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The PHilosophy of a Doctorate 

The master in the art of living 

makes little distinction between 

his work and his play, 

his labor and his leisure, 

his mind and his body, 

his education and 
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his love and 

his religion. 

He hardly knows which is which. 

He simply pursues his vision of 

excellence in whatever he does, 

leaving others to decide whether 

he is working or playing. 

To him he is always doing 

both. 

- Zen Buddhist text -

The most fruitful areas for growth of the sciences are tho.se 

between established fields. Science has been increasingly 

the task of specialists, in the fields which .show a tendency 

to grow progressively narrower. Important work is delayed 

by the unavailability in one field of results that may have 

already become classical in the next field. It is these 

boundary regions of science that offer the richest 

opportunities to the qualified investigator. 

NORBERT WIENER 
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ABSTRACT 

This thesis is an attempt to blend the latest observations of large scale coherent mo­

tions - coherent structures- observed in experiments with turbulent fluids, [6] with 

different astrophysical situations where turbulent flow is more of a rule than an excep­

tion. We highlight the need to re-invoke the once suggested [2] but long ignored role 

of turbulence in various astrophysical scenarios - viz .. the solar context, the galactic 

level, as well as on the cosmic scale- in the light of some of the latest developments in 

turbulence-studies. These studies have begun to emphasize the role of new invariants 

related to HELICITY and Helical fluctuations in the flow [73]. We feel that these new 

developments if incorporated in astrophysical fluid dynamics, may help in clarifying 

some of the long standing problems in astrophysics related to large scale structures, 

and large scale motions which are well known. 

There is a well observed structural heirarchy in astrophysics viz. the way in 

which the fundamental blocks - galaxies, are clustered in groups and these groups in 

turn are re-grouped as superclusters over vast length scales ranging upto 100 Mpc 

(lpc rv 3 x 1018cm). For example our Galaxy - Milky Way - belongs to the Local 

Group which consists of about 20 galaxies. A cluster may have upto 1000 galaxies. 

A typical linear extent of a cluster could be about 5 Mpc. A supercluster may be 

extending upto 50 Mpc. Further the 'Great Wall' is a linear structure of size 60 Mpc 

by 157 Mpc and is made up of several superclusters. The filamentary nature of matter 

distribution is well known. 

Using kolmogorovic arguments and the newly identified invariants related to he­

licity ( i.e the projection of vorticity along the velocity) and helical fluctuations viz. 

the helicity-helicity correlations (called the I - invariant) we can work out the inertial 

range stationary spectral behaviour for any turbulent medium whose net helicity is 

zero but the helicity variance is a constant. This spectral dependence when translated 

into real space reflects the average energy that resides on each length scale. Thus the 

real space velocity fields also could carry a signature of this behaviour. 

This approach is the 3D analogue of the 2D case where apart from energy, en­

strophy (i.e vorticity squared) is another invariant of the fluid flow. Upon inclusion 
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of dissipation each of the invariants decay at different rates. The slowly decaying 

invariant generally cascades towards the larger scales and the faster one cascades to 

the smaller scales. 

Levich et al. [73] , had evolved after a detailed study of the mesoscale atmospheric 

phenomena, a turbulent stationary spectrum which explains the energetics of the 

cloud complexes over a range of scales. A similar spectrum was also employed to 

study the solar granulation scales by Krishan [16], which again could match with the 

observed and predicted energetics. Later, on a cosmic - scale too Krishan [8] and, 

Krishan and Sivaram [17] showed that the entire heirarchy of structures ranging from 

a galaxy to superclusters could be visualised as the consequence of similar turbulent 

processes operating over the whole range and leading to self-organized coherent states 

at various levels. 

To further verify the full spectrum in the astrophysical context we fit the real space 

velocity fields of various galaxies - known as 'rotation- curves'; with the predicted 

spectrum [9]. This exercise has yielded remarkable agreement with the spectra and 

galactic-velocity fields. The parameters of turbulence so extracted from the fits are 

comparable with similar estimates made by other methods. 

