribution (CRD) mechanism for a Doppler absorption 

pt"'ofile. If the electron scattering coefficient exceeds 

continuous absorption,they obtained measurable changes in the 

line profile between coherent and non-coherent electron 

scattering. For strong resonance lines formed in early type 

stars, one has to consider the partial 'frequency 

redistribution of photons by atoms as well as coherent or 

non-coherent scattering by electrons which they have not 

cons i det"'ed. 

We have incorporated partial 

(PRD) function of atoms into the 

lines from the media in which atoms 

frequency redistributir,n 

calculations of spectral 

and electrons together 

participate in absorbing, emitting or scatterin~ the photons. 

In this chapter, coherent and non-cohere:,t electron scattering 

combined with complete and partial frequency redistribution by 

atoms is studied for parametrized models, so that the 
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underlying physics can be discerned. In the next section, we 

briefly describe the electron scattering function and in 

sectlon 3.3 we give the detailed account of the method to 

solve the problem. In section 3.4 we discuss the results. 

3.2. Electron scattering redistribution functions 

The angle dependent laboratory frame redistribution 

function is given by (Mihalas,1978), 

g(n',n> f_mc 2---.,,-] i [_mc2(~J.J')2 ] 
l4nkT ( i-case) .,,,.2 exp 4kT (1-cose> ",2 

(3. 1) 

This expression is valid fer all wavelength regions of 

electromagnetic spectrum except for short wavelengths. In 

other words, the above formul~ can be applied in the limit 

h'" that Compton effects are negligible (i.e. ---« 1 ). mc2 v', v 

are frequencies of the incoming and scattered waves. n' and n 

denote the incoming and scattered directions. k is the 

Boltzmann constant. c is velocity of light. m and T are the 

electron mass and temperature. • is the scattering angle. 

g(n',n) is the phase function which is norm.lly assumed to be 

either isotropic or dipole. 

The angle averaged redistribution function Can be 

obtained by either integrating the expres.ion given by 
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equation (3.1) or from the first principles. Auer and Mihalas 

(1968) derived the angle averaged redistribution function from 

the first principles. Here we give the altern~te method: 

To normalize the above equation we have to divide it by 2 
16n • 

(See equation 2.7 of Mihalas (1978». Also substituting the 

following relations (assuming isotropic scattering) 

g(n',n) = 1 

; (v - v') :;: t.v 

we have for ~ normalized redistribution fun~tion 

R ( v' , n' ; v, n> 1 
aMp [ -sin 

(3.2) 

n 

R (v' ,v) :;: an- J R (v' , n' ; v, n,) sin e de (3.3) 

o 

Angle ~vera9ing equation (3.2) using equation (3.3) we get 

1 " J e 
o 

Rev',v) = 
2w-{ii 

Let y = sin 8/2 • Therefore, 

1 
, J • - ( Jw) ./ (4w· y.) dy R (v', v) -= 

o 
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2 

Z • Then R becomes 

00 

1 

LAV,/2W 

II -z 
~ R (v' , v) e dz = -

w-{ii II 2w z 

1 

[ I v' -
v I ] = iet~fc (3.4) w 2w 

wher'e iet~fc (z) is the integral of the comp I iment.lt~y ert~or 

function. 

00 
1 

I 
II 

iet~fc (z) -= erfc(x) dx = -z erfc(z) (3.5) e - z 
fri z 

Finally the electt~on redistribution function as a function of 

frequencies expressed in atomic Doppler units is 

Re ( x' ,x) == (~) i e r f c ( I _x_~=-(,.)_)(_' I ) (3.6) 

~ is the ratio of electron to atomic Doppler widths and is 

given by ~ ~ 43 A·/2 where A is the atomic weight of the atom 

under consideration. ~ is chosen as 80 which corresponds 

roughly to that of Helium atoms. x' and x are the frequencies 

of the absorbed and emi tted photons expressed 'in atomic 

Doppler units. In Fig. 1 the function Re(~) is platted against 

~ where ~ = I y - y' and y and y' afe fr.quencies .xpressed 

in electron Doppler units. We can nat compare this with a 

function like Gaussian because that is a function of 
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f t'eqLlency e::pt'essed 1 n a toml c Dopp ler un i ts wh I ch is 8(> times 

smaller than electron Doppler units and so falls off too 

steeply for comparison purposes. From now onwards superscrIpt 

'e' is used to denote electron redistribution and 'a' for 

atomic redIstribution function. 

Fig. 1 is in good agr'eement with that of Hummet' and 

Mihalas (1967). Frequency expressed in atomic Doppler units 

enter in the calculations of radiative transfer. So, if we 

transform Re(y - y') to Re(x·,x) we find that,over a few 

atomic Doppler widths, e 
R (x·, x) remains constant. Therefore 

the contribution from non-coherent electron scattering remains 

constant in the Doppler core of the line. We also see from the 

Fig. 1 that the non-coherent electron scatter'ing may 

influence in the wing to very large atomic Doppler units away 

from the'line centre. This is due to the large ratio of 

electron to atomic Doppler widths. 

3.3. Method of solution 

The radiative transfer equation for a two level atom 

including noncoherent electron scattering is given by 

± dI(x,± ~,z) = 
I-A dz - (k c + 0' e + ~1 .<x»I(x,± ~,z) + ~t ~.(x)B 

+ k Ie + 1-~ 
c '"2 

o 0 

+1 ao 

~loJJ Ra(x",x)l(x·,~·,z)d~·dx· 
-1 -ao 

(3.7) 



where ~ and ~ are the continuous absorption and electron 
c e 

scattet'ing coefficients fot' unit volume. ~l.() IS the atomic 

absorption coefficient ~t the line centre. £,¢ and B have the 

denote the atomic and electron redistribution fLlnctions 

respectively. For the problem of coherent electron scattering 

we have 

Re (x' , x) d x' = 6 (x' - x) d x' (3.8) 

where 6(x'-x) denotes the Dirac delta function. 

Though the above equation (3.7) is solved within the 

framework of Discrete space theory, the choice of quadrature 

points,normalization,segmenting the problem into core and wing 

regions and the iteration procedure are all followed according 

to Auer and Mihalas (1968). Since modification of the method 

due to Grant and Peraiah (1972) is necessary to tackl~ this 

problem,an account of the method is given below: 

Defining 

o 
fl = e 

e 

~l.o 
(3c = and we get 

± t!..-. dI (x, ± J,J, z) = 
~l. dz 

o 

- [ (t + f/J(x) J I (x.± lJ,z) + e,;<x)B 

1 00 

+ l;e I I Ra(X',x)I(x',J,J',z)dx'd~· 
-1 -00 

fge 
+2 

1 QD J J Re(x',x)I(x',/-J',z)dx·dJ,J' 

-1 -00 

+ (1 B 
c 

<3.9) 



Slnce thlS problem has symmetric solution with respect 

to the line centre,we need to consider only half the frequency 

9 t' i d • 

± }.J d I (x, ± J-I, z) __ h 
- - - [ I' + t/> ( x) 
Xtodz 

J I (x,± /-i, z) + .e.p(x)B 

1-& 
+ -r 

f3e 
+ 

1 

J J 
-1 (I 

1 

J J 
-1 0 

(X) 

[Ra(X"X) + RCI(-x',x) ]I(X·,}.J·,Z)dX'dJ.l' + f3cB 

(XI 

[ Re ( x· ,x) + Re (- x' ,x) ] I (x' , J.I' , z) d x' d J.I' 

(3.10) 

