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ABSTRACT

Nearly 400 years ago sunspots were discovered as solar
phenomena by Galileo. Schwabe (1843) detected the variability of
sunspot occurrences with a ‘cycle’ of 11 years. Hale(1908)
discovered strong bipolar magnetic flelds associated with the
sunspots. Hale et.al.(1913) showed that sunspot groups flip-flop
their polarity every 22 years. Variations in many solar activity
phenomena such as flares, coronal mass ejections, and also in
luminosity of the sun, etc., are associated with the sunspot
cycle. Manifestations of the sunspot activity can also be seen in
the arorae, the cosmic ray events, geomagnetic phenomena, etc.
Even, the variation in the rains of monsoon and the occurrences of
draughts are believed to be associated with the sunspot activity
phenomena. Thus, study of the solar cycle and the magnetic
activity phenomena is crucial for understanding not only solar
structure and evolution , but also terrestrial effects. It is also
quite important for understanding the stellar magnetic fields and
stellar activity.

The magnetic activity and the solar cycle phenomena have been
modeled either in terms of turbulent dynamo models or in terms
of MHD oscillatory dynamo models. The turbulent dynamo models

explain qualitatively many of the observed solar magnetic cycle
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phenomena. However, there are several difficulties and
limitations in these models in their application to the solar
cycle (Piddington 191,1972,1973; Cowling 1981; Levy 1992;
Vainstein and Cattaneo 1992 ). The oscillatory theories also
appear to have some theoretical difficulties (Schussler 1982) and
lack of observational evidence for existence of steady field
which is needed as background for oscillations.

In the present study, we use analysis of observational data
and theoretical modeling to show that solar magnetic cycle can

possibly be the effect of oscillations , especially ‘ long

’

period torsional oscillations in the Sun’'s internal magnetic
field. The properties of the ‘Long Period Global Oscillations '’
that may constitute the solar magnetic cycle are derived from
Legendre-Fourier (LF) analysis of the Sun’s magnetic field as
inferred from sunspot data. For sustenance of such global
oscillations , a ‘steady’ part of the internal magnetic field is
required. The steady part of the magnetic fleld is modeled in two
steps. In the ‘preliminary’ model, the steady part of the field is
calculated assuming it to be current-free, using the condition of
isorotation and the structure of Sun’s internal rotation as given

by helioseismology. In order to remove the central singularity and

to obtain better isorotation in the radiative core, an improved
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model is proposed. In the Improved model reasonable assumptions
and approximations are used to show that the steady part of the
magnetic fleld can be expressed as analytical solution of
magnetic diffusion equation . For testing the adn.\issibility of
global oscillations, Alfven wave travel times are computed along
the field lines in these two models of the steady field , along
with three other arbitrary models. The steady part of the internal
rotation is determined from the steady part of the magnetic field.
The large-scale systematic patterns are detected in the remaining
part of the rotation ( ‘residual rotation’). From these patterns,
the radial and the latitudinal structure of the dominant

oscillation mode is estimated.
The thesis has been planned and presented in six chapters.

After giving a brief account of historical introduction to
the present study, I review 1in chapter I the observational and
theoretical knowledge of the Sun’s global magnetic field and

rotation.

In chapter II, I present the results obtained from the LF
analysis of the Sun’s magnetic field as inferred from the sunspot

data during 1874-1976 ( Gokhale, Javaraiah and Hiremath 1990).
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From this analysis one sees that the sunspot activity can be
considered as originating in superposition of the Sun’s
axisymmetric global oscillations of odd degrees up to £ = 29 and
period _ 22 year. The main modes ( ¢ < 11) seem to represent
approximately standing oscillations. The spectrum of these ‘22
year’ modes with respect to £ is fitted to the mathematical forms
for spectra of trapped waves. In the same chapter, I present the
latest results obtained by Gokhale et.al. (1992) and, Gokhale and
Javaraiah (1992) . These authors have shown that the superposition
of the first few odd degree modes reproduce not only the butterfly
diagrams , but also the behavior of the field in the middle (35° -
70°) and high ( > 70°) latitudes, though the data used is only
from low ( < 35° ) latitudes. This supports the belief that the LF
expansion represents a superposition of a set of real global

oscillations of the Sun.

The MHD oscillations need a framework of a *‘ steady '
poloidal field. Therefore in chapter III , I present a preliminary
model of the structure of the ‘ steady ’ ( slowest varying ) part
of the Sun’s internal poloidal field . In this , the *‘ steady °’
part of the field is assumed to be current free and its field
lines to be isorotating according to the Sun’s internal rotation

derived from helioseismology ( Dziembowski  .et.al. 1989 ). The

(iv)



resulting field model can be described as that of a central dipole
and a central hexapole , both parallel to the rotation axis and
embedded in a uniform external field B° . From the best fit of
the model, we determine the field strengths of the dipole and
hexapole to be (0.61 + 0.10) BR> and (0.16 % 0.05 ) BR>

respectively.

Though the aforementioned model gives a satisfactory fit in
the convective envelope (CE) , the fit is unsatisfactory in the
outer radiative core ( ORC ) taken alone. Moreover, owing to the
singularity at the center, it will not be possible to extend this
model inwards when the rotation data in the inner radiative core
is avalilable in future. For these reasons, we have modified and
improved the model ( chapter IV ). It is shown that the poloidal
component of the ‘steady ’ part of the magnetic field in the sun’'s
radiative core (RC) and convection zone (CE) can be modeled as an
analytical solution of the equation for magnetic diffusion in an
incompressible medium of constant diffusivity whose field lines
isorotate with the solar plasma. This solution is subjected to :
(1) continuity of the normal component across the RC-CE boundary
and (ii) merging with asymptotically uniform field of finite
strength at large distances. The condition of isorotation enables

determination of the values of the parameters in the first two
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eigen modes of the diffusion equation.

The resulting model does not have any singularity |,
separatrix, or closed loop. It also yields a much better fit with
the helioseismologically determined rotation in the radiative
core than the fit given by the preliminary model.

The model enables us to estimate the ‘initial ' (at Zero-Age-
Main- Sequence ) relative strengths of the two diffusion eigen
modes as 4 : 1 . The characteristic diffusion time scales of these
eigen modes are estimated to be _ 10.6 and . 2.7 billion yr
respectively.

These models also show that at the base of the convection
zone , there 1is a discontinuity in the coefficients of
isorotation. This implies a steady non-isorotation which can wind

the poloidal field into a toroidal field ( _ 10° G ) in 10° - 10°
years, 1f the discontinuities last that long.

From LF analysis of sun's inferred magnetic field , we know
that the axisymmetric terms with odd values for the degree *“ ¢ °’
have nearly same periodicity ( . 22 year ). This indicates that
the Alfven travel times may be approximately same along different
field 1lines in the steady field. In order to check the
admissibility of such global oscillations , we have computed the

Alfven wave travel times along the field lines in the following
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five models for the internal magnetic field. In the first model,
the field is taken to be uniform and in the second it is assumed
to be a dipole field. In the third model , the field is taken to
be a combination of wuniform and dipole field . The fourth and
the fifth models are the models of the ‘ steady ' part of the
internal field as computed in chapters III and IV respectively.
Results of the Alfven wave travel time calculations are presented
in chapter V . It is interesting to note that the last two models
give the smallest relative bandwidth for the frequencies of global
( Alfven ) oscillations . However, the last model (ie. the
‘improved’ model) 1is the admissible model that can sustain
alfvenic global oscillations.

The model of the steady part of the poloidal field specifies
the steady part of the rotation also. The ‘residual’ part then

represents the time-dependent part of the rotation, i.e. the

torsional MHD perturbations in the interior of the Sun. The

radial widths of this are found to be in the range of

O.IRO—O.SRo » and their latitudinal widths are in the range of
10°-75° . Thus the time-dependent torsional perturbation seems to
have global structure. It is shown that the time scales of these
perturbations can be in the range 2-20 year, if the ratio of
perturbations in the poloidal to the toroidal components of the

magnetic fileld 1s in the range of _ 10-100.
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In the end of chapter V, I present the results obtained from
the least square fitting of the residual rotation over the radial
range (0.4R°—1.0Ro) to a linear combination of the first three
Legendre polynomials of even degree 1in cos®. This fitting shows
that the terms " £ =2 " and " £ = 4 " are the dominant terms in
the rotational perturbations as expected from the dominant terms
£ =3 and { =5 in the primarily excited oscillation (Gokhale and

Javaraiah, 1994).

Thus, this study strengthens the idea that the solar
magnetic and the solar activity phenomena may be due to MHD
oscillations superposed on the slowly diffusing steady part of the

poloidal field in the interior.

In chapter VI , I summarize the important conclusions of

chapters II to V and discuss the directions for future work.
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CHAPTER 1

INTRODUCTION

1.1 Historical Introduction

The first observations of sunspots through the telescope were
made independently by four Europeans, viz., Thomas Harriot;
Johannes Fabricius; Galileo Galilei and Christoph Scheiner
(Hafbauer 1991). These blemishes on the Sun have always intrigued
astronomers and astrophysicists. In 1843 Henrich Schwabe announced
the discovery of the 11 year cycle of sunspots, which is now well
known even among the non- scientists. In the mean time , Richard
Carrington’s (1863) observations of sunspots indicated that the
latitude of occurrence of sunspots is around 40° north and south
in the beginning of the cycle and drifts towards the equator as
the cycle progresses. This 1is represented by the well known
butterfly diagram of the sunspots (Maunder 1922a).

Meanwhile, the extensive study of the record of sunspot
number by Wolf (1856,1868) from 1700 A.D onwards strengthened the
belief that the cyclic behavior of sunspot activity 1is long
lasting and fundamental in nature.

Since polar aurorae are believed to be the manifestations of
sunspot activity, the 11 year periodici;y is'also evident in the

records of polar arorae. These records have been found in the



historical documents 1ln Europe, China, Korea and Japan

The most startling discovery by Maunder (1890,1922b) was
that there was a 1lull in the solar activity in the period
1645-1715. This period of weakened solar activity is known as
Maunder Minimum * . Recently, Eddy ( 1976 ) has presented a
convincing evidence that the dearth of sunspot activity during
thls period was a real phenomenon and not an artifact of the
data analyzed. Incldentally, during this perlod, most of the
European countries witnessed a severe and unusual cold weather,
known as the " Little Ice Age "

From measurements of Zeeman effect , Hale (1908) showed that
sunspots were associated with strong magnetic fields. He
discovered (1913 ) that most sunspots occur in pairs, or in
groups, which are oriented roughly parallel to the equator of the
Sun. The leading and the following parts in a spot group have
opposite polarities. Further, Hale et.al (1918) discovered that
during each sunspot cycle , the leading parts of the spot groups
in a given hemisphere have the same magnetic polarity as that of
the polar region in the beginning of the cycle. During the next
cycle, the polarities of the leading and the following spots in
each hemisphere are reversed . Thus , when magnetic polarities are
taken into account, a complete sunspot cycle has a period of about
22 years. This is known as ‘ 22 year magnetic. cycle

The 11 year periodicity has also been revealed recently in

the cyclic variability of the total solar 1r‘radiance (Frohlich



et.al 1991). It indicates that the Sun is more 1luminous ( or
brighter ) during the maximum activity period than in the minimum
activity period. As pointed out by Eddy, this may be a reason for
the ‘little ice age ' during the long sunspot minimum (Maunder

minimum ).

Similar ‘ long term ’ variations in the solar activity also
have been reported from the analysis of 10Be and 14C
concentrations in ice core and tree rings respectively.

Thus , the study of the ‘ long term ’ variations of solar
activity may be crucial for understanding not only the solar
structure and evolution, but also the solar terrestrial effects,
including perhaps even the climatic effects.

Since sunspots are associated with strong magnetic fields
with specific polarities on global scales, the ‘long term °
variations in solar activity represent corresponding variations in
the strength and structure of the solar magnetic field .

Hence theoretically, these phenomena have been modeled in
terms of two types of dynamos : (i) a * turbulent ’ dynamo (Parker
1955 ; Steenbeck and Krause 1969 ; Krause 1976 ; Radler 1976 ) and
(i1) an * oscillatory ’ dynamo ( Walen 1949 ; Plumpton and
Ferraro 1955 ; Vandakurov 1989 ).

In the turbulent dynamo mechanism, the magnetic field is
generated , maintained, and periodically reversed by the rotation
and the cyclonic turbulence of the solar plasma.‘The models based

on this theory agree qualitatively with some of the observed



properties of the solar activity cycle (Yoshimura 1972 ; Gilman
1974). However, the radial gradient of the internal rotation
needed in these models contradicts the gradient obtained from the
helioseismological data (Dziembowski, Goode and Libbrecht 1989).
Because of the high conductivity of the solar gas, the

electromagnetic induction in the Sun is very strong . Hence any
disturbance of the plasma 1leads to strong electromagnetic
restoring forces causing oscillations. These oscillations are
called MHD oscillations. Perturbations in the form of
displacements perpendicular to the field lines and propagating
along the field lines constitute waves ( called Alfven waves )
whose phase speed depends upon the field strength and the density
of the plasma. The Alfven mode oscillations have ‘ long periods ',
viz, in the range of years to decades (Walen 1949 ; Plumpton and
Ferraro 1955 ). For example, if we take the radial scale (110,000
kms) of density variation of the solar plasma in the radiative
core and a uniform field strength of . 100 gauss, the Alfven
travel time from the center to the surface is of the same order as
that of the period of the sunspot cycle, viz. _ 11 year ( i.e half
the period of the Sun’s magnetic cycle ). The concept of an

oscillatory dynamos is based on this fact .

Layzer et.al (1955), have pointed out that it may be
possible to model the solar cycle as MHD oscillations of the Sun

assuming the Sun to be threaded by an ambient poloidal magnetic



field. However, the computed periods turned out to be _ 100 times
longer than the solar activity cycle. So, one has to think of
alternative models for understanding the ‘ periodic ’ behavior of
the Sun’s global magnetic field .

The detection of torsional oscillations in the photospheric
rotation of the plasma (Howard and LaBonte 1980) as well as
variations in Sun’s internal rotation ( Goode and Dziembowski,
1991; Gough and stark, 1993 ) strengthen the belief that sunspot

cycle may be originating in global torsional MHD oscillations .

Supposing that the sunspot and the magnetic activity cycles
are manifestations of torsional MHD oscillations , one has to
answer the following questions, viz.,

(i) what is the structure of the steady magnetic field, on which
these MHD oscillations/waves are taking place 7?7

(1i) can such a structure sustain global torsional (MHD)
oscillations ?

(iii) would the periods of such oscillations be in the range of
the observed periods ?

(iv) what is the form of their internal perturbations ?

(v) what is the form of their amplitude spectrum ?

In the present study, the problems (i)-(v) have been
addressed and answered to the following extent.

First, 1 review the results of the Legendre Fourier (LF)

analysis of the latitude-time distribution of magnetic field



inferred from sunspot groups . This indicates that the solar
magnetic cycle may be really originating in superposition of
global stationary MHD oscillations. I use the helioseismological

results on the Sun’s internal rotation to develop a model for the

steady part of the poloidal field . I then show that such a

steady poloidal field can sustain global oscillations in the form
of torsional Alfven modes with periods in the range of
periodicities observed in solar activity. The form of internal
perturbations are detected from the large-scale systematic
patterns in the residual rotation of the Sun.

Before presenting the above mentioned results in the
subsequent chapters; I present a brief review of observational
and theoretical knowledge of Sun’s global magnetic field and

rotation. At the end of this chapter, I describe the contents of

the chapters II to VI .
1.2 Periodic Phenomena On the Sun

On the Sun, periodic phenomena have been observed with a
wilde variety of periods ranging from minutes to decades and
perhaps even centuries . These periods can be classified
(arbitrarily ) into three groups, viz. ; (i) short periods
( _ minutes), (ii) intermediate periods ( _ solar rotation period )

and , (iil) long periods (more than solar rotation period ).



1.2.1 Short Periods

From the analysis of velocity dopplergrams, Leighton (1960 )
showed that there are coherent oscillations oﬁ the Sun, whose
periods are in the range of 2-5 minutes. It is well established
that these ‘ 5 minute ’ oscillations are due to superposition of
global acoustic ‘p ’ modes, which are due to the restoring forces
of the pressure gradient ( Ulrich, 1970 ; Leibacher and Stein
1971; Deubner 1975; Ando and Osaki 1975). Similarly, 160 minute
oscillations observed by Severney et.al. (1976), Brookes et.al
(1976), etc., are believed to be global gravity (¢ g ’ ) mode
oscillations, which are due to restoring forces of gravity
(/buoyancy ) .

Oscillations with periods in the range of 120-200 sec were
observed in the photosphere of sunspot umbrae (Beckers and
Schultz, 1972; Thomas, et.al.1982; Lites 1986).

In the chromospheric region, different active phenomena, such
as Call structures, Ha filaments, quiescent filaments and the
prominences show the oscillatory behavior. For example, the Call
structures show the periodicities of _ 150-300 seconds (Orall
1966; Punetha 1974; Liu 1974; Cram and Dame 1983; Rutten and
Ultrenbrock 1991; Kariyappa 1§92). The velocity oscillations in Ha
filaments show the periods in the range of _ 150-250 seconds
(Thompson and Schmieder, 1991 ). Quiescent filaments show the

oscillatory variations in Doppler shift and central intensity of



the HeI (10830 A° ) line. The periods vary from 5 to 15 min
(Zang 1991). Prominence oscillations have periods of _ few seconds
to 6 minutes ( Balthasar et.al. 1993 ; Wier et.al. 1984; Tsubaki

1988).

1.2.2 Intermediate Periods

27 day periodicity

Periodicity of _ 27 day has been found in several activity
related phenomena . This periodicity is detected (Lean 1991, and
references there in) in the sunspot number, the HeI-1084 nm
equivalent width, the plage index, and the 10.7 cm radio flux.

Note that , this periodicity is mainly due to the sun’s

rotation with a mean period of _ 27 day.

1.2.3 Long Periods

155 day periodicity

A 155 day periodicity has been detected in the solar flare
occurrence rate ( Rieger et.al. 1984; Ichimota et. al.1985 ; Bai,
1987; Droge et.al. 1990); in the sunspot areas (Lean 1990); and

in Zurich sunspot number ( Lean and Brueckner, 1989).

240-330 day periods

By studying the monthly mean Zurich sunspot number from 1749



to 1979, Wolf (1983) reported a peak at 323 days. Delache. et.al
(1985) found this peak in the power spectrum of the solar diameter
measurements from 1975 to 1984. Pap, et.al.(1990) claim the
existence of periodicities between 240-330 days in the 10.7 cm

radio flux, the CaK plage index, the UV flux at La and MgII core

to the wing ratio.

500-550 day periodicity

Several authors have claimed this range of periodicity in
different manifestations of solar activity ( eg : Oliver et.al.

1992 and references there in ).

Quasi-biennial Oscillations (QBO)

Several analyses indicate the presence of QBO in different
solar aqtivity parameters : sunspot numbers ( Shapiro and Ward
1962 ); solar neutrino flux ( Sakural 1979); solar radio flux at
10.7 cm ( Hughes and Kesteven, 1981); coronal emission at 5303A°
line ( Sykora 1980; Apostolov and Letfus 1985; Rusin et.al. 1987);
CaK plages ( Singh and Prabhu 1985) and in photospheric magnetic

field ( Csada 1974).

Periods of 2-22 years

In this range the 11 year period found in sunspot numbers, and
in many other activity phenomena is the dominant period. Next

dominant period is that of the 22 year magnetic cycle. There is



some evidence for presence of 80-90 year periodicity in many of
these phenomena.

Sunspot cycle of ‘11 ' years discovered by Schwabe (1843) is
the most well known phenomenon. In fact the power spectrum
analysis of the annual mean relative sunspot numbers ( Cole 1973 )
shows the periodicities of 10.45, 11.8 years along with 88, 59 and
190 years respectively. Cohen and Lintz (1974) computed the maximum
entropy power spectrum of the annual mean sunspot numbers for the
period 1793-1971. They discovered the peaks in the power spectrum
of 8,10 and 90 years in addition to the 1l-year peak.

Power spectrum analysis of sunspot number (Wallenharst 1982)
from 1711-1966 shows that 11 year periodicity is the only
statistically significant-one present in the sunspot data ,
whereas peaks of 8, 10 and 90 year appear to be statistically
insignificant.

Eleven year periodicity has been detected in different
activity phenomena : Ha filaments (Makarov and Sivaraman 1988);
ephemeral active regions (Martin and Harvey 1979) and X-ray bright
points (Goulab et.al. 1989); magnetic field in the polar faculae
(Makarov et al 1988) ; torsional oscillations ( Howard and La
Bonte 1980) ; the Sun’s luminosity ( Wilson 1991) and the magnetic
flux (Harvey 1992).

This period has also been detected in the integral brightness
of white lightlcorona (K+F corona)( Rusin and Rybanski 1992); in

the coronal green line intensity (Rusin et.al.1987) and in MgII
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core to wing ratio index ( Deland and Cebula 1992).

There is a good positive correlation of Ha flare activity and
x-ray luminosity , which vary together with the solar cycle
(Pearce et.al. 1992).

In the range of long period variations , 22 year magnetic
cycle detected by Hale et.al. (1918) is the dominant period , next
to the 11 year cycle. From the Legendre Fourier analysis of
magnetogram data , Stenflo and Vogel (1986) showed that the
axisymmetric global oscillations with periods of _ 22 year
contribute predominantly to the evolution of large-scale
photospheric field.

Recently, Javaraiah and Gokhale (1994) have found
periodicities in the coefficient ‘ B ' of the differential
rotation obtained from the sunspot groups during 1874-1976 . Their
analysis show the periodicities of 18.9, 8.3, 3.9, 3.1, 2.6, and

2.1 year respectively.
1.3 Sun’s Magnetic Field

The discovery of polar plumes ( or rays) in the corona at
times of minimum solar activity led to a suggestion that the Sun
possesses a large scale dipole magnetic field ( Bigelow 1889;
Stormer 1911). Hale (1908) initiated the measurement of zeeman
splitting of photospheric 1lines and detecte& the strong magnetic

fields in sunspots. Outside the sunspot regions, however, the
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photospheric fields are weak and the zeeman components are not
well separated. Hale et al. (1918) reported the existence of a
general ( background) magnetic field. The field was found to be of
a dipole in character.

There 1is a wealth of observational information about the
surface magnetic field, whereas the properties of the internal

magnetic field have to be studied by theoretical methods only.

