Itodattanal Obyeruatory.

BULLETIN No. XCI.

ON THE SPARK SPECTRA OF LEAD

BY
A. S. RAO, M.A. (HONS.)

The spectrum of Lead has been the object of many investigations. Yet until recently little progress has b een made in the identification of series relationships in the are and spark spectra of the element. This element is the chemical analogue of C, Si, Go and Sn ; and since it has the same number and type of outer electrons its spectral structures may be expected, according to present-day theories, to resemble those of the abovementioned clements. Such resemblances botween homologous spectra are often very close, though there aro occasionally minor but significant differences, which may perhaps prove of importance in the refinement of modern atomic theories. Recently through the work of Thorsen ${ }^{1}$, Grotrian ${ }^{2}$, Sur ${ }^{3}$ and McLennan ${ }^{4}$, a distinct advance was made in the analysis of the are spectrum of Lead. The first spark spectrum of the element was investigated by Geissler. ${ }^{\text {. }}$

The preliminary attempts at the classifications of the second and third spark spectra of Lead, from the existing lists of published wavelengths was seriously handicapped by the lack of descriptive data. Descriptions of are and spark spectra of the element in limited wavelength intervals have been published by various observers. The most reliable ones up to the year 1911 are quoted by Kayser in Volume VI of the Handbuch der Spectroscopie. They are by Kayser and Runge ${ }^{6}$ (arc spectrum 2085 to 6002-A.U.), by Thalen ${ }^{7}$ (spark spectrum 4058 to 6656 A.U.), by Exner and Haschok ${ }^{8}$ (arc spectrum 2237 to 6002 A. U., and spark spectrum 2170 to 4572 A.U.), and by Eder and Valenta (arc spectrum 5609 to 7229 A.U., and spark spectrum 4272 to 6793 and 2088 to 2733 A.U.). Sinco the appearance of this work in 1912 the spectrum of this element has been reinvestigated by Klein ${ }^{10}$, with greater accuracy by using a 20 feet concave Grating Spectrograph. All the abovementioned measures were based on Rowland's system of standard wavelengths. In addition to these, contributions to the spectra of Lead have been made by Kimura and Nikumura ${ }^{\text {in }}$, who, by photographing the cathodespectrum grouped some of the important lines under successive stages. No attempts were made by these authors to measure the wavelengths accurately. Only after the present work was begun was the writer able to procure a paper published by $S . S^{2} \operatorname{Sith}^{12}$, who photographed by means of a two-metre concave grating, the vacuum spark between electrodes of the metal, in the region 2400 A to 4800 A . It is found however that the hot spark does not give the highest members of spark lines, which I have been able to photograph with the highest excitation in the condensed spark. This is clearly seen from an examination of the writer's spectrograms (plates II and IV).

The measurements till now available are not sufficient for a complete analysis of the spark spectrum of Lead, since it is desirable to know the degrees of excitation at which the various lines appear and also to know the character of the spectrum lines, i.e., their sharpness, diffuseness, etc. The experiments of the writer were therefore aimed at photographing the whole region 2050 to 7000 A , with higher dispersion and
under different degrees of excitation as a preliminary to the analysis of the higher sparle spectra Tha results show that the procedure is justified many additional lines having been discovered in this work The new observations of the spark spectrum together with the lines which have boen classified in the speotra of Pb III and Pb . IV ard presented in thit papar In addition to the accurate measurement of wavelengths attempts have been made in this investigation to improve upon tho earlier lesoriptions by making a careful selection of the lines characterisung Pb I Pb II Pb III and Pb IV This critical differ entation of lines belonging to different stages is generally made by photographing the spcotrum andar varying degrees of discharge

To provide data likely to be aseful in identify ng the spectra of higher stayes of ionsation a study was made of the spark spectrum of pure Leed in air in vadro and in an atmosphere of hydiogen at varying pressures and also of the arc in vacuum between electrodes of the pure metal The spark was produced by a $\frac{1}{2}$ kilo watt 20000 volt transformer The secondary contaned a battery of large plate condensers of oapa city 003 mfd (constructed for the parpose) in patallel with the spark gap in the expcumental chamber To distingaish lunes due to different stages of iomisation the spectrum was photographed under varying degrees of discharge which is done by including in the secondary circuit a variable self inductanoe and capacity

Description of apparatus

Sources of raduation -The apparatus used for the study of the spaik spectrum is shown in diagram 1 It consists of a pyrex bulb capacity about one litre with side openings El thiough which the electroded pass To the ends of these small preces of metal can be fixed A plane plat of quarts is attached to the end of the long profecting tabe and serves as a window through which the spectrum of the spark is phote graphed. The two side tabulures (TT) are intended for filling the flask with hydrogen Pure hydroder gas from a generator after passing through drying agents is passed throngh the flask for nearly 30 minfifieaks thereby driving the last traces of arr from the flask By connecting the flask then to an arr pump the \#late could be exhausted te any desured pressure and the spark spectrum photographed

Fig 1

The spectrum of the vacuum arc of the metal was photographed, unsing a specially constructed are famp as the source of radiation. A diagrammatic sketch of the vachum arc is given to Figure II. It consists of a dauble-walled cylindrical vessel fitted with a vacuum joint for one electrode and an aperture opposite for light to emerge. The second electrode passes through a similar joint in the base of the lamp and the clip for the specimen is arranged so that the arc is struck as close as possible to the window, without arcing to the wall taking place. The lid of the vacuum chamber is a bronze disc, which has been ground to make a tight joint which can be sealed with suitable vacuum wax or grease. Connection to the vacuum pump is made through the base of the lamp and nozzles are provided so that the cylindrical wall may be kept cool with circulating water. Fach electrode consists of a brass tube passing through a gland and having an insulated wire passing through it. Electrical comnection is made to the terminal situated on the ebonite handle, provided for the manipulation of the arc. The glands have been filled with vacuum grease for maintaining a vacuum. The lamp operates steadily with currents varying from 4 to 6 amps.

Fig. II.

Spectrographs employed.-Tho spectrograps were obtained in the first and second order of a 4-inch concave grating, of 10 foet radins of curvature in eagle mounting. These were supplemented by several plates taken with a Hilger F_{8} Quartz spectrograph, which is nsed not only to record the faint lines in the ultra-violet, but also for wavelength measurements in the region 2550 to $2050-\mathrm{A}$. In this region this spectrograph compares favourably in dispersion and resolving power with the concave grating spectrograph and at the same time, has a good light gathering power. Comparison spectra of the iron arc are impressed on the plates after each of the exposures. The spectrograms are obtained on photographic plates of thin glass which could be bent to the focal curves of the spectrographs. The region 3600 to $6500-\mathrm{A}$ was also pispally examined, with a view to study the behavinup of the lines under different conditions of excitation, by a constant deviation spectrograph. For photographing the region below 2500-A, the plates were sensitized in the manner described in Volume II of Baly's Spectroscopy, with comptameter oil. The exposure times ranged, in the case of the concave grating spectrograph from 10 to 30 minutes, while in the case of the quartz spectrograph, up to $2500-\mathrm{A}$, the times ranged from 5 to 10 minutes and in the region 2500 to $2050-\mathrm{A}$ exposures of 15 to 30 minutes were given.
$1-\mathrm{A}$