The ft~equency integration is sp lit into two regions. One is 

the cot~e t~eg ion whet"e the intet"val is [0, x J a.nd 
0 

the othet~ is 

the wing region where the inter'val is [Xo , CD J. Reason for 

such a demat~l<a t ion is due to the fact that the problem is 

characterized by two intrinsic f t'equency scales, one for the 

atoms and the other for electrons. Coverage in the line must 

be fine enough for taking the atomic redistribution into 

account. Coverage in the wings should extend to 4 electron 

Doppler widths which correspond to around 320 atomic Doppler 

widths. Here the frequency quadrature can have a larger mesh 

size. Hence the equation is split into two parts, one for the 

core and the other for the wing region. The equation for the 

core region can be written as 



± ~ ~(x, ± 1-1, =:) = _ ( f1 + ¢(x) J I (x.± /-l,z) + ccp(x)B 
::Cl. o dz 

1-& 
+ --2 

f3e 
+ -2 

e + R (-x', x) 

o~x~x =5 o 
(3. 11) 

whet"'e 

1 D (-"', z) c 

+ 
(1e 

2 

1 (lO 

I J [ 
-1 x o 

1 0) J J [Re(X"X) + Ree-x',X) ]I(X.,#-/.,Z)dX'dl-l' 

-1 :x 
() 

(3.12) 

In the above equation, the first term on the right hand side 

denotes the continuous absorption. The second term represents 

the thermal sources and the first scattering integral denotes 

the photons which are reshuffled within the spectral line by 

the atomic scattering process. Next term is the contribution 

from the continuous sources to the pool of photons. The second 

scattering integral represents the photons which are 

reshuffled by electron scattering process. The term 0 1 is 

described after equation (3.14) in the te~t. For the wing 

region the transfer equation becomes 



± ~ ~(x,± ~,=) = _ ( ~ + ¢<x) ] I(x.± ~,z) + £¢(x)B 
~ dz lo 

1-& 
+ --2 

f3e 
+2 

whet'e 

1 00 

J J 
-1 x 

o 

1 00 

[ Rd (X', x) + Ra(-x', x) ]I(X"~"Z)dX'd~' + ~cB 

J J [Re(X",X) + Re<-x',x) ]I(X',I-J"Z)dX'dI-J' +02(X,z) 

-1 x 
o 

(3.13) 

2 D (x, z) IE 1;" J 1 {'O[ Ra(x',x) + Ra(-x',x) ]1 (x', j./',z)dx·dj./· 

-1 0 

+ 
f'3e 
:2 

1 

J 
-1 

+ Re(-x',X) ]I (x',p',z)dx'dp' 

(3.14) 

In the above equations x marks the division b~tween the co~e o 

and the wing. D1 .nd 0 2 ~re respectively thesou~ce te~ms for 

photons being scattered from the wings into the core and from 

the core into the wings. Equations (3.11) and (3.13) ~re 

coupled together through D1 and D2 terms. This coupling arises 

due to the noncoherent electron scattering which redistributes 

the photons from the core to the wing and wing to the core of 

the spectral line. Following Auer and Mihalas (1968) the 

interval [xo ' ~] is limited to (xo ' x,·) .nd the remainder is 

handled analytically assuming Ix" Ix for x > x, so that Ix , 
may be taken out of the integral. Mathamatie.lly this reduces 

to 



1 00 J J [Re(X"X) + Re(-x',x) ]I(X',#oJ,,;;:)dX'd#oJ' 

-1 x 
o 

= e + R (- x' , x) ]r (x' , #oJ', z) dx'd#J' 

1 00 

+ J I (x', J.J',;;:) d/-J' J [Re (x', x) + Re (-x', x) ]dX' 

-1 x , 
1 x 

= J J '[ Re(x',X) + ReC-x',x) ]r(X1'#oJ"Z)dX'd#J' 

-1 x 
o 

1 

+ 2 [ i "erfo I _X--=-~)(_._ 
2I0Il 

I + i 2erfc I _x--::+:--x __ , 
2w 

I ] J I (x' • p' • • I d p' 

-1 

where 

01) 

i 2erfc (z) == J ierfc (z') dz' = 

Z 

(3. 15) 

2 
-II: 

~ [z2 + ~ ]erfC(Z) _ z_e __ 
2-frl 

(3.16) 

The integrals at"e reduced to summation OYer wei9h~ed values of 

the function. The equation (3.9) can'be written at frequency 

x. and #.I. and depth z as 
\. J 1"1 



+ 
J..I. dI-:-

[ ] + ± ...2. \. • j • n = ~ + ,p. 1-:- + ,& f>. B (3. B d:: + 
.t~o " 1. • " 1. • j • " n \.." " 1.. n " 

( 1 - ,& ) I .:I CI. 

[1: ' " 1: E R .•. a . ,C . , I ~. .• ] + + 2 .. 
i' = So j' = t 1. .1. \. J • J ." \. • J • n 

~ 
I oJ 1,2 e," CI. 

2 E I: R 
i' 

.a . , C., [I:, .. + I~,., ]+ D. 
i.' = t j' = t • 1. 1. J \. .J ." 1. • J ." I. • n 

(3.17) 

1+ and I are two oppositely directed beams. Defining 

+ 
I - (x., ± 1-1., z ) 

I. J" 

R CI. • e = R a., e ( x ..,) + .. .. ., ,-""-. 
1. • \. 1. 1. 

f/>. = t/i (x. ,z 
\..n 1. n 

-+ 1:-
1..n 

c c 
m 

= 

± ± I (x. 1-' .. 
+ 1. 

I-(x. ± 1-'2, 1. 

± ± I (x. 1-1.:1 \. 

••••• C 
.I 

..... c" 
. . . . . . . . . . . . . . . . . . . . . . . . 
C:t c2, •••• • c.l 

) , :z 
" , z ) 

" 
) , Z 

1"1 .:I )( 1 

; 

(3.18) 

where .:I and J are the total number of angles and frequencies 

considered in the region of the spectral line. 
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M dI-:-

m '" • n = X to dz - [ t1 + f/I i. • n] 1 ~ • n + &¢> i. • n B + ~ 
n C 

B 
n 

( 1-£ ) I 

[1 ~. n a. 1~. ] (3.19) + I: R .•. Ct .• C + 2 i.'=t'" .\. '" m • n \. • n 

(3n J [1 ~, I ~, ] 
e 

C D~ ,2 + 
2 I R., . a. , + + 

i'=t'" .\. '" m '" .n '" • n \. • n 

Inte9t~ating the above equations over the depth intet'val 

[z ,z ] we have 
n n1'". 

+ M (I. 
m \..n .... 

+ 
I . 

'" • n 

:;; T «(3 + £</1. ) B + T D ~ , 2 
n ... ~/2 C \. n ..... /2 n ... "/2 " ... t .... 2 \.. n+ .. /2 

:r 

(3.20) 

+ (3 T 
•• n ..... /2 n ... t/2 

e I: R .• . a..,e 
., \..\. \. in 

(I+ + I-:- ) 
i..ni"t/2 \',n ... t/2 \. =. 

:r 
+ (1 
-~=---:2 

e) CL T I: R., .d.,e 
" ... ~ /2 i' 11:. \. , \. \. m 

and 

M (I. m \.,n 

:r 
e + (3 T 

•• n .......... 2 n+t/2 
I: R .• ,d .• e 
., 'L.'- \. rn 
\. .. 

:r 
+ (1 - e) 

2 
T 

" .......... 2 

a. 
I: R .• ,4 .• e 
., L.\. \. m \. =. 

Here the optical depth T is defined as 

T n1"V2 - X I. 0 • ft+&..... A:z. 

n.n .... and n+"""2 refer to quantities at T , 

" 

+ I. ) 
\. ,n""/2 

(3.21) 

+ 1-:-. ) 
\. .n ..... /2 

(3.22) 

where n+j/2 refers to the average over the shell in the medium 



t.-. q 
,IV 

bounded by the 1 ayet's T and T • 
n n+lI. 

Physical quantities like 

the absorptlon X, intenslty I etc are averaged. M contains 
m 

angular quadrature roots and the matrices a and C contain 

frequency and angular quadrature weights. 

the boundary conditions chosen 

d i.:lg t'am. 

T .. 
T 

n 
T 

n+t 

+ I (J,J, 'r'=0) =0 

is given 

The geometry with 

in the following 

,.,=c.os9 

In the above equations we can combine the angular and frequency 

quadrature weights as 

wk = 4. c. 
\. J 

(1..j) E Ie E j + (1. - f.)., 

(3.23) 

Here ~ and j refer to frequency and angular points. There are 

x total number of frequency and ., tot.l number of angular 

points chosen. Profile function and the redistribution 

functions were suitably normali%ed according to the procedure 

outlined by Auer and Mihalas (1968). 