1.3.1 Surface Magnetic Fields
Howard (1967) has classified the surface magnetic fields as

‘small scale and ‘ large scale ' fields. According to him, the
small scale fields are associated with the small scale structures
in the solar atmosphere, the development and the decay of active

regions, etc. The large scale field consists of background field ,

the large~scale distribution of solar activity , and polar fields.

1.3.1.1 Small Scale Fields

Observations of solar magnetic field (Howard and Stenflo,
1972; Wang 1988) in a quiet region shows that the magnetic flux is
concentrated in discrete clumps which are separated by apparently
field-free areas. Most of these clumps are bipolar and the typical
sizes of the elements in the clumps are _ 100 Kms , with field
strengths _ 1-2 KG. These clumps are found every where on the

surface of the disk. Stenflo (1989) has observed that , nearly

90% of the total magnetic flux penetrating the photosphere outside
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the sunspots occurs in such clumps. Since , the sizes of these
clumps are near the angular resolution 1limit, the mechanism of
formation and evolution is poorly understood.

However, it is believed that the magnetic flux which appears
to emerge from the solar interior as large coherent structures
(for example the sunspots) decay by fragmentation at a rate of .
1015 Mx sec—1 (Gokhale and Zwaan 1972 ). The fragmentation implies
transferring of flux from smaller to larger spatial wave numbers
(Harvey and Harvey 1973; Stenflo 1976 ) leading to sizes of 100 Km
flux tubes.

Theoretically, formation of * KG * flux tubes can be
understood as an effect of instability caused by convective
collapse ( Parker 1978; Spruit and Zwiebel 1979; Unno and Ando
1979 ). Hasan (1985, 1986 ) and Venkatakrishnan (1985,1986) have
studied the process of collapse through numerical simulations
using thin flux tube approximation. While they confirm the linear
theory (Spruit and Zwiébel 1979) of convective instability of weak
magnetic fields , the results for strong fields and for the
nonlinear evolution of the instability are uncertain (Schussler

1992).

1.3.1.2 Large Scale Fields
Howard (1967) showed the existence of large-scale monopolar
and bipolar regions of photospheric flelds with sizes 103 times

larger, field strengths _ 103 times weaker ( _ 5 Gauss) and fluxes
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of the same order as that of the active regions. The unipolar
regions seem to be created by breaking up the ‘following’ polarity
parts of the active reglons. These unipolar reglons seem to
migrate poleward and to build up a general polar magnetic field.
These photospheric large-scale fields lead to the large-scale
structures in the corona which are seen in the white light
photographs and in the x-ray pictures. The examples of these are
(1) prominences, (ii) loops, extending up to one solar radius,
(1i1) streamers, extending often beyond _ 10 RO and (iii) coronal
holes extending up to 0.1 R0 .
1.3.1.3 Magnetic Activity Phenomena
Magnetic activity essentially consists of phenomena , which
are manifestations of abnormal heating ( or cooling) due to strong
magnetic fields. For example, sunspots, pores and ephemeral
active regions in the photosphere; faculae, filigree elements in
the chromosphere; prominences , flares, and x-ray bright points in

the corona.

Sunspots :
Sunspots are dark areas on the photosphere with the typical

sizes of _ 10 to 10° millionths of hemisphere ( one millionth of
hemisphere ~ 3 x 10° Xn® ) and life times varying from several
hours to several weeks depending upon the size. These are compact

magnetic elements, with the magnetic fluxes in the range of
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1020- 1022 Mx which appear with the dark wumbrae

,» usually
surrounded by the penumbrae. In the umbrae the typical field
strengths are _ 2900 + 400 G and effective temperature of
_ 4000 + 100 K.

In sunspot groups, except for very large and complex active
regions, the magnetic field has a bipolar pattern, with opposite
polarities in the leading and the following parts. In most of
these, the leading spot has the same polarity as that of the field

near the pole in the same hemisphere, in the beginning of the

sunspot cycle.

Pores :

Pores have field strengths of _ 2000-2500 G, with fluxes in
the range of 1019 - 1020 Mx. These have life times of few days

only.

Sunspot Cycle :

Variation of the number of sunspots over the surface of the
Sun with an average periodicity _ 11 year is termed as ‘ sunspot

»

cycle The length of sunspot cycle also varies between 9 and
12.5 years (Zwaan 1981). In the context of this study, it is
interesting to note that 1l-year cycle seems to be fairly regular
(the underlying mechanism 1is exactly periodic) (  Dicke
1978,1979b, 1988 ; Nicolini 1977; Attolinil et.al 1990; Morfil

et.al. 1991). Correlation analyses of smoothed sunspot numbers
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BUTTERFLY DIAGRAM OF SUNSPOT ACTIVITY 1874-1976
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Fig 1.1.-In the upper half of the diagram ‘butterfly diagram ’is
presented. In the lower half of the diagram the plot of mean total
area for each synodic rotation is presented (adopted from Yallop

and Hohenkerk, 1980).
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(Ruzmaikin 1989; Kurtus and Ruzmaikin 1990; Hogenson 1992) have
claimed that the sunspot cycle may be chaotic . Recent correlation
analysls (Price et.al. 1993) of raw sunspot numbers rejects these
results and confirms the regularity of the sunspot cycle .

Mostly, sunspot activity is confined within 40041at1tude , on
either side of the solar equator. Usually, the first sunspot of a
cycle appears at such high latitudes. As time progresses, the
sunspot activity on either side shifts closer to the equator.
This tendency of drifting of sunspot activity from higher to lower
latitudes, as the cycle progresses, is known as ‘Sporer’s law '’
and is represented in a latitude time plot called Maunder’s
butterfly diagram. In Figure 1.1, we have given plots of
butterfly diagram of sunspots and temporal variation of their

mean area for each synodic rotation.

Solar Magnetic Cycle :

After the discovery of strong magnetic fields in sunspots, in
1908, Hale discovered the polarity laws . During a given cycle,
the majority of the leading sunspots in the northern hemisphere
are of the same polarity, whereas the leading sunspots on the
southern hemisphere are of the opposite polarity. During the next
cycle all polarities are reversed. Thus, the period of the
magnetic activity cycle is twice as that of the sunspot cycle.

This phenomenon is called " 22 year solar magnetic cycle ".
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Ephemeral Active Regions :

These are tiny (30000 Kms), bipolar, short lived ( _ 1 day )
actlve regions found in the magnetograms. Many of them appear as
bright dots on x-ray pictures of the Sun. They have a wide
latitude distribution than that of the ordinary active regions.
The magnetic flux of these elements is 1019- 1020 Mx. Though,
these features roughly follow the Hale polarity law as seen in
active regions, they have broader distribution of orientations.

Ephemeral active regions are randomly distributed over the

surface , with high concentrations in active sunspot zones.

Faculae, Network, and Filigree Elements :

<

Faculae are the bright chromospheric features, often
‘associated with plages, and more widely arranged in the enhanced
network. Outside the active regions , the bright elements form the
‘ quiet network ’ outlining the supergranules. In filtergrams
taken in extreme line wings , an intricate fine structure appears,
vhich is called ¢ filigree ' ( Dunn and Zirker 1973 ). Filigree
elements always tend to lie between the granules and evolve along
with them. Filigree have average flux _ 1017 Mx (Mehltretter 1974)
with typical width . 100 Kms. Thus these are the magnetic

structures at the limit of angular resolution in filtergrams.

Prominences :

Prominences are dense and relatively cool coronal clouds,

10,000-40,000 Kms high , _ S000 Kms thick , and with lengths
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typically between 50,000 Kms to 300,000 Kms. Prominences are often
assoclated either with active regions or with neutral 1lines
separating large magnetic regions. These are called as
‘filaments ' when seen on the disk as dark ribbons especially in
Ho line .

The ‘filaments ' are located along the dividing 1line of
opposite polarities in the large scale magnetic field. From the
study ofl morphology of filaments and filament channels, it |is
shown (Mékarov et.al. 1982) that they can be used as effective
tracers for studying the evolution of large-scale magnetic fields.
From the Ha synoptic charts, Makarov and Sivaraman (1986) have
found that in each hemisphere the magnetic neutral lines slowly
migrate towards the pole and the signs of the magnetic field in

the latitude zones 50° to 90° get reversed.

The Extended Solar Activity Cycle :
The coronal observations (Bretz and Billings 1959) in the

emission line at 5303 A° showed that a zone of enhanced emission
appeared at high latitudes in each hemisphere, several years
before the beginning of each sunspot cycle. This zone migrates
towards the equator, reaching latitude 40° in coincidence with
. the appearance of new-cycle sunspots at this latitude, apparently
extending the butterfly diagram back in time to higher latitudes
(Leroy and Neons 1983). This has been confi;med by the study of

the variance of the 5303 A° coronal emissivity from 1944 to 1974.
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From the analyses of coronal green line emission , ephemeral
active regions and torsional oscillation signal, Wilson et.al.
(1988) concluded that the sunspot activity is simply the main
phase of what they call ‘an extended-cycle’ . This
‘extended-cycle ’ begins at high latitudes before the maximum of a

sunspot cycle and progresses towards the equator during the next

18-22 year.

1.3.2 The Internal Magnetic Fields of the Sun

It is impossible to measure the internal fields directly.
Hence it 1is necessary to study the internal field only by
theoretical modeling and comparing the consequence at the surface
with the observed photospheric field. Many models have been
developed for explaining the surface field during the solar cycle.
According to the turbulent dynamo theory , this field is
maintained and periodically reversed by cyclonic turbulence and
rotation inside the sun ( Parker 1955; Krause 1976; Radler 1976;
Yoshimura 1972; Gilman 1974). A critical review of this theory is
given in chapter V (section 5.2). For this mechanism, a weak seed
field is required in order to produce the dynamo field.

Owing to the high conductivity of the solar plasma, the Sun
might have retained some of the fossil field from the collapse in
its protostar phase (Cowling 1953). In fact,: the presence of such
a fleld of primordial origin is possible on theoretlical grounds

only (Cowling 1953, Bachal and Ulrich 1971). Chitre et.al.(1973)
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and Dicke (1977,1979a) had postulated the fields of N 108 G in the
central regions of the Sun to' explain the dearth of solar
neutrinos. The large-scale internal magnetic field (Mestel and
Thakar 1972) may induce meridional circulation which can lead to
the mixing of material of the solar interior. It was suggested
that this could also possibly explain the deficit of observed
solar neutrinos and the splitting of acoustic modes of
oscillations. Dziembowski and Goode (1991) by analyzing the
Libbrecht’s (1989) data on rotational splittings of acoustic
frequencies, derived the presence of a ‘steady ’ quadrupole
toroidal field of _ 2 + 1 MG at the bottom of the convection zone.
However, such strong fields are expected to be unstable and hence
unlikely in reality.

Mestel (1965) suggested that a field of _ 1 G is required for
uniform rotation. Parker (1984) and Moss (1987) explained the
deficit of lithium with a normal beryllium abundance in the solar
atmosphere , by proposing that a strong magnetic field ( 106 G)
may be existing below the base of convection zone. Dudorov et.al.
(1989) concluded that the presence of even a weak large-scale
magnetic field (eg. . 1G) in the radiative zone should lead to the
establishment of rigid-body rotation in a short time scale
compared with the age of the Sun.

The oscillatory theories of the solar magnetic cycle also
require large-scale weak magnetic fields (ég.~ 100G) 1in the

radiative interlor of the Sun. Based on the analysis of global
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magnetic resonances (Stenflo and Vogel, 1986), Gough (1986) has
proposed that there may be large-scale weak field in the
radiative core. From the analysis of rotational frequency
splittings, Rosner and Weiss (1985) suggested that there may be
large-scale poloidal field ( _ 10—5 - 1G) in the radiative core.
On the grounds of evolution of Sun’s angular momentum , Spruit
(1990) suggested existence of a large-scale field of _ 1 G, with
poloidal and toroidal components  of similar strengths.
Charbonneau and Macgregor (1993) demonstrated that the spin-down
of a solar type star 1is possibly due to the existence of
large-scale poloidal magnetic field

, Which may produce weak

internal differential rotation in the star.

1.4 Sun’s Rotation

Nearly 400 years ago ( soon after the discovery of the
sunspots), Sun’s rotation was discovered from the movements of
sunspots over the Sun’s disk. Pioneers of*' this discovery were
Goldshmit (1587-1615 ); Galileo Galilee (1564-1642); Thomas
Harriot (1560-1621) and Scheiner ( 1575-1650) in Germany.

Systematic study of Sun’s rotation was started from 1850 AD
onwards. It was Richard Carrington (1826-1875), and Gustav Sporer
(1822-1895 ) , who unciertook the long series of observations of
the apparent motion of sunspots. They confirmed independently

that the surface of the Sun does not rotate like a solid body,
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i.e., it’s period of rotation varies as a function of heliographic
latitude. They showed that the rotation period is minimum at the
equator and increases gradually toward the poles. After correcting
for the annual motion of the Earth around the Sun, Carrington

derived a mean rotation period of _ 25 days at the solar equator.

1.4.1 Sun’s Surface Rotation

Presently, Sun’s surface rotation 1is determined from
measurements of positions of the sunspots and the other magnetic
features as tracers. It is also measured from Doppler effect on
spectral lines.

By measuring the apparent motions of sunspots over the Sun’s
disk, one can derive Sun’s surface rotation profile ( Newton and
Nunn 1951; Ward 1966 ; Balthasar and Wohl 1980 ; Godoli and
Mazzucconi 1979 ). For example, a typical profile of Sun's
rotation from sunspots as tracers given by Gilman and Howard

(1984) in the following way :
QU Ry,¢ ) = 467.0(20.2) - 91.4(+1.4) sin’¢  nHz
where, ¢ 1is the solar latitude , and RO is the solar radius.
By measuring the doppler shift in the spectral lines at east

and west limbs , one can derive the law of Sun's surface rotation

( Snodgrass 1992 ),which is as follows :
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Q( Ry,¢ ) = 453.8(+1.0)-54.6(+0.8)sin’¢-75.5(+1.1)sin'¢ nHz.

This is _ 4 % slower than the rate of rotation of sunspot groups.
This significant difference, amounts to _ 80 m sec_1 in relative
velocity at the equator. Later measurements ( Livingston and
Duvall 1979 ; Duvall 1982 ) also confirm this result.

The rotation of photospheric magnetic fields outside sunspots
was first examined by Wilcox and Howard (1970 ). This rotation is
similar to the rotation of sunspots. Later studies ( Stenflo
1974, 1977 ) confirmed this result. Snodgrass (1983 ) from the
Mount Wilson magnetograph data determined the surface rotation of

the photospheric magnetic fields as :
Q( R, ,¢ ) = 461.9(+0.3)-73.8(+2.9)sin’$-52(+5) sin'¢ nHz.

1.4.2 Sun’s Internal Rotation

1.4.2.1 As Determined from Helioseismology

Recently, the information on internal rotation is obtained
from helioseismological observations ( Christensen-Dalsgaard and
Schou 1988 ; Dziembowski, Goode and Libbrecht 1989 ). In this, the
observed frequencies of acoustic ( p ) modes are used for
determining the internal rotation. In the absence of rotation the
frequencies of these oscillations are independent of azimuthal

order ‘ m’ , owing to absence of any preferred axis. However,

rotation breaks this symmetry and remove the degeneracy of the
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frequenclies v i Here n is radial order, ¢ is spherical harmonic
degree and m 1s the azimuthal order of the oscillations . Thus the

splitting due to the rotation as given by observations is

where Yo is the frequency of the mode which is free from effects
of splitting. The observational splitting is related to the
internal rotation in the following way (Christensen-Dalsgaard,

1992)

R

v = m Z J K g (W), (R)dn
0]

where Knbn(n) are the kernels defined by the eigen functions of
acoustic oscillations weighted by the latitudinal dependence of
the internal rotation. Thus by knowing observationally determined
rotational frequency splittings and theoretical eigen functions ,
the internal rotation can be determined. A typical Iinternal
rotation profile inferred from helloseismological data is given in
Fig 1.2. Note that, the differential rotation exists down to base

of the convection zone, whereas in the radiative core it is more

like a rigid body rotation.
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Fig 1.2.-Contours of constant angular velocity in the sun

(Adopted from Libbrecht, 1988)
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1.4.2.2 Theoretical Studies

On the basis of the earlier works of Biermann (1951, 1958),
Kippenhan (1963) showed that steady axisymmetric fluid motions
which allow the differential rotation are possible in an
incompressible viscous fluid shell, if the viscosity |is
anlisotropic.

Nakagawa and Trehan (1968) obtained the form of the
steady-state differential rotation in a spherical shell of an
incompressible inviscid fluid of infinite electrical conductivity
in the presence of poloidal magnetic field and toroidal fluid
motions. By imposing the boundary_ condition at the outer surface
as given by the observed differential rotation and assuming a
solid body rotation at the inner surface , they found that steady
rotation exists only when the inner surface rotates slower than
the outer surface at all latitudes.

Nakagawa (1969) examined the case in which the magnetic
field and the fluld motions are both purely toroidal. He showed
that a steady-state solution is possible LIf the Alfven velocity
associated with the toroidal magnetic field is comparable with the
velocity of rotation. It 1is interesting to note that the
theoretical isocontours of the internal rotation obtained by
Nakagawa are similar to those given by helioselsmological
results ( Libbrecht 1988 ) .

Numerical simulations of convection ( Gilman 1983 ;

Glatzmaier 1985 ) predict that the internal rotation should be
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constant on cylindrical surfaces throughout much of the convection
zone. By applying different boundary conditions , Rosner and
Weiss (1985) simulated the isorotation curves approximately as

inferred by helioseismology.

1.5 Contents of the Thesis

The thesis is presented in six chapters.

In chapter II, I review the results obtained from the
Legendre Fourier (LF) analysis of Sun’s magnetic field inferred

from sunspot data during 1874-1976.

The MHD oscillations need a framework of a ¢ steady °
poloidal field. In chapter III , I discuss the feasibility of such
a field existing as a remnant of the primordial field and present
a preliminary model of its structure. In this preliminary model,
the ‘steady ’ part of the field is assumed to be current free and
it’s field lines to be isorotating according to the Sun’s internal

rotation derived from helieoseismology .

Though the aforementioned model gives a satisfactory fit in
the convective envelope (CE) , the fit is unsatisfactory in the
outer radiative core ( ORC ) taken alone. Moreover, owing to the

singularity at the center, it will not be possible to extend this
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model when the rotation data in the inner radiative core is
avallable in future. For these reasons, we have modified and
improved the model ( chapter IV). The model enables us to estimate
the ‘initial’ relative strengths of the two diffusion eigen modes
in the field; The characteristic diffusion time scales of these
modes are also be estimated.

From LF analysis, we know that the axisymmetric terms with
odd values for the degree * ¢’ have nearly same periodicity
( _ 22 year ). In order to check the admissibility of such global
MHD oscillations , we have computed ( Chapter V ) the Alfven
travel times along the field lines in the five different models.
It is shown that the models in chapter III and IV give the
smallest relative bandwidth for the frequencies of global
( Alfven ) oscillations.

In the same chapter, I study the radial and the latitudinal
structure in the possibly existing MHD oscillations from the
‘residual rotation ’ (the part of the observed rotation which could

not be fitted in the model of steady part of the rotation ).

In chapter VI , I summarize the important conclusions of this

study and discuss the directions for future work.
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CHAPTER II

THE SPECTRUM OF THE SUN’S HYDROMAGNETIC OSCILLATIONS
FROM THE SUNSPOT DATA

2.1 Introduction

As presented in chapter I, the possible connection of solar
magnetic cycle to global oscillation of the sun was suggested by
Alfven (1943), Layzer et.al.(1979) and , Howard and LaBonte
(1980). In principle the 22 and 11 year periodicity of the
magnetic and the activity cycles could be related either to the
periods of sufficiently slow global oscillations ( Plumpton and
Ferraro 1955 ) or the time scales of modulation (eg , beats) of
fast global oscillations ( Gokhale 1977, 1984) 1like ‘g’ modes.
Theoretically slow MHD modes of global oscillations could have
periods in years and decades depending upon the effective depth
and intensity of the magnetic field in the solar interior.

Maunder’s well-known *‘ butterfly diagrams ' show that the
sunspot activity appears to be originating in ‘ waves ' with
periods _ 11 year ( or multiples thereof ), which propagate from
middle latitudes in each solar hemisphere towards the solar
equator ( Becker 1955 ). Waves of one-way migrations of fast
rotation zones ( Snodgrass 1987 and references therein ) and
poleward migration of weak magnetic fields ( Howard 1974 ),
prominence belts (Ananthakrishnan and Nayar, 1953) and, polar

faculae ( Makarov and Sivaraman 1986 ) have been observed. All
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these waves are in fact global . It could be that their
confinement to certain latitude zones is only their manifestations
in the respective observations. Supposing this to be true, each
wave contributing to the overall pattern would be equivalent to a
set of at least approximately stationary global oscillations of
the Sun with appropriate phase differences. SHF analysis of
Mount-Wilson and Kitt-Peak magnetogram data (1959-1984), shows
(Stenflo and Vogel 1986; Stenflo 1988 ) that the axisymmetric
(m = 0 ) global oscillations with specific periods ( . 22 yr and
smaller ) do contribute predominantly to the evolution of the
large-scale photospheric field. The power spectra of this data
showed that the modes of odd and even parity behave differently.
All the odd parity modes have the same periodicity of . 22 years.
For even parity modes , there appeared to be frequency increasing
with the degree *‘ £ "which is similar to the observed p mode
spectrum. If this is true it would indicate constructive and.
destructive interference of global waves ( probably MHD waves).

In this chapter, 1 réview the studies of the global
distribution of the solar magnetic fileld and its temporal
variation which are based on the sunspot data . Such studies have
been carried out by Gokhale, Javaralah and Hiremath ( 1990) ;
Gokhale et.al.( 1992) ; Gokhale and Javaraiah (1992) .

In section 2.2 , I describe the available data, and the data
used in these studies . The results of the first study are
presented in section 2.4. In sections 2.5-2.8, I have reviewed and

discussed the conclusions of these studies;
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2.2 Use Of Sunspot Data for Studying Global Distribution
Of the Solar Magnetic Field and Its Variation

For studying tﬁe global distribution of the solar magnetic
field and its variation, the sunspot data is more advantageous
than the magnetogram data in the following two respects :

Magnetogram data is available from late 1950's. Thus the data
length is _ 33 years. This will give a resolution of _ 1/33 yr"-1
in the frequency of the magnetic cycle. On the other hand, the
sunspot data extends for over 100 years. Hence it will give a
substantially higher resolution for determining the frequencies
and their bandwidths .