Method of wavelength determination - All plates were measured in two drections with a Hilger comparator and the wave length measurements were made relative to International Secondary Standards in the spectram of the rron arc For the region below 3370 A the iron arc wavelengths published by Barms were used In the case of the prism spectrograms the wavelengths were calculated by means of Hartman s dispersion formula $\lambda=\lambda_{0}+$ - where $\lambda_{0} c$ and n are constants determined from the comparison spectrum and n the distance of the unknown line from a fixed point of reference on the plate Spectrograms obtaned with the grating are measured by using a linear scale

Intensity estimates were made directly from the plates as newed in the mensuring micioscope on a scale of 0 to 10 The vacuum wave numbers corresponding to the observed wavelengths are takcn from Kayser s Tabelle der Schwingungszahlen and are given in colomn 3 of Table I In column 1 are given the observed wavelengths in I A In column 2 are given the intensity estimates in column 4 the stages of ionisation of the prominent lines and in column 5 are given the lines classified in this investigation The symbols accompanying the intensity values have the following meanings -

$$
s=\text { sharp } d=\text { duffase } b d=\text { broad and duffuse and dd }=\text { very duffuse }
$$

Tabla I

TABLE I-cont.

Wavelength (I.A.)	Int.	Wave namber in $\mathrm{cm} .{ }^{1}$	Stago and classification.	Wavelength (I.A.)	Int.	Wave number in $\mathrm{cm} .{ }^{1}$	Stage and classification.
230812	Obd	$43312 \cdot 7$		2868.19	3	34855.0	
2312.70	Od	$43226{ }^{\prime}$		$2873 \cdot 33$	10	$34792 \cdot 6$	I.
$2317 \cdot 45$	2 dd	431376		$2937 \cdot 55$	4	340320	IV $2^{2} \mathrm{P}_{2}-2^{2} \mathrm{D}_{2}$.
2:332.48	8bd	$42854 \cdot 7$	I.	294945	9 dd	338947	II.
234372	1 s	$42654 \cdot 1$		$2977 \cdot 98$	9	$33570 \cdot 0$	I.
9353.91	Od	$42469 \cdot 5$		$3002 \cdot 65$	5 s	332942	II.
2360-19	1 dd	$42356 \cdot 5$		301019	3 s	33210.8	
2:368:54	2 d	42207×2		3016.63	8dd	331330	II.
2370:27	0 s	$42176 \cdot 4$		3025.55	2 d	$33042 \cdot 3$	
$2388 \cdot 28$	3 s	419638		3028.77	2	3300711	
238601	2 s	41898.8		$3031 \cdot 68$	4 s	$32975 \cdot 5$	IV.
$2389 \cdot 12$	4 s	418436	I.	$3043 \cdot 90$	10	328431	III $1^{3} \mathrm{D}_{1}-1^{3} \mathrm{~F}_{2}$
239388	7 dd	417605		305264	10	32749.0	IV.
239976	3 s	$41658 \cdot 1$		$3056 \cdot 84$	4	327040	IV $1^{2} \mathrm{D}_{2}-\mathrm{C}^{2} \mathrm{P}_{3}$
$2402 \cdot 16$	7 bd	416458	T.	306242	4	32644 5	
$2411 \cdot 79$	6ba	$41450 \cdot 4$	I.	$3071 \cdot 54$	4	32547.5	
$2416 \cdot 13$	0	413759		$3087 \cdot 13$	5	323832	IV.
2418.78	()	4193010		$3089 \cdot 17$	7	32361.8	LII $1^{2} \mathrm{D}_{2}-1^{1} \mathrm{~F}_{2}$
242421	0	412380		$3103 \cdot 00$	4	$32217 \cdot 6$	III.
242870	8 bil	411678	[V $2^{2} \mathrm{~S}_{1}-2^{2} \mathrm{D}_{2}$	$3109 \cdot 27$	2	$32152 \cdot 6$	
243365	2 s	$41078 \cdot 1$		$3118 \cdot 17$	5	$32060 \cdot 8$	I.
$2443 \cdot 91$	10 bd	409056		3129.62	4	31943.5	III.
$2446 \cdot 30$	10ba	4188557	I.	$3137 \cdot 87$	10	31859.5	III $1^{3} \mathrm{D}_{2}-1^{3} \mathrm{~F}_{3}$.
$2463 \cdot 21$	1	41585.2		$3145 \cdot 70$	4	$31780 \cdot 3$	III.
$2476 \cdot 38$	9	$40369{ }^{\circ} 3$		$3170 \cdot 59$	10	$31471 \cdot 2$	IIII $1^{3} \mathrm{D}_{5}-{ }^{3} \mathrm{~F}_{4}$.
$2478 \cdot 63$	3	40:332 7		$3191 \cdot 49$	1	$31324 \cdot 3$	III $1^{3} \mathrm{D}_{3}-1{ }^{3} \mathrm{~F}_{2}$.
249407	2 d	4108380		321482	0	$31097 \cdot 0$	
244561	3 d	40058.3		3221.00	10	$31037 \cdot 3$	$1 \nabla{ }^{1 /} 2^{2} \mathrm{~S}_{1}-2^{2} \mathrm{P}_{2}$.
$2497 \cdot 16$	2 s	$4(0) 33 \cdot 4$		3227116	3	$30978 \cdot 1$	
250887	2	39846%		3231.31	3	$30938 \cdot 3$	
252706	3 dd	39559.8	IT.	$3240 \cdot 21$	9	$30853 \cdot 3$	$\underline{1}$
$2593 \cdot 38$	3 dd	$49461 \cdot 1$	IV.	$3242 \cdot 95$	9	30827.3	III $2^{2} \mathrm{D}_{3}-2^{3} \mathrm{~F}_{3}$.
$2534 \cdot 81$	3dd	334388.8	IV.	324770	2 3	$30782 \cdot 2$	
$2562 \cdot 37$	10	39014.7	$\operatorname{ITF}_{\text {IV }}$	$3262 \cdot 41$	3	$30643 \cdot 4$ 30514.9	I. ${ }^{3} \mathrm{P}$ (1)
$2568 \cdot 48$	8	381921.9 $38788 \cdot 1$	IV.	$3276 \cdot 15$ 3279	9	30514.9 $30485 \cdot 6$	IIII $2^{3} \mathrm{P}_{1}-2^{3} \mathrm{D}_{2}$.
257734 261378	8 10	38788.1 382474	1.	3280.09	9	$30478 \cdot 2$	IV $1^{3} \mathrm{D}_{3}-2^{3} \mathrm{P}$.
2614.28	1	38840.0	$\underline{1}$	3298.04	9	$30313 \cdot 3$	III $2^{3} \mathrm{P}_{1}-2^{3} \mathrm{D}_{1}$.
$2628 \cdot 37$	6	380351	I.	$3309 \cdot 2$	8d	$30209 \cdot 9$	
263781	3	$378991)$		$33600^{\circ} 40$	4 s	297498	
2638.53	3	37888.6	II.	3361.59	4 s	$29739 \cdot 3$	
2640.51	3 s	$3786{ }^{(1) 2}$		3365.93	58	29701.0	
2650:33	6idd	37719.9		$3437 \cdot 15$	2 s	$29085 \cdot 6$	III.
295715	4 s	376231	I.	$3452 \cdot 17$	6 d	$28950 \cdot 0$	II.
$2663 \cdot 23$	10	37537%	I.	$3455 \cdot 18$	8 d	$28933 \cdot 8$	III.
269760	5 d	37059.0		$3476 \cdot 27$	0	28758.3	
$2712 \cdot 81$	0	36851.2		$3483 \cdot 46$ 350597	9	${ }^{28698989}$	$\operatorname{III}{ }^{13} \mathrm{~F}_{3}-1^{3} \mathrm{G}_{4}$.
271738	6d	$36789 \cdot 3$	II.	3530.39	3	28317.4	(I) $1^{3} \mathrm{~F}_{4}-1^{3} \mathrm{G}_{5}$.
${ }_{2}^{271939} \cdot 93$	3 d	$36754 \% 2$ 365759	II.	$3534 \cdot 06$	3 d	28288.0	
$2733 \cdot 23$ $2734: 58$	2	365759 365579	$\underline{1}$	$3560 \cdot 75$	6	28076.0	III $1^{11} \mathrm{D}_{2}-\mathrm{l}^{1} \mathrm{~F}_{3}$.
$2734: 58$ 2737.00	2	3655.9 36525.6	I.	3563.06	4	$28057 \cdot 8$	III $1^{3} \mathrm{~F}_{4}-1^{3} \mathrm{G}_{4}$.
$2740 \cdot 87$	2	364740		$3565 \cdot 26$	1	$28040 \cdot 5$	
2745.51	4	36412.4		3567116	3	$28025 \cdot 5$	III $1^{1} \mathrm{D}_{2}-\beta$.
$2752 \cdot 15$	1	36324.5	IV $2^{2} \mathrm{P}_{2}-3^{3} \mathrm{~S}_{1}$.	3572.79 3586.29	5 5d	27876.0	
2755.81	0	362763		3586.29 3589	7 d	27848.7	
2802.00	10	$35678 \cdot 3$ 35409.8	I.	3592.95	6 s	$27824 \cdot 4$	$\text { Iv } 2^{2} \mathrm{D}_{3}-2^{2} \mathrm{~F}_{3}$
$2823 \cdot 25$	10	35286^{-4}		$3621 \cdot 10$	1 s	$27608 \cdot 1$	
$2833 \cdot 12$ 2864	10	34900.5	IV $2^{2} \mathrm{P}_{2}-2^{2} \mathrm{n}_{3}$	3639.66	10 s	27467×3	I.
	2						