Let us define the following quantitiesl 
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+ [ + 

]'" [ ~ + 
] ",.,..,/2 

1- = I-
tf/! ",.,.1/2 = f>1c 6 1cle , 

'" Ie 

(3.24) 

S = «(3 + ef>1c ) B 61c1c ' + 0 1 ,2 
",.,..,/2 "'· .... /Z "'.,.1 ...... 2 ",.,.j/2 

3.3.1. Definition of Re and D matrices for coherent and 

non-coherent electron scattering 

Coherent electron scattering : 

Since the terms in 0 are small we first set the 0 

vector to be a zero vector. Re is given by 

f'1e 
="2" 

o 

R 
.J 

o 
<3.25> 

where x is the total number of frequency p,oints in the region 

considet~ed • 

R.J = 

1 1 ••••••• 1 
1 1 •• It ••••• 1 . . . . . . . . . . . 

1 1 •••••••• 1 

(3.26) 

.IX" 

where .J is the total number of angles considered. Here core 

and wing are decoupled from each other as far as the electron 

redistribution is concerned. So the equations (3.11) and 

<3.13) can be solved separately without involving any 

iteration scheme. 
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Non-coherent electron scatterlng 

First iteration; Core solution 

Let us denote the number of frequencies in the core and the 

wing as x and J:i r'espectively. Then 

= 
(3e .. 
- [ d a 1 2 Ie IC 

d' = 0 
Jc 

(3.27) 

1 Here D is a zero vector because of lack of information about 

the wing solution in the first instance. To evaluate the Dl 

term, we should know the radiation field in the wing. Since we 

have not yet solved for the radiation field in the wing, we 

make this term a zero vector in the first iteration. To 

t.h compensate for this, we add an extra term to the I column in 

the Re matrix which is described below: 

R.J R ................ R,3 

R ... R., •••••••••••• R.r 
I)(X 

Now the /h column block in the Re matrix becomes 

(R ) 
.I i.,J: 



. \ (..., 
b~ 

whet'e (R) ln the R.H.S. 
.1 ~,I 

.are the usual electt'on 

redistributlon v.alues. The eKtr~ term corresponds to a 

constant value assumed for the specific intensity in the 

wings which is equ.al to its value at the last point in the 

core. The .above equations (3.27-3.29) are used in equation 

(3.11) to obtain the core solution. 

F i t'st itet'ation ; wing sol LIt ion 

The tet'm D 
2 OccLlt't'ing in equation (3.13) becomes 2 

D. in 
1. 

eqLlat ions (3.20) and (3.21> which is evaluated in the 

following way: 

d Z Z ) d (x. , ~, , 
" 

2 d Z 2 ) d (x. , ~2 D = Z 
d 2 = \. (3.30) 
" • 

d2 2 ) Xll d (x. , ~ .. I'X' \. ")(i 

2 X .1 ~ e e ] ... 0 -0 d = J: J: R (x.,x.,)+R (X.,-X.,> (l.,cj,(I' f j,+I l , 'f> 
i .• \." \, \, 1. \. • .J 

i. '., J ell 

x ~ X. S X (3.31) 
o \. III 

where the superscript c on 1+ and I refers to the core 

solution obtained in the present iteration. 

(3.32) 



The last term in equation (3.32) corresponds to the analytical 

term from equation (3.15). Equations (3.30-3.32) are used in 

the R.H.S of equation (3.13) to solve for the radiation field 

in the wing region of the line. One can very easily recognise 

that equatIon (3.31> is nothing but the discretized fOt'm of 

equation (3.14). The terms corresponding to Ra have been 

dropped because those matrix elements are very small. 

Second iteration ; Core solution 

In this case 

d' .. 
) d (x. , 1-1, .. \. 

Dl 
d' 

z d~ (3.33) = = • \. 

dS .. ) 
I d (xi. ' 1-1.1 

It 

= I: 
i. • =t 

.1 

J: (Re (x. , x. , ) +Re ( x. , x. , ) ) a.. ,c ., 
., \. \. "L \. J 
J =, 

+.., -v 
(I \.' j' + Ii.' j') 

e where R (x.,x ) is given by equation (3.32). The superscript 
\. I .. 

+ -w on I and I refers to the wing solutions of the previous 

N Re ( ) iteration. a. is the quadrature weights. ow x.,x 
" I 

does 

not contain any extra term because equation (3.34) takes into 

account the wing contribution to the core solution in the 

scattering integral. 



Second iteration ; wlng solution 

d z Re , . . and' s are deflned as 1n equation 
\. 

( 3 . 31) an d ( 3 • 32 ) 

Higher lterations 

For the core solution, equation (3.34) and for wing 

solutlon, quantities given by equations (3.31) and (3.32) are 

followed. xis chosen as 5 and )C as 320. o , Ft'equency 

quadrature roots and weights are chosen according to Auer and 

Mihalas (1968). The iterations of the solutions for the core 

and wing parts are carried out till a convergence is reached 

fOt" the freqLlency x between o core and wing solutions. 

Typically 5 iterations are required; 3 for core and 2 for wing 

solutions. 

Now putting the terms in the equations (3.20) and 

(3.21) into matrix form and using the m~trix definitions of 

(3.24) we obtain 

T r. (1 

n~·/·r 
+ - ] (Ie ~ e + - ] W (I +1 ) + - 1" R W (I +1 ) n+'...... :2 n~'/. n~./. (3.35) 

where 



M 
m 

M 
m 

M = (3.37) 

M 
m 

using the Diamond rule,viz, 

(3.38) 

Equations (3.35) and (3.36) can be combined to give 

'T 
[." - ~ R ~ - :. R·W] _ OT R~ _ ~. T R.W M+-

2 4 -
'" 

* 
_ OT R~ _ ~.T R.W M+!. [~ - ~ R~ - 0; R.W] 4 -- 2 

'" 
I 

n 

M- ; [~. o R~ - ~. R·W] OT R~ + ~.T R.W 1+ 
2 - 4 - n • '" 

= * 
OT R~ + (3. T R.W T [~ - ; R~ - ~R·W] M--

I 4 - 2 
" n .. " 

5 

+ (3.39) 

5 



De11n1n9 the 1ollowlng auxiliary matrices 

P 
T [ 6 R~ W f3e e 

W ] G 
T = 2 2 + -R = -t/>- p ; 2 2 

(3.40> 

Q = M + G r = M - G Il. = [ p-1Q -1 
- Q P ]-1 

equation (3.39) can be rewritten as 

t(n+l,n) rCn,n+l) t+ 

= + 

t(n,n+l) I 
n r(n+l,n) I 

n+t 

(3.41> 

Transmission (t) and ,reflection (r) matrices now becQme 

t(n+l,n) = t(n,n+1) = A [p-l r + Q-l p ] 

r(n+1,n) = r(n,n+1) = A [ I + Q-l r ] 

and the internal source vectors 

where I refers to the identity matrix of suitable size. Now 

the equations are in the standard form to use the Discrete 

space theory technique described by Grant and Hunt (1969.,b). 



A detailed account of this procedure is given by Peraiah 

(1971). The numerical method described so far is codified into 

a computer program to obtain the solution. 

3.4. Results and discussion 

The method outlined in section 3.3 is quite general and 

can handle any arbitrary variation of all the parameters. The 

specific intensity obtained has second ordet" accuracy. 

Computer memory and time are probably the constraints in using 

this method. These problems are overcome with the advent of 

fast computers having virtual memory operating systems. 

Boundary conditions chosen are: 

I ( T ,,.,> a: 1 , 
N+' 

+ I (0,1-1) := 0 

for all frequencies. 

Two different opt ieal. depth. .are chosen. One 

corresponds to effectively optically thin (T == 155) and the 

other optically thick (T = 5 x 104 ) situations. Criterion for 

effectively optically thick and thin are given in ch.apter 2. 