Secondly, if one wants to understand the physical nature of
sun’s global magnetic oscillations , one needs to study the
variations in the amplitudes and the phases on time scales longer
than the period . This can be studied with higher accuracy using
the sunspot data .

Use of sunspot data has the following two disadvantages.
Sunspots are distributed in the low heliographic latitudes
« _ 20°N to 40° S ) only. This could in principle lead to
substantial errors in the estimation of the amplitudes and phases
of the LF terms . On the other hand , the magnetic data is
distributed all over the sun’s disc and thus will allow higher
accuracy in the amplitudes and phases of up to the limit allowed
by latitudinal resolution.

The other disadvantage of the sunspot data is that It 1is
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discontinuosly distributed in the heliographic latitudes and
longitudes and the sizes of the sunspots are much smaller than the
" latitudinal ( longitudinal ) wavelengths " of the oscillations .
In fact, the data simulates a series of delta functions . On the
contrary, magnetogram data is continuous . However, the sunspot
data can be statistically used to describe the large-scale
distribution of magnetic field on the surface and in time .

Presently the major astronomical centers which collect the
data of white light pictures of sunspots are given-in Appendix A.

Among the observatories listed therein, Greenwich Observatory
has published the sunspot data from daily white light photographs
of the sun , right from 1874 to 1976 in the series " Greenwich
Photoheliographic Results *

The Greenwich photoheliographic results consist mainly of
three sets of data, viz.; (i) positions and areas of sunspots and
faculae for each day; (ii) positions and areas of the recurrent
sunspot groups on each day of their observation ( Ledger I ) and
( 1ii) similar data for the non-recurrent sunspot groups , which
last for 2 or more days ( Ledger II ).

For the studies presented in this chapter the data from
these Ledgers of the Greenwich photohelliographic results has been
used . A magnetic tape of this data for the years 1874-1976 was
kindly‘ provided to the authors by H. Balthasar of Gottingen
University. The helliographic colatitudes, and epochs ( in days
and fractions from 0.0 UT of January 1, i874‘), for each sunspot

group, on each day of its observation were tgken for analysis .
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2.3 Nominal Toroidal Field

From the bipolar nature of most of the sunspot groups, it is
believed that the magnetic field associated with the sunspot
groups is predominantly toroidal. This toroidal field is not
directly measurable. However, by using Hale’s laws of magnetic
polarities and a mathematical function representing the
distribution of sunspot activity on the sun’s surface and in time
, one can define quantitatively the sign and the strength of the
field associated with a sunspot group. For example, the area or
life time of a sunspot group can be taken as a measure of the
associated toroidal magnetic flux . For normalizing the
distribution of this toroidal magnetic flux on the surface of the
sun and in time, we first define, the distribution of sunspot
activity in terms of a probability function. Since the sunspot
data 1s discontinuosly distributed in heliographic latitude,
longitude and in time, the distribution is represented by Dirac
8 functions at the locations and the epochs of observed groups

with suitable weightages attached to them. Thus the sunspot

occurrence probability during a given time intervals (TI'TZ ) is
defined as
Wia(u-ui,¢ -¢1’t-ti) at (u1,¢1.t1).1=1.2,.--N.
pu,¢,t) =

o elsewhere in (p ,¢ ,t ) space (1)

where pu = cos®, ¢ is the heliographic co-latitude, ¢ is the
heliographic longitude , & represents a delta function in (u,¢,t),

wi i1s the weightage attached to the sunspot group ‘ i1 ’. Here ‘N’
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is the number of data points during the interval (TI'TZ) P oMy o ¢i
are the values of pu and ¢ corresponding to the spot group ‘i ' ;
‘ ti' 1s the time elapsed up to the epoch of observations in
days, including the fraction of the day of the observation , from
the zero hour of the first day of the interval (T1,T2). In the
works reported here , we adopted the weightage as wi = ni/N,
where n, is the life time of respective sunspot groups .

In reality the spot groups have finite extents . Hence , the
delta functions used here are in fact mathematical idealizations

of properly normalized physical ' delta functions which have

large but finite values over small finite domains.

This leads to the following measure of the toroidal magnetic
field B¢(u, ¢, t)

+ p(, ¢, t) in the northern hemisphere

B (u,9,t) = (2)
¥ " P, ¢, t) in the southern hemisphere,

the upper signs being taken during the ‘ even ’ sunspot cycles and
the lower ones during the ‘ odd * cycles . This measure is named

‘nominal toroidal field

2.4 Legendre Fourier Analysis of the ‘Nominal Toroidal Field’
2.4.1 Preliminary Results
This nominal toroidal field was  subjected. to Spherical

Harmonic Fourier (SHF) analysis . The mathematical formulations
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developed for this analysis is given in Appendix B . The SHF
analysis consists of m = 0 (axisymmetric modes) and m # 0
(non-axisymmetric modes) terms. We present amplitude spectrum and
phase variations of the axisymmetric (i.e., Legendre-Fourier)
terms only for the following reasons : (1) with the exception of
mode (£ = 1, m = 1), amplitudes of axisymmetric terms are
substantially higher than the non—-axisymmetric terms (Gokhale and
Javaraiah, 1990) (ii) the amplitudes and phases of
non-axisymmetric terms are subject to errors due to those in
determination of heliographic longitudes which are caused by
variations in the law of differential rotation. The amplitude
spectrum and the variation in the phases of the axisymmetric terms

with a frequency v = 1/22 yr"1 obtained from analysis is given

here.

2.4.1.1 The amplitude Spectrum

In Fig 2.1(a), the amplitudes A, = A(t,m,v) for m = 0 and
v = 1/22 yrﬂi. derived from the data during the 82 intervals of 22
year length ( i.e. 1874-1895, 1875-1896, etc) during 1874-1976,
are shown for each value of ¢ .

The values of A£ for even degree terms are much smaller than
those of the odd degree terms. However, for ¢ > 21 , the
amplitudes of the odd degree terms are also much smaller and are
nearly comparable to those of the even degree terms . It is also
Interesting to note that the uncertainties in At values for odd

degree terms are much smaller than the even degree terms.
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2.4.1.2 The Approximate Constancy of Amplitudes

From Fig 2.1a, we note that for the odd degree terms , up to
¢ = 21 , the uncertainty of variation in each LF terms is smaller
than the actual amplitudes of the LF terms . Thus the amplitudes
of the odd degree terms remain approximately constant over the
nine sunspot cycles by the data set. The amplitude spectrum for

the odd degree terms has a ‘main hump ' over & = 1-11 with a high

peak at £ =5,7 .

2.4.1.3 The approximate constancy of Phases

The temporal variation of the ‘initial phases ' s
represented by their values during the successive intervals . The
pattern of the distribution of sunspot activity in latitude and
time depends upon the relative phases of the LF terms . Here the
phase of the term £ = 5 is taken as the reference phase for
computation of the relative phases.

In Fig 2.1(b), such relative phases of odd degree ‘ £ ' terms
are plotted for the 82 intervals of time. It is Interesting to
note that , the relative phases for the terms ¢ < 21 remain
approximately constant in time . The terms up to ¢ = 1,3,..,9
describe a approximately stationary oscillation, since their
relative phases are near 0° or 180° . Same is true for the terms
£ =13,15,...,21 . Thus the analysis shows ‘possible presence of
giobal osclllations represented by at least these two sets of LF

terms .
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Fig 2.2.- (a) Relative amplitudes and (b) relative phases obtained

from the ‘simulated’ data.
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For examining whether the constancy of the amplitudes and the
phases of the LF terms could be resulting by chance from a random
distribution of sunspots, we generate a random data set,
simulating the butterfly diagram in the following way . In this
simulation the values of tL are retained as in the real data but
the values of latitudes AL = (90°- 6L) are assigned as follows :
AL = (random sign)x(l°+ AAL ), in which, during the first seven
years of each sunspot cycle, Ao varies linearly from 25° to 10°
and AA; are random values between (-9° , +9°). During the last
four years of each cycle , Ao remains constant at 8° and AAL has
random values between (-6° , +6°) . The relative amplitudes and
the relative phases from this ‘ simulated ' data set is given in
Fig 2.2.

From comparison of Fligures 2.1 and 2.2 , it is clear that
constancy of the relative amplitudes and the relative phases of
the terms up to £ = 13 can be reproduced by the simulated data.
This is because the systematic variation of AO truly reproduces
the latitude-time correlation in the butterfly diagram on scales >
14°. However, in Fig 2.2 the power in the terms ¢ > 13 is much
smaller than that in Fig 2.1. Also the phase variations of the term
£ > 13 are increasingly irregular with increasing ¢ . This shows
that the constancy of the amplitudes and the phases up to € ~ 21
cannot be obtained by a simulated data set unless 1t reproduces
(6-t) correlations on all scales down to 9°. Such a simulation
will need ad-hoc * systematic ' assumptions Jjust for reproducing

those correlations. Thus, this simulation "shows that the
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distribution of sunspot activity in the butterfly diagram is not
produced by random process . Thus it was concluded that the
correlations in real ﬂL and tL result from interference of the

global oscillations of B¢ with amplitudes and phases as given by

the LF analysis.

Here we list the results for the axisymmetric SHF terms.

(i) LF analysis of the Sun’'s inferred magnetic field shows that
for £ < 21 , the odd parity terms have substantially Ilarger

amplitudes than the even parity terms .

(ii) For & > 21, the amplitudes of odd degree terms are much
smaller than those for ¢ < 21 and are comparable to those of the

even parity terms .

(iii) The power spectrum has a ‘ main hump ’ over & = 1-11, with a

high peak at { =5 ,7 and a * tail ’ for & > 21 .

(iv) The amplitudes and the phases of the dominant oscillatlons

remain approximately constant for all 82 intervals of 22 years.
(v) Simulation of the butterfly diagram generated from the random

data set shows that the distribution of sunspot activity 1ls not

produced by any random process.
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2.4.2 Indication of Existence of Global Oscillations

of The Surface Magnetic Field

There 1s a possible presence of at least two global
oscillations represented by the two sets of LF terms, viz., ¢ =
1,3,5,7,9 and £ = 13,15,17,19,21 with v = 1/22 yr'’. From
constancy of amplitudes and phases which can not be reproduced by
the simulated data ( randomly distributed in butterfly diagram ),
we conclude that (i) the sunspot activity may originate in the
interference of the global oscillations in sun’s surface magnetic
field ,with (ii) dominant contribution from axisymmetric terms of
odd degrees up to £ ~ 13 and periods _ 22 yeaf . This has been
further confirmed (Gokhale et.al. 1992; Gokhale and Javaraiah,
1992) by two more types of simulated data sets with data randomly
distributed with the real (observed) boundaries of the butterfly

wings during each cycle.
2.5 Recent Results
2.5.1 ‘ Forced ’ Nature of the Oscillations

Recently (Gokhale.et.al 1992 ), the LF analysis ( up to ¢ =
35 ) of the Sun’s magnetic field inferred from the Greenwich
sunspot data shows that in the LF power spectra there is no clear
evidence for the existence of any relation between the harmonic

degree and the temporal frequency of the power concentrations.
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Apart from the power * ridge ’ in the narrow frequency band

1/21.4 yr-1 » and a few low ridges at odd multiples of this
frequency, there are no other spectral features. In the spectrum
for even degree modes features simulated to those obtained by
Stenflo and Vogel (1986) are reproduced even by a randomly
simulated data set. The authors conclude that the solar magnetic
cycle could consist of global oscillations of the Sun ‘ forced '
at a frequency _ 1/21.4 yr—1 and, perhaps, weak resonances 5t its
odd harmonics. The band width of the forcing frequency seems to be

much less than 1/107 yr .

2.5.2 Confirmation of the Global Nature of the Oscillations

2.5.2.1 Separation of LF terms in Coherent Global Oscillations

As stated in section 2.4.1.3, the phases of the terms
£ =1,3,5,7,9 are approximately but not exactly at 0° or 180° and
those of £ = 11,13,..are approximately but not exactly at 90° or
270° . By separating the coswt and sinwt parts of these LF terms
Gokhale and Javaralah (1992) showed that there must be four
independent modes of global oscillations.

By computing the phases (68 ) and the standard deviations
(AL) of 62 during the 82 intervals, the authors found that the
terms fall into 3 categories, viz., (i) stationary modes which

< 15° ) (11) non-stationary modes which

have constant phases (AZ
have approximately constant phases ( 4, < 30° ) and, (iii)

non-stationary modes which have large phase varlations (Al > 30°).
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When the authors separated the terms of the first two categories
into two coherent groups of sin(wt) and cos(wt) components , they
found that each coherent group separates into two power humps.,
viz., (1) B1 (¢ =1 to 11) , (ii) B, (£ = 3 to 17), (iii) B3 (L =
15 to 29), and (1ii) B4 (£ = 21 to 25 ). Since the full physics of
these oscillations is not known , the authors named them as

‘geometrical eigen modes ’

2.5.2.2 Verification of Superposition of ‘ Geometrical Eigen Modes’

In the same paper, the authors showed that the large-scale
latitude-time behavior (i.e. global properties) of the solar
magnetic cycle can be reproduced even In high latitudes by
superposing these four oscillations.

The mode B1 acts for concentration of activity in latitude
zones (0° - 30°) peaking at 15° . Superposition of B1 and B2
reproduces sunspot activity and starts giving agreement with
observed behavior even in high latitudes. Finally, superposition
of B1 , B2 , 83 and B4 reproduces the following observed
characteristics : (i) butterfly diagrams, (ii) polar reversals
near the sunspot maximum, (iii) migrations of neutral lines from
middle latitudes all the way to the poles and (iv) * high ’

( 103) » ‘“low’ ( _ 10) and , ‘ medium ' ( _ 102) level flux

concentrations in ‘low’ (0-30°) , ¢ middle * (30° - 75° ) and
‘high > ( > 75° ) latitudes respectively.
Note that the behavior of these oscillations in the middle

and the high latitudes is reproduced from ‘the LF terms which are
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computed from the data which comes only from the low latitudes.
This cannot happen if basic mechanism of sunspot activity is
operating only in low latitudes . And that these oscillations may
provide basic mechanism of the solar magnetic cycle.

Thus, this analysis strongly supports that the groups of LF |

terms used in the superposition must be representing real global

oscillations of the Sun .

2.6 ‘ Reality ' of the ‘ Nominal ’ Toroidal Field

The ‘nominal toroidal field ’ defined in section 2.3 need not
be same as the actual toroidal field. However, its spatial and
temporal frequencies , as well as the amplitude spectrum, are
similar to the radial field computed from the 1line of sight
component of the field observed in the full disc magnetograms
(Stenflo 1988) . Thus the nominal *‘ toroidal field ' simulates
real field . Hence, the nominal toroidal field and the ‘observed’

radial field must be components of the same time-dependent

vector magnetic field near the surface.

2.7 The Mathematical Form of the Energy Spectrum

From the approximate constancy of the phases of the odd LF
degree terms in the nominal toroidal field , it was inferred that
there are, in the sun, long period global MHD oscillations , i.e.

standing MHD waves trapped in the sun (the small fluctuations in
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the amplitudes and phases indicate a ‘ leakage ° of the trapped
waves across the surface ). The trapping of the waves generally
leads to a spectrum with a power law for low frequencies and
exponential fall at high frequencies (eg. Planckian spectrum of
electromagnetic waves , Helsenberg spectrum of hydrodynamic
turbulence, etc.). Hence, as a first step, it was attempted to fit
the spectrum with a formula approximately at® in a small ¢
domain and alaexp(-&l) in the large ¢ domain (as in Plank
spectrum ). The power spectrum given by squares of the amplitudes
in Fig 2.1a could be fitted excellently (x2 - confidence >99.98 %)
to the form cw?exp(-&ﬂ) with a = 0.0142 + 0.011 and & = 0.552 +
0.015. Note that , this mathematical form is good only for the
main part of the hump of the spectrum. However, it does not fit
the tail part of the spectrum. Later , this spectrum was fitted
(Gokhale and Javaraiah, 1992) to the form given by Chandrasekhar’s
theory of MHD turbulence, which was good for the tail part of the

spectrum also.

2.8 Physical Implications Of the Independence of v and ¢

The approximate constancy of the frequency v for all the odd
values of ‘£’ up to 29 may be due to the presence of some single
‘ forcing ' oscillation. Presence of such a.forcing oscillations
was suggested earlier by Alfven (1943) and Dicke ( 1977). In
addition ,the internal magnetic field (and the plasma density )

must be so structured as to have the modes of free global MHD
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oscillations with frequencies in the neighborhood of the forcing
frequencies.

To decide whether such modes of ‘ free ' oscillations exist
or not , it willl be necessary to determine theoretically the
oscillation modes allowed by the equations of MHD. This will
require knowledge of steady part of the Sun’s internal magnetic
field . The latter can be inferred only by theoretical modeling .

A model of such a field is presented in the next two chapters .
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APPENDIX 2.B

Formulae for SHF components

The harmonic components H (¢,m,n | T,,T), H (&, m,n | T,T)),
cc 1 2 cs 1 2

Hsc(l.m,n | T1'T2)’ H“(E,m.n | T1’T2) in the expansion

_ m cos cos
Bw(u,cp,r) = . ,Ir-ll“,(le,m,n | Tl,Tz)Pe(u)sm(m)sm(znm:)

during the interval (Tz’Tz) are given by

Ha(t,m,n | T1'Tz)

1 T 1 m cos cos
Ce,m,n |T1.T2)I dt d¢ B‘p(u,cﬁ,r)Pz(u)sm(m¢)“n(2nnt)dp
-1

C(l.m. n) m cos cos
—N-—- Z Py (e (mg) " (annt ) (B 3)

where oo is a symbol representing the subscript ‘ cc '’ ‘cs’

? ’

‘sc ’ or ‘ ss ' , depending upon the combination of the cosines or
sines of ( mp ) and ( 2nat ) in the respective term ; 7T =

(t—Tl)/(Tl— Tz) , and



ce,m,n)

A (L-m)' (28 + 1)
(£ + m)'nt

with
- lform=0, n=0
A= |- 172 if m =0orn=20

- 1/4 if m =0 & n =0
Determination of amplitudes and phases
Referred to t = T1 as zero epoch

The amplitudes A (&, m,n) and As (¢, m,n) of the
P‘E’(u)cos(m)exp(zninr) and Prg(ll,m,n)sin(md))exp(zumﬂ during

(Tl,Tz) are given by

A, m,n) = [ Hz(l,m,n) + H2(£,m,n) 1172,
Cc cC CcSs

and

A(mn) = B (,mn) + B (L,m,n) Y2
8 sC 88

m
The rms amplitude of Pt () term is defined as

Altm,n) = [ A2(,m,n) + AZ(E,m,n) 1*2

For m = 0 , Ac(l,m,n) = A(¢, m,n).
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The phases ¢C(Lln,n) and ws(tﬂn,n) of the above terms during
(T1 ’Tz) ‘ referred to t = T1 as the zero epoch ' are the

values of ¢ 1n their dependence expressed as

sin [2nv(t—T1) + ¢ ]

?»

where
v=n/(T1—T2).

These phases are given by

]

e (&, m,n) tan*[ H &,mn)/H (Imn)] +0 or mw and
Cc ccC cs

I

e (&,m,n) tan"'[ H &,mn)H (mn)] +0 or m,
8 s8C S8

where O or w is chosen to ensure the correct signs for the sines

and cosines.

For axisymmetric ( m = 0O ) terms ¢, 1s undefined and the

symbol P, will be replaced by ¢ .
Amplitudes and phases referred to other zero epochs
It can be shown that the above formulae also give the

amplitudes and phases referred to any epoch To other than T1 as

the zero epoch if in equation (B 3 ) one takes

T = (t - To)/ (T2 - Ti) Wy h



instead of (t - T1)/(T2_ T1) .

In such a shift of zero epoch, the amplitudes remain

invariant and the phases shift by 2nv(T1— To)/(Tz- T1)°
Estimates of uncertainties and errors

The uncertainties 8A , 8A , 8p and 8¢ in A, A , ¢ and
c 8 c 8 [+ 8 c
®, arise from errors and uncertainties 8% , 8p and 8t in ¢ , ¢ ,
t and from sunspot activity missed by observations.
The relative errors &9%/¢ , &p/p and &t/t are < 10°°. The

correspond relative uncertainties BAC/Ac , GAS/As , etc. are

~

( 1/NI/Z

)( 8A/A + 8p/¢ + 8t/t ). These are < 10™* for A s A etc,
computed from data lengths of a sunspot cycle or longer.

If each sunspot group is viewed as providing a single data
point weighted by the number of days on which it is observed then
the spread in tL , together with those in 0L and 7 due to the
proper motions of sunspots , will raise the above upper limit on
A /A, etc; but to a value still < 107t . Further , the
differential rotation will cause a spread in 7] whose magnitude in
degrees will be  (2.7) x (sin%®) x ( life span in days ). The
upper limit on the average value of this spread will be < 10° ,
i.e. less than 10 times the maximum error in the daily values of ¢

Hence the upper limit on SAO/Ac , etc. for non axisymmetric ( m

20 ) will be < 10™%m . Thus, SA /A etc., will be < 10732 for the

axisymmetric terms, and < 10%m for the non axisymmetric terms.
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Since, the definition of p(®,¢,t) is normalized with respect
to N(T2 - T1)’ the errors due to the ‘ missing ' of activity on
the unobservable side of the Sun will be small for (Té—Ti) >> 27
day. Since the sunspot activity is confined to coszﬂ < 1/4 , the

L3

errors due to its under sampling ' at different latitudes caused
by the differential rotation Q = (Qo - Ql)coszﬁ , with 91/90 ~ 1/5

, Will be < S5 per cent.
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CHAPTER 111

A PRELIMINARY MODEL OF THE ° STEADY * PART OF THE SUN’S
INTERNAL MAGNETIC FIELD

3.1 Introduction

As described in the previous chapter, the Legendre-Fourier
analysis of the sun’s inferred magnetic field strongly supports
the idea that the sunspot activity could be resulting from
superposition of global slow MHD oscillations . For such
oscillations to be admissible there must exist inside the sun a
‘steady ' magnetic field that varies slowly (eg. on time
scales much greater than 11 years). Since the activity related
field is mainly toroidal , it is important to model ‘ steady ’
part of the poloidal field.