Tabli I－cont									
Wavelength （I A）	Int	Wave number in om^{1}	Stage	e and clarsification	Wavelength （I A）	Int	$\begin{gathered} \text { Wave } \\ \text { number in } \\ \text { om }^{-1} \end{gathered}$	Stage	ge and classifiontioin
364861	1bd	274001			453454	3d	220468		
365556	8 d	273478	III	$1^{3} \mathrm{~F}_{2}-1^{8} \mathrm{G}_{3}$	457145	7s	218688	III	$2^{3} \mathrm{P}_{2}-2^{8} \mathrm{~S}_{1}$
366564	0	272726	III		460528	3sd	217081		
367148	10d	272293	I		463038	58	215858		
3674＊75	4	272050	III	$1^{8} \mathrm{~F}_{4}-1^{3} \mathrm{G}_{3}$	476100	8 s	209981	III	$1^{3} \mathrm{~S}_{1}-2^{4} \mathrm{P}_{1}{ }^{\text {＋}}$
368857	108	271399			479827	68	208356	III	$13^{3} 8_{1}-2^{3} \mathrm{P}_{0}$
8689－22	88	270982	III	$1^{1} \mathrm{~S}_{1}-2^{2}{ }^{\text {P }}{ }_{2}$	480218	68	208181		
369952	Obd	270229			482715	0	207104	III 2	$2^{1} P_{1}-2^{3} \mathrm{~S}_{1}$
370622	3d	269740	IIII	$2^{8} \mathrm{P}_{0}-2^{3} \mathrm{~S}_{1}$	485520	1	205907		
371410	5dd	269168	II		488571	1	204622		
371930	2dd	268792			494112	1 d	202327		
372906	4	268088	III	$2^{3} \mathrm{P}_{2}-2^{3} \mathrm{~S}_{1}$	500359	3s	199801	III	$2^{2} \mathrm{P}_{1}-2$
378598	7	267592			000568	68	199718		
374013	10s	267295			504321	10	198231	II	
374922	1	266647			506291	3s	197460	III	$1^{3} \mathrm{D}_{2}-2^{1} \mathrm{P}_{1}$
378620	8d	264042	II		506624	3 s	197390		
382766	8 d	261182	III	$2^{2} \mathrm{P}_{1}-2^{8} \mathrm{D}_{2}$	511731	2sd	195361		
388294	108	260823		$2^{3} \mathrm{P}_{1}-\infty$	513942	2 A	194520		
884189	10d	26021.9	III	$2^{3} \mathrm{P}_{2}-2^{3} \mathrm{D}_{8}$	516375	68	193604	IV	
385411	10s	259890	III	$1^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{P}_{2}$	513229	68	192530	III	$1^{3} D_{1}-2^{1} \mathrm{P}_{1}$
387322	18	268110	IV		520165	68	192193		
390929	5d	$25572 \cdot 9$		$1^{2} \mathrm{D}_{2}-24 \mathrm{P}_{1}$	520717	6d	191990	III	$1^{3} \vec{P}_{2}-2^{9} \mathrm{P}_{2}$
392774	36	254528			522042	2dd	191502		
394379	188	253492			520233	8d	19039 y	III	$1^{8} \bar{P}_{1}-2^{8} \mathrm{P}_{0}$
$3952+11$	8 d	252958	III	$1^{1} \bar{P}_{0}-2^{3} \mathrm{P}_{0}$	527451	48	189038	IV	
3962－58	88	252293			537265	10	186076	II	
399488	18	250241			547180	1	182705	II	
400435	38	249658			549661	1 s	1 1880		
401966	88	248708	I		552350	58	180994	III	$1^{8} \mathrm{D}_{8}-2^{4} \mathrm{~m}^{\text {a }}$
408148	$3{ }^{\text {d }}$	247978			554460	1	180806		
404151	1	247363			554511	10	180289	II	
4048.88	$7{ }_{7}$	240851			560918	10	178230	II	
405801	10dd	246858	I		566449	38	176490		
408228	88	246028	I		667753	3 s	176084		
4077．	20ab	245174			567889	38	176042		
409504	2 d	2441209			570767	2 B	175154		
4128 解	12d	242160	III		577975	48	172970	III	$1^{1} \mathrm{D}_{8}-2^{3} \mathrm{P}_{2}$
414156	咟	244387	III	$1^{8} \vec{P}_{1}-2^{3} \mathrm{P}_{2}$	582812	3sd	171534		
415898	3 db	240685			585759	68	170671	III	
416805	7 s	239853	I．		587665	7d	170118	II	
417488	48	239489	III	$1^{8} \mathrm{D}_{8}-1^{8} \mathrm{~F}_{8}$	589033	6 B	169723		
418240	80	239080	IV	$2^{2} S_{1}-2^{2} \mathrm{P}_{1}$	E89301	6 s	16964 b		
424250	3 dd	235644	II		593031	2 s	16857×9		
424547	10	23547.6	II		594105	2 s	168274		
427264	88	23898\％	III	$1^{2} \mathrm{D}_{2}-2^{2} \mathrm{P}_{1}$	600213	58	166561		
438889	10	227888	II		603912	58	165541		
4400：95	易	227160	ITI		608181	3dd	164379	II	
444718	8 d	22480 通			637998	1	156697		
449812	38		III	$1^{1} \mathbf{D}_{2-2} 2^{8} \mathrm{P}_{2}$	666015	8 s	150105	II	
449978	2	228174			679294	38	147171	II	