The ratio of continuous absorption to line absorption (~) is c 

chosen as 0 and 10-3 • Different ratios of electron scattering 

to line absorption coefficient. are 

-2 -3 -4 10 ,10 ,and 10 ). Both coherent and 

considered (~e 

non-coherent electron 

scattering with CRD and .PRD for redistribution by atoms .are 

the different physical situations considered. 



~"'8 '-' 

3.4.1. Coherent electran scattet'ln9 without continuous 

abSOt'ptlon 

The emergent mean intensity as a function of frequency 

for coherent electron scattering media where redistribution of 

photons by atoms is either partial or complete is given in 

Fig_ 2. In the following discussion, the core means Doppler 

core measured in atomic Doppler widths and not the core 

solution referred to, in section 3.3. The result for eRD with 

Doppler absorption profile (DAP) is in complete agreement with 

that of Auer and Mihalas (1968). For high optical depth media, 

we -see that the par'tial f r'equency redistribution R R 
:IE 1:11 

and R give higher mean intensity in the wings compared to CRD v 

with Doppler absorption prof i Ie. Although the above functions 

have Voigt absorption prof i le (VAP) which increases the 

opaCity in the wings substantially, the probability that a 

photon is scattered from the core into the wings is also 

strongly increased. Hence there is higher mean intensity in 

the wings for the redistribution functions. Among the profiles 

given by the PRD functions. we find that the more non-coherent 

the redistribution is,the higher the value of mean intensity 

in the wings. This is due to the fact that the non-coherency 

increases the transfer 01 photons from the core to the wing. 

For an optically thin medium, (T - 155) the wings are 

transparent, and the directly transmitted radiation dpminates 

the solution. This being almost the same fer all 
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-1 
10 
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E = 102 

!3c= 0 
-3 

j3~='O 

2 

5 

3 l. 5 

X 
Figure 2 !!!e emergent mr·an inte2~ity for cohert"ut electron scattering 
with£::: 1-0 , f3c.!! 0, ~ -; 10 • The abscise. gives :frequencies 
measured ~ atomic Doppler widths. The numbers denote the following 
caseSI (1) CRU with Dopplpr absorption profile (DAP) for T = 5 x 10+4 ' 
(e) RII (3) RIII (4) Rv l5) CRl> with lJAP, RI ' RII ' i'or T ~ 155. 

1 0°,..-----------

X-3 rigure ) Same •• 1'1g.2 with -£ • 10 • The nuabera denote 
the ~ollov~g ca ••• , (1) RI' ORO with DAP (2) RII (,) CRD 
v~th Voigt absorption prof Ie (VAP) (4) By • 
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redistribution functlons, emergent profiles obtained 

graphically unresolvable. When the thermal sources are 

.. -2 -3 decreased (£ = 1U to 10 ) The same trend is retained with a 

decrease in mean intensity throughout the profile which c~n be 

seen from Figure 3. 

3.4.2. The effect of continuous absorption with coherent 

electron scattering 

In Figures 4-8, the ordinate gives emergent fluxes in 

units of continuum and the abscissa gives the frequency 

relative to the line centre in atomic Doppler widths. The 

result for DAP (Fig 4) is in quantitative agreement with that 

of Auer and Mihalas (1968). For optically thick media, the 

line develops an emission hump when the electron scattering is 

mot~e than the continuous absot"ption' irrespective af the 

redistribution mechanism employed (Fig. 4). In the wings the 

opacity is mainly due to continuous absorption and electron 

scattering. The line core appears in absorption due to 

scattering. The scattering pumps the photons from the core to 

other frequencies. The transition region between the core and 

the wing receives substantial amount of photons from the core. 

The contribution from the core falls off in the wing and also 

the continuous absorption and electron scattering decreases 

the intensity in the wing. Hence we see an ami.sion hump in 

the transition region. When the total optical depth of the 

medium is reduced, we see almost an absorption line with a 
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0.1 

Figure 4: 
o 5 

X 
The ordinate gives relative fluxes for coherent electron sca-

ttering with E == 10-2 and~~= 10-3 • The numbers denote the 

following cases 1) RI ' Rl1with~t:r; 10-2 and T s: 155 2) R:r ' R~l 
with ~f.== 10-3 afld T. == 155 3) R:r ' ~IC.RD with DAP for 1\ == 10-

and T == 5 x 10 4) R1 , RII for ~e= 10-3 and T I: 3 x 104 • 

'.1 r---------

0.7 
Fx 

0.5 E .,0'3 
13c&'103 

0·3 

0.1 

0 , 5 

FiauJ• .5 
Same as figure 4' wi thE. = 10-3 and It I: 10"" 
denote th tt • The number. 

e following case. t) ~ B 
T I: 1.5.5. 2) .IL • --Z' _211' RxII Vith~(1: 10-3 

-""J: ' RzI' B:rII with ~ ... 10 and T I: 1.5 } 
RI1 , CRO wi th Y.l.P f or A JI: 1 0-2 d' T' 10 .5 t J R:r t rt an • .5 x 10'. 
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very small emlssion component. These charecteristics are 

reflected in Fig. 4. When ~he thermal sources are reduced 

(Fig.5', there are less number of photons to be redistributed 

into the transition region between core and the wing_ 

Consequently we do not find a substantial emission hump. 

3.4.3. Comparison of solutions for different electron 

scattering coefficients 

When the electron scattering coefficient is reduced, 

the opacity in the wing is reduced and this results in higher 

absolute flux values in the wing_ Absolute flux at line centre 

will not be affected because of the high line absorption 

coefficient at the centre. Therefore the relative flux in the 

core will be more for larger electron scattering 

~oefficient_ Hence we get deeper and broader lines for small 

~ ·s. Figures 4 and 5 illustrate this result. 
e 

3.4.4. Non-coherent electron scattering 

The combined effect of various atomic redistribution 

functions and non-coherent electron scattering on emergent 

flux profiles is plotted in figures 6-8. The result for DAP 

(Fig. 6) is in complete agreement with that of Auer and 

Mihalas (1968). Non-coherent ~lectron scattering combined with 

PRD by atoms give higher flux values in the core compared to 

coherent electron scattering for the parameters T - 5 
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0·7 
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F1.gure -6: 
X 

same as fig.4 for nOD-

coherent electron scattering. The 

n~be rs denote the following cases: 

11 RI ' RII CRD wi th DAP and YAP 

f~r ~e. = 10-4 , 2) R11 • RIll tor 

~e. • 10-). 

'.1 

0.9 

0.7 

Fx 
0.5 

0.3 

0.1 

0 

X 

-2 
E :10 
A=10- J 

T : 156 

Figure 71 The numbers denote the 

following cases 1) ~ CRD with 
-J ) DAP, YAP for f3e=. 10 • 2 RI:I, 

CRD with DAP, CRD with VAP for 
A -4) R-4 
Ie. = 10 • ) ~I with rr.= 10 , 

€ == 10-)' 

1.1 ,------------. 

o 1 2 
X 

s 
Figure 81 Numbers denot!) the following cases: 1) RI • R II , 

CaD with YAP for f'Jf.. 10 and 2} RI. • .aXl CRD vi th DAP and 

YAP ~or ~e,,- 10-2 • 

5 
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~ = 10-3 and ~ = 10-3 (Fig 4,6). When e is reduced 
c e 

-~ 
to 10 -, we find that there is no significant difference 

between the flux profiles due to coherent and non-coherent 

electron scatterings. The same result holds good when the 

total optical depth of the medium is reduced. 
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CHAPTER 4. 

EFFECT OF EMISSION PROFILE ON LINE FORMATION 

4.1 Introduction 

The emission pt'ofile ¥'v is defined as the ft~action of 

~ll atoms in the upper state that, if they decay radiatively, 

emit photons of frequency v as seen in the laboratory frame 

(Mihalas, 1978). 

For a resonance line photon, we know a priori (i.e. 

without a dependence on the radiation field and/or level 

populations) the functional form of the absorption profile. 