In this chapter and the next , we model this ‘steady ' part
of the poloidal magnetic field which can rémain in ‘ steady '’
state in the presence of internal differential rotation of the
sun.

We consider the sun’s internal rotation and the magnetic
field at any epoch to be consisting of.‘the ‘steady’ and the
‘fluctuating’ parts . The fluctuations .tbémselves may be

contributed, for example, by superposition of a large number of
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sun's global MHD oscillations , on a hlerarchy of ‘dynamical’
time scales. Here, the time scales of the ‘ steady ’' parts of the
rotation and the magnetic field must be larger than the perliods of
the slowest MHD oscillations . Thus they can expected to be of
the order of diffusion time scale . However, for determining the
‘steady’ part of the magnetic field, in the first step we
approximate it as if it is absolutely steady.

On large scales of length and time, the distribution of
activity is predominantly symmetric about the axis of solar
rotation and has odd north south parity ( cf. analysis given in
chapter II ). This implies that the ‘steady’ field assumed here
must also be dominantly symmetric about the rotation axis and must
have odd north-south parity . According to Cowling’s theorem, this
implies that in the induction equation , the resistive and the
inductive terms for the steady part of the field must vanish
separately. This in turn impllies that the curl of the current
density of the steady part of the Iinternal field must vanish. As
a first step, we take the simple special case where the fleld is
current free (except near the ‘boundaries’). Then it must also be
in isorotation (Ferraro 1937) with the steady part of the rotation
of the plasnma. However, if the time dependent part of the
rotation is small, then the isorotation of the fleld with the
steady part of the plasma rotation .implies approximate

isorotation with the total rotation (i.e. steady and time
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dependent parts ) at any epoch , eg. the helloseismogically
inferred rotation of the plasma. This is possible only if their
exists a functional relation between the inferred rotation Q (r)
at a point r and the flux function ¢ (r) of the °‘steady’ poloidal
field linking through the circle of revolution of the point. Here

we have assumed that the meridional circulation part of the flow

is negligible .

By assuming different arbitrary forms for the functional
relation between ¢(r) and the observed Q(r) , one may compute many
models of the fields which Iisorotate with the observed rotation .
However, since Q(r) is known only in the form of numerical
values, the models so computed will also be in numerical forms .
Moreover, none of the models so computed will represent the steady
field exactly, since the real steady field must be isorotating
only with the unknown ‘steady’ part of helloseismologically
inferred internal rotation. Therefore one has to model the
‘steady’ part of the real field by first choosing an analytical
expression for the magnetic field and then determining the best
combination of terms in the chosen form and the best set of
values for their coefficients .

Thus, in such a model, the part of the ‘observed’ rotation
which can be best fitted to the isorotation law represents the

steady part of the rotation . The residual part of Q(r) then
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répresents the fluctuating part of rotation.

In this chapter , we choose as a first step, the simplest
expression for the magnetic field , viz., the multipole expansion
of a potential field with odd north-south parity and consistent
with asymptotically wuniform field of Iintensity Bo at large
distances . In section 3.2, we give reasons why the steady part of
the real field may be considered as current free . In the same
section we also describe the data on internal rotation and the

method of analysis .

In section 3.3, we find that the chosen form of the field
yields a vefy good least square fit for a linear relation with the
observed rotation in the outer part of the sun ( especially the
convective envelope ). However , the best fit requires that the
flux function ¢(r) contains a term representing ‘external’
sources besides the term representing the ‘central’ sources
With the present accuracy of the rotational data, the best fit
glves the internal source as a combination of a dipole field and a
hexapole field , both located at the center, parallel to the
rotation axis. The limits on the strength of Bo can be estimated

4 ad 16

from the observed field on the surface , to be . 10
(section 3.4.2 ) . The strengths of the dipole and the hexapole lis

determined in terms of Bo (as a free parameter) and the solar

radius Ro .
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The field structure (Fig. 3.1) given by the best fit is
presented in section 3.3.2 . This structure has a closed ‘critical
field line’ ¢ = ¢, running almost along the base of the convection
zone in the ‘sunspot’ latitudes.

The observed rigid rotation 1in the outer radiative core
( ORC ) suggests that in the interior of the surface S, generated
by the rotation of the critical fleld line at the rate Q,
(=QO+A¢')’ one may have Qo ~ Q, and ‘ A’ must be quite small .

However, we show in section 3.4 that the observed rotation

just inside S, could alternatively be expressed in the form of

equation (10) , where (AC—AE) may be _ 7 nHz per unit flux . This
difference between AC and AE corresponds to a small deviation
from isorotation near S, . Such a non-isorotation might result
in winding of the poloidal field into strong toroidal field (eg
the field inferred by Dziembowski and Goode 1991) . This may take

in 106—109 yr, depending upon the value of Bo

In section 3.5 , some interesting properties of this model of
the steady part of the field are presented . A possible role of

the MHD oscillations is pointed out .

Finally we point out the main drawbacks of such a model.
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3.2 Determination Of the ¢ Steady ’ Field

3.2.1 The shapes of iso-rotation contours and the sources

for the ‘steady’ poloidal magnetic field

Christensen-Dalsgaard & Schou (1988), Dziembowski et al
(1989) and Sekii (1989) have analyzed the helioseismological data
‘of Libbrecht (1989) in different ways. Except for the differences
in the value and the gradient of rotation rate just below the base
of the convection zone, the characteristics of internal rotation
given by all the three investigations are qualitatively similar.
In particular, all the three calculations yield considerable
radial dependence of rotation rate along the polar axis so that
the isorotation contours seem to intersect the rotation axis. If
the contours really intersect the axis then the radial variation
of Q(r) along the rotation axis would make it impossible to have
the Ferraro’s isorotation law satisfied in the close neighborhood
of the axis. However, there are considerable uncertainties in the
estimation of rotation rates near the sun’s center and near the
rotation axis (Schou et al 1992). Consequently, it is not ruled
out that in reality the iso-rotation contours actually turn near
the axis and either (i) converge ‘towards’ the center ( running
close to the axis instead of intersecting it J):er (il) run crudely

parallel to the rotation axis . This is equivalent to suggesting
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the presence of elther concentrated toroidal currents near the
axis in the core or diffusing currents throughout the interior
(eg see in chapter IV ) . On the other hand the iso-rotation
contours in convective envelope (‘CE’) are concave outwards,

suggesting that the large scale steady flield may have a

contribution from ‘external’ sources.

Thus if there is a ‘steady '’ and axisymmetric poloidal field
which (as argued earlier on the basis of the Cowling’s theorem)
as a special case is current free and iso-rotating with the
contemporary internal rotation of the sun in outer radiative core
(‘ORC’) and in ‘CE’ . Then it may have (i) internal sources
(toroidal currents) concentrated near the axis and distributed
inside the inner radiative core (‘IRC’') and (ii) ‘external’

sources at large distances .

3.2.2 The feasibility of existence of iso-rotating current free

poloidal field with central as well as external sources

Toroidal currents of very high intensity might have been
created in the sun during its formation by gravitational collapse.
These currents must have dissipated during the fully convective

(Hayashi) phase of the sun's subsequent evolution. However, as
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shown by Spitzer (1956) such a diffusion would also create and
maintain electric currents near the axis and the near surface. The
‘steady’ parts of the presently surviving internal field , and
rotation , must constitute the slowest decaying solution of the
MHD equations , with the end configuration of Hayashi phase as the
initial configuration. In such a solution the magnetic field must

be a solution of the induction equation (Chandrasekhar 1956a) :

Q
-

CoaT s 1[0 ALYV
> ylay) etz v

@
o+

where T=y-1B B.. is the steady part of the toroidal field, vy =

T' T
r sind , z =r cos% , n is magnetic diffusivity ,

and U is a function defining meridional flow field in the same way
as ¢ defines the poloidal field .

If in the post Hayashi evolution the effects of diffusion and
that of the ‘steady’ part of the meridional circulation are small
compared to the effect of rotation then ln steady state , one

must have :
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a(Q,¢)
alz,y)

0.

This is in fact Ferraro’s law of lsorotation in which all points
on each field line rotate with the same angular velocity (which
may differ from one field line to another). The slow evolution of
the ‘steady’ part will be given by the diffusion and meridional
circulation . Thus the ‘steady ' parts of the field and the
rotation evolve slowly, maintaining the state of isorotation .

It follows from Spitzer’s ( 1956 ) solution again that even
in this evolution the currents will be maintained near the axis
and near the surface. Whatever currents slowly diffuse into ‘ORC’
and °‘CE’ would decay fast owing to the MHD turbulence (ie.
fluctuations on dynamical time scales) existing there. The
currents diffusing into ‘CE’ will further decay by convective
turbulence and will also be carried away by effects of magnetic
buoyancy and finally by coronal expansion.

On these grounds we assume in this chapter , as a first step,
that the large scale ‘steady’ field may be current-free in ‘ORC’

and ‘CE’', and has ‘central’ as well as ‘external’ sources.

There is also the following a~posteriori Jjustification for

this approximation. The photospheric field structure given by this

approximation is almost same as that of a unique superposition of
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the first two characteristic solutions of the magnetic diffusion
equation, (Chandrasekhar 1956b), with appropriate parity (see

Appendix A).
3.2.3 The chosen form of the relation between ¢(r) and Q(r)

For the relation between ¢(r) and Q(r) we assume the linear

relation

Q (r,9) = Qo + A ¢ (r,9) (1)

expecting it to serve as the first approximation to any non-linear

relation that might exist.

Here r = |r|, ¢ is the co-latitude, Qo and A are constants.
3.2.4 The ‘data’ used

Among the aforementioned (section 3.2.1) helio-seismological
results of the internal rotation Q(r), the one by
Christensen-Dalsgaard & Schou ylelds the smallest uncertainties.
We do not find in their paper general expressions which could be
used for determining Q(r,¢) along directions other than ¢ = 0°,
45° and 90°. Hence we use the expressions given by Dziembowski et
al (1989) to determine the rotation rates 'at selected sets of

points (r,®) and, (since the two rotation models are generally
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similar) take the resulting values of Q(r,®) as if obtained by
the method of Christensen-Dalsgaard & Schou (1988 ) viz., with the

correspondingly small uncertainties.
3.2.5 The method of analysis
Assuming the current free poloidal magnetic field to be

symmetric about the axis of rotation, and of odd north-south

parity, we write it as

B=-VV , (2)
where
V= V(r,9) + Vo(r,8),
wherein
Ve(r,9) = 5, Mr” Ve

VE(r,é) = -BorPl(u) + ZZ 3 M£JP£UAL

are the magnetic potentials due to the central and the external
sources, p = cos®, ¥ is the co-latitude, Ml are the strengths of
the magnetic moments, PEQJ) are Legendre polynomials, and the

summations are taken only over the odd integral values of &.

Since we expect the long-lived externallgmrrqnts to be at
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very large distances, we expect their field in the local
neighborhood of the sun to be uniform. Hence we keep only the
first term in VE(r,ﬂ) and remove the terms & > 3. This has been
Justified a-posteriori by the fact that inclusion of terms & > 1

or omission of the term £ = 1 in VE deteriorates the goodness

of the least-square fit.
Thus we have

V(i(r, 9)

= (-Br + er'z) P, (u) + M3F4 Py(u) + M5F6P5(u) ... (3)

From the above equation, we give the radial component of the

magnetic field as

Br = Bocosﬁ + 2M, cos?® r-3 + M r—5(10coszﬂ -~ 6)cos® + ........ (4)

1 3

This gives the following expression for the magnetic flux function

4
o(r, o) = JanzBrsinﬂ a0
0
_ 2.2 -1 -3 . 2
= nB R, [(x +2u1x + dpgx +...)sin" 6
s (Spy x e ) st e ], (5)
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- - £+2 -
where x = r/R0 and My = MZ/(BORO ), £ =1,3,5,

We write eq. (1) in terms of the ‘normalized dimensionless

rotation rate’

~

(Q(ri.ﬂi) - Qobs)/wnobs =a + a1¢(r1,01) , (6)

w(r1 61)

~ ~

Q) - Q)00 204 2y = A/ og s Oy and o o

are the mean and the standard deviation of the whole set of the

where a
o

observationally determined values Q(ri,ﬂi) at the chosen set of

points (ri,ﬂi). Equation (6) can also be written as :

Q=q+ 91[(x2+2u1x'1+4u3x'3+...)s1n2ﬁ+(-su3x"3+...)sin o +...],

_ 2
where Ql- T a1B°R0 onbs .
We determine the coefficients Qo,nl,pl,uS, etc., by obtaining

weighted least square fits for successive combinations of terms in

equation (7) using the following three sets of data points :

‘CE': 99 points in the convective envelope (0.7 = x =1,0),

consisting of 11 equi-spaced points along each of the directions
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o

¢ = 10°,20°,...90°,
'ORC’: a set of 72 points iIn the outer radiative core (0.4 = x =
0.7) consisting of 8 equi-spaced points along each of the
directions just mentioned, and

‘ORC+CE’: a set of 189 points over the whole range (0.4 = x = 1.0)

The ‘weights’ have been assigned proportional to the
reciprocals of the uncertainties as read off from

Christensen-Dalsgaard & Schou (1988).

Values of the coefficients in equation (7) obtained from the
the least-square fits for a and ay in equation (6), by taking
-various combinations of terms in equation (7), are given in the

three Tables along with the 12 probabllities.
3.2.6 Estimation of the goodness of fit

For determining the contribution from each point (ri, 01) to
the value of ¥ 2 the "observed normalized values" w(i) = w(ri,oi)
must be considered as if obtained from independent experiments.
In reality this condition is not satisfied. However here we use
the xz values merely for the purpose of comparing the relative

goodness of various least-square fits.
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Further, in order that each w(i) is a ‘normal variate’
"distributed about the corresponding theoretical value wT(i), it is
necessary that for each i, w(i) and wT(i) are both measured in
units of the standard deviation vw(i) of the "distribution" of
w(1) about w,(i). However, for each i, [w(1) - w (1) | is itself

a measure of vw(i). Hence we have:

2 - —
= Y| wi) - e (1)|/us (1)
i
We have verified that at least in ‘CE’ the values of the
least square difference [ Z[ w(i) - wT(i) ]] also give the same
conclusions about the relative goodness of the fits as given by

the xz values.
3.3 The Results

3.3.1 Least-square fit for the convection zone
Results of least-square fits of successive combinations of
terms in equation (7) to the three data sets are presented in

three tables, viz., Table 3.1, Table 3.2 and Table 3.3.
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Table 3.1
Results of least-square fits of successive combinations

of terms in equation (7) to the data set *‘ CE '’

Terms QO 91 iy, Ap Ha 2 Goodness
X of

Taken (nHz) (nHz) (%) My Fit (%)

(1) (2) (3) (4) (5) (6) (7) (8)

P1 349 62 u1=0. 484 10 -— 42,5 99.99
+9 +5

Pl' P3 326 68 u1=0. 624 17 0.250 17.9 100.
+12 +11 u3=0. 156 30

P1’P3 321 57 u1=0.905 23 0.251 19.0 100"i

and Py #13  #2  p =0.227 26

#g=0.001

(* xz - probability < 10_7)In column 5 uncertainties exceeding

100% are not given.
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Table 3.2

Results of least-square fits of successive combinations

of terms in equation (7) to the data set ‘ ORC+CE ’

Terms Qo Q Ap u3 2 Goodness
H X of

Taken (nHz) (nHz) (%) Hy Fit (%)

(1) (2) (3) (4) (5) (6) (7) (8)

P1 364 32 Hy= .218 33 e 134 99.74
+4 +2

Pl’PB 332 73 u1=0.490 31 0.229 156 96. 00
+8 +15 u3=0.112 22

Pl'P3 322 64 Ky= L7277 15

& P5 +10 +2 u3=0.18 7 16 0. 257 143 99. 00

u5=0.0003

In column 5 uncertainties

exceeding 100% are not given.
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Table 3.3

Results of least-square fits of successivé combinations

of terms in equation (7) to the data set *‘ ORC ’

Terms Qo 91 Ap u3 > Goodness
o) X of
Taken (nHz) (nHz) (%) Hq Fit (%)
(1) (2) (3) (4) (5) (6) (7) (8)
P1 434 32 u1=—0.102 .. —_— 163 0.0
+16 +26
P1,P3 429 8 u1=—0.314
+3 +34 u3=—0.001 - 0.004 1008 0.0
P1'P3. 426 -10 u1=—0.349
& P5 +150 +5 p3=—0.013 .. 0.037 57 89
. p5=—0.0001

In column S5 uncertainties exceeding 100% are not given.
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From the values of xz in the tables it is clear that in the
convective envelope (‘CE’) (Table 3.1) the best fit for equation
(7) is given by the combination £ = 1 and 3 (the dipole and the

linear hexapole terms) whose strengths in terms of Bo are given by

_ 3 _ 5
M1 = (0.624 + 0.106)B°R0 and M3 = (0.156 + 0.046)B°R0 . (8)

This corresponds to a total ‘flux’ across the solar hemisphere:

2
0 ’
which gives the following upper limit on Bo:

$(R),m/2 ) » 2.09nB_R

since the total observed magnetic flux on the photosphere does not

exceed 3 x 1022 Mx (Howard 1974).

3.3.2 The geometrical structure of the field
The field lines of the field given by equations (S) and (8)

in the range 0.7 = r/R0

simulate quite satisfactorily (in CE ) the pattern of the

= 1.0 are plotted in Fig.3.1. These

isorotation lines given by helioseismology (Libbrecht 1988 ) ,

except very near the axis, where the uncertainties in the

‘observed’ rotation rates are large.
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Filg. 3.1.- Structure of the ‘steady’ part of the pololdal

field In one quadrant of a meridional plane as defined by the

combination of terms ¢=

1 and 3 in equation (5) with the ‘best

estimates’ The fleld

Hy= 0.624 and By = 0.156 (cf.equation 8).
lines correspond to flux values A:0.50, B:1.00, C:1.50, D:1.60,
E:1.70, F:

nBoROZ. The continuous and the broken lines represent branches of

1.80, G:1.87, H: 1.90, I:

2.00, J: 2.10, in units of

the separatrix S, defined by ¢ = ¢, = 1.84 units. The fleld

directions can be marked relative to that of Bo’ which s

presently indeterminate. The field at the surface and that outside

is sub ject to deformation by several

processes into

observationally unrecognizable patterns.
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The field structure also contalns a ‘separatrix’ which has
two branches (shown by the thick and dashed lines) intersecting at

the neutral point (r,,¢,) where

r, =071 R

0 and ¢, = 73°,

The revolution of the branch shown by the thick line defines
a closed ‘critical surface’, S,, running close to the base of the

convection zone in latitudes = 45°.

At S, ,the flux function ¢(r,®) and the rotation rate

Q(r,®) are given by equation (7) , along with values of QO , Ql in
the best fit in ° EE ’,as
2
¢ = ¢(r, ,9, ) =~ 1.84 (nBoR0 )
and Q, = Q(r, ,9, ) =~ 450 nHz .
The helioseismological studies referred earlier

(Christensen-Dalsgaard & Schou 1988 ; Dzlembowski et al 1989 ;
Sekii 1989 ) , suggest that sun’s rotation undergoes a transition
from an approximately rigid rotation within *‘ ORC ’ to a
differential rotation within ‘ CE ’. Within ‘ ORC ' the small

radial variations in the equatorial pléne seem to be time
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dependent (Goode & Dziembowski 1991 ) so that the steady part

of equatorial rotation may be uniform.
3.4 A Slow Creation Of Toroidal Magnetic Field Near S .

3.4.1 The difference between the values of Ac and AE

All the three helloseismological results of inferred rotation
referred in the previous section suggest that the transition from
differential rotation to rigid rotation occurs at the base of the
convection zone. However, this model suggests at S, instead of

occuring at the base of the convection zone.
Thus the isorotation in the steady state takes the form :
(Q-9,) =AC¢ - ¢, ) (9)
where ‘A’ changes to some small value inside S, from . 68 nHz per

unit flux outside S, . This implies a * discontinuity ’ in dQ/d¢

without a discontinuity in Q .

From the results of the best fits in ‘CE’' (Table 3.1) and
‘ORC+CE’ (Table 3.2) , it appears that neither QO nor A changes
significantly across S, . However, from ‘CE’ to ‘ORC+CE’ the

estimates of both My and My increase significantly by the same
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ratio (viz. 7/6 ). Such a change is not physically meaningful.

Mathematically it must be the effect of a change only in the

coefficient of the terms in ul, “3 ..., 1.e. the coefficient of
the terms contributed by the ‘internal’ sources. Thus it seems
necessary to re-write equation (7), separating the terms

contributed by the ‘internal’ and ‘external’ sources of the field,

as :
Q(r, 9)= QO +AE¢E + AC¢C » (10)
where,
_ 2, 2 2
¢ = nBoRO(x sin“®) (11)
and
_ 2 -1 2
¢C = (nBoR0 )(Zulx sin“® +..... ) (12)

of ¢(x,9) correspond to the parts VE(r.G) and Vc(r,ﬂ) of the
magnetic potential V(r,®) defined in section 3.2.5. The apparent
increase in My, Ky can then be understood as a change in AC alone,

by factor _ 7/6 , from ‘CE’ to ‘ORC+CE’ [In fact, it is this jump

in AC which appears in Table 3.1 as a jump in By Mg owing to the
combined effect of the following facts : (1) My Ky Were determined

only through the products A (i1) A, was not

cHy 0 Actg o c

distinguished from A_ and (iii) AE could change only from 68 to 64

E
nHz per unit flux from ‘CE’ to ‘ORC+CE’].
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In view of the high relative accuracy of the data in °‘CE ’,
we assume that the true values of u1 , “3 are as given by the
(‘best ') fit in ‘CE ’(Table 3.1). Since the values of Heo Mg must
be continuous across S,, the value of AC in ‘ ORC+CE ' must be _
7/6 times that given by the corresponding best fit in Table 3.1.
Thus , in  ORCHCE ', A _ 75 nHz per unit flux giving (Ac-Ag) . 7

nHz per unit flux.

3.4.2 Slow Build up of Toroidal Field near S, ,its Form and

Time Scale

Equation (10) can be written as

»*
(Q_Q*)=AC(¢—¢*)+(AE—AC)(¢E_¢E)

The difference between AC and A. in the last term implies a

E
slow winding of the ‘steady’ poloidal field into a toroidal field
(BT) in the neighborhood of S, . This follows from the law of
induction in MHD which takes the following form as a corollary of
the form given by Chandrasekhar (1956a) for axisymmetric fields

(when the relatively small effects of diffusion and meridional

circulation are neglected ) :

aBT 3 (Q,¢) N a¢p N 3¢

3t "8 (z,p ) oz p dp 8z
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where z = x Rocosﬂ and p = x Rosine .