In adidition to the spectrograms and wavelength measures obtaned by the author，the wavelengidifyidy Oarrol and Maek have been ased for the region 2100 A

Spectrum of Pb III

Frome forituon of \mathbb{P}^{2} in in the table of elements it must be expected that the second spark consists of singlets and trificets and that the structare resembles generally that of the chemseally，

Pb IV, have already been analysed. The present work on $\mathrm{Pb} I I I, \mathrm{~Pb} I V$, therefore completes our knowledge of the series regularities in the spark spectra of elements of the fourth group. According to the theory of spectra developed by Panli-Heisenberg, Russel and Hund, the characteristic terms arising out of any electronic configuration can be predicted with certainty and it will be seen that the results of the analysis of these spark spectra are in complete agreement with the theoretical predictions. The structure diagram of doubly ionised Lead may be written in the following manner :-

Table II.

There are two electrons outside the complete spectroscopically neutral shells, which alone are effective in producing the optical spectum. The most stable structure is that in which the two valency electrons are in the P_{1} level. The spectroscopic term corresponding to this configuration is ${ }^{1} \mathrm{~S}_{0}$. Other less stable configurations and their characteristic terms are oltained by kecping one of the electrons in the P_{1} orbit and allowing the other to run through the orbits P_{2}, Q_{1}, O_{4}, etc. The terms that these different electron configuration give rise to, may be predicted by the Hund Theory and are shown in the following table :-

Table III.

Flectron configura- tion.	Torms prodicted.	Terms observed,
2	P_{1}	$1^{1} S_{0}$

The first clue to the identification of the triplet systems in Pb. III was the detection of the fundamental group $1^{2} \mathrm{D}-1^{8} \mathrm{~F}$, which should occur in the visible and quartz regions and which could be examined under different experimental conditions. Observations have also been made in the visible region with a prism spectroscope to find the intense triplet $1^{8} \mathrm{~S}_{1}-2^{8} \mathrm{P}_{012}$. The result is the identification of the prominent triplet given below :-

Table IV.

λ	Int.	v	Δv
$3854^{\circ} 05$	12	$25939^{\circ} 4$	4941
$4761^{\circ} 00$	6	$20998^{\circ} 1$	163
$4798^{\circ} 27$	4	$20835^{\circ} 0$	

The choice of this is further suppoited by the detection of the member $1^{8} \mathrm{D}_{29}-2^{3} \mathrm{P}_{2}$ in the calcolated region and by the identification of the tiplet $2^{*} \mathrm{P}-2^{3} \mathrm{~S}$ of the sharp secondary series The $2^{*} \mathrm{P}$ separation (4941) is found to be in complete agreement with the value predicted from the relativistic doublet law

The first principal, sharp and diffuse series fall in the extreme ultraviolet which does not lend itself to careful examination of the lines Attempts were therefore made to fix by extrapolation and then to seek for confirmation by correlating the corresponding members of the spectra of coiresponding elements a very valuable clue to the detection of these members is afforded by the application of the \mathbf{r} lativity laws to isoelectronic spectra of Hg -llke atoms

An approximate idea of the $1^{3} \mathrm{P}_{18}$ separation was obtained from the regular doublet sequence and from the relation that in the spectra of the same vertical group of the periodic table $\left(\frac{\Delta \nu}{Z^{j}}\right)$ is approximatily constant These give for $1^{s} P_{12}$ a valut of about 14000 and for $2^{n} P_{13}$, a value between 4000 and 5000

The followng table shows the regular doublet sequence for $1^{s} \mathrm{P}_{18}$ and $2^{5} \mathrm{P}_{19}$ separations and the value of $\left(\frac{\Delta^{\nu}}{\bar{Z}^{2}}\right)$ for elements of the same vertical group -

Table V-Rpgular Dodblet sequence				
	${ }_{1} \mathrm{P}_{28}$ separation	${ }^{*} \Delta^{\prime}$	$2^{3} \mathrm{P}_{23}$ separation	${ }^{*}$
Hg I	46306	825	15456	627
Tl II	9339	983	2839	730
Pb III	14595	1099	(4941)	840

Table VI - Variation of $\Delta v / Z^{\prime}$					
At No Z	Element	$2_{23} \mathrm{P}_{12}$	$\Delta v / Z^{2}$	$1^{13}{ }_{18}$	$\Delta v / Z^{3}$
6	O III	128	356		
14	Si III	7316	373	263	1342
32	Ge III	459	448	1642	1603
50	Sn III	12228	491	4031	1613
82	Pb III	(4941)	60	14595	2171

The apphication of the irregular doublet law to Hg like atoms indicated that the probable position of $1^{3} \mathrm{P}_{2}-1^{n} \mathrm{~S}_{1}$ is at $v 70000$ nearly In applying this sequence the method of Millikan and Bowen as adopted as shown below In the usual notation, the urregular doublet law may be written as follows -

$$
\frac{p^{2}}{\boldsymbol{R}}=\frac{\left(n_{8}^{2}-n_{1}^{2}\right) z^{3}-z\left(n_{2}{ }^{2} \sigma_{1} n_{1}{ }^{2} \sigma_{2}\right)}{n_{1}{ }^{2} n_{2}{ }^{2}}+\frac{\left(n_{2}^{2} \sigma^{2} \sigma^{2}-n_{1}{ }^{2} \sigma_{2}^{3}\right)}{}
$$

When a line results from transition between orbits of two different total quantam numbers, ($n_{8} \& n_{1}$) we get from the above equation, by transposition

The expression on the left varies therefore linearly with the atomic number Z , for any given set of values $n_{8} \& n_{1}$ In the case of $1^{*} P_{2}-1^{3} S_{1}$ of Hg like atoms $n_{1}=6, n_{8}=7$ and $A=79$ The progressive variation of with'atomic numbers is shown in the following table -

Tabla VII

At No. Z	Hilement	$\nu\left(1^{3} \mathrm{P}_{2}-v^{2} \mathrm{~S}_{1}\right)$	$\nu^{2}=\nu-8083(\mathrm{Z} \mathrm{A})^{2}$	Difference
80	Hg. I	20782	19974	20294
81	Tl II	43501	40268	22550
82	Pb III	(71093)	63818	

(2) theripts have also been made, by the application of the Mosley law to the spectra of Ge III \& Sn IIf

doublet sequence. A careful search was then made for the possible triplet $1{ }^{3} \mathrm{P}_{012}-1{ }^{3} \mathrm{~S}_{1}$ among Caroll's ${ }^{18}$ measures, below 1450 A , having in view the relative order and magnitude of intensities and the probable ratio of intervals between the lines, with the result that the following triplet was fixed.