This is due to the inherent assumption of Ma>:we 11 ian 

velocity distribution for the atoms in the lower level, which 

is quite valid in the stellar atmospheric conditions. If the 

~b~orption and emission can be regarded as two independent 

processes, the equality of absorption and emission profiles is 

assured. If there is any correlation between the absorption 

and the subsequent emission, we see that the emission profile 

is dependent on the radiation field. Since such ~ correlation 

exists in partial redistribution formalism, we find that the 

absorption and emission profiles need not be identical. Our 

aim is to find the deviation between the absorption and 

emission profiles when the partial redistribution functions 

are used in radiative transfer calculations. 

Oxenius (1965) showed that the emi •• ion profile not 
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only depends on the radiation field, but also on the velocity 

distributIons of the atoms in the ground and excited states. 

Even though his formalism is physically consistent, is not 

suitable for numerical calculations. On the other hand, the 

sub-state formalism of Milkey and Mihalas (1973) enables a 

quantitative study. Steinitz and Shine (1973) investigated the 

assumption of the equality of the absorption and emission 

profiles for a two level atom with Doppler redistribution. 

Baschek, Mihalas and Oxenius <1981 ) showed that the 

formulation given by Mihalas (1978) of the stimulated emission 

tet~m is incot~t~ect. The et~t~or commi tted in the calculations 

presented thus far in the literature is of no importance 

because the stimulated emission term is negligible in all the 

cases. They gave correct expressions for the statistical 

equilibrium equations for angle averaged isotropic 

redistribution fuhctions. 

We note that the above expressions are in conformity 

with that of the equations of Steinitz and Shine (1973). Since 

we are interested in angle averaged redistribution of the 

radiation field in the pt~esent study,we will closely follow 

the above fot~mal ism. We have obtained the emission profile when 

the stimulated emission is not negligible. In the case of 

non-coherent redistribution of the photons, we expect a close 

equality between absorption and emission profi~es. But the 

opposite case of a redistribution which is highly coheren~ in 

the wings is expected to make the abso~ption and .. iQt.. 
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proflles quite different from each other. So,such a situation 

is studied. In section 4.2, the form of frequency dependent 

source function and the method of solution are given. Here we 

shall show the equality of the expressions of Steinitz and 

Shine (1973)and Baschek,Mihalas and Oxenius (1981) for the 

source functions. Since the formalism of Steinitz and Shine 

(1973) enable us to define emission profile in ~ simple waY,we 

have adopted this method. In section 4.3, we discuss the 

results briefly. 

4.2. The source function including the emission profile. 

The transfer equation for a two level atom without 

continuous absorption can be written as, 

dl 
#J v . ( I - S )' (4.1) = dTv 1.' 1.' v 

where S 
1.' 

can be wt"i tten ~s, 

2hv3 

[ 
(a) ( 1.') 

1 
5 v = ~ 9 2 n 1 c 

- (a) ( v) 
91 n2 

2hv3 / 2 [ 9 1n2 "v I 9 2 n 1 ~v ] c 
(4.2) • 

1 - 91 n 2 "'v 
9 2n 1 ~ 

being the emission _Ad 
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the absorptlon profiles, n 1 , n 2 are the number densities of 

lower and upper levels respectively. The other symbols have 

their usual meaning. Our aim is to express the number 

densities by some tractable parameters. The statistical 

equilibrium equatlons for a two level atom taking the 

absorption and emission profiles properly into account become 

(Baschek et.al , 1981> 

and 

n2l/1V[ A21 + B21 I J v · ¥lv,dv' 

= n1[B12 J J v · R(v',v)dv' + 

= N atom 

+ C21 ] 

* C 12 "'v ] 

Isotropy, angle averaging, and a near 

(4.3) 

(4.4) 

Maxwellian 

veloc.ity distribution for the atoms in the upper states are 

the assumptions made in the above equations. The fact that the 

spontaneous and stimulated emission profiles are same (01 t"'ac, 

1958> is also used in arriving at equation (4.3). R(v',v) is 

the angle averaged redistribution in the observer's frame. 

A21 ,S21 and B12 are the Einstein spontaneous emission,induced 

emission and absorption coefficients. Equation (4.3) 

represents the number of atoms which can emit at frequency v. 

The first term in the L.H.S of equation (4.3) represRnts the 

number of atoms which emit spontaneously. The integral in the 

second term accounts for all atoms which can be depleted by 

induced emissions over all frequencies. C21 and C'12 are the 



collisional de-excitation and excitation rates. The first term 

on the R.H.S of equation (4.3) gives the number of atom~ which 

absorb at frequency v' and emit at frequency v. * ¥Iv is the 

natural excitatlon profile which is the same as the absorption 

pt~ofile The absot~p t i on pt~ofile has been defined in 

equation (2.9) as the integral over frequency of the 

redistribution function. Equation (4.4) the 

conservation of atoms. Integrating equation (4.3) ovet~ v we 

Qet, 

n 2 [A21 + B21 J J v ' '/Iv,dv' + C21 ] = n 1 [ 9 12 I J". ~".dv· + C12] 

Defining, 

= 

and 

J e 

= J 
til 

= 

we get from the equation (4.3) the followinQ relation: 

-1 
~2¥1v B 12J •• " + C12 

= 
nl~v A21+B21 J e + C21 

UsinQ the Einstein relations, 

3 
A ~B 21 -= 2 21 

c: 
; 

and the thermodynamic: relations, 

(4.5) 

(4.6) 

(4.7) 
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C12 (:~ ]* 
hv 

2hv3 9-.. kT 1 
L 

B C21 
= <: -e = --r 9 1 v hv c 

kT e - 1 

we get the numerator of the equation (4.2) as 

/ 

where 

From equation 4.5 we get, 

Using equation (4.9) and the 

(4. S) 

(4.9) 

definition of ~ we get v the 

denominator of equation (4.2) as, 

hv 
- kT ] - (,,) e 

v 

(4.10) 

Dividing equation (4.8) by equation (4.10) we get, 

5 v = ~" [ J .-1 + e'8 ] (4.11> • v 

hv -1 

[ 1 + 
821 C21 - -

J where ~v ( J - Ci)J ) + ( 1 - Cl)e 
kT ) = A21 A21 e " a v 
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Equatlon (4.11) was obtained by Baschek, Mihalas and Oxenius 

(1981). We shall show below that the expression used by 

Steinitz and Shine (1973) is the same as equation (4.11> for 

the source function. 

4.2.1. Steinitz and Shine formalism 

steinitz and Shine (1973) assumed the emission profile 

to consist of scattering and collisional parts. The usual 

assumption of the equality between the emission profile due to 

collisional transitions and the absorption profile is made. 

Therefore, 

"'coli (v) == t/I (V). (4.12) 

For frequency dependent light, the probability per, abaorption 

is, 

J(v')RCv',v) 
J a 

J is the normalization factor as defined in equation 
a 

(4. 13) 

(4.6) • 

Integrating the equation (4.13) over the initial states v' , 

we get the frequency dependence of the scattering. 

\II tt (11) sea 
(4.14) 

Finally the emission profile i. defined a. the weighted 

mean of the collisional emission and scattering ami •• ian 

profiles: 



VI (v) = 
J. + &'9v <P (v) 

J + &'B a v 
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(4.15) 

n':) 
.L 

ratio is obtained from equation (4.5). Substituting 

t~atio and the definition of ¥Iv in eqLtation (4.2) we obtain an 

alternative form for S . Now S i~ given by, 
v v 

= 

where 

and 

E (v) = 

J / <P + &'B • v v 

1 + &' + !.. E (v) 
C1 

a = '::Ih 3 
.L v 
~ c: 

(4. 16) 

(4.17) 

(4.18) 

Equation (4.16) was derived by Steinitz and Shine (1973). 