Next we test our proposed velocity-laws for the galactic velocity field, with the 

well known Tully-Fisher relation which highlights a tight correlation between the 

rotation velocity and the luminosity of a galaxy in various bands [87]. This is a 

statistical study wherein our interest is focussed on the correlations between the 

galactic luminosity with the 'turbulent' and 'gravity' components of the velocity field 

, which our model could resolve after the proper fits are performed to the observed 

velocity fields. We confirm the normal trend of correlations with the total velocity 

first. For the individual correlations between the galactic luminosity and each of 

the velocity components , our study reveals an interesting feature. The turbulent 

component correlates reasonably better than the gravity component in the shorter 

wavebands. Whereas the gravity component correlates better than the turbulent 

component in the longer wavebands. This implies that the so called 'scatter' observed 

in the shorter wavelength bands could be a feature of galactic-turbulence which might 

be playing some constructive role in generating the observed large scale velocity field. 
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Thus our study points out the necessity to re-consider the role of the self-organizing 

aspects of turbulent flows on galactic scales. Our results also convey the fact that 

our model is doing well in estimating the extent of gravity, and turbulence induced 

velocities. 

In an attempt to understand the generation of such large scale flows and other 

features of self-organization Frisch et al had performed a multi scale analysis of the 

Reynolds averaged set of Navier stokes equations with a well-defined forcing intro­

duced on the small scales. They discovered that there indeed exists a large scale 

instability provided there is some small scale anisotropy in the flow. This is possible 

if the turbulent medium lacks parity on small scales (i.e the statistical averages of 

the medium are NOT reflection invariant). Such a situation can be brought about by 

injecting helicity into the medium (on small scales), by rotation, or by compressibility 

effects or by using the specific forcing term used by Frisch et a1. in their analysis. 

This mechanism has its analogue in the DYNAMO MEOHANISM which is invoked 

for the generation of large scale magnetic fields, called the alpha effect. In fact the 

equation for the evolution of VORTICITY, and the evolution of the MAGNETIC 

FIELD.. are similar in their structure. 

In order to prepare the ground for studying the mechanism in the context of an 

expanding universe we find a set of transformations which can help us in reducing 

the equations in the expanding frame to the normal Navier Stokes formulation [98] . 

This could then be used in the study of the formation of large scale structures in the 

universe which is indeed a long standing problem. 

Frisch et aI, and Sulem et al [27];[71] had performed extensive numerical sim­

ulation of the incompressible Navier Stokes equation with a specific forcing term 

which produces a parity breaking velocity field on small scales. Later Druzhinin and 

Khomenko [101] also studied the same set of equations with compressibility effects 

We have performed a 32 x 32 x 32 numerical simulation of a compressible fluid 

(using spectral methods in a periodic box) on the IBM SP2 Convoy (as well as on 

the Power Challenge system) with parallelisation techniques implemented [102]. We 

have not used any empirical model to close our Reynolds averaged set of equations 

for the large and the small scales . Instead we perform a spatial averaging over the 
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entire real domain of velocity field at every time step. We choose a suitable length 

scale over which to average, so that we get a statistically significant number of points 

over the grid. This we feel is a best approximation to the idea of ensemble averaging 

We confirm that an inverse cascade of energy occurs when the fluid is forced 

on small scales with a forcing function which violates parity. We also study the 

evolution of helicity, vorticity, and density spectra in the simulation. We find that 

the compressibility of the medium also aids in generating a velocity field which lacks 

parity. 