Table VIIf.

λ	Int.	ν	Combination.	
$1406 \cdot 6$	2	71093	$1{ }^{3} \mathrm{P}_{2}-1{ }^{8} \mathrm{~S}_{1}$	14595
$1167 \cdot 0$	4	85690	$1 \mathrm{P}_{1}-1 \mathrm{~S}_{1}$	3994
$1115 \cdot 0$	2	89686	$1 \mathrm{P}_{0}-1 \mathrm{~S}_{1}$	

Evidence for the possibility of this being the triplet in question is sought by searching for the complete six-line multiplet (diffuse) $1^{8} \mathrm{P}-1^{8} \mathrm{D}$.

The triplet $2{ }^{3} \mathrm{P}_{2}-2{ }^{8} \mathrm{~S}_{1}$ being fixed in the case of Pb III, attempts have been made by the application of the irregular doublet sequence to locate the corresponding triplet in the case of Tl II, which has not been identified. In this case $n_{2}=8, n_{1}=7$ and $A=79$.

$$
\frac{\mathrm{R}\left(n_{2}^{2}-n_{1}^{2}\right)}{n_{1}{ }^{2} n_{2}^{2}}=584 \cdot 61
$$

The sequence is

Z	Element.	ν.	$\nu^{2}=\nu-524 \cdot 6(\mathrm{Z}-\mathrm{A})^{2}$.
80	Hg. I	$2753^{\circ} 6$	$2229^{\circ} 0$
81	Tl. II	\ldots	$[9690]$
82	Pb. III	$21868^{\circ} 8$	$17146^{\circ} 9$

The interpolated value of v^{1} for Tl II is $v^{2}=9690(\pm 500)$.

$$
\therefore v=9690+2097(\pm 500)=11787(\pm 500), \text { which is in the infra red, at about } 8500-\mathrm{A}
$$

A very interesting feature noticed in the spark spectrum of Lead is the partial inversion of the triplet F term, $1{ }^{8} \mathrm{~F}_{88}$ being negative. The location and identification of the complate six-line multiplet $1^{8} \mathrm{~F}-1{ }^{8} \mathrm{G}$, in approximately the calculated position is a strong evidence as to the correctness of the identification of the ${ }^{8}$ F terms.

The singlet system of lines is generally the most difficult to work out. When this analysis was first rundertaken not much progress could be made at first in the identification of the singlet spectrum. The strong line $1048^{\circ} 9$ (12) was suggested as $1^{1} \mathrm{~S}_{0}-1^{1} \mathrm{P}_{1}$ and $1553^{1} 1$ (20) as $1^{1} \mathrm{~S}_{0}-1^{3} \mathrm{P}_{1}$. While this work was in progress, the author's attention was drawn to a similar publication by Smith ${ }^{14}$. Although there is good agreement between the results of Smith and those of the author, there is disagreement in one or two important points. Smith has the following as $1^{3} \mathrm{P}-1{ }^{8} \mathrm{~S}$ and $1^{8} \mathrm{P}-1{ }^{8} \mathrm{P}$.

TABLIA IX.

	$1^{8} \mathrm{P}_{2}$.	$1^{8} \mathrm{P}_{1}$.	$1^{3} \mathrm{P}_{0}$
${ }^{8} \mathrm{~S}_{1}$	$76447(15)$	$91047(10)$	$95036(7)$
${ }^{8} \mathrm{P}_{0}$	\ldots	$78157(15)$	
P_{1}	$71095(12)$	$85694(15)$	89687
$\overline{\mathrm{P}}_{3}$	$85833(15)$	$100428(10)$	

It was pointed out in a note communicated to Nature ${ }^{15}$ ithat evidently Smith had the author's $1{ }^{3} \mathrm{~S}_{1}$ as his $1^{3} \mathrm{P}_{1}$ and that $1^{3} \mathrm{~S}_{1}$ suggested by the writer was further supported by the location and identification of the second series $1^{8} \mathrm{~S}-2{ }^{8} \mathrm{P}, 1^{8} \mathrm{D}-2^{8} \mathrm{P} \& 2^{3} \mathrm{P}-2{ }^{8} \mathrm{~S}$. The $1^{8} \mathrm{P}-1{ }^{8} \mathrm{~S}$ suggested by the author followed the irregular doublet law for the isoelectronic spectra of Hg-like atoms more closely. The author therefore suggested that an interchange of the two levels $1^{3} \mathrm{~S}_{1} \& 1^{3} \overline{\mathrm{P}}_{1}$ of Smith would bring the whole scheme into alignment. Attempts have also been made by the writer to identify the singlet spectrum, the results of which
have been publushed in a paper Smith ${ }^{14}$ has smee published another paper on the second spark spectrum of lead, in whuch the suggested modrfication was adopted There are still however two mann points of disagreor ment between the classification of the writer and that of Smith The term $\nu=101434$, classified by the author as $6 s 6 \mathrm{~d}^{1} \mathrm{D}_{\mathrm{g}}$ is classified by Smith as $687 \mathrm{~s}^{1} \mathrm{~S}_{0} \quad$ Smith classıfied 176867 (50540) as $1^{1} \mathrm{P}_{1}-1^{2} \mathrm{D}_{\mathrm{g}}$, while the writer classified 17111 (58442) as this combination It will be seen from the uregular doublet sequence shown below (Table X), that both $I^{1} \mathrm{P}_{1}-1^{1} \mathrm{D}_{2}$ and $1^{1} \mathrm{D}_{3}-2^{1} \mathrm{P}_{1}$ jdentified by the writer show a distinctly better progression than those of Smith Further the lme $1^{1} P_{1}-1^{1} D_{\text {s }}$ should be a strong line It is found that most of these strong lines of the triplet and anglet systems ase found in the wavelength measures of McLennan, Young and Ireton, Bloch and Lang But the line 1768 c 7 identified loy Smith as $1^{1} \mathrm{P}-1^{1} \mathrm{D}$ is not recorded by any of the previous investigators, while Carrol includes it as one of the lines belonging to Al These considerations mdicate that the writer's classification and identification of $1^{2} D_{\mathrm{a}} 18$ more probable