4.2.2 Equality of equation (4.16) and equation (4.11). , 

Substituting equation (4.18) into equation (4.16) we 

get, 



S (v) = 
1 +&'+ 1 

a 

= 
B21 

1+ 
A21 

(J -(,) J )+ 
e 10' a 

= 

J .-1 . ~ + &'B v 

IJv,fiv ' 
c.)v' w 

v ( - 1 
(0) 

v 

J ,; -1+ &'S 
• V ~ 

-hv/kT C'"'l 
...!:....( 1 - e ) ( 1+ 
A21 

J ~1 
• v + &'B 

v 

e 

- c.) e v 
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dv' + &'8 (1-(') ) 
) v v 

1 
w v 

hvlkT ehv/kT -1 
) 

-1 

-hv/kT 
(4.19) 

Now we see that equation (4.19) is the same as equation (4.11) 

Equation (4.19) reduces to the correct form for CRD when we 

assume "'v = t/llJ • 

From equation (4.16) we get, 

where 

j. 
- + &'8 

Sv • _~~1o' ________ lJ ____ __ 

1 + &' + P ( E ) 
B 

-1 
P = ~ = [.h1.'/kT _ 1] ; Bv. B ; J • JIB • • 

(4.20) 

(4 .. 21) 

We use the equation (4.20) for the source function alonQ with 

the definition of emi •• ion prOfile giVe" by equation (4,;t'ti). 



These definItions make it easier to evaluate the emission 

profile and this formalism is very suitable for studying 

parametrized models in which we are interested. 

4.2.3. Definition of optical depth. 

The optical depth for a simple two level atom is given 

by, 

d'T 
V 

Defining 

= 
hv o --4n 

= 
J a 
B and 

and using equation (4.5) we obtain, 

where 

ll:r: = v 

(4.22) 

= (4.23) 

(4.24) 

(4.25) 

4.2.4. The procedure for solving the transfer equ.tion. 

We do not know J e 

i-teration procedure to obtain the emission profi 1e ARD the 

radiation field consisteA~l~. The total optical depth at the 

line centre is fixed as 2000 -('fi" Using 'this optical~.pth 
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scale and the eRD source function, the transfer equation is 

solved in plane parallel geometry using Peraiah's code. Having 

known the t~adiation field, we use it in the definitions of lPv' 

J , J and J to obtain these quantities. New optical depth 
e a a 

scales can be constructed from equation (4.24). The line 

centre optical depth remains more or less the same because 

at the line centre is almost unity. Now we use equation (4.20) 

for source function. With these definitions for SOLtt"ce 

function and optical depth scale we solve the transfer 

equation once again to determine the new emission profile and 

the radiation field. This iteration procedure is continued 

till we reach a 1% agreement for the emission profile and the 

radiation field between any two successive iteration values. 

It takes normally 5 itet'ations for p=2.0 and 3 iterations for 

p=O.2. 

We see that the parameter p gives the measure of 

the importance of stimulated emission. When p > 1, the 

stimulated emission is important. We have used the values 2.0 

and 0.2 for p. e' is assumed to be 10-3 • This fixes the 

contribution from the thermal sources. When p is high i.e. 

when stimulated emission term is dominant term, the procedure 

outlined is unsuitable for solving the problem. Linearization 

technique given by Milkey and Mihalas (1973) is probably more 

apPt"'oprtate in the5e si tuations. When the p is inc;:re.sed to 

5 it requires a large number of iterations and a conver:gent 

tiolut ion is di 1f ieul t to obtain. 
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24 frequencies and 2 angles are employed. The frequency 

grid is chosen as x = (0,6) where x is measured in Doppler 

units. Necessary modifications are made in Peraiah's code to 

solve this particular problem. 

4.3. Results and discussion. 

We considered a medium with pure thermal sources and no 

incident radiation. Bv is set equal to 1. In Fig. 1 we have 

plotted the final emergent intensities at ~ = 0.78 for several 

redistribution functions and for p = 2.0. The result for R 
x 

ag~~ees with that of Steinitz and Shine. Though in the core, 

all the different redistribution functions give the same 

intensity, we see large differences in the wing. The emergent 

intensity due to R function closely matches with that of 
III 

eRD. Even an enhanced stimulated emission does not make the 

emergent intensity due to R deviate from eRD. Fig. 2 
XII 

gives the final emergent intensities at ~ = 0.78 for RI , RXI 

and R for p = 0.2. Now we have reduced the contribution 
XII 

from stimulated emission term. These cases require fewer 

iterations for convergence. Now we see that the absorption in 

the core is strengthened and also the differences between the 

emergent intensities due to various redi~tribution functions 

in the wing is also reduced. So the stimulated emis.ion 

enhances the differences between various redistribution 

~unctions and hence the emission profile differs more ~rom 

absorption profile. This result is illustrated in the "e~t 
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figLwe. In Fig. 3 we have plotted the ratio of emission to 

absorption profiles at the outermost shell of the medium for 

p c 2.0 and 0.2. CRD gives the ratio of 1 throughout the 

medium which is as it should be. This acts as a check for OUr 

numerical computations. R function gives a ratio whi~h is 
JlX 

very close to 1. Even though R ~ .(x').<x) 
xu in the wings 

(Finn, 1967), the non coherency makes the ratio ~ /. to be 
v v 

almost 1. This result seems to hold good for the extreme 

situations which we have considered and so may be quite 

general. The coherency in the wing for R make the photons to 
Xl: 

be emitted selectively in the wings. This makes the ratio 

V'Vlf/lv to be quite different from 1. RJ: is less coherent than 

RJ:x in the wings (see Fig, 5,chapter 2) and so this ratio 

does not deviate from 1 as much as for RXI This ratio is 

closer to 1 when the contribution from the stimulated emission 

is reduced. 

In the core, for all the cases we see that w /"'" does 
"'v """ 

not deviate from 1 even if the stimulated emission term is 

important. We can conclude that in the Doppler core, one can 

approximate the redistribution functions to eRD and for all 

practical purposes, one can approximate RDa by CRD with Voigt 

absorption profile even when we formulate the transfer 

equation taking into account the difference between absorption 

and emission profiles. 
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CHAPTER 5 

EFFECT OF SMALL MACROSCOPIC VELOCITIES ON 

Ca II H AND K LINES 

5.1. Introduction 

Linsky and Avrett (1970) reviwed theoretic.l and 

observational studies of the profiles of Ca II Hand K and 

infrared triplet lines in the sun, which included some of 

their calculations. They took five levels plus continuum as 

their atomic model to represent Ca II ion. Integral equation 

approach was used for the calculation of line source function. 

Complete redistribution was assumed in their computations. 

Shine, Milkey and Mihalas (1975) studied the effect of partial 

frequency redistributicin on the formation of Ca II Hand K 

lines' in the solar atmosphere. They found the PRO results to 

be in better agreement with the observations. The calculations 

described above are based on a static atmosphere. Consequently 

the computed profiles were symmetric. 

Asymmetric profiles with a single peak emission of the 

K lines were observed at high spatial resolution studies 

(Pasachoff,1970). To account for the asymmetric profile, Athay 

(1970) assumed velocity fields in the regions of line 

formation. He concluded that to obtain KaY enhancement,. either 

the layers where K. is formed are moving upward~iCh 

velocities of 3-7 km .-1 or the K. layer •• 1"". moving oown~ 
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with velocities of 10-20 kms- 1 but he tends to favour the 

second alternative. He assumed a three level atom mddel with 

continuum. He used the integral equation technique generalized 

for a multi level atom. Basri,Linsky and Eriksson (1981) used 

a comoving partial frequency redistribution code to model the 

outer atmospheres of cool type stars. They obtained a highly 

asymmetric profile of Ca II K line which agrees with the 

observation of this line in ~ Ora. 

Line formation in moving media wa5 studied by Abhyankar 

(1964) and Kulander (1968). Peraiah (1978) gave an algorithm 

for solving the transfer equation including velocity fields in 

spherically symmetric expanding media. Rangarajan,Mohan Rao 

and Peraiah (1981) investigated the effect of velocities of 

the order of 2 km s-l and 4 km .-1 in an expanding atmosphere 

with chromospheric type of temperature increase. 