In the neighborhood of S, this reduces to :

3 (¢~ 0. )

- (B ~ (A-A C'"E

= (B ) = (Achg) S E -
a(z, p )

2.2.2 3
~ -12n BoRO(Ac AE)plsin dcosd

Taking (AC—AE) = 7 nHz per unit flux, we have

f_ B/B | = (SOn)sinsﬁcosﬁ nHz
at| T o) T

The maximum estimate of this is _ SOm nHz .

(13)

Consequently, the time scale of creation of the toroidal field is:

Ttor ~ (10°/50m) (B/B_) sec

If BT ~ 2 X 106 G as derived by Goode & Dziembowski(1991), then

,Slince BO< 1G ,

Tior >3 x 10 yr .
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For the meridional circulation effects to be negligible in the

present stage of sun’s MHD evolution, as assumed by us, Ttor must
be << tmc(tlme scale of meridional circulation). If Toe ~ 109 yr
(eg.Zappala 1972), this requires Bo >3 x 10-4 G.

Finally for Tior to be less than the age of the sun, (4.5 x

109 yr) one must have :

B > 1072 G .
(o]

This gives the lower 1limit on the order of magnitudeoof B

It is interesting to note that in the low latitudes (which
are significant for observations ) ,the leading term in the

¥ - dependence of the toroidal field created near S, is

~

‘sindcos® ’ ie. same as that deduced by Dziembowski & Goode (1991).

3.5 Conclusions and Discussion

We have shown in this modél that a large-scale steady part of
the magnetic field which can be expressed in the form of a
potential field given by the terms £ = 1 and £ = 3 in equation (3)
can be isorotating with the helioseismologically inferred internal

rotation of the sun.
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The linear form of equation (1) has served well for modeling
the steady part of the pololdal magnetic field . We have repeated
the modeling procedure by choosing the exponential form for the
relation between Q and ¢ . However, such a form cannot give a good
fit . Thus , with the present accuracy in the rotation data,

non-linear terms are not needed.

The best estimates of the strengths of the terms £=1 and ¢ =3
obtained from °‘CE’ ( Table 3.1), where the uncertainties in Q are

smallest, are given in equation (8).

The field structure presented in Fig.3.1 shows clearly the
distinct different patterns in the high ( = 30%) and the low ( <
30°) latitude zones. This could provide a natural framework for
the remarkably different behaviors of the surface fields observed
in these zones.

The field structure also shows a clear separation of a part
of the flux of the ‘steady’ fleld ‘trapped’ near the sun’s center
and the other part of the flux which seems to be in the process of
diffusing out of the sun, across the convection zone.

We find a small steady deviation from isorotation near the
base of the convection zone which winds the ‘' steady ' poloidal
field into a toroidal field . The strength of this field can reach

. 2 mega gauss in 106 - 109 yr, depending upon the value of Bo .
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However, this model has the following drawbacks .
(1) We have assumed in this model that the.field is current free
in the interior of the sun. This approximation is good only in the
convective envelope , where buoyancy and convection play the
dominant role in fast disposal of the currents. However, it 1is
not so good in the radiative core. In fact this is evident
from Table 3.3 that it is not possible to get a good fit for a
current free field in the radiative core, where uncertainties in

the coefficients Ky oo My o ..are exceeding 100 % .

(i1) The current free fields have the multipole singularities near

the center (eg. dipole and hexapole ).

¢ ’

Thus , it is necessary to improve the preliminary model
for the realistic magnetic field structures in the sun’s interior.

We present such a realistic model in the next chapter.
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APPENDIX 3.A

Consistency of the ¥-dependence of the photospheric field in the
present mode; with a wunique superposition of the first two
characteristic solutions of the diffusion equation for the
magnetic fields.

Here we show that the values of My and Mg obtalned by us in

section 3.3 are such that ¢(1,9) can be expressed as
¢(1,9) = wo(l,ﬂ) + sz(l,ﬂ ) (A1)

where wo and wz are the first two even-parity characteristic
solutions of the diffusion equation given by Chandrasekhar (1956b)
, and A Is a constant .

Our model (equations 5 and 8 ) gives

¢ (1,8) = «

2 4
ot az(cos o) + a4(cos 9) (A2)

where ay= ( 1+2u1-u3 ) = 2.092, a2=-( 1+2u1-6u3) =-1.312

and @, = —5u3 = -0.78 .

Using definition of Gegenbauer polynomials , which occur in
Chandrasekhar’'s solution , equation (Ai) can written as

2

$(1,8) = ( 1-3A/2 )+ (-1 +9A Jcos®s +( -15A/2 )cos™s .  (A3)
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Equations (A2) and (A3) together require that

-15072 %4
2
and
9A-1 %2
T—WZ = a; = -0. 6272 (AS)

It is important to note that (A4) and (AS) yield almost identical

values of A viz., A = 0.0462628 and 0.0462571 respectively .

Thus for the values of uland Hay obtained in section 3.3.1 , a
unique value of A exists such that on the photosphere the ¢

dependence of the flux function ¢(1,% ) can be written in the form

(A1) .

This shows that near the photosphere the steady fleld
obtalned by assuming a current free form is almost same as that
obtainable by assuming it to be in the form of a solution of the

diffusion equation with appropriate parity .

82



CHAPTER 1V

* STEADY ' PART OF THE SUN’S INTERNAL
MAGNETIC FIELD : IMPROVED MODEL

4.1 Introduction

In the previous chapter , we have developed a preliminary
model of the steady part of the sun’s magnetic field in the
outer radiative core and the convectlive envelope . This model
consists of a ‘current-free’ fleld whose field lines 1isorotate
according to the sun’s internal rotation as determined from
helioseismology ( Dziembowki , Goode & Libbrecht 1989).

However, as pointed out in the previous chapter, current free
approximatio‘n of the magnetic fields and singularity of these
fields at the center are the main drawbacks. Thus, it is necessary
to improve the preliminary model with some realistic solution of

the basic equations. In this chapter , we present such an

improved ’ model.

In section 4.2, we show that if the steady part of the fleld
is weak compared to the rotation, then ‘the fie¢ld must be a
solution of the diffusion equation, whose ‘field 'iines tsorotate

with the plasma.
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We assume that magnetic diffusivity must be uniform and
constant with a value represented by a suitable average . 1In the
convective envelope the convection and the magnetic buoyancy lead
to fast disposal of the electric currents . Hence, the effective
average value of diffusivity 1In the convective envelope must be
several orders of magnitudes higher than the average value of
diffusivity in the radiative core . Thus , in the convective
envelope, one has to take the limiting.form of the solution for
the diffusivity tending to infinity. Chandrasekar (1956 b) has
given a solution of the diffusion equation in a sphere of uniform
and constant diffusivity , which is embedded in a current-free
field (section 4.3.1 ) . We modify Chandrasekar’s solution of
magnetic diffusion equation by incorporating the boundary
condition imposed by the presence of a locally wuniform
interstellar field. From this solution we obtain the mathematical
forms (section 4.3.2 ) of flux function in the radiative core
(@RC ) and in the convective envelope ( ¢CE ) respectively .

For improving the earlier model, we take this modified
solution and determine the coefficients by least square fitting as
in section 4.4.

As in the previous chapter, we assume (section 4.4 ) a linear

relation between the internal rotation Q and the flux function ¢

RC CE

and express Q  (in the radiative core ) and Q

( in the
convective envelope ) for the sun’s internal rotation Q(r,®) in

terms of the flux functions éRc and QCE . First we determine the
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parameters QEE and QSE, and the coefficients in &°F by least
square fitting QF to the helloseismologically inferred rotation
in the convective envelope . From the boundary conditions at the

base of the convection zone , we then determine the coefficients

RC

in onc' Finally , the parameters Qgc and 91

in the radiative
core are determined by least square fitting the

helioseismologically inferred rotation in the radiative core .

In section 4.5, we obtain excellent simultaneous least square
fits Dboth in outer radiative core (ORC) and in the convective
envelope , for the fields in their respective assumed forms
The resulting field geometry is much simpler and it is free from
any singularity, separatrix or closed loops as were present in the
previous model .

Even in the improved model , we find that the conclusion of
the preliminary model about the presence of a long term

non-isorotation in the neighborhood of the convection 2zone is

valid .

We determine (section 4.6) the present values of the relative
magnitudes of the first two eigenmodes of diffusion in RC, and
their characteristic time scales in tefms of the magnetic
diffusivity. From these we obtain a crude estimate of the
‘initial’ (Zero Age Main Sequence ) relative strengths of the two

diffusion eigenmodes.
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In section 4.7 we summarize the important features of the

model and discuss their implications.

4.2 Assumptions and the Resulting Form of the Basic Equations

We assume that the magnetic fields and the fluid motions are
symmetric about the Sun’s rotation axis, and note that on the
relevant time scales , the fluid motions can be considered as
incompressible. For simplicity the magnetic‘ diffusivity n is
assumed to be uniform and constant. Thus the density p and the
diffusivity n are represented by their suitable averages. In CE,
the convection and the magnetic buoyancy leads to fast disposal
of the electric currents. Hence the effective average value Mg of
n in the convective envelope must be several orders of magnitudes

higher than the average value LYo in the radiative core.

Following Chandrasekar (1956a), the magnetic field B and the

velocity field v can be expressed as

h= -Za8P1, + (LT)1, + ¢ 8(P)1 (1)
5z © ¢ 5t 2

v = -ZaUL +(@D1L + Yau1 (@)
grrceoy o S @
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where h = B/(4np) ; p 1ls the density i €& ¢ and z are the

cylindrical polar coordinates with their axis along the axis of

solar rotation ; 1C' 1¢ and 1z are the corresponding unit vectors

; T,P, Q and U are scalar functions which are independent of ¢ .
For the reasons given in the preliminary model , we neglect

the meridional motions and write Chandrasekar’s MHD equations in

the form :

8P _
’ﬂASP -3 = o, (3)
w1 - 21 - - a, & (4)
5 t
onN -3 2 2
3 - & [T, P (5)
2 - ) 2 _ 2
[ASP vy TPl = ¢ 3z (T Q%) (6)
where for any two functions f and g,
- of 8g _ of &g
[f y 8 ] = 52 EE c 3z (7)
2 2
and As = -—2—2 + g—gz + Q_ (8)
87 aé

Next we assume that the ‘steady’ part of the poloidal fleld

is very weak compared to the ‘steady’ part of the rotation and
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that the ‘steady’ part of the toroldal field is weaker than ( or
at the most of comparable strength to) that of the ‘steady’ part
of rotation. These assumptions are quite reasonable on physical
grounds (e.g. Mestel and Welss, 1987; Spruit, 1990) .

Equation (4) 1itself can then be written, to the first

approximation, a:

@, &%Pl =0 (9)
which is same as

Q = function (&) (9)
where

9(L,2) = CP(L, 2) (10)

is the flux function representing the flux of the poloidal field

through the circle of axi-symmetry passing through (&, z).

Physically this means that in the lowest order the plasma
rotation imposes isorotation on the poloidal field. In the next
order the small deviation from isorotation will produce a time-

dependent part of the toroidal field.

Thus the ‘steady’ (slowly varying) part of the Sun’s internal
poloidal field must satisfy diffusion equation (3), [ with n = L'Ne
in the radiative core and 7 = Nep ( > "RC) in the convective

envelope ], and must also satisfy isorotation, (viz. equation 9 }.
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4.3 Solution of Equation (3)
4.3.1 Chandrasekhar’s Solution of the Diffusion Equation
Chandrasekhar (1956b) has given a solution of the diffusion
equation (3), in a sphere of radius Rc of uniform and constant

diffusivity 7, which is embedded in a current-free field in the

form :
P(r,o,t) = P (x,u) exp (-t/7 ) (11)

where x = r/Rc. M = cosd, r and ¢ being the radial distance and

co-latitude of a point, and P(x,u) is a solution of :

A5?+(nr)"9°=o.1nx'<1, (12 A)

and

Il
(@

AP in x > 1. (12 B)
The solution of equation (12 A) which is finite at origin has

the form :

3/2
Jn+3/2(“nX) Qn'

-3/72

an(X.u) = X (u)

for x < 1 (13 A)
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and the solution of (12 B) which vanishes as x - » has the form :

x-(n+3) c 3/2(“)

P (x,p) = N

for x > 1 (13 B)

where n is any non-negative integer, T has value Tn = Rz/naz ,

372

Cn (1) 1s Gegenbaur’s polynomial of degree n, and J

n+3/2
represents Bessel function of order n+3/2.

Hence the solution of equation (11) is

(-4}

3/2
_ -3/2 _
P(r,s,t) = 2: A, X Jn+3/2(anX)cn (n) exp(-t/T)
n=0
for x < 1 (14 A)
and
[+:]
3/2

P(r,o,t) = }: Mn x'(n+3) Cn (1) exp(-t/7)

n=0

for x > 1 (14 B)

where the values of un , and the coefficients An and Mn are to be

determined using the boundary conditions.
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4.3.2 Modification for Large Diffuslivity in CE and

Asymptotically Uniform Field at Large Distances

For modeling the ‘steady’ (slowly varying) part of the
poloidal field in RC and CE we adopt the above solution with Rc as
the RC-CE boundary (i.e. with Rc = 0.7 RO). This is possible
because Nep >> L% (section 4.2) and equation (12 B) 1is the

limiting form of equation (12 A) in the limit 71 3 o .

However, here we introduce the following important
modification. In the solution (13 B) of equation (12B) the terms
with positive powers of x were dropped for ensuring that the field
vanishes as x » o . However, the Sun’s poloidal field must merge
with the interstellar field at large distances which is non-zero
and which can be considered as uniform on scales of the solar
system. Hence on the right side of (13 B), we introduce a term Bo
corresponding to a uniform field. Moreover, we assume that the
field has odd north-south parity (which allows an only with even

values of n). Thus, we modify equations (13 A,B) as

_ _-3/2 /2
?n(x,u ) = x z An Jn+3/2(“nX) Cn () for x <1 (15)
n=0
(even)
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and

[+
_ 3/2 -(n+3) 3/2
= B0 (n) + E}gf C, ()
n=0
(even)

for x > 1 (16)

These solutions give the following forms for the magnetic

flux functions in the radiative core and in the convective

envelope :
>}
_ 2 _1/2 2 3/2
¢Rc(x,6) =2 Ao Rc pYs sin“s }:Aan+3/2(anx)C () (17)
n=0
(even)

where Ao is taken as a scale factor for the field, An = An/AO, and

even
2 3/2 x-(n+1) CS/Z(H)} .

() + 2: ”n+1 n

>0

2
¢CE(x,0) = nB R sin™® {x

where u = Mn/("BORZ+3) are strengths of the central multipoles.

n+1
Equation (18) can be re-written in a form similar to that of ¢CE

in the previous chapter , as follows :
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_ 2;,.2 -1 -3 2
ch(x,ﬁ) = nBORC{ (x° + 2u x "+ 4px 7 + ...)sin%
-3 4
* (Spx ™+ ..)sine + ...}, (19)
where M, = u1/2 , B, = 3/2 M, (19A)

It may be noted that here the magnetic field is not current
free even in CE though the poloidal part of this field is same as
that of the current free field of chapter III. (The field here

has a non zero toroidal component )
4.3.3 The Boundary Conditions

At x = 1, ji.e. T = Rc, the flux function ®(x,®) and the
radial component Br of the magnetic field must be continuous.
Following Chandrasekhar’s (1956b) method, with the modification
necessitated by the presence of the uniform field term in °cm ,

the boundary conditions can be reduced to the following pairs of

equations for each value of n.

For n =0 :
AJs pley) = (1+p))B
and

Ao[1/2 J3/2(°‘o) + “0‘13/2(“0)] = (2-u.1 )Bo‘
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where Jn/(x) = (d/dx) Jn(x). These two equations give :

3/2(a0)/a0J1/2( 0) =(1+ “1) (20)

and A = 3B /o J (e

0°1/2(%) (21)

For n= 2 :

Aydz 0(%) ”33

Az [1/2 J7/2 (a ) + JT/Z(qé)] —3q3%

These give :

Jg o) =0 (22)

and A, =B /J

2 = MgB /g o (e

) (23)

4.4 Evaluation of the Coefficients Using Equation (9)
4.4.1 The Data and the Method

The ‘data’ used here 1s same as that used in the preliminary

model , viz. the values of the angular wveéloclity of “the Sun*s
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internal rotation as determined by Dziembowski et al (1989), with
uncertainties as quoted by Christensen-Dalsgaard & Schou (1988).
The method of analysis is also somewhat similar. As in chapter
III, the law of isorotation ( equation 9) is assumed to be linear

and written in the form :

Q [(x,8) = Q + QIQ(x,é) , (24)
and the parameter Qo and the products of the coefficient ‘Ql' with
the coefficients in &(x,9) are determined by least square fitting
Qmod(x,ﬂ) to the helioseismologically determined plasma rotation
Qobs(x,ﬂ). The difference is in the assumptions about the fields
in RC and in CE that yield different forms for &(x,®), and in
the order in which the various parameters are determined.

Since the forms of &(x,9) as well as the levels of

uncertainties in Qobs are different in CE and in ORC, we write

equation (24) separately in CE and ORC as :

CE _ CE CE
Qmod(x,ﬁ) = Qo + 91 ¢CE(X.'0)
(25)

oRC oR

oRC _ C
and 9] (X,ﬂ) =0 + Q1 ¢RC (X,G) ’

mod o

where q’nc and ch represent the flux functions in RC and CE givén
in equations (17) and (18) respectively.

As in the previous chapter , we define a dimensionless
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rotation w  (x,9) as
obs

wobs(x'o) = [Qobs(x'ﬁ).-n ]/Oﬂobs ’
where Q 1s the mean and 0Qobs is the standard deviation in the set
of the values of Qob'(x,o) used. However, instead of determining ﬁ
and ¢

Qobs separately In ORC and CE , here we have determined

these for the combined data from ORC and CE.

We then fit wobs(x,ﬂ) in CE and ORC to the forms :

w°E (x,9) = oE+ 2Fp (x,9) (26 A)
mod o CE

and wORc(x,G) = oRC 4+ %R (x,9) . (26 B)
mod o RC

4.4.2 Procedure for determining the ‘Steady’ Parts
of the Rotation and the Poloidal Field
As before, the uniform field at the large distances, Bo is

essentially a scaling factor for the Sun’s field. Hence we choose

B=1 ‘unit °'.

CE

The uncertainties in Qob' are much smaller than those in
RC CE ~ CE CE
Q. Hence, the parameters Q (= Q + W o‘bh) . R (=
2 CE - - ‘ ’ =
1:B0Rc a o‘obs) » Ky and By for ‘steady’ parts of rotation and
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magnetic field in CE are computed first by least-square fitting of
wcs(x.p) to o°F (x,ut). As shown in the preliminary model , a two
mod obs

term fit is the best fit in CE (i.e., it is not enough to take
only the first term in °c2 and there is no gain in including the
third term). The goodness of the fit and the uncertainties in the
parameters are also computed in the same way as in the previous

chapter .

The parameters @y AO R a2 and A2 must then be determined

using the boundary conditions. Equation (20) gives a single
positive value of o, - Equation (22) gives a series of positive
values @, ; (i =1,2,3...). Equations (21) and (23) are used to

determine the values of the parameters Ao, and A2 i

corresponding to a i=1,2,3...etc.

2,17

ORC,_ A ORC ORC . _
Lastly the parameters Q (= Q + @y ¢°bs) and Q, (
2 ORC ORC ORC
nBoRca oobs) are determined by fitting wmod(x.u) to wobs(x,u).

4.5 The Model for the *‘ Steady ’ Parts of

Rotation and Poloidal Magnetic Field

4.5.1 The ‘Steady’ Parts of Rotation and Poloidal Field in CE

The above mentioned computations yleld the following results

for the ‘steady’ part of the field in CE :
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X 3.638 + 0.212 ,

r
L}

(27)
0.621 + 0.063

r
W
]

Here we note that this value of Ky is exactly equal to
A, - A, A, A,
Hy and Hay is almost exactly equal to Ky where Ky » My are the
values obtained from the values of My and Ha determined in
previous chapter of My v Mg by inverting the relations (19A). This

confirms once again that the field in CE is almost current-free

CE
up to the accuracy of Qob{

For the ‘steady’ part of the rotation in CE we obtain :

QEE =325.9 + 4.1 nHz |,
(28)
QEE =33.2 + 1.9 nHz/unit flux

The corresponding xz is = 42.95 and the confidence for goodness of

fit is = 99.9943 7.
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Table 4.1

RESULTS OF THE LEAST-SQUARES FITS FOR & = 2.904,A, = 9.374 WITH
THE FIRST FEW VALUES OF o, AND THE CORRESPONDING VALUES OF A,
HERE AR AND AQ ARE THE UNCERTAINTIES IN Q@ AND R RESPECTIVELY
VALUES A Q AQ Q AQ x 2
2 o 0 1 AR,
OF a, (nHz)| (nHz)| nHZ Q2
unit
flux
5.763 1.955 450 5.0 | -3.89 0.17 11.58
9.095 ~2.389 439 3.0 | -0.31 0.16 13.51
12.32 2.754 437 2.4 | o0.11 0.18 13. 69
15.51 -3.079 434 1.8 | o0.98 0.16 13.93
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4.5.2 The ‘Steady’ Parts of Rotation and Poloidal Field in ORC

With the value of ;1 given in (27) , equations (20) and (21)
yleld unique values «, = 2.904 and A, = 9.374. On the
contrary,equation (22) has many roots, and the corresponding
values of A2 are given by (23). For different values of «, and

the corresponding values of AZ » the least square fits of nﬁij to

ORC
Q
ob

yield the results given in Table 4.1.

According to Table 4.1, the different values of a, yleld very
low value of x2 (all with probabilities < 10_7 ), the smallest
being given by the smallest positive root uZJ_ of @, . The
differences between the values of xa are so small that the
significant of these differences cannot be estimated. However,
this is mainly because of the large uncertainties 1n nobs near the
rotation axis, where the polynomials Ci/Z(u) have the largest
amplitudes . Hence the difficulty can be avolded by rewriting ¢RC
and ocs in terms of sinzﬂ and sinﬁo (since sin ¢ has large values
near the equator where helioseismic data is more reliable). When
this is done and the condition of continuity of magnetic flux is
re-checked, we find that the continuity condition is satisfied

only by the smallest value of a, viz., 5.763.