Table X-Irrbgular Doublet Sequencei

	$1_{1}{ }^{1} \mathrm{~S}_{0}-1{ }^{\text {P }} \mathrm{P}_{2}$	$1^{1} \mathrm{~S}_{0}-1^{1{ }^{1} P_{1}}$	$1{ }^{12} \mathrm{P}_{2}-{ }^{1} \mathrm{D}_{8}$
Hg I	39413	54065	17265
Tl II	52390	75656	39501
Pb III	64387	95338	58442 - 56540

From the beginning of this investigation of the analysis of Pb III, it was felt that ${ }^{8} \mathrm{P}{ }^{8} \mathrm{P}$ group should b e strong as in the case of the chemically analogous atoms on 1ons $1^{1} D_{s}$ and $2^{1} D_{\text {s }}$ terms of Smith are probably $1{ }^{8} \bar{P}_{1}$ and $2{ }^{3} \bar{P}_{1} \quad$ On thas supposition ${ }^{8} \mathrm{P}^{3} \overline{\mathrm{P}}^{\text {group }}$ and the resulting cumbinations have been dentafied by the author, thus supporting the validaty of the writer's identification of $1{ }^{1} \mathrm{D}_{\mathrm{g}}$ term The term values have been determined by assuming $1{ }^{3} \mathrm{~F}_{4}=64800,\left(\frac{\nu}{9}=7200\right)$ The resonance and ronisation potentials are 795 and 315 volts respectively, the largest term $1^{3} S_{0}=255216$ The details of the triplet and singlet systems ulentrfied in this investigation are given in the accompanying tables Table XV gives the conflgarations and term values for TI II and Pb III and Table XVI gives other unclassified members of " P_{19} differences

Table XI

	$\begin{gathered} { }_{1}^{1{ }^{1} \mathbf{P}_{\mathbf{q}}} \end{gathered}$	(145317)	$\begin{gathered} { }^{13}{ }_{19} \mathrm{P}_{2} \\ { }_{90} 229 \end{gathered}$		(3994)	$\begin{gathered} { }^{12} P_{0} \\ 194823 \\ \hline \end{gathered}$
$1{ }^{1} S_{1}$	14066	(2)	11670	(4)		11150 (2)
105141	71093		85690			89680
$1^{8} \mathrm{D}_{1}$	12746	(0)	10747	(3)		10305 (3)
	78456		93049			97040
$1^{8} \mathrm{D}_{2}$	12669	(1)	10692	(4)		
	78933		93528			
$1^{8} \mathrm{D}_{8}$	12506	(4)				
	79962					
$\begin{gathered} 1^{*} \overline{\mathrm{P}}_{0} \\ 109690 \end{gathered}$			12313	(1)		
			81215			
$\begin{gathered} \mathbf{1}^{*} \vec{P}_{\mathrm{x}} \\ 00032 \end{gathered}$	13718	(3)	11429	(1)	*	
	12897		87497			(91491)
	11651	(4)	9958	(2)		
	85830		100422			

Table XII.

Table XIIf.

Classification.	Table XIV.-Singlet systems.			Calculated.
	λ	Int.	Observed.	
$1^{1} \mathrm{~S}_{6}-1^{8} \mathrm{P}_{1}$	155311	20	64387	...
$1^{1} S_{0}-1^{\prime} \mathrm{P}_{1}$	1048.9	12	95338	…
$1^{1} P_{1}-1^{3} S_{1}$	$1826{ }^{\circ} 2$	0	54759	54737
$1^{1} \mathrm{P}_{1}-1^{3} \mathrm{D}_{2}$	15978	0	6258b	62577
$1^{1} \mathrm{P}_{1}-1^{3} \mathrm{D}_{1}$	16101	1	62107	62103
$1^{8} \mathrm{SH}_{1}-2^{1} \mathrm{P}_{1}$	$3689 \cdot 22$	7	$27098{ }^{\circ} 2$	200
$2^{1} \mathrm{P}_{1}-2^{3} \mathrm{~S}_{1}$	482711	1	$20710^{\circ} 4$	20709
$2^{2} \mathrm{P}_{2}-2^{8} \mathrm{D}_{3}$	3827 '66	8	2611.8 '2	\cdots
$1^{8} \mathrm{P}_{2}-1^{1} \mathrm{D}_{3}$	$1118{ }^{\prime} 6$	3	89397	89393
$1^{1} \mathrm{P}_{1}-1^{1} \mathrm{D}_{3}$	171111	4	58442	\cdots
$1^{1} D_{2}-2^{1} \mathrm{P}_{1}$	4272'64	8	23398	23393
$1^{1} \mathrm{D}_{2}-2^{3} \mathrm{P}_{3}$	$4496{ }^{\circ} 12$	3	22235	22234
$1^{1} \mathrm{D}_{3}-2^{3} \mathrm{P}_{1}$	$5779{ }^{\prime} 75$	4	17297	17294
$1^{8} \mathrm{D}_{1}-2^{1} \mathrm{P}_{1}$	5192\%99	4	19254	19260
$1^{3} \mathrm{D}_{2}-2^{\text {P }} \mathrm{P}_{1}$	506290	3	19746	19741
$1^{1} D_{8}-1^{1} F_{8}$	3560.75	6	28076	...
$1^{8} \mathrm{D}_{2}-1^{1} \mathrm{~F}_{8}$	417438	4	23949	...
$2^{8} \mathrm{P}_{1}-\alpha$	3832.94	10	26082	...
$2^{2} \mathrm{P}_{1}$ - ${ }^{\text {a }}$	5003 '59	3	19980	...
$1^{8} D_{3}-\beta$	4182×84	8	23903	...
$1^{1} D_{3}-\beta$	356716	3	28026	...

The term α above is probably $2^{1} D_{s}$ term, while β is of the nature of an F term and is probably $a^{\prime} F$.

Electron configaration.	Term.	Term values for Tl. II,	Term values for Pb. III.
$2 \mathrm{P}_{1}$	$\mathrm{I}^{1} \mathrm{~S}_{0}$	164227	255216
$1 \mathrm{P}_{1} 1 \mathrm{P}_{3}$	$\chi^{8} \mathrm{P}^{2}$	102499	176834
	${ }^{3} \mathrm{P}_{1}$	111837	190829
	${ }^{3} \mathrm{P}_{0}$	114784	19482\%
	$1^{1} \mathrm{P}_{1}$	88565	159879
$1 \mathrm{P}_{3} 1 \mathrm{P}_{8}$	$1{ }^{8} \mathrm{D}_{1}$	47403	96272
	${ }^{8} D_{2}$	47797	97304
	${ }^{8} \mathrm{D}_{1}$	48082	97785
	${ }^{1} \mathrm{D}_{5}$	49064	101434
$1 P_{1} 1 Q_{1}$	$1^{3} \mathrm{~S}_{1}$	59008	105141
$1 \mathrm{P}_{1} 1 \mathrm{R}_{1}$	$2^{3} \mathrm{~S}_{1}$...	57334
$1 \mathrm{P}_{\mathrm{i}} 1 \mathrm{Q}_{4}$	$2^{2} \mathrm{P}_{8}$	42199	79202
	${ }^{5} \mathrm{P}_{1}$	44650	84143
	${ }^{3} \mathrm{P}_{0}$	44866	84307
	$2^{1} \mathrm{P}_{1}$	38020	78043
1PILQs	$2^{3} \mathrm{D}_{8}$	26023	53179
	${ }^{8} \mathrm{D}_{2}$	26172	53628
	${ }^{6} \mathrm{D}_{1}$	26300	53827
	$2^{1} \mathrm{D}_{9}$	27333	58063
IP $1 \mathrm{P}_{4}$	$1^{8} \mathrm{~F}$	(28000)	(64800)
	${ }^{3} \mathrm{~F}_{8}$	28114	65443
	${ }^{2} \mathrm{~F}$,	28014	64941
	${ }_{1}^{1} \mathrm{Fs}_{8}$	\cdots	73358
$1 \mathrm{P}_{4} \mathrm{P}_{7}$	$1^{\prime} \mathrm{G}_{6}$...	36280
	${ }^{8} \mathrm{G}$ (G)	\because	36742
	${ }^{6}$...	37595