This chapter is based on the above work. Here we 

present the profiles of Ca II H & K (3968A,3933A) and infrared 

triplet lines (8489A,8662A and 8542A) formed in Slowly 

expanding media. Five levels with continuum is taken as the 

atomic model. The formalism of Grant and Peraiah (1972) for 

the two level atom model is extended to include multi level 

atom model. Transfer equation is solved in observer's re.t 

frame using Peraiah's code (1978). Profile. are computed fQr 

systematic expandina velocities, v - 0.5 and 1.0 (expr~.sed in 

mean thermal units) Proftles e~lculat.d in at_tic media 
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(v = 0.0) are also shown for comparison PUt'poses. Since we 

have not incorporated a realistic atmospheric model with 

micro-turbulent velocities and continuous absorption, we 

can not compare our results with observations directly. 

Nevertheless the study underlines the importance of velocitie~ 

in determining the shapes of lines. This study also 

demonstrates the easy extension of Discrete space theory 

technique to solve transfer equation when a number of physical 

processes are included. In section 5.2, we give the atomic 

model chosen and the method of calculation of various rates. 

We discuss the computational procedure in section 5.3. Section 

5.4 contains the results. 

Atomic model 

Atomic model chosen is represented in Fig. 1. We have 

taken the 4 26,,/a ground level , 4 2p 
va and 4 2p ....... upper 

levels, 3 2 0 ...... a and :5 
2 

05 ...... metastable level& and the 

continuum. Temperature (T ) and the electron number denSity 
e 

(n ) distributions for our atmosphere are given in figures (2) 
e 

and (3). 

Collisional and radiative excitational 

de-excitational processes are considered. Photoionization, 

photo-recombination, collisional ionization and recombination 

between the continuum and all the levels are also included. 
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Figure 1.. Energy level diagram for caIX ion lIith 
the permitted radiative transitions. 
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Photoionization rates are calculated according to the 

a> 

= I dv 4 n a. (v) J ( 2 ) 
h"'V L V 

V. 

(5.1) 

~ 

i denotes the lower level and k refers to the continuum. z is 

the height of the atmosphet"'i c layer. We approximate 

J •• <z) = B (z) wher"'e B (z) is the Planck function. 4.(V) is the 
- v v ~ 

photoionization cross section and is taken from Peach's tables 

(1967). Recombination rates follow from the detailed balance 

arguments and they are given by 

= (5.2) 

where [ nn" ]* is the LTE (Local Thermodynamic Equi 1 ibrium) 

population density ratio obtained from Saha-Boltzmann 

relation. 

Collisional recombination rates are calculated from the 

formula given in Linsky's Ph.D. thesis (1969) with the 

corrections for the inclusion of both the D levels. Detailed 

balance arguments give the colI i.ion.1 ioni z.tion rate. by the 

formula 



('5 ' 1 

(5.3) 

Spontaneous emission rates (Einstein A values) between the 

bound levels are taken from the Wiese tables (1969), 

Collisional excitation and de-excitation rates are calculated 

according to Giovanelli (1967). Multiplet relations are used 

to get rates for the sub-levels. To calculate the fine 

structure transition rates C (4 '"' 4"P ) 
&/2 

and 

cross sections are used 

and they are derived by treating the collisions to be elastic 

and collisions with protons to be dominant. 

5.3. Computational procedure 

The transfer equation which we have considered is 

J.J ~! (x, IJ, z) = k ... ( z ) tjJ( x, J,J, z) [S (x, z) - I (x, IJ, z) ] (5.4) 

and for the oppositely directed beam 

(5.5) 

where the symbols have been described in earlier chapters. Now 

we see that the profile function pecORe. angle dependent. 



The equations (5.4) and (5.5) are transformed into the 

optical depth scale where 

dT = -k (z)dz = 
L 

hv o 
4nA-v 

D 

(5.6) 

B~u and But are the Einstein absorption and induced emission 

coefficients for the tt~ansition between the lowet~ level (~) 

and the upper level (~. n l and nu are the number densities of 

the lower and upper levels of the transition. Vo is the line 

centre ft~equency. AVD is the Doppler width define'd as 

Av = 
D 

v 
o -c 

[ Jl/2 
2kT -m 

The profile function ~(x,~,z) is defined by 

(5.7) 

(5.8) 

where x = (v - v )/A'v and v is the velocity measured in mean o D 

thermal units. When there is velocity field, the frequency of 

the line photon is shifted by 

x~ = x - ,.,.., ( T) (5.9) 

VeT) is the velocity at the point T. 

We have used complete redistribution with Voigt profile 

function H(~x). Damping parameter 'a' is assumed to be 10-3 

throughout the medium. The formulation of multilevel transfer 

problem using PRD type 01 scattering mechanism in the presence 

of velocity fields is yet to be completed within the framework 



of Discrete space theory technique. Complete linearization 

method is probably an ideal setup for the above mentioned 

formulation. When we attempted this task,we found that we need 

to have fast computers to get the results, because of the 

requirement of large memory to store the matrices. Since at 

present we do not have access to such machines, here we 

present only eRD results which we could do within our 

available resources. 

The statistical equilibrium equations for a multi-level 

atom are given by 

ni.[ J: 
j> i. (S .. J .. + C . .> + RL.Jc + CL' k + E (A .. +B .. J .. +c . .>] 

L J L J LJ .. \. J \. J LJ LJ 
J < L 

= En .CA .. +B .. J .. +C .. > + 
• . J J L J L L J JL 
J>L. 

(S.10) 

En ,<BJ.J. ,+C .. > + nlc(~kL'+CIcL') 
'(' J L. LJ J\. 
J L. 

In the above expression, the radiative transitions are 

significant only for permitted transitions. J is defined in 

equat ion (5. 17). 

+ n 
Jc 

= N 
+ 

Co. 

(S. 11) 

where N + is the number of Ca+ ions and M is the number of 
Co. 

levels considered. N + at the outer-most shell is chosen to aa. 

be 10~ and the number density in the medium is varied 

according to·the equation of continuity. We divided the medium 

into 5 shells. 
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We have employed eqLlivalent two level atom approach to 

write the expres610n for the source function (Hihalas,1978). 

Consider a llne formed between levels land u. The line source 

function is given by 

s = lu 

s 2hv 

z 
c 

o 

9 u 

n 
u 

- n-n 9 l l u 

= 
• 2hv 

z c 

o 

The rate equation for the lower level 

envi t~onment is 

and for the upper level we have 

1 (5. 12) 

in a multi level 

(5.13) 

n (B l J fJ. ,J. ,d v + C u l + I: Au' Z , + I: C ,Y J' +R .. L +C .. Jc+A l) U u .., .., \. U\. U J U _.. _ U 
u>i~l~ u<j 

- n l ( B l" J t/J: J d v + C l ) = n * (R +C ) _ v v U U Jcu uJc +1: 
u< j 

+ I: n,C, Y. 
'-l \. \. U \.1.& u> \or" 

n ,A, Z, 
J JU JU 

(5.14) 

where the quantiti •• with * as superscript. denote the LTE 

values. Z., and Y .. are the net radiative and colI i5ional 
J" \.J 



brackets defined by 

z .. = 1 - J .. ( n . B.. - n.B .. ) / n .A.. _ 1 - ( J.. / S .. ) 
JL LJ L LJ J J\. J JL LJ LJ 

and 

whet'e 

Y .. = 
LJ 

n . c .. 
l---L~ 

n . c .. 
\. LJ 

(5. 15) 

""9 l' 

(5. 16) 

(5. 17) 

If we eliminate analytically the popul~tion ratio appearing in 

the expression for source function we get 

[ 

QO , 

= J J ~(v) I (v, J.l, z)dp 

o -, 

(5. 18) 

e'B is the thermal source term which represents photons that v 

are created by collisional excitation followed by radiative 

de-excitation. v is measured from the line centre. The term .' 

in the denominator is the sink term that represents those 

photons that are destroyed by collisional de-excitation 

following a photoexcitation for strong resonance lines like 

Ca II Hand K. e' is given by 

The. ef fecl:ts of, r.ci.a.·t~ :1 ie.ld ... due tEl: other 1 i n..~, 

described by, t-.r:-ms,: _ and~ .. They .,.r:-e~pr:-.. sed as 



n = [ aa 
2 • - (:~) aa , .. 

and 

whet"e in turn, 

* a = n 1 (R k 1 +C 1 k ) + E n ,A , 1 Z 'l + En, C , 1 Y , 1 
2 1 < j"u J J J i. < 1 " " " 

a=R +C + 
• uk uk 

E A, Z , + E C ,Y , 
u>i.,.l \&'1. \&'1. u<j UJ UJ 

* a = n 
.. U 

(R k + C k) + E n jA, Z, + 
u U , JUJU 

u<J 

Velocity at each shell is given by 

E n,C, V. 
u> ,,"L " 'l.U 'LU 

V(n) = VIA) + [V(B) ~ VIAl] * n 

where A,S are the inner and outer boundaries 

IUD 

(5.20) 

(5.21 ) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

of the 

atmosphere. n denotes the number of the shell and N is the 

total number of layers. Velocity is measured in thermal 

Doppler units. We have set VeAl - 0 and V(a) - 0, 0.5 and 1. 