2

Hence the corresponding parameters for the ‘steady’ part of

the field and the rotation are :
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a, = 2.904, Ay =9.374, @, = 5.763, A, = 1.955 ,  (29)
and
n‘:"c = 450.2 + 5.0 nHz ,
(30)
%"¢ = -3.9 + 0.6 nHz/unit flux.

1

4.5.3 The Geometrical Structure of the Field

The field lines of the field given by equations (17) and (18)
in the region 0.0 < r/Ro < 1.0 are plotted in Fig 4.1. In CE (0.7<
r/R° < 1) the field structure is similar to that of the field in
the preliminary model . However in RC it is entirely different.
It is interesting to note that , in this model the field in RC is
much simpler than the preliminary model: it has no closed loops,
and no singularity (see equation 17).

4.5.4 The Slow Field Winding at the ORC-CE Boundary
and Its Time Scales

Equations (26) yield different wvalues for the ' angular
velocity Q on the two sides of the ORC-CE boundary, suggesting a
steep radial gradient across the boundary. In the present model,
the values of [Q] i.e. the apparent ‘jump’ in Q deflined by

_ J~ORC _ oCE
(@) = {e¥e(1,0) - % (1,00},

vary from _ 125 nHz at ¢ = 10° to . SO nHz at ¢ = 90°.
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Fig 4.1.- Structure of the " steady " part of the magnetic fleld
as given by flux functions (17) and (18) with values of parameters
glven in equations (27) and (29). The fleld line correspond to
flux values A : 0.0, B: 0.51, C: 1.02, D: 2.04, E: 2.55, F :

: 3.71, J: 3.76, K : 3.82, L : 4,08,

3.06, G : '3.27, H: 3.47, 1
2 SR
c'

M: 4.29, in units of nB R
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How much of the ‘jump’ [Q] is time dependent ( varying on
short time scales) and how much is ‘steady’ (varying on long time
scales) is not known at present. If a substantial part of this [Q]
is sufficiently long lived then the time scale t, of field winding

¢
will be given by :

T, = |B,|/{IB | [Q]

P | ¢| {I p| e

where, |B¢| is the strength of the long lived part of the toroidal
field and |Bp| is the strength of the poloidal field at the point
considered. The values of |Bp| at r = Rc(ie. at ORC-CE boundary)

range from  36B_ at & = 10°

to 6B  at 90° (equator).

If B¢ ~ 106 G, (e.g. as estimated by Dziembowski & Goode,
1991), and B°~ 10—2G as suggested from Alfven travel time
calculations along the part of the steady field ( cf, in chapter
V ),the time scales of winding range from - 107 yr in the polar

regions to 108 yr in the neighborhood of the equator.

4.5.5 The Form of the ‘ steady ’ Part of the Toroidal Field
To the order of the present approximation in which the
dominant term viz. [Q, §2P] in equation (4) is equated to zero,

equations (3) and (4) will both have the same form. Hence the

function T(r,®,t) describing the slowly warying toroidal field
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will also have the form similar to that of P in equation (11),

e.g.
T(r,o,t) = T (x,u) exp (~t/T )

with 7 given by equation similar to (13 A), except in the
spherical shell near r = Rc across which the ‘jump’ [Q] occurs.

Within this shell J will be given by the equation
-1 _ _ -1 2
AT+ nt) " T =-¢7[Q, ¢ ?n]

subject to the boundary conditions at the boundaries of the shell.

However, details of such a solution remain to be worked out.

4.6 Estimation of Diffusion Time Scales and the

¢ Initial * Amplitudes of Diffusion Eigenmodes

From the values of ao and a2 obtained in sectlon 4.5.2, we

estimate the diffusion time scales for the two terms in (17) as :

L2 2
T = Rc /(nRC a )

o 10.6 billion yr

o2 2, ,
T, = Rc /('nRc «, ) ~ 2.7 billion yr

taking no. = 35 cm® s ' in the radiative core.

F]
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This enables us to estimate the ratio of the ‘initial’ (ZAMS)

* *
relative amplitudes of these two terms Az and Ao as :

*

A A
2

— exp {nRC[azz—aozlt/Rs }
A A

* N

-}

o

0.276

t?

where ‘t’ is the present epoch.

4.7 Conclusions and Discussion

Compared to the preliminary model of the steady part of the
poloidal magnetic field in the sun’s interior , the present model
incorporates important improvements in the following respects .
(1) The field structure of this model is much simpler . Unlike
the preliminary model , it is free from central singularity ,
separatrix or closed loops . (ii) In the outer radiative core the
fleld lines in this model have a much better fit with the

helio-seismologically inferred isorotation contours.

The opposite signs of QIORC and QICE suggest that the
rotation and the field in the radiative core and the convective

envelope evolve separately in separate frames of rotation,
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rotating with angular velocities ancand QEE respectively.

With the present accuracy of sun’s internal rotational data
( the latitude dependence in whichvis known only up to sinﬁo ), as
in the preliminary model, we have determined only the leading two

terms in the magnetic flux function in the radiative core .

The determination of A;/A: will provide a good starting point

for studying the complexity of the ‘initial’ (ZAMS) configuration
of the magnetic field . The field diffusion may be modified by the
possible presence of MHD oscillations throughout the evolution of

the field and the rotation .

From the observed low degree rotational splittings , one can
determine the rotation near the solar core . Presently, observed
low degree rotational splittings have poor signal to nolse
ratio. It is extremely difficult to resolve the splittings of low
degree modes ( Palle et.al. 1990; Hill et.al. 1990; Toutain and
Frolich 1992 ) and leads to uncertainty in the determination of
angular velocity near the sun’s interior, Thus, it 1is of
considerable interest to know the rotation in the inner radiative
core. In fact, since this improved model has no singularity at the
center , it enables us to draw Iinferences about the core
rotation. The present model suggests that the rotation near

the center is uniform, with angular velocity ﬂ; = 450 nHz. Note
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that the estimated value of core rotation 1s similar to that of
the value derived by & = 1 degree rotational splitting ( Loudagh

et.al. 1993; Toutain and Kosovichev, 1994).

In this improved model , we have obtalned the relative
magnitudes of the first two eigen modes of the diffusion in ORC to
be _ 10.6 billion yr and _ 2.7 billion yr respectively . We also
obtain a crude estimate of the *‘ 1initial’ (zero Age Main
Sequence) relative strengths of the two diffusion eigen modes to

be in the ratio of 4 : 1 .

By satisfying the continuity of the radial component of the
steady part of the magnetic field at the common boundary , the
field lines in each region isorotate with the plasma rotation
given by helioseismology. In an independent calculation, we have
found that if the values of Ao and Aa are determined by least
square fit without using the boundary conditions , then the fit is
not so good . Thus the Sun seems to have " preferred to satisfy
the boundary conditions " . This strongly suggests that the

computed flelds are realistic .

The steady part of the sun’s internal magnetic field from the
improved model gives a very good least square fit with the
helioseismologically inferred rotation. ‘The sun’'s inferred

internal rotational data has large uncertainties in high
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heliographic latitudes and near the rotation axis. Thus for
further refinements of the model, more accurate data will be

needed in those regions .

It is very difficult observationally to detect the ‘steady’
part of the solar magnetic field for the following reasons . The
first order perturbations, if excited as MHD waves in the central
regions , will grow as they approach the surface. Their
interferences may create very strong field . Convective flows may
introduce further complications in the. convection zone.
Moreover , non-axisymmetry of the perturbations, formation of flux
tubes and eruption of toroidal flux by magnetic buoyancy will
create strong nolise In the magnetic field at the surface.
Consequently , one expects considerable difficulties in detecting
such a ‘steady’ field at and above the photosphere .

In chapter III (section 3.4.2), we have only given the limits
on Bo . It is difficult to determine its value observationally .
However, long term space observations at high heliographic
latitudes will be needed to detect the steady part of the field
if it is there. It might also be detected and determined as
‘d.c.’ components in the spherical harmonic Fourier analysis of a
long enough time series ( i.e much longer than 22 yrs ) of the
magnetograms wi}h high sensitivity. From the fourler analysis of
33 years of the full disk magnetogram data , Stenflo ( 1993 ) has

set 0.1 G as an upper limit on the average strength of the dipole
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component of the steady field .
On MHD time scales, the MHD perturbations convert rotational

energy into magnetic energy . Together with the other ‘activity

generating processes such as flux tube formations, magnetic
buoyancy etc, the MHD waves can provide a non-radiative mechanism
of transport of energy , magnetic flux , and momentum . The

leakage of waves across the surface may contribute similar

transport outside the sun also.

The uncertainties 1in the computed coefficients will be
smaller if one determines the internal rotation and the
coefficients of steady magnetic field simultaneously and directly

from the observed rotational splittings of acoustic frequencies .

Such determination in all phases of the solar magnetic cycle
will lead to better understanding of properties of the steady as
well as the time-dependent part of the sun's internal magnetic

field .
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CHAPTER V

TORSIONAL MHD OSCILLATIONS

5.1. Introduction

As mentioned in chapter I, there are two schools of studies
for modeling the solar magnetic and the solar activity cycles
which lead to two types of models : the turbulent °‘ dynamo '
models and the ‘ MHD oscillations ' models.

In section 5.2 of this chapter we describe the basic ideas in
these two types of models. We also describe the difficulties and
questlons arising in each and explain why it 1is necessary and
worth while to examine in further detail the possibility pointed
out in chapter II that solar activity and magnetic cycle may be
due to MHD torsional oscillation(/s) of the Sun. This is done in
section 5.3 to 5.5 in the following way.

In section 5.3, the basic physics of torsional oscillations
is briefly explained.

We recall here that the SHF analysis of sun’s inferred
magnetic field ( chapter II) shows that all the axisymmetric LF
terms with odd values for the spherical harmonic degree ‘ ¢ ’ have
nearly same dominant periodicity ( _ 22 year)., If these terms
‘represent global MHD oscillations then the Alfven wave travel
times along different field 1lines of steady axisymmetric fleld

should be independent of the latitudes of the photospheric
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intersections. In order to get an idea as to what type of steady
fleld structure can satisfy this condition , we have computed in
section 5.4, the Alfven wave travel times along the field lines in
the following five models for the steady part of the field. The
first three of these five models are ad-hoc. In the first model ,
the field is taken to be uniform and in the second it is assumed
to be a dipole field. In the third model , the field is taken to
be a combination of wuniform field and a dipole field. The fourth
and the fifth models are the models of the °‘ steady ’ part of the
internal field determined in chapters III and IV respectively. The
last two models give the smallest spread in the values of Alfven
"wave travel times along their field lines.

In order to investigate if 1in the helloseismologically
determined internal rotation of the sun, there is any indication
of existence of torsional MHD oscillations, we study in section
5.5 the ‘residual rotation’ (viz., the difference between the
observed and the modeled values of rotation ). The ‘residual
rotation’ may in fact represent the time-dependent part of
rotation. We find that in this residual rotation there exist
systematic large-scale torsional patterns representing fast and
slow rotational velocity bands in the sun's interior. From these
we have also estimated the possible order of the radial
wavelength, the latitudinal wavelength , and the order of
amplitude of angular velocity in these rotational>p§£turbatlons.
From the least square fits of the radial 1n£égra1 of the residuai

rotation over (O.4R°—1.0R°), to linear ‘combihaflohs‘ of‘”even
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degree Legendre polynomials, we find that ‘€ =4’ and ‘L =2"
are the dominant modes in the rotational perturbation.
In section 5.6 , we summarize the conclusions of sections

5.3-5.5 and discuss their implications.
5.2 Theoretical Models of Solar Magnetic Cycle

5.2.1 Theory of Dynamo Mechanisms

In the Sun, the time scale of global magnetic diffusion is _
of billion years, i.e., larger than the Sun,s age. Hence the Sun
is expected to retain some of its primordial magnetic field, which
would vary on time scales much larger than the dynamical time
scales. Thus it would be easy to understand the existence of the
Sun’s magnetic field , if it were found to be steady with time.

However, the large-scale field observed at surface varies in
a cyclic manner with time scales of decades. Thus; one has to
seek the explanation not only for the maintenance of Sun’s
magnetic field but also for it’s periodic behavior. This would

essentially require the presence of a dynamo mechanism in the Sun.

Basically, a dynamo mechanism maintains electromagnetic
field against dissipation at the cost of energy provided by  some
source. |

The dynamo theories are of two kinds : kinemtic dynamo
theory, in which velocity is specified and the evolution of

magnetic field follows in accordance with the induction equation
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alone ; and hydromagnetic dynamo theory, in which both the
velocity and the magnetic flelds are obtalned as a solution of
the MHD equations (induction equations and dynamical equations) .

These theories are based on the fact that moving conductors
generate electric currents due to electromagnetic induction. It is
therefore expected that in the Sun the flows like rotation and
convection could provide dynamo action through electromagnetic
Induction.

However, all the velocity fields cannot maintain the dynamo.
For example, according to Cowling’s (1934) theorem, steady
axisymmetric magnetic fields cannot be maintained by axisymmetric
flows. Thus the dynamos for sun-like stars ought to be elther

non-axisymmetric or non-stationary (or both) .

The _‘Turbulent Dynamo Mechanism’ (Mean Field Electrodynamics)

In the theory of turbulent dynamo mechanlism, the dynamo
effect is statistically averaged over the turbulent flows . In the
basic treatment of this mechanisnm, called ‘mean fleld
electrodynamics’ , the velocity u and magnetic field B are
expressed as sums of mean part (which is large-scale and slowly

varying ) and fluctuating parts (small scale and rapidly varying)

as follows :

u=<u> +u

(1)

’
<B>+B
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where <u> and <B> are representing the ‘mean’ parts of u and B.
The turbulent motion ul is assumed to have a correlation time
7 and correlation length ‘¢’ small compared with the time scale
‘t’ and length ‘L’ of variation of < u > and < B > . Using these
expressions for u and B in the induction equation gilve
two equations : one for the variation of mean fleld < B > and the
other for that of the fluctuating field B’ . These two equations
are highly non linear and difficult to solve, and are linearized
with the following assgmptlons.
(a) It is supposed that the mean field < B > varies vary slowly

with time.

’
(b) The turbulent velocity field wu is assumed to have zero mean

’

(i.e., u = 0).

(c) The correlation time T is assumed to be small compared with
the time scale of electromagnetic diffusion.

(d) In computation of < u'x Bl > , the terms quadratic in u' are
neglected. This means that turbulent velocitles are assumed to be
small.

(e) The fluctuating magnetic fields B’are assumed to have small
magnitudes compared to the mean magnetic field < B > . This
assumption enables one to neglect the term ( u’x Bl- < u’x B’ > )
in the fluctuating part of the magnetic induction .( This is the "
first order smoothing approximation " : FOSA) .

(f) Finally, it is assumed that the turbulent velocity fleld is

assumed to be isotropic.
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Finally, the equation governing the average magnetic field

‘takes the form :

8<B>
T curl[a <B> + <u> x <B> ] - curl[(n + B)cur1<B>] , (2)

where a is the helicity , B is diffusivity due to the turbulence,
and 1 is the electromagnetic diffusion. The first bracket 1in the
right hand side represents the effective ‘dynamo’ action. ‘The
first term in the first bracket represents o-effect. The second

term represents dissipation and diffusion.

Early Models of Solar Cycle

Initially, a mechanism for the production of sunspots was
proposed by Cowling (1953), who suggested that sunspots are
eruptions of submerged toroidal fields produced by the
differential rotation acting on a weak poloidal fleld.
Subsequently, Parker (1955) proposed that the poloidal field
itself 1s regenerated by the interaction between cyclonic
convection and ©buoyantly rising toroidal flux elements.
Incorporating these ideas, Babcock (1961) phenomenologically
modeled the solar cycle . Leighton (1964,1969) presented a
semi-empirical model of the solar cycle and reproduced the well

known butterfly diagram of the sunspots.
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Models based on Mean Field Electrodynamics

In these models , the mean field < B > is written in terms of

the poloidal component Bp and the toroidal component B¢.

two equations containing «, B, and m as the free parameters and

This give

<u> = w X A in which v is a prescribed form of rotation.

The maintenance of Bp is mainly by a-effect due to the
cyclonic turbulence . If the maintenance of B¢ is mainly by
a-effect , then the model is called az-dynamo model. On the other
hand , if it is mainly due to < u > given by rotation then the
model 1is called oaw-dynamo model. If both are important , the

models are called azw—dynamo model.

By parameterizing the values a , B and assuming the form for
w, one can obtain the periodic solutions. By adopting different
assumptions, many properties of the solar cycle and activity
phenomena have been reproduced (Parker 1955; Stix 1972; Yoshimura

1978; Krause 1976; Radler 1976).

5.2.2 Difficulties in the Turbulent Dynamo Models

of the Solar Cycle

Though the turbulent dynamo models of the solar cycle
reproduced elegantly the properties of the solar cycle phenomenon,

these models have the following difficulties.

(1) The ¢ first order smoothening approximation ' used for the
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derivation of the equation (2) is valid only when the fluctuating
field is very much smaller than the mean flield. This is possible
only when (a) the eddy magnetic Reynolds number Rm << 1, and (b)
the correlation time =, the eddy of 1length A, and the r.m.s
veloclity v are related as t << A/v . In reality, neither of these

conditions 1s valid on the sun where Rm >> 1 and T ~ A/V .

(11) According to Piddington (1971, 1972, 1973) : (a) the concept
of turbulence of solar fields is wunsound; turbulence may mix
magnetic elements but does not destroy large-scale magnetic
fields, (b) the field created by eddy motions would be mainly
turbulent field, unlike the flield that is actually observed, (c)
the field created during successive cycles would rise successively

to higher levels and the whole field would eventually leave the

sun.

(1i1) The values of parameters «, B and of the rotational shear
(dw/dn) are either arbitrarily chosen or estimated crudely from
the statistical properties of observed motions. There is also a
doubt whether the ensemble averages in the theory can be applied

to study the observed fields which are space-time averages.

(iv) The cyclic variation of small scale activity structures llké
ephemeral active regions, x-ray bright points..(Martin and Harvey,
1979; Goulub et al , 1979) or the intensity of - sunspots

(Albregtsen and Maltby 1981) cannot be described by the mean fleld
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turbulent dynamo theories (Schussler 1982).

(v) Within the frame work of kinematic dynamo models, it is
impossible to address the question of limiting amplitude of the
generated magnetic flux owing to the linearity of the induction
equation. This indicate that kinematic models should include
non-linear effects also.

Hydromagnetic dynamo models ( Gilman 1983; Glatzmaier 1985;
Brandenburg et.al 1989 ) on the other hand, have modeled in the
limit of small magnetic Reynolds number and the magnetic back
reaction implied by the Lorentz force is ignored.

By taking into account these effects, recently Vainstein and
Cattaneo (1992) showed that the back reaction of the resulting
magnetic fields on the motions would eventually lead to the
saturation of the dynamo process , thus posing a constraint on the
amount of magnetic flux that can be generated by dynamo action.
They further argued that in the limit of small diffusivity, only
a small amount of magnetic flux will be created by dynamo process,

many orders of magnitude less than the observed fluxes .

(vi) One of the basic problems in keeping the dynamo in the
convection zone is the buoyant rise of all of the flux on time
scales very much smaller than the solar - ¢ycle 'period. This
difficulty can be avoided if the dynamo process is operating in a
stably stratified region beneath the solar convestion zone .(Van

Ballegooijen 1982; Speigel and Weiss 1980; Durney et.al. 1990 ;

118



DeLuca and Gilman 1991). However, as pointed out by DeLuca and
Gilman (1991), the process of dynamo mechanism operating beneath
the solar convection zone could add some other ' serious
difficulties. For example, how the magnetic flux is injected into
the convection zone is a question. Even if it is injected , elther
convection or buoyancy effects push the flux towards the surface.
Detailed interactions between rising flux tubes and convection
have yet to be worked out. If the buoyancy is only effect on these
flux tubes, these will rise through the convection zone along a.
trajectory parallel to the rotation axis ( Choudhuri and Gilman

1987) instead of travelling in a radial direction.

(vii) Lastly, the crucial difficulty faced by the turbulent dynamo
theories is that the radial gradient of rotation inferred from the
heliosiesmological data is opposite to what is needed by the
turbulent dynamo theory . The kinematic dynamo theories require
that the gradient of internal rotation should increase with depth
(1.e., dQ/dn < 0) in order to reproduce the migration of the
sunspot belts from middle latitudes towards the equator. On the
contrary, the hydromagnetic dynamo computations show that gradient
of the internal rotation decreases with the depth (i.e., dQ/da >0)
In this case, sunspot belts in the model move towards the poles.
However, helioseismologically determined rotation shows that , at
low latitudes dQ/dn > 0, while at mid latitudes dQ/dr | 0. In

fact, calculations with this form of internal ‘rotation-indicate
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that the generated ‘dynamo modes’ do not tend to migrate at all
(Levy 1992).

So, in view of the aforementioned difficulties in the
formulation of turbulent dynamo mechanisms and the suggestion by
LF analysis (in chapter 11), one has to reconsider the idea that
solar activity and magnetic cycles may be due to oscillations in

the presence of a ‘ steady ' magnetic fileld in the interior of the

Sun .

5.2.3 MHD Oscillatory Dynamo Theories

The turbulent dynamo models are elegant , mathematically
well developed and they also reproduce many of the observed
properties of the solar cycle. However, because of the foregoing
difficulties in these models it 1is important to consider
alternative theories for the solar magnetic and activity cycles.
The alternative theory of the solar cycle is based on
assumed presence of MHD oscillations . Initlally, theories based
on this assumption were proposed by Alfven (1943) and by Walen
(1949). Later their ideas were revived by many authors (Layzer,
et.al. 1955; Plumpton and Ferraro 1955; Piddington 1976; Layzer
et.al. 1979; Vandakurov 1989). The essence of the oscillatory
dynamo theory is as follows. In these theorles, the observed
periodic behavior of the large-scale magnetic field of the sun is

viewed as a consequence of MHD oscillation(/s) in the presence of

a large-scale internal ‘steady’ magnetic .field. ' These theories
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recognize the fact that most of the observed fields at the
surface (including those in the polar regions), are in the form of
bipolar regions. Thus these theories treat the problem of ‘solar
magnetic cycle’ as a ‘ cycle '’ of toroidal field only. Also, the
dominant flow in the sun is that of rotation, and hence field is
toroidal. Thus the MHD  oscillations must be azimuthal
perturbations to the ambient ‘steady’ poloidal field. The
amplification of the toroidal field can results from azimuthal
perturbations of ambient ‘steady’ part of the poloidal magnetic
field. Any such perturbations of the field lines would eventually
lead to MHD waves. The waves travel along the field lines of the
steady field and are reflected due to the density gradients near
the surface. Superposition of these travelling waves could lead to
stationary or standing oscillations. These oscillations could
consist of the fast and the slow rotational velocity ‘zones’ which
oscillate about the regions of mean rotational velocity . These
oscillations are termed as " MHD torsional oscillatlons " . The
strong fields needed for activity could result from constructive

Interference of these waves.
5.2.4 Difficulties in the MHD Oscillatory Dynamo Theories

Main difficulties of the oscillatory theories are : (i) Lack
of observational evidence for the existence of steady part of
the poloidal magnetic field which may sustain MHD escillations .