Contents 

1 INTRODUCTION 1 

1.1 Fluid turbulence: Then and Now 1 

1.2 Turbulence - the Kolmogorovic way 3 

1.3 Turbulence - the Navier - Stokes way 14 

1.4 Astrophysical Turbulence. 20 

1.5 Primordial Turbulence .. 21 

2 FLAT ROTATION - CURVES OF GALAXIES 26 

2.1 Introduction . . . . . 26 

2.2 The Inverse Cascade 28 

2.3 The Kolmogorov approach 29 

2.4 Modelling of Rotation Curves 31 

2.5 Results ........... 32 

2.6 Discussion and Conclusion 67 

3 TURBULENCE, GRAVITY & THE TULLY-FISHER RELATION 11 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 71 

3.2 The Sample And The TULLY - FISHER Relation 72 

3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . 80 

4 ROLE OF HELICITY IN AN EXPANDING FLUID 86 

xi 



Contents 

4.1 Introduction................. .. 

4.2 The basic equations and the transformations 

4.3 Helicity and density evolutions ... 

4.4 Interesting features of the evolution 

4.5 Conclusion .............. . 

5 SIMULATING 'INVERSE CASCADE' 

5.1 Coherent Structures in turbulence . 

5.2 The basic equations. . 

5.3 Simulation and results 

A Statistics 

A.l Correlation coefficient 

A.2 Skewness and Kurtosis 

B Notes on the 1- Invariant 

B.l The Proof of 1- invariance 

B.2 Proof of J(k) ex: E(k)2 

References 

xii 

86 

87 

92 

94 

96 

97 

97 

98 

100 

110 

110 

111 

112 

112 

114 

116 



List of Figures 

1.1 The complete turbulent energy spectrum ...... . 

2.1 Rotation Curve of UGC 12498 in the Pegasus cluster 

2.2 Rotation Curve of NGC 7593 in Pegasus cluster .. 

2.3 Rotation curve of NGC 7631 in Pegasus cluster. 

2.4 Rotation curve NGC 2558 in the Cancer cluster. 

2.5 Rotation curve of NGC 2595 in the Cancer cluster. 

2.6 Rotation curve of NGC 4848 in the Coma cluster. 

2.7 Rotation curve of NGC 4921 in the Coma cluster. 

2.8 Rotation curve of Z 160-106 in the Coma cluster. 

2.9 Rotation curve of Z 130-008 in the Coma cluster. 

2.10 Rotation curve of Z 119-043 in the Cancer cluster .. 

2.11 Rotation curve of Z 119-053 in the Cancer cluster .. 

2.12 Rotation curve of UGC 4386 in the Cancer cluster. 

2.13 Rotation curve of Z 160-058 in the Coma cluster. 

2.14 Rotation curve of NGC 4911 in the Coma cluster. 

2.15 Rotaion curve of VCC 10085 in the Hercules cluster. 

2.16 Rotation curve of NGC 6045 in the Hercules cluster .. 

2.17 Rotation curve of NGC 7536 in the Pegasus cluster. 

2.18 Rotation curve of NGC 3282 in Abell 539 cluster. 

2:19 Rotation curve of UGC 4329 in Cancer cluster 

xiii 

.. .. . .. .. .. .. .. .. 13 

40 

40 

41 

41 

42 

42 

43 

43 

44 

44 

45 

45 

46 

46 

47 

47 

48 

48 

49 



Contents 

2.20 Rotation curve of NGC 7643 in Pegasus cluster 

2.21 Rotation curve of UGC 3269 in Abell 539 cluster 

2.22 Rotation curves of galaxies from Rubin's data . . 

2.23 Rotation curves of galaxies from Rubin's data contd .. 

2.24 Rotation curves of galaxies from Rubin's data contd .. 

2.25 Rotation curves of galaxies from Rubin's data contd .. 

2.26 Rotation curves of galaxies from Rubin's data .contd ... 

2.27 Rotation curves of galaxies from Rubin's data, contd .. 

2.28 Rotaion curves of galaxies from Rubin's data ,contd .. 

2.29 Rotation curves of galaxies from Amram's data. . .. 

2.30 Rotation curves of galaxies from Amram's data contd .. 

2.31 Rotation curves of galaxies from Amrams's data contd ... 

2.32 Histogram showing the distribution of the turbulence parameter € 

2.33 Histogram showing the distribution of L z 

2.34 Histogram showing the distribution of masses (M) derived from our 

xiv 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

modelfits. .......... . . . . . . . . . . . . . . . . . . . . . .. 63 

2.35 Histogram showing the distribution of w for all the galaxies in our data 

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

2.36 Histogram showing the distribution of the turbulence parameter 'T 65 

2.37 Histogram showing the distribution of turbulent velocities Va . . . 66 

3.1 The scatter plot between different velocity components and luminosi-

ties of the galaxies in different bands viz. U , B , V, I and 1'1.3.5' .• , 81 

3.2 Histogram showing the distribution of mass to luminosity ratios in the 

B- band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 

3.3 Histogram showing the distribution of mass to luminosity ratios in the 

U- band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 



Contents xv 

3.4 Histogram showing the distribution of mass to luminosity ratios in the 