Equations (5.4), (~.5) and (5.10) are solved with the following 

boundary conditions: 
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The incident radlation at the top of the atmosphere is 

zero. The incIdent radiation at the lower boundary of the 

atmosphere is assumed to be B (T = 4620o k). v e 

The above equations are solved iteratively. The LTE 

number densities are chosen to be initial values for 

calculating the optical depths from the relation (5.6). To 

calculate the radiation field in any line, & and n have to be 

specified, which depend upon the radiation field of other 

lines. To compute H line radiation field, the radiation field 

in other lines are assumed to be Planckian. While computing 

the K line, we substitute the computed H line intensities, 

keeping the unknown radiation fields in infrared triplet lines 

as Planckian. This procedure is continued till the intensities 

of all the five lines are calcul~ted. 

To get the number densities in the levels, we 

substitute the mean intensities of all the five lines in the 

statistical equilibrium equations. This new number densitie$ 

are used to calculate the optical depth. Since we know the 

radiation field in all the lines, we substitute those values 

to compute the net radiative brackets which are used in the 

source function expression. Iterations are continued till the 

number densities converged upto a de~iation of less than 1;' 01 

the previous iteration v~lues. 



5.4. ResLll ts 

Emergent intensities of K line for the vat~ 1 OUS 

velocities when /.J = 0.79 are plotted in figLwe 4. The total 

optical depth at the line centre with the chosen atmospheric 

model is 618. We find a symmetric profile wIth a double pea~ed 

emission for the static case, and for non-zero velocities, we 

find blue shift and asymmetry in the profiles. When the 

velocity at'the outer boundary is one mean thermal unit, only 

a single peak in the t'ed side 0::: ) with a blue shift of 1'':: 
~ . 

minimum is obtained. K. absorption features broaden with 

velocities. A similar trend is seen in the limb (~ = 0.21) 

also (Fig. 5). We also find 1< is slightly higher than K 
2r Zv 

when V = 0.5. Emergent intensities of H line at /.J = 0.79 for 

various velocities are plotted in Fig. 6. H line intensities 

are consistently higher than than K line intensities. This is 

due to the lesser optical depth of H line which is only 322 in 

our model. Both Hand K lines exhibit similar trends. Narrow 

emission peaks occur for V = 0.5. Emergent intensities of 8662 

line for /.J = 0.79 and 0.21 are given in figures 8 and 9. 

Figures 10 and 11 show the emergent intensities of the line 

9542 for /.J = 0.79 and 0.21 respectively. Emergent intensity 

profiles of 8498 are plotted in figures 12 and 13. 

All the infrared triplet lines are in absorption except 

~or 9498 line at p c 0.79. This line is the weakest due to the 

least optical depth at the line centre. With velocitie5, we 
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find all lines to be blue shifted. Near the limb, the velocity 

effects in the line profiles are negligible. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1. Summary of the results. 

In this chapter we are stating the results of our study 

briefly. These results have been illustrated by figures and 

explained in detail separately in each chapter of this thesis. 

Some of these results have been in quantitative agreement with 

that of other workers wherever such comparisons are possible. 

We find that the redistribution functions affect the 

spectral line formation and the extent of the effects depend 

on the boundary conditions, optical thickness at the line 

centre and the scattering prop~rties of the merdium. From the 

various schematic line formation problems with different types 

of redistribution functions which we have studied, we come to 

a conclusion that the degree of coherency in the wings which 

the particular type of redistribution exhibits determines the 

transfer of radiation in strong resonance lines. Therefore the 

partial redistribution effects have to be taken into account 

when studying such lines. For the optically thin lines when 

the continuous absor~tion is present the redistribution 

effects are negligible. The presence of continuous opacity 

makes the spectral lines weak irrespective of the 

redistribution mechanism. 



When only coherent electron scattering is pre~ent, the 

partial redlstribution of the photons by atoms affects the 

wings of the lines. If continuous absorption is also present, 

the coherent electron scattering and the continuous absorption 

are the competing mechanisms which determine the shape 01 the 

lines. When the continuous absorption is more than the 

electron scattering, we get broader profiles irrespective 01 

the redistribution mechanism. Partial redistribution by atoms 

gives shallower line profiles compared to coherent electron 

scattering. 

The emission and absorption profiles are equal at the 

Doppler core even if stimulated emission is important. The 

deviation of the emission profile from the absorption profile 

is more for coherent type of redistribution. R:ru 

redistt~ibution can be approximated by complete t"edistribu"tion 

for all practical purposes. 

Even if small macroscopic velocities are present in the 

atmosphere,they affect the Ca II H an K lines. A single peaked 

emission instead of double peaked emission is obtained for K 

line when the velocity at the outer boundary of a schematic 

chromospheric type of atmosphere is one mean thermal unit~ The 

small velocities do not produce"any appreciable asymmetry in 

Ca II triplet lines. 
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6.2. FutLlt'e wor-k 

So far we have considered only plane para.llel 

atmospheres. When the thickness of the a tmosphet-e is 

comparable to the radius of the star, the assumption of pla.ne 

parallel atmosphere is not valid. Then we can represent the 

atmosphere as spherically symmetric medium to start with. A 

study of the effect of the t"edistt"ibLltion functions on line 

formation in such atmospheres will throw more light on the 

spectra of giants and supergiant stars. One of the existing 

methods (Peraiah, 1972, Schmid-burgk, 1973, Hummer and 

Rybicki, 1971) to solve the transfer equation in such systems 

may be suitable for such a study. 

The ultraviolet observations of spectral lines from 

early type stars suggest that the radiation d~iven winds may 

be present in these stars. The mass loss from these stars can 

be quantitatively studied in a consistent way only if we 

consider velocity fields in the regions of line formation. Now 

there is coupling between radiative transfer, statistical 

equilibrium, hydrodynamic, energy and momentum equations. The 

radiation and the velocity fields can be obtained in a 

consistent way only if we solve the above set of equations. As 

a first approximation, one can probably assume certain 

velocity laws and compute the radiation field. Even then it is 

very difficult to solve the transfer equation because the 

velocity fields in these stars exceed the sonic speed by 
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sevet'al times. Now the comoving ft'ame tt'ansfer e.quation may 

come in handy and there are several existing methods to solve 

this equation (Mihalas et al 1976, Peraiah, 1980, Pet"aiah, 

1985). The physical processes are easier to track in the 

comoving frame and by solving this equation one can get the 

source function values which can be substituted in the formal 

solution to obtain the fluxes in the observer's frame. 

The redistribution functions for multi-level atom are 

derived by Hubeny (1981). A quantitative study ascertaining 

the effect of these on several lines whi~h can be calculated 

Simultaneously by considering multi-level atoms is another 

problem yet to be solved. 

Line formation in turbulent media has many applications 

in the field of astt"ophysics. The treatment of this pt"oblem by 

Heidelberg group (1974) may be suitable for further study. 

The paramett'ic study pt"ovides us the information on the 

effect of each individual process. After such a study, it is 

easy to discriminate the unimportant physical processes from 

the important ones and selectively include them along with 

realistic model atmospheres and model atoms in the spect~al 

line calculations, so that one can compare the theoretical 

results with 

information. 

the 

we 

obset"vat ions 

propose to 

to derive some meaningful 

undertake some of the 

aforementioned problems in the future. 
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