On the contrary, sun’s poloidal magnetic fleld appears to be
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osclllatory in behavior (ii) How to maintain these oscillations ,
especially in the convection zone ? (iii) Can the ‘steady’ field
admit global MHD oscillations ? (iv) Is there any observational
evidence that the large-scale activity phenomena on the surface

result from interference of oscillation modes ?

The first two questions will be dealt with in section 5.6 of
this chapter. In section 5.4. we investigate the question (iii)
and show that our field models do admit global MHD oscillations.
Regarding the 1last question, the results obtained from the
magnetic field inferred from sunspot data (chapter II) indeed show
that the solar magnetic cycle and the activity phenomena do seem

to be given by interference of large-scale global oscillations.
5.3 Theoretical Formulation of Torsional Oscillations

For axi-symmetric magnetic flelds, we can write the
magnetohydrodynamic equations in the cylindrical coordinates

(L, ¢, z) as (Mestel and Weiss 1987 ) :

0B

¢ . :
R ¢ (Bp v)aQ (3)
anp £ 80 = (B V)RB, ) (4)
dt P o ‘

122



Here R 1is the angular velocity, BP and B¢ are the

corresponding components of the magnetic field, B = BP + B¢ 1¢ ,

where 1¢ is a unit vector in the azlimuthal direction , and p is
the density.

Let us take p(O)

and B;O) to be the time independent parts
of p and BP . Then according to Mestel and Weiss , the equation of
torsional oscillations in a plasma with a magnetic field can be

derived from equation (3) and (4) as

(0) 2,.(0)
( BP -V (& (BP -7)Q)

Q@
Le]
I

()

anp (0)c 2

@
-+
N

Considering a line element da along B;O) which 1is small

)

compared to the scales of variation of B;o and Q ( WKB

approximation ), equation (S) can be written as

2 oa . (6)

0 A?

d _ n2
—, = (Bp/41zp)

at

Thus , equation (6) implies that , the changes in Q and B¢
propagate with the local Alfven speed VA = | B, I/‘(4up e,
determined by the steady part of the poloidal field. In the next
section, we use this equation for the examination of the

admissibility of global torsional MHD oscillatien in varlous
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‘models’ of the steady part of the poloidal magnetic field.
5.4 Alfven Wave Travel Times

This kind of study was initiated by Alfven (1943). He
proposed that the sunspot activity could be due to superposition
of standing Alfven waves which were formed due to the disturbances
some where in the radiative core, and reach the surface along the
dipole field. For a polytropic density variation, and the dipole
field, he computed the travel times of such waves to be _ 70 years
for the field lines near the pole, and _ 80 years for the fleld
lines near the equator. Since, these periods did not agree with
the 22 year period, he concluded that the 22 year period must be
the resonance period of some lines of force in the sun’s interior.
In addition, Alfven's theory also explained the observed
propagation of sunspot zones and the opposite polarities of
sunspots in the two hemisphere.

Here we study the range of Alfven wave travel times In the
following five models by taking into account the real density
variation in the sun : (i) the uniform field ;‘(11) the dipole
field ; (iii) the combination of a uniform and a dipole field ;
(iv) the *‘ steady ’ part of the field from the preliminary model ;
(v) and the * steady ' field as modeled in chapter IV.

For the sake of comparison ,all the models are assumed to
have the same amount of the steady part of the photospheric

magnetic flux with a nominal value of ¢, = 1.5 X 102 Mx
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‘

corresponding to a uniform field of _ 1 G.
5.4.1 Model 1 : Uniform Field

Let us take the uniform field of magnitude Bo , parallel to
the rotation axis of the sun. Then equation for a fleld line

corresponding to flux value ¢ is
n = kcosectd (7)

where n = r/R° , Ro is the radius of the sun and unit of length,
and £k = ( ®/® ) . From equation (7), we have computed the
geometry of field structure for different flux values and
presented in figure 5.1. The velocity ‘ VA’ of a Alfvenic
disturbance which travels along the field line is
_ 1/2

V, = B,/ (4mp) , (8)
where p is the density of the matter. From equation (7) , the line
element do of the field line corresponding to a flux value ¢ is

2

172
] dn . (9)

do = [ 1 + n2(ds/dn)

From equations (7) and (9) we get
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Fig 5.1.- Structure of the uniform magnetic fleld as glven by

equation (7) . The fleld lines correspond to flux (¢/¢,) values
A:01,B:0.2, C: 0.3 D: 0.4, E: 0.5 F:0.6, G: 0.7, H:

0.8, I : 0.9, J: 0.95.
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2 -1/2
do = [ 1-(k/n) ] dn (10)

The time T taken by the wave to travel along the field line
from one of 1its intersection with surface to the other

intersection is

1
1/2
2nR
. - Jdt } [ . - [ lanp(n) 1 dn 1)
_v - 2 1/2
. [ 1 - (k/n) ]

5.4.2 Model 2 : Dipole Field
The magnitude of the magnetic field of the dipole field

parallel to the rotation axis is

5 . 5 172
B RO/Md = [Br + Bﬁ ] (12)

. 3 3
where Br = 2cosﬁ/h , B19 = sinﬁ/h , and Md is the magnetic moment

of dipole field .

The equation of a field line corresponding to flux value & is
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Fig 5.2.- Structure of the dipole field as glven by equation (13).

The fleld lines correspond to flux (¢/¢,) values A : 0.05, B :
0.10, C: 0.20, D: 0.30, E: 0.40, F: 0.50, G: 0.60, H : 0.70,

I: 0.8, J: 0.90, K : 0.95.
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ksin’e , (13)

3
"

2
vhere k = (2,/®), ® = 2mM;sin"9/nR  and M, = &,R/2nr . Using
equation (13) , we have given dipole field structure in figure 5.2.

The corresponding line element is
do = [ (1/2)secﬂ(4cosza + sin’® )V2 ]dn (14)

Hence, the formula for the computation of the Alfven wave travel

time is

1

=‘2"§o J A3 lanp(n) 1Y 2an (15)

T ‘b*

0

(1-n/k) 172

5.4.3 Model 3 : Uniform and Dipole Field

We consider a field obtained by superposing a uniform field
B0 and a dipole field of dipole moment Md. The magnitude of the
magnetic field resulting from the combination of the uniform and

the dipole field is
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R 5 1172
B /B0= [Br + B@ ] , (16)

vhere Br = (1 + 2u1/n3 Jcos®
B. = ( -1 + p_/n )sino
° Ky ’
and p. = M /BR>
Ky d oo’
The flux function is
2, 2 2
® (n,9) = nBoRO (n™ + 2;11//1 )sin"® . (17)
For a given value of B Bo i1s obtained from the condition
¢(1,n/2 ) = &, , i.e.
2
nBR (1+2u ) =29, . (18)

From equations (17) and (18), the equation of a field line is

( 2* + p/n )sin®s = K (#/8,) (19)

where XK = (1 + 2“1) .
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Fig 5.3.- Structure of the magnetic field for the combination of
uniform and dipole fields as given by equation (19) and X = 1.968.
The field lines correspond to flux (¢/¢,) values A : 0.05, B :
0.10, C: 0.20, D: 0.30, E: 0.40, F: 0.50, G: 0.60, H: 0.70,

I:0.80, J: 0.90, K : 0.95.

131



rY/Re
0.3 0.5 0.7 0.8 1.0

0.2

1 A il ! i A |- A |

O -y i
0.0 0.2 0.3 0.7 0.8 1.0

0.5
r/Rq
Fig 5.4.- Structure of the magnetic fleld for the combination of
uniform and dipole flelds as glven by equation (19) and X = 2.248.
The field lines correspond to flux (¢/¢,) values A : 0.05, B
0.10, C: 0.20, D: 0.30, E: 0.40, F : 0.50, G: 0.60, H: 0.70,

I:0.80, J: 0.90, K : 0.95.
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Hence, the formula for Alfven wave travel time is

3
2 K nR 172
T = oJ [41:5(/1)] { gz bn (20)

1/2
where do /dn = [1 + (n da/dn.)z] , and n(de/dn) is

3
-sin® (27 - p )

n 3—2 = 3 L . (21)
2cos9(n” + M )

Here we consider two variations of model 3, differing only in the
value of B In the model 3A the value of K, (= 0.484) is taken
from the best two term fit (chapter III, ‘section 3.3.1) of the
steady field, whereas in model 3B the value of M, (= 0.624) is
taken from the best three term fit (chapter III , section 3.3.1)
of the steady field. The corresponding values of X are :

Model 3A : K 1.968

Model 3B : X 2.248

With these values , we have computed the field lines and presented
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in figures 5.3 and 5.4 respectively.

5.4.4 Model 4 : Combination Of Uniform, Dipole,
and Hexapole Fields

The magnitude of the magnetic field for this combination is

1/2
2 2

B /B - [ B? + B2 ] , (22)
wvhere
Br = [( 1 + 2u1/n3) + (uaxns)(locoszo —6)]cosﬂ R (23)
B'S = [(—1 + ”1/"'3) + (psms)(7.5cos20 -1.5)]sinv3 , (24)

- 5
iy Ma/BoRo » M_ is the magnetic moment of the hexapole.
The corresponding flux function is
® (n,0) = 1tBoR02 (n? + Zul/n + 4u3/n3)sih20 -(Sua/aa)sin"’fo
....... (25)
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For a given values of K and B, B° is obtained from the

condition &(1,n/2) = &, .

Thus the equation of a field line corresponding to flux & is

[(a2 +2u/n + au /n’)sin’s - (5u3/n3)51n46] = 4.29(8/3,)

.......... (26)
So, the formula for the Alfven wave travel times is
5 1
8. 58nR 1/2
_ o | [4mp(n)] do
0
172
where da/dn = [1 + (n dﬂ/dn.)2 ], and n(do/dn) is
s 2 2
—[(Zn - 2u n"- 12u_) + 15u_sin®e ]sinﬂ
do 1 3 3
e (28)

[ 2 (»° + u1n2 + 4p3) —20uasin20]cosﬂ

The values of “1’ K, are taken as those obtained in chapter III

3
from the condition of isorotation with helioselsmologically

determined internal rotation (seec also Fig 3.1).
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5.4.5 Model 5 : Travel Times in the Improved Model

of the ‘Steady ’ Field ( Model in Chapter IV )

As it 1is clear from chapter IV that the travel time
calculation has to be carried out separately in the convective
envelope ( 0.7 < n < 1.0) , and in the radiative core (0.0 < n <
0.7). Thus, the Alfven travel times have been computed in the

4

following way :

T=1T _ +T , (29)

where TCE is the travel time for the two parts of the field line
in the convective envelope , and Tac is the travel time for part
in the radiative core (see also Fig 4.1). For the travel time

along the part in the radiative core , we have

7

o.
8. 58nR 172
RC
n

( dn

where %nin is the distance of the field line from the center to
the point where it intersects the equatorial plane, in this model

A=r1/R , R (=0.7R ) is the radius of the radiative core ,
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) 5 172
B/Bo = [Br + B,g ] ’ (31)

where Br and Bo are given as follows

_ 3/2
B = (1/A™") [(18.75)J3/2(2.904n)

+ (1.96)J, (5.7632) (12 - 30s1n2a)]coso

........ (32)
and
_ 372 372
By =-(1/7"7) |(4 €9)J,,,(2.9047) + (0.98)J, (5.7630)C " ()
+ (13.61n) {J, _(2.904n) - Jg,5(2.9040) }
3/2
+ (5.63/1)C2 (p) {Js/2(5.763n.) J9/2(5.763r1.) }]sinﬂ ,
.......... (33)
where p = cos®, C:/z(u) = 6-7.5s1n%s.
Ihe flux function in the radiative core is
2 172 2 | 2
® =2mR ATT|A Jy.0 ) + A vaz(“za)c&-g(.‘f?;@ ;sj,z‘;o‘
n‘v-s-.--vq(34)
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For a gliven values of Ao = 9.374Bo YA = 1.955B°, a, = 2.904 , a,

2
= 5.763 ; B0 is obtained from the condition &(1,n/2) = &,

In the radiative core, the equation of a field line is

1/2 2
(18.75)n [{J3l2(2.904n) + (1.2526)J7/2(5.763n)}sin L4

- (1.5645)J_”2(5.763n)s1n‘o] = 4.29(9/%,) . (35)

1/2
In equation (30), de/dn = [1 + (ndﬂ/dn)z]

where n do/dn= C/D , (36)
with
C= {J3/2(2.904n) - (2.904n)J1/2(2.904n) - (7.213n)J5,2(5.763n)

+ 1.2516 J_ (5.763n) }sint®
3
+ {(9.01620)J_ (5.7632) — 1.5645 J_ _(5.763~)}sin’®
and
D = 2cos® { J_ (2.904n) + 1.2516 J_ (5.763)

. Neiila L
- 3.129 J_ _(5.763n)sin"0 } .
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The travel time rcs along the two parts of the field line in CE is

calculated in the same way as in the previous model.

5.4.6 The Results
Using the density values from the standard solar model
(Bachal’s (1989) model in the radiative core , and Spruit’s (1977)
model in the convective envelope ), we have computed the travel
times of Alfven waves along different field lines in the foregoing

five models . The strengths Bo' Md Y etc are so chosen

1

that in each model , the total flux on the northern solar

hemisphere has a fixed value ¢, _ 1.5x1022 Mx which corresponds to
B0 = 1 G . In the last model we have presented the results for
field lines in the radiative core only . The field lines 1lying
fully in the convective envelope are omitted since the Alfven
travel times along them is extremely small. The results are given
in Table 5.1 . In the first column, the flux values corresponding
to each field line are given in the unit of ¢, (which 1s same in
all the models ) . In the remaining columns, values of the travel
times (in years) from one (photospheric) end of the fleld line to
the other end are presented . At the base of the table , we glve
for each model the average T of the travel times, their
standard deviation (¢T ) from the mean , and the percentage of
variation from_the mean . L

The corresponding values of frequency (1/2t) of its Alfven
mode oscillations given in Table 5.2 . These values of the average

frequency ( v ) and standard deviation (&#l‘ffdmwﬁ“ and the

139



Table 5.1 : ALFVEN WAVE TRAVEL TIMES (in years)

FLUX  MODEL MODEL  MODEL MODEL MODEL MODEL
1 2 3A 3B 4 5
B=1G M ,= B =0.51G B =0.456 B=0.126 B =0.12G
LY (G om’) p =0.484 p=0.624 4 =0.624 p =3.638
1.76x10%2 p,=0.484 p_=0.620

A,=1.125
A,=0.235

0.05 6619  30.60 19.28 17.20 26.10 2.82

0.10 6217  30.90 19. 60 17. 40 24.59 2.76

0.15 5986  31.30 19.94 17.70 24.19 2.77

0.20 3168 31.70 20. 30 18. 00 23.84 2.68

0.25 1584  32.10 20. 68 18.30 23.62 2.68

0.30 554 32.55 21.09 18. 60 23.46 2.81

0.35 345 33.00 21.54 19.00 23.35 2.83

0.40 132 33.50 22.02 19. 40 23.30 2.85

0.45 131 34.10 22.54 19.80 23.29 2.88

0.50 110 34.70 23.11 20. 20 23.32 2.93

0.55 75 35.30 23.75 20.70 23, 40 2.99

0.60 64 36. 60 24. 46 21.20 23.51 3.10

0.65 54 36. 80 25.26 21.80 23.67 :

0.70 44 37.70 26.18 22.50 23.88

0.75 40 38. 80 27.28 23. 30 24.14 e

0.80 36 40.03 28. 61 24.20 24. 46

MEAN 1572  34.3 22.85 19. 96 23.90 2.84

: -
o 2395  2.81 2.72 2.09 0.70 0.12
¢T/T e I e g
0.152 0.082 0.119 0.105 0,029  0.042
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Table 5.2 : ALFVEN FREQUENCIES (in Nano-hertz)

FLUX  MODEL MODEL  MODEL MODEL MODEL MODEL
1 2 3A 3B 4 5
B=1G M, = B =0.51G B =0.45G B =0.126 B =0.12G
LY (G cm’) u,=0.484 p =0.624 1 =0.624 p =3.638
1.76x10°2 u,=0.484  p =0.620
A,=1.125
A =0.235
0.05 0.0024 0.5180 0.8169 0.9215 0.6073 5. 6206
0.10 0.0026 0.5146 0.8087 0.9190 0.6446 5.7428
0.15 0.0027 0.5064 0.7949 0.8955 0.6552 5.7220
0.20 0.0050 0.5000 0.7808 0.8806 0.6649 5.9142
0.25 0.0100 0.4938 0.7664 0.8661 0.6710 5.9142
0.30 0.0290 0.4869 0.7515 0.8522 0.6756 5.6406
0.35 0.0460 0.4803 0.7198 0.8342 0.7688 5.6007
0.40 0.1200 0.4731 0.7198 0.8170 0.6803 5.5614
0.45 0.1200 0.4648 0.7032 0.8005 0. 6805 5.5035
0.50 0.1440 0.4568 0.6859 0.7847 0.6797 5.4096
0.55 0.2110 0.4490 0.6674 0.7657 0.6773 5.3010
0.60 0.2480 0.4331 0.6480 0.7477 0.6742 5.1129
0.65 0.2940 0.4307 0.6275 0.7271 0.6696  ......
0.70 0.3600 0.4204 0.6054 0.7044 0.6637  ......
0.75 0.3940 0.4085 0.5810 0.6803 0.6566 . ......
0.80 0.4400 0.3960 0.5540 0.6550 0.6480  ......
MEAN 0.1518 0.4645 0.7020 0.8032 0.6642 5.5870
o 0.1490 0.0450 0.0800 0.0818 70.0185 0.2249
ov/; ' ‘ -

0.98 0.097 0.114 0.066 0.028 0.040
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percentage of varlation of v from v are also given.

Models numbers 2,4 and 5 give the values of cr_r/; < 0.1.
However, the smallness of 01/; in models 2 and 4 is due to the
fact that all the field lines which enter the radiative core have
similar arcs passing through similar density structure. This is
mainly due to the presence of the central singularity . Hence, we
conclude that among models 1 to S , model S is the only admissible
model which sustains global alfvenic mode oscillation with well
defined frequency for the fundamental mode.

-In the above models, the estimated values of Bo obtained from
the assumed value of &, decreases steadily from model 1 to model
5. However, in order that the travel times may be _ 22 years,

the last model requires that Bo . 0.01 G.

5.5 Study of the ‘Time-Dependent’ Torsional MHD PerturBation
(Its Radial and Latitudinal Structure and Time Scale)

5.5.1 ‘Residual Rotation ’ as the Likely
Time-Dependent Part of Rotation
Having modeled the ‘steady ' parts of the rotation and the
magnetic field (chapter IV), we determine the ‘residual rotatlion
rates’ in ORC and CE as
ORC ORC " ORC

8  (n,8)=Q _ “(n,8) -Q
obs

| qu(n ,8)

(37)

CE CE ' ‘CcE ,
N (n ,0) = Qobsﬂ ,0)‘W guodsn fO)‘f
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where fﬁ:j and Q;id are obtained using the equation 25 (in chapter
IV) along with equation (17) and (18) with the wvalues of

parameters as determined in chapter IV.

If QPR: and QEZa represent the steady parts of rotation, then

mo

the residual rotation will contain mainly time-dependent part of
rotation, besides the errors and noise. Here, we study the nature

of the time-dependent part neglecting the errors and the noise.
5.5.2 Time-Dependent Parts in CE

To determine whether the residual rotation in CE 1is
time-dependent , we first try to fit it to the form x sC3/2(cosa).

Such an attempt gives

~

u, = 0.0125 + 0.0335

and a very large value of xz. The large value of xa implies that

-5.3/2

the residual rotation 80 is not of the form x C (cos®). On the

other hand, if 69 is of this form, then the large uncertainty in

A

“s implies that 5QCE contains observational errors which are
larger than the real values of the residual rotation .
For further insight, we add a ‘third’ term of this form with

the above value of ; , to the first two terms already determined
In the steady field, and recalculate the x for the fit between

de('t.ﬁ) and Qobs(n,ﬂ). The new value of x 1s somewhat 1arger
L]
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(43.97) than its two-term value of 42.95. Thus, even if a part of
the computed residual rotation constituted a true residual
rotation , it would not be of the form x -C> /z(cosﬂ).

This implies that the true residual rotation can not have a
corresponding term in the magnetic fleld to ensure complete
isorotation between the field and the plasma. Thus the true

residual rotation constitutes a time-dependent part of the sun’s

rotation.

5.5.3 Time-Dependent Parts in ORC

3/2

Fitting the residual rotation to a term al/ZJ (a /1)C (cos®)

in ORC yields :

a, = 8.182
and
A4 = 0.0027 + 0.0018
However, the corresponding x2 is large. This may be due to
the large *‘ observational ’® errors . The smallness of the
uncertainty in 7t4 suggests that the residual rotation may contain
a real perturbation of a form similar to %3 (a n)Calz(coso).

11/2 4

Here again, for further insight we add a ‘ third ’ term of

this form, with these values of a4 and 7\ , to the two terms
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already determined from the steady part of the field, and
recalculate the x° for the fit of @ (n,8) with Q _(n,8). The
new value of xz (11.56) 1is in fact slightly smaller than that
(11.58) given by the two term fit. At present we do not know a
reliable method to determine if lowering of xz is significant or
not. However if it 1is, it would imply presence of a term of the

above form in the ‘ steady ' part of rotation in ORC.