V- band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

3.5 Histogram showing the distribution of mass to luminosity ratios in the 

1- band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 84 

3.6 Histogram showing the distribution of mass to luminosity ratios in the 

123.5- band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

5.1 Figure showing the constancy of total mass inside the periodic box. 104 

5.2 Figure showing the density of states. . . . . . . . . . . . . . . . . .. 104 

5.3 The evolution of the energy in wave modes k=1,2,and 6 with forcing 

(at k=4) ................................. 105 

5.4 The evolution of the energy in wave modes k=1,2,and 6 without forcing 

5.5 The energy spectrum 

5.6 The helicity spectrum (initial) (H(k) vs. Log(k)) . 

5.7 The helicity spectrum (final) (H(k) vs. Log(k)) 

5.8 The evolution of total Helicity with time .. 

5.9 The vorticity spectrum ......... . 

5.10 The Helicity distribution in space at two different instants 

5.11 The initial velocity field along a z-y plane ... 

5.12 The final mean velocity field along the z-y plane 

5.13 The density evolution. ., ........... . 

105 

106 

106 

107 

107 

108 

109 

109 

109 

109 



List of Tables 

2.1 Table showing the 'fur bulence Parameters 34 

2.2 Table showing Lz,w,and masses .... 35 

2.3 Table showing Turbulence parameters. 36 

2.4 Table showing Turbulence parameters contd .. 37 

2.5 Table showing Mass, w,and Lz ..... 38 

2.6 Table showing Mass, w,and Lz contd ... 39 

3.1 Photometric data . . . . . . . . . . .. 74 

3.2 Table showing the Photometric data, contd .. 75 

3.3 Table showing the Photometric data, contd .. 76 

3.4 Table showing the 'graviti and 'turbulent' velocity components 77 

3.5 Table showing the 'gravity' and 'turbulent' velocity components contd .. 78 

3.6 Table showing the 'gravity' and 'turbulent' velocity components, contd .. 79 

xvi 



Perhaps the Fundamental equation that describes the swirling nebulae and the 

condensing , revolving, and exploding stars and galaxies is just a simple equation for 

the hydrodynamic behavior of nearly pure hydrogen gas 

Richard.P.Feynman - Lectures on Physics, Chapter 41," Flow of wet water" 

Chapter 1 

INTRODUCTION 

1.1 Fluid turbulence: Then and Now 

A simple definition of turbulence is the existence and interaction of many spatial and 

temporal scales in a fluid. Fluid turbulence has remained the last unsolved classical 

problem in physics for nearly 300 years [1]. Moreover it is also an all pervading 

phenomenon. If the flow of blood in our arteries is turbulent so is the flow of air 

blown out of a musicians flute, and so is the flow around automobiles and aircrafts. 

The atmosphere of our planet is turbulent, thus keeping our meteorologists busy and 

guessing all the time. Indeed, turbulence is as rich in variety as it is difficult to grasp. 

Jupiter's red-spot has long been thought of as a 'perennial cyclone' by researchers 

and artists alike. Indeed they both have proved to be right for research has led us 

to believe that turbulence is not just 'disordered motion' it could also be a source of 

'order and structure'. Talking about structure, astronomers and astrophysicists have 

long been wondering at the marvellous observations of 'structure on almost all scales' 

which the universe presents us with. The cellular structures on our sun, the spiral 

structure of galaxies, the clustering of galaxies, and superclustering of clusters - there 

seems to be a mysterious undertone of order on all scales. Studying the origins of 

1 
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this 'order' ha.'\ been the preoccupa.t.ion of many brilliant mind::;. V()I1 Weiza.<:kor [2), 

George Gamow, [3] Jim Peebles [4], Z~ldovich [5] and many ot.hen'R have nt.t.mnpt.Cld 

to ~t.ndy tIl(' role of turbulence in pf<l<iucing t.he Wl.c;;t, fa.brk of ()hHerv~d ~t.ructllm.l 

- lwirarchy. Thdr drort.s hnve hOrn(1 011t. mmlt.s ranging from SkC1pt.kiHlll rcgardinp; 

the need to inv()k~ tUl'bulencc (p(1ehl(~s) t.o twlid t.hat. t.llrhulmlcn ill incic1nd tH~cd(1c1. 

This wide spect.rum of (~()ndusions is tlIl<i(1fst,(tncill,bln ~itl(:(1 t.hr. Ht.udy of '!ttl)()ratory 

turhul(111<:(~' itself is a SOUr(~Cl (If t.rNIHmdol1s pOfisihiJi tics of b(1hll.vior. It. is only reccntly 

t.hat ('xpcrimcIlts ha,vc r(1vNtlc<i I.h(1 PWSN1C(~ of 'mhnf(!nt. st.rlwt.llf(1l';' in fillCh t urbulont. 