Table XVI.-Other Unclasstaled Members of Pb. III.

	$1^{3} \mathrm{P}_{2}$		$1^{3} \mathrm{P}_{1}$		$1^{3} \mathrm{P}_{0}$
1.	$1165 \cdot 1$	(1.0)	995%	(2)	
	76447		91.047		
2.	$1073{ }^{\circ} 1$	(1)	927.7	(3)	894.4 (4)
	93188		107794		111807
3.	10287	(10)	894*	(4)	
	97210		111807		
4.	9085	(1)	802.07		
	110072		124677		
5.	888.5	(3)	786.48	(1)	
	11.2549		127149		
6.	$860 \cdot 6$	(0)	76457	(2)	
	116200		130792		
7.	840.99	(5)	$749 \cdot 09$	(3)	
	118908		133495		
8.	802.03		$718^{\circ} 07$	(2)	
	124684		139262		

Triplet number 7 is identified by Smith, recently as $1^{9} \mathrm{P}-\mathrm{g}^{3} \mathrm{~S}$; but the line 137491 classified by him as $1^{5} \mathrm{P}_{0}-2^{8} \mathrm{~S}_{1}$ is not recorded either by Carroll or Mack.

Spectivim of PZ. IV.
The first successful attempt to find serios regularities among the wavelengths of trebly-ionised spectrum of lead, was that made by Carroll ${ }^{3}$, who idemtifich the first members of the principal and diffuse series occurring in the vacuum grating region. In a rucent communication ${ }^{16}$, the present writer set forth the leading members of the secondary series, which may be expected in the region of longer wavelengths.

The term structure of the spectrum of P1). IV is generally similar in character to that of any chemically analogous atom or ion. Of these the spectra of Au I, Hg II and Tl. III and those of Ge IV and Sn IV have already been analysed to some extent. We have in the atom of Pb. IV, a one electron system, which normally gives the simplest type of alkali-like doublet spectrum. As the clectron runs successively through P_{1}, P_{3}, P_{3}, $Q_{1} . \quad . \quad$ shells, the terms $1,{ }^{2} \mathrm{~S}, 1^{2} \mathrm{I}, 1^{2} \mathrm{D}, 2^{2} \mathrm{~S}$, etc., are obtained, the largest term being $1^{2} \mathrm{~S}_{1}$. The more complicated scheme of doublets and quartuls result, when one or more of the inner group of $10 \mathrm{O}_{3}$, electrons is excited. The terms which different electron configurations give rise to may be calculated according to the principles developed by Pauli, Heisemberg \& Hund and are given in the following table. It will be seen from the table that corresponding to the addition of an electron to the three different states (${ }^{1} \mathrm{~S},{ }^{3} \mathrm{D},{ }^{1} \mathrm{D}$) of the Pb V core, three distinct families of terms arise.

Tablid XVII.

K LMN	0					P			Term prefix.	Terms predicted.	Series limit Pb V term.
$1_{1} \ldots \ldots . .44_{4}$	5_{1}	52	5_{3}	$5{ }_{4}$	55	61	6_{2}	63			
60	2	6	10			(1)			68	${ }^{2} \mathrm{~S}$	
60	2	6	10				(1)		6 p	${ }^{2} \mathrm{P}$	${ }^{1} \mathrm{~S}$
60	2	6	10					(1)	6 d		
60	2	6	9			1(1)			$6 \mathrm{~s}^{1}$		${ }^{8} \mathrm{D}$
60	2	6	9			$1{ }^{1}$	(1)		$6 \mathrm{p}^{2}$	${ }_{2}^{4 P}{ }^{\text {P }}$ D $\mathrm{D}_{\mathrm{F}}^{\mathrm{F}}$	
										${ }_{2}^{2} \mathrm{P} \mathrm{P}^{\text {D }} \mathrm{D} \mathrm{F}^{\text {F }}$	${ }^{3} \mathrm{D}$
60	2	6	9			1		(1)	$6 \mathrm{~d}^{1}$	${ }^{\text {S }}$ P D F G	${ }^{3} \mathrm{D}$
										${ }_{2}^{2} S^{\text {S P P P F G }}$	${ }^{1} \mathrm{D}$

The analysis of Ou I Zn II Au $\mathrm{I} \& \mathrm{H}_{\mathrm{g}}$ II has shown that in addition to the regular doublet systams built on the d^{0} ion there as another important family of terms bu lt on the $d^{9} s$ ion characterized by doublat and quartet terms The deepest term of this system is a metastable D term which is inverted and very low The separation of this deep lying $D\left(d^{9} s\right)$ term can be found approximately by the relativistio doublet formala and by a knowledge of the $D\left(d^{9} s\right)$ difference of the next higher ion As both thess sources of nformation were available att mpts were made to ident fy this inverted D term Further in CuI Zn II AuI etc The metastable D term a found to combine strongly with the regular P term ($d \mathrm{p}$) and with the quartet terms a ising from the $\mathrm{d}^{9} \mathrm{sp}$ configuration 7 he rcecint analysis of the second spark spect rum of Thallium by the author has shown that these terms are tound in the spectrum of Tl III After the pablication of the above mentioned report by the writer Smith published a preliminary report of a simular inv stigation where he suggests an alternative classification which without adducing any reasons he mentions as more p obabl From the application of the ielativistic doublet law to isoelectronic spechat (Au I Hg II Tl III and Pb IV) and from a stady of the progressive variation $\triangle \mathrm{Z}$ in the homologoug spectra C IV s IV Ge IV \& Sn IV it was thought from the be ginning of this investigation that ($2^{3} \mathrm{P}_{2}-\mathbf{R}^{*} \mathrm{P}_{1}$) should be of the ord r of 7000 ± 600 With the ald of the information avalable to the author regarding the stages of ionisation of the spectral l nes in the visible a ad quartr resions a search was made for the frequendy recurrence among the Pb IV l nes and it was found that there were three alternative schernes as oonstituting the probable doublet systems whth $(2 \mathrm{P}-2 \mathrm{P})=683871318063$ respectively It is the pairs of the thave lengths with the last mentioned frequency difference that ware given by Smith as the more proballa Relatinty donblet sequence and progression of $\frac{\Delta}{Z}$ for the doublet sepaations are given in Tables XXI and XX The doablet systems classified by the write are given in Tablo XXI