One may wonder how the helioseismologically determined
rotation Q(ni,ﬂl), which 1is truncated at sinﬁﬂ , can .show
improvement in the goodness of fit with inclusion of the term ¢ =
S which is equivalent to extending the fitting formula up to sin60
. However, the inclusion of the term & = 5 also implies inclusion
of terms in A™> in the coefficients of sin®% and sin'® . This
indicates that at the time of the helioseismological observations
there must be ( over and above the rotation field represented by
the term £ = 1 and £ = 3) a " residual rotation " , which is not
merely an artifact of noise or errors.

If the real magnetic field does not contaln a residual term
3B(n, ¥®) corresponding to the above term in 3Q, then 3Q would be
time dependent. Even in case such a &B required for the steady
state exists in " ORC ", the inclusion of the corresponding term
in #(n,®) in CE (as required by boundary conditions) deteriorates
the fit in " CE " (cf. Table 3.1, chapter III) which implies
non-isorotation in " CE ". Thus, either thé residual rotation in

" ORC ", or the fleld structure in " CE ", or both, would be
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nonsteady. Thus, a time-dependant torsional MHD perturbation

seems to exist in the region " ORC + CE ".

5.5.4 Scales of Radial Variations Of the

‘ Torsional MHD Perturbations ’

Assuming that residual rotation (eqn 37) represents the
non-steady part of the rotation (i.e. neglecting observational and
fitting errors), we have computed 38Q(n,®o) for the epoch of the
1986 helioseismic data. The results are presented in Figures 5.5
and 5.6 . In Fig 5.5, we present the plot of residual rotation
with 7 levels of velocity magnitudes. In Fig 5.6, we have given
the 1isocontours of the residual rotation with positive and
negative signs. Herg positive signs indicate the ‘fast rotational’
velocity bands whose magnitudes are greater than the modeled
rotation. Similarly, negative signs 1indicate the ‘slow
rotational’ velocity bands whose magnitudes are lesser than the
modeled rotation .

From figures 5.5 and 5.6 , it is clear that , there appear
to exist large-scale slow and fast rotation bands with the
following properties. (1) Radial widths are in the range of
(0.1-0.5)R . (ii) The magnitudes of rotational perturbation are _
50 nHz (i.e 100m/sec ). (iii) One latitudinal: zone of oscillation
at 0.4Ro , three at the base of the convection zone, and five on

the surface (iv) The latitudinal zones of  these oseilldticns have
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their widths in the range _ 10 - 180° . (v) The mz: .udes of
velocity perturbations are highest near the bas: of the
convection zone ( _ upto S0 nHz), especially near the pc.es. (vi)
The magnitudes are moderate in the outer radiative core.

Thus, the non-steady part of the rotation seems to have
global structure. These large-scale perturbations seem to be
excited near the base of convection zone .

The afore-mentioned results are based on the data of a single
epoch only. However, further analysis is needed for other epochs
so that a clear picture of the possible nature of the

time-dependent MHD oscillations may emerge in near future.

5.5.5 Time Scales of Variations Of MHD Modes

in the Perturbations

It is impossible to determine the time scale of variation
from a single epoch observation. However, we show that a time
scale comparable to that of solar magnetic cycle is not ruled out.
The " frequencies " ( v ) of the various MHD modes in these
perturbations will be related to the ratlo of the toroidal and
poloidal magnetic field perturbations 3B

T P
| curl(Qo X SBP ) |/ 8BT , Where QO is the " zero-order " flow

- and 8B, as follows : Vv

defined by the approximately " steady " part of the rotation . The
order of magnitude of the operator curl(Qb X ...) has already been

estimated crudely in chapter III (equation 13) to be 150 nHz. This
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can give the time scales of variations in the range _ 2-20 year,
if 831/68P is in the range _ 10-100 (similar orders of magnitude
for the periods of MHD perturbations have been suggested by
Layzer, Rosner and Doyle (1979) using different approach ).

Thus, it 1is not ruled out that the MHD modes in the
perturbations detected in section 5.1 and 5.2 have time scales

comparable to those of solar magnetic cycle.
5.5.6 Latitudinal Structure of the Perturbations

In order to determine the dominant latitudinal structure of

the time-dependent part of the rotation, we integrated the

residual rotation with respect to the radial coordinate from 0.4R°
to 1.0Ro as follows
1.0R
o
g(e) = I 8Q(n,0)dn

O.4Ro

The resulting form of g(®¢) is shown in Fig.5.7 ; Interestingly,
this profile is similar to the torsional velocity profile
obtained by Howard and LaBonte (1980). However, near the pole ,
this profile 1is substantially different from the torsional

velocity profile .
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We expand g(®) in even degree Legendre polynomial as

follows:

ge) = V0 + VZPz(cosG) + V4P¢(cosﬂ) + V6P6(cosﬂ) + .

1

and determine coefficients Vo’ vV, V

2 PEEEEER , etc, by least

square fit. The results are presented in Table 5. 3.

It is interesting to note that , the terms " &€ =2 " and " ¢
=4 " are the dominant terms in g(#) . This is in agreement with
the expectation (Gokhale and Javaraiah, 1994) from the dominant

terms £ = 3 and £ = 5 in the ‘cascade’ of the MHD modes.
5.6 Conclusions and Discussion
Main conclusions of this chapter are :

(1) Our * preliminary ' and *‘ improved ' models of the steady part
of the magnetic field admit global MHD (torsional ) oscillations

with the smallest relative band width for the frequencies.

(11) For the period of the fundamental mode.to be : _ 22 years ,
the ‘improved’ model requires that Bo . 0.01.G.; This gives: for
the ‘ steady ’ part of the potospheric magnetic-flux a value weld

within the observational limit of 0.5 G (Stenflo 1993 ) .
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(111) Time-dependent torsional MHD perturbations are likely to be
present in the interior of the sun. The radial length scales of
these are in the range of (0.1-O.S)R0 » and the magnitudes upto -
S0 nHz. The widths of the latitudinal zones of these oscillations
are in the range _ 10°- 180° . The magnitudes are large in the
convection zone (upto 50 nHz), with maximum near the base, and are

moderate ( upto 20 nHz) in the outer radiative core.

(iv) Time scales of these perturbations can be in the range of the
periods in the solar magnetic field, if the ratio of the
perturbations in the toroidal and poloidal components of the

field is in the range _ 10-100.

(v) The terms " £ =2 " and " € = 4 " are the dominant terms in
the latitudinal profile of the radial integral of the

perturbation.

From the conclusions one is tempted to further conclude that
the solar magnetic cycle and hence the solar cycle activity cycle

may be due to global torsional MHD oscillations .

Lack of observational evidence for existence of * steady
poloidal field (Cowling 1981 ), and the problem of maintenance .of
the torsional oscillations (Schussler 1982) seem to be the main

difficulties of the oscillatory models.
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However, as pointed out by Piddington (1976,1983), the

detection of a weak ‘ steady ' fileld 1in the presence of

strong non-steady fields will require highly accurate

measurements. In any case , the absence of evidence of such a
field is not the evidence for its absence.

Schussler (1982) estimated the ratio ( 7 ) of the Lorentz
force to the viscous force in the convection zone to be very much
less than one and hence concluded that the influence of convection
on the oscillations cannot be neglected .

However, in his estimates of viscous force he assumed
toroidal velocity perturbation 104 cm/sec. The oscillatory
model used need not consist of a single large-scale oscillation.
Hence, on large length scales relevant here , the amplitude of any
one global toroidal oscillation need not be 104 G near the base
of the convection zone. The strong dissipation will be confined
only near the surface and hence the energy needs will be moderate.
Thus , viscous forces may not be affecting these large-scale
perturbations appreciably. Thus the effect of convective flows
will be mainly advective rather than dissipative . In fact at the
boundaries of the convective eddies, the field will be amplified.

In the radiative core, the viscous forces are any way
negligible .

Thus there seem to be no serious difficulties 1in the
suggestion that the solar activity including the solar cycle may

essentially consists of the internal torsional MHD perturbations .
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CHAPTER VI

CONCLUSIONS AND FUTURE PROSPECTS

Many long periods have been observed in solar activity. In
this thesis, we have concentrated mainly on the dominant 22 year

magnetic cycle. The conclusions from chapters II to V can be

summarized as follows.

Assuming that solar activity results from superposition of
sun’s global MHD ‘oscillations , we have studied the spectrum of
these oscillations and the temporal variations in their amplitudes
and phases .

Legendre Fourier analysis of the sun's magnetic field
inferred from the data on sunspot groups during 1874-1976 shows
that the LF power spectrum has distinct behavior for ‘odd’ and
‘even’ degree terms separately. In the amplitude power spectrum ,
the odd degree terms in the rénge of £ =1 to &£ = 21 have
relatively large amplitudes compared to the even degree terms .

The amplitude power spectrum of odd degree terms has a main
hump over £ = 1 - 11 , with a high peak at & = 5, 7 and a tail for
L > 21 . This has been fitted with  mathematical forms of the
spectra of trapped waves .

The approximate constancy of the relative phases and the

| , , terms
relative amplitudes of these LF terms suggests that, these ‘
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may represent oscillations which have been approximately
stationary during last several decades .

Simulation of the butterfly diagram generated from the random
data set also showed that the distribution of sunspot activity
even with in the " butterfly wings " 1is not produced by any random
process .

The reproduction of solar magnetic behavior at high latitudes
by superposition of oscillations, whose amplitudes and phases are
obtained from low latitude data, has suggested that the sunspot
activity may really be originating in the interference of sun’s
global oscillations . The dominant contribution seems to come from
axisymmetric modes of odd degrees upto ¢ = 13 and periods 22 year.

For global oscillations to be possible there must be a steady
background field of such a geometry that it allows oscillations of
the observed characteristics ( e.g. the periods and the wave
numbers ) . For this purpose we have modeled the ‘steady’ part of
the sun’'s poloidal magnetic field .

As a first step, we have modeled the °‘ steady ' part of the
sun’s magnetic field assuming it to be a current-free field whose
field lines ‘ isorotate ’® according to the sun’s internal rotatlon
given by helioseismology . This part of the field can be described
as that of a central dipole and a central hexapole both parallel
to the rotation axis and embedded in a uniform external field .

For éuch a model the field structure contains a critical
surface ( running along the base of the convection zone in the low

latitudes ), where a discontinuity of _ 7 nHz per unit flux in the
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gradient of rotation ( with respect to the magnetic flux ), may be

winding a poloidal field ( of _ 10.4 - 1 G) into a toroidal field

_ 2 MG in 10°- 10° yr .

The current-free field approximation is valid in the
convective envelope only , but not so in the radiative core. The
least square fit of the magnetic field with the plasma rotation
was not good in the radiative core . Moreover, the current-free
fields have a singularity near the center . For these reasons, it
was necessary to improve the preliminary model.

With reasonable assumptions and approximations it is shown
in chapter IV that the ‘steady ’ part of the magnetic field can
be modeled as an analytical solution of the equation for magnetic
diffusion in an incompressible medium of constant diffusivity with
appropriate boundary conditions and that its field lines must
iso-rotate with the solar plasma . This analytical solution was
then fitted for isorotation to obtain the improved model of the
steady part of the field .

In this model the steady field does not have any singularity
» separatrix, or closed loop, and yet ylelds a much better fit
with the helioseismologically determined isorotation contours .

The improved model enables us to estimate the ‘ initial °’
relative strengths (i.e. relative strengths at Zero Age Main
Sequence ) of the two diffusion eigen modes as 4 : 1 . The
characteristic diffusion time scales of these modes are estimated
to be _ 10.6 and‘~‘2.? billion year respectively ,‘assuhing a mean

diffusivity of .35 em?sQBQ; &nwth@,fadgat$Wg‘eer$~c v




For determining whether the steady part of the field can
sustain global MHD oscillations, as inferred from sunspot data ,
we have computed in chapter V the Alfven wave travel times along
the field lines in five different models. The last two of which
are the ‘preliminary’ and the ‘improved’ models given in chapters
III and IV respectively.

For these models, the standard deviation from the mean
Alfven wave travel time as well as its ratio to the mean travel
time are also calculated . The last two models yield the
smallest relative bandwidth for the frequencies of global alfvenic
oscillations. The model number 5 ( the ‘improved’ model ) is the
only admissible one which can sustain global alfvenic oscillations
with well defined frequency for the fundamental mode.

For the mean Alfven travel time to give a period 22 yr,
we require Bo in the last model to be _ 0.01 G. This gives for
the steady part of the photospheric magnetic flux in the model a
value well within the observational limit (Stenflo 1993) .

The following systematic pattern in the ¢ residual ’ part of
the internal rotation defined in chapter V suggests that there
may be presence of global torsional MHD perturbations in the
interior of the sun . The widths of the radial ranges defined by
the sign of the residuai rotation are in the range of O. IRO- 0. SRo
, and the amplitudes of rotational velocity are IQ - 100 m/sec.
We find only one latitudinal  zone of oscillation at radius of
0.4R_ , three at:the base of convection zone . and five on the

surface . The' ,mummmlwnes of these oscillatlions: have helx




widths in the range 10° - 75°

Time scales of these perturbations can be in the range _
2-20 year, if the ratio of perturbations in the toroidal and
poloidal components of the magnetic field 1s in the range of
10-100.

By fitting the radial integral of the residual rotation over
the radial range ( 0.4Ro—1.0Ro ) to a linear combination of the
first three Legendre polynomlal of even degree terms 1ln cos¢ , we
find that the terms " £ =2 " and " & = 4 " are the dominant

terms in the time-dependant part of the rotation .
To conclude, the summary of this thesis is as follows .

Assuming that the solar magnetic activity cycle results from
global MHD oscillations of the sun, we first presented
properties of these oscillations ( eg. the amplitude spectrum and
the variation of amplitudes and phases ) . The approximate
constancy of the amplitudes and the phases (and their use in
reproducing field behavior in high latitudes) suggests that the
mathematical terms represent real global oscillations . We have
then modeled the structure and the strength of the steady part of
the magnetic field . It is shown that the model allows global MHD
oscillations with the frequencies and latitudinal = structure
similar to those in the magnetic field as. inferred from the
sunspot data . Finally we studied.  the . ‘perturbation’ in the

internal rotation and showed that the characteristic properties of
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this perturbation can be similar to those from magnetic (sunspot )
data .

We believe that long period oscillations in the range 0.5
year to 22 year are of similar nature and derive their energy from
the " 22 year " oscillations. Periodicities longer than 22 year
may be due to the excitation mechanism itself.

A considerable part of this thesis is devoted to the modeling
of the ‘ steady ' part of the sun’s internal magnetic field
However, such a modeling 1is an essential part of studying the

long period global oscillations

Following are the important works to be undertaken in future :

(1) The LF analysis of the sun’s magnetic field Inferred from
sunspot data shows that the spectrum of the odd degree
axisymmetric terms are effectively decoupled from the even degree
terms. Physics of these long period global  oscillations is poorly
understood owing to lack of information on the sun’'s internal
magnetic field. Since these oscillations are mainly assocliated
with the magnetic fields , and the periods are much longer than
periods of acoustic oscillations , the wa\)es responsible for these
oscillations may be slow MHD waves. In analogy with the acoustic
branch of helioseismology from which one can infer the sun's
internal rotation , etc., ‘one ' 'can st.‘udy“also the internal

magnetic field struéturé‘ from the ‘observed properties (
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frequencies and phases ) of the slow MHD oscillations over very
long periods (eg. decades/centuries). This study would constitute
another important branch of helioseismology . However such studies
will obviously have poor frequency resolutions and (in the sunspot
data) poor signal to ratio. As in the acoustic branch , the study
of the internal field structure can be by forward method in
which the frequencies are computed by choosing suitable internal
magnetic field structure . Alternatively inversion methods will
have to be developed in which the -observed characteristics of the
magnetic oscillations will be used to determine the internal
structure of the magnetic field .

Using WKB approximation , Brandenburg (1988) has obtained
diagnostic diagram for the even degree MHD oscillations modes in
the presence of steady toroidal magnetic field. He pointed out
that such even degree oscillations would be standing Alfven
waves trapped in a cavity below the convection zone. Further he
showed that the estimated eigen frequencies are in rough agreement
with the observed frequencies (Stenflo and Vogel 1986).

However, we know from LF analysis of. Sun’'s magnetic field
inferred from sunspot data that the typical Jbutterfly diagram |is
reproduced (Gokhale and Javaralah, 1992) mainly by the leading odd
degree LF terms only ( eg. ¢ <. 13 ), This may require odd parity
in the steady toroidal field, i.e. odd parity in the differential
rotation. Hence the spectrum: of e b @ﬁddegree LF terms, may be
resulting not from the perturbatien of. the - steady part of.  the

toroidal field , but from perturbation-of.the steady part of.the
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poloidal fleld. It will be interesting to examine the
dispersion relation for the odd degree modes in the poloidal
field.

The diagnostic relations should be obtalned for both odd and
even degree slow MHD modes of solar oscillations in the presence
of the steady poloidal field as modeled in chapter IV, by solving

linearized equations with proper boundary conditions .

(2) For modeling the steady part of the poloidal magnetic field,
we have used the values of the sun's internal rotational
velocities inferred by inversion techniques ( Dziembowski , Goode
and Libbrecht 1989) from the observed frequency splittings of the
acoustic modes (Libbrecht 1989). Rotational velocities have
large uncertainties in the high heliographic latitudes and near
the center . These uncertainties may be contributed not only by
the observational errors but also in the two step fitting to get
the parameters of the steady part of the field ( By s Hy etc)
and the steady part of the rotation ( a, and Q, ) . The two steps
of fittings are : (i) to get the internal rotation, frequency
splittings to be inverted'by least square fitting the assumed
form of rotation ; (ii) the parameters of magnetic field and
rotation to be obtained by fitting the modeled field with the
inferred rotation . It is obvious:that the uncertainties in By
N no , 91 , étc., can be considerably reduced if Q(a,¢) and

¢(n,6) are determined by assuwing them to -be in the form of

equation 25 ( Chapter IV) and then fitting this form directly to
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the observed frequency splittings . We plan to do this in near

future .

(3) In chapter IV, we have presented the model for steady part of
the poioidal magnetic field only. However, either the poloidal
part of the magnetic field, or the toroidal part of the magnetic
field, alone can not satisfy the stability conditlon . For
stability, a combination of the the poloidal and the toroidal
magnetic fields of similar orders is necessary (Mestel and Welss
1987; Spruit 1990). Thus , for the sake of the stability of the
Sun’s general magnetic field, we expect that the steady part of
the toroidal magnetic field may also be present in the interlor.
In fact, we have already pointed out in chapter IV (section 4.5.5)
the corresponding form of the steady part of the toroldal
magnetic field. According to this, the steady parts of both the -
components ( poloidal and toroidal ) of the field may - be
diffusive everywhere in the solar interior except near the base of
the convection zone, where the winding due to the rotational
gradient dominates over the diffusion . However, modeling of the
‘steady ' part of the toroidal magnetic field remains to be

worked out .

(4) For modeling the steady parts: of . magnetic fleld and
rotation, we have used the data:at 2 ‘,«riszmgleue‘poch (1986) only.
However, data at dlfferentwepﬂamg'”&%mﬁ@@eﬁsafv for studying the

time-dependant parts of the solar magnetic field and the rotation

164



by studying the radial, latitudinal and temporal variatlons in
the residual rotation rates . Better and better understanding of
the time-dependent parts of the Sun’s internal magnetic field and
the rotation will be possible as helieoseismological observations
continue year after year (for example from the Global Oscillation

Network Group - GONG).

(S) Magnetic fields in the stars other than the sun have been
known to exist since Babcock’s (1947) discovery of a strong field
in the peculiar A type star 78 Vir. Presentiy, a wide range of
objects right from the pre-main-sequence phase to the
.Post-main-sequence phase have been detected to have moderate to
strong magne‘tic fields. It may be possible to extend our steady
magnetic field model to these stellar objects in the following
way . According to Moss (1986 ), only slow rotators may display
the core dynamo fields on the surface . However, most of the early
type main sequence stars are rapid rotators . Hence, it may be
virtually impossible to have the dynamo generated magnetic fields
in them . Thus, the only other possibility is that the early type
main sequence stars might have retained most ‘of their fossil
fields from the proto star phase (Dudorovi’, 1987). For example,
the magnetic fields of CP stars appear:to be globally ordered and

have much simpler geometries (Saar-1990). Hence , our model of the

field in the radiative icore ‘of s$unmay be appropriate also
for early type main sequéncastawé éépecially 'chemically peculiar

( CP ) stars ,
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(6) Studying of internal rotation of the Sun (especially core
rotation ) has wide astrophysical implications. Stellar rotational
velocities indicate that (Skumanich 1972; Stauffer 1991) when the
Sun was a young star, Its surface rotation rate was much larger
than that observed today. This possibly (Libbrecht and Morrow
1990) represents the rotation of the convective envelope which
could have been reduced through magnetic braking, while the
massive core may be still rotating faster. The speculation that
the solar core may be rotating faster can be confirmed by
helioseismic inversion of either low degree acoustic rotational
splittings or from rotational splittings of ‘g’ modes

Presently, it is not possible to detect ‘ g ' modes with
sufficient accuracy , because of their low amplitudes near the
surface. On the other hand, though the measurements of rotational
splittings of low ¢ ‘p’ modes is quite feasible , they are based
on poor signal to noise ratio. Moreover, the maximum splitting ‘m
* of the low degree modes depends upon + { and the order of the
line width. In fact the line width is decreasing with decreasing
frequency and { also. Thus it is extremely difficult to resolve
the lines of low degree acoustic modes with adequate accuracy
(Palle et.al. 1990; Toutain ar;d Froiich 1992;‘ Hill et.al. 1990).
This may lead to uncertainties in the determination of the angular
velocity near the Sun’s interior. The eigen functions of 1low
degree acoustic modes have low.,amplitudes near the core and thus
rotational splittlngs are less sensitive to the core rotation.

Yet, the accurate determination of low degree roté_tlou’al
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splittings 1is clearly necessary for measuring the solar core
rotation . Our present study could be useful in this context.

The rotational splitting for & = 1 (which Is sensitive to the
core rotation) mode will be simply a linear function of the core’s
rotation and the differential rotation of the convective envelope.
If one has the model of the rotation of solar core and the
convective envelope ( such as the rotation modeled in Chapter IV )
one can predict the rotational splitting for ‘ ¢ = 1 > degree
mode so that this can be used as preliminary input in the

inversions of the observed frequency splittings .
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