Tabli XVIII-Patrs	With Friquenoy	Difflurenos a
$\underline{6838}$	$\underline{7131}$	8063
24139	23903	$24 f 8$.
30979	31037	32749
26730	25573	05229
33567	32704	33294
32362	34032	31780
39200	41162	39847
33007	36325	32548
39847	43458	40613

	Table XIX -Regular Doublit Smquenot			
	$1 \mathrm{P}_{22}$	${ }^{*} \triangle$	${ }_{2} \mathrm{P}_{32} \triangle$	${ }^{*} \Delta$
AuI	3815	7859		
Hg II	91227	9773	3672	776
Tl III	14811	11031	5682	860
Pb IV	21060	12047	7130	917

Tablat XX -Variation of dodbliti shiparation with \angle

At. N Z	lleme t	$2 P-2 P$	Δ / Z^{3}	1P-1P	Δ / Z
6	C IV			1074	2983
14	Si IV	162	826	4600	2347
32	Ge IV	942	92	2790	2726
50	Sn IV	21774	871	6507	2602
82	Pb FF	7130	10	21060	3130

Table XXI.-Doubliot Systems of Pb. IV.

	λ	$\boldsymbol{\nu}$	
$1^{2} \mathrm{~S}_{1}-1^{2} \mathrm{P}_{1}$	$1313 \cdot 2$	(9)	76150
$-1^{2} \mathrm{P}_{3}$	$1028 \cdot 7$	(10)	97210

In the first place it should be mentioned that 8,063 given by Smith as $2{ }^{2} \mathrm{P}_{10}$ is found to be abnormally high from the relativistic doublet sequence and from the progressive variation of $\Delta v / \mathrm{Z}^{2}$ in the homolagou ${ }_{S}$ spectra, as shown in the preceding tables. Further, justification for the difference 7130 , reported by the author is afforded by the location and identification of the following triplet as $6 \mathrm{~s}^{2}{ }^{2} \mathrm{D}-7 \mathrm{p}{ }^{2} \mathrm{P}$.

Tablid XXII.

${ }^{2110} \mathrm{p} / \mathrm{d}^{9} \mathrm{~s}^{2}$	${ }^{2} \mathrm{D}_{3}$	21019	${ }^{2} \mathrm{D}_{2}$.
${ }^{2} \mathrm{P}_{1}$	\ldots	$804: 55(1)$	
(71.30)	\ldots	124293	
${ }^{2} \mathrm{P}_{3}$	$65582(3)$	$76090(0)$	
	152439	131420	

There is no evidence of a similar combination with (ither of the r (maining two separations. That the difference $21019 \mathrm{~cm}^{-1}$ represents the difference ${ }^{2} \mathrm{D}_{3}-{ }^{2} \mathrm{D}_{2}\left(\mathrm{c}^{9} \mathrm{~s}^{2}\right)$ of Pb . IV seems to be confirmed by the following comparison with ${ }^{8} D_{18}$ ($d^{9} \mathrm{~s}$) of the next higher ion.

Table XXIII.

Cu.	Ag.	Zn.	Cd.	Tl.	Pb.	
2070	4574	2754	5764	18865	$21300(?)$	$\mathrm{d}^{\mathrm{y}} \mathrm{s}$
2043	4472	2719	5635	18618	21019	$\mathrm{~d}^{9} \mathrm{~s}^{2}$

 given in the following table -

Tably XXIV		
6p /6	D	D
${ }^{4} \mathrm{~F}$		14078 (1)
		71083
F	17499 (1)	12795 (3)
	5714b	78167
F	14392 (2)	11048 (od)
	69478	90510
D		13082 (2)
		76441
D	14371 (1d)	11036 (od)
	69585	90613
D	12336 (3)	97947 (2)
	81068	102096
D	10965 (1d)	
	91189	
${ }^{4} \mathrm{P}$	136260 (0)	10593 (L)
	73381	94400
P	108734 (2)	88498 (6)
P	91968	112997

Summary and aanclusions ।

The spark spectrum of Lead has been photagraphed from $\lambda 7000$ to $\lambda 2000$ by using powerful exciliallati whth a quartz spectrograph and a 10 feet concave grating using uron arc as the standard Many new lund have been measured mostly produced by the higher stages of ionisation The wave numbers wavelcheth intensities together with the steges of ipnisation of the prominent ones have bee i tabulated

A oritical dufferentiation of the lines belonging respectively to Pb I Pb II Pb III Pb IV resulted, a cafafal scratiny of the speatra obtained under vafying degrees of excitation

The analysus of the secpnd and third spark spectra of the element has been discussed in malation theoretical expectations and with the accurate and extensıye data at hand it has been shown that then structures of Pb III and Pb IV are in all detals in complete agreement with Hunds correlation of 唭家 terms with electron onfigurations

The present analysis illustrates in a very convinung manner the utility of the study of the spectras element ander varymg degrees of discharge

In conclugion I wish to express my gratitude to Dr T Rayds the Director of the Kodaikanad (vatory and to Dr A. I. Marayan the Arsagtant Direetor for their actipe interest and much holpful enf
 for the award of a studentshup which has made this work possible

References.

1. Die Naturwissenschaften. 11-78-1923.
2. Zeit. f. Phy. 18-3-1923.
3. Phil. Mag. Sept. 1926.
4. Trans. Roy. Soc. Canada. Se III-1924-77.
5. Zeit. f. Phy. 42-265-1927.
6. Weidem An. 52-p. 93-113-1894.
7. Nova acta reg. Soc. Sc. Upsaalia. 3-6-1868.
8. Denk Schr Wien Akarl, 68 pp. 531-34-1899.
9. Wein Ber 118 pp. $511-24$ and $1077-1100,1909$.
10. Zeits Wiss Photogr. 12-16-1913.
11. Jap. Jour. Phy. 3 No. 1-3-1929.
12. Trans. Roy. Soc. Canada. 22-331-1928.
13. Trans. Roy. Soc. 225-357-1925.
14. Proc. Nat. Acd. Sc. 14-378-1928.
15. Zeit. f. Phy, 59-9-1930.
16. Zeit. f. Phy. 61-1-1930.
17. Ind. J. Phy, V-4—1930.

Expplanation of plates.

I and II Spark Spectra of Leal, Concave Grating Spectrograph.
III and IV Spark Spectra of Lail, Quartz Spectrograph, with increasing inductance a, b, c, d.

KODAJKANAL,
22nd December 1930.
A. S. RAO,

Research Scholar.

Plate I.
Pb (conc. grating.)

Plate II.
(Pb. conc. grating.)

Plate III.
(Pb. quartz.)

Plate IV.
(Pb. quartz-cont.)