- medin, Th(! numerical simulat.ions of t.urlllllmw!l haNe! c:orroh()rll.t.(1d t.his Vi(1W (!vcn 

when r(1strktcd t.o t.heir Jimit,nci domain of computational capabilit.iNi [6]. (W~ st.ill do 

not. have the reS()l1rc~s t.o numerkfdly SiIllUlll.tf' (~V(,11 th!1 KimpinHt. cwcryday l.urhul<mt. 

ph(~nom(malikc say th(~ Hlllokn mmmat.ing out, of a ('himn('y!!). Y(!t, sliGh siumintiolls elf) 

give IlS an insight. into t.lw vl\.riouH proCNiH(1S I\.t, work itl t.il(! evolut.ion of a turbulmt, 

fluid. Thus thil'l provides 'food for t.ll<lup;ht.' for t,hcorel.ida,nll who nrC! way hehind 

in ca.pt.minK t.h(~ (ltls(m<:n of Hllch bdlll.Vior ill thdr (1(lllnt.iolls t.0 fcprnd11cr. tlw zoo of 

anima.lH whic:h t.urblll(>I1C~e ha.rb<lfH and whkh the (~Xl)(!rimmlt.(\rH have wdl dC:)(:l11tWJlt.(~d 

by tlwir pailltltllking ()ht-iNVI1.tiOI1I'1, L()()king 1\1. t}1{1 infaIl(~y of thc~HC rww ci<'vdopnU'uts 

it, iH ul1<i(m.;tnuciabI<1 t.hat. t.lw div(,fH(! Vi(!WH hdd hy flc:i(IUtiHI.S ill other (~()mml1l1it.i(~1i 

t.rying t.o 'l1.pply turbulclIm' W(~r<l just. t.}w rr.fl(~r,t.iollH of an 'ill(!ompl(1t.c pir.t.IITI!', This 

allio rf'<}uir('s thnt. W(l tak(~ a frn:-ih look at. t.iwHn i nt.nr<lindpli nltry fidel:; t,imc~ Iltld I~p;ni II 

to upcint(' (ltlrSdV(1H wit.h slIflid(!Ilt.ly IlC~W t.nolH and idm1.'! ll(~f(lf(' we ('mIHi(ier t.hdr 

applicat.ion to !l.ny ot,}I(~r diRc.iplit1(~, 

ThiH t.h(~KiH ('OllWfi ulldm Hudl all int.(·rdh,wiplimtry ('frort. t.o highliv;ht t.lw rol(~ of 

rlmv id(~a.s in t.lw fnrnmt,jon ()f ('oh('wut. st,rudur(~1i in n. t.llrbul(·ul, tlH'dil~, ill Ht,rud.lIr(~ 

- forma.tion Hc(marimi in n ..... t.rophysks. Alt.holl)l;h tJw major ('mphaRis iH Inid un t,}w 

IlwdmlliHIll, t.hl! I>()t,C'Ilt.inI for applying it to ('nS(~H of n .. "it.mphYHirnl int.(1l'('Ht. hl\V<~ a.iHO 

h(~rl1 cxplorC'(i wit.h e<H1HidmtLhl(~ Hll(,(:PI'i:-i, {Pg. linlnr gmnuh1.t.jofl 17J,[16], cosmic alpha 

(~m1ct in dmit.ering [BJ, rot,at.ioll <:urVCH of galnxi('H [OJ (~t,(~ .. ) 
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1.2 Turbulence - the Kolmogorovic way 

Eventhough the problem of turbulence remains intractable till date, one of the most 

ingenious insights into the nature of turbulence was provided by Kolmogorov in a 

seemingly trivial style [10]. The essence of his path breaking find was based on 

simple assumptions regarding the turbulence - energetics. Kolmogorov assumed that 

the energy was being exchanged between different spatial scales (say from the large to 

small scales) at a constant rate which was independent of the scale and the viscosity 

of the fluid. Thus there exists a quasi-stationary range of scales called the inertial 

range where the energy is exchanged among scales at a constant rate independent 

of the scale. The energy cascades from large scales to small scales. This process 

continues untill the energy reaches the smallest scales corresponding to the molecular 

sizes where it is finally converted into heat due to the viscosity of the fluid . 
.... 

Thus, if V is the typical velocity on a scale L , and say the energy of this scale 

is drained to a subsequent scale within a time say T , then V 2 IT = € where t' is the 

rate at which energy is exchanged between the scales and is a constant for any scale 

within the inertial range. Therefore for any other scale l with a velocity if the rate 

of energy dissipation is also E. If we assume that each scales retains it's energy for it 

period which is the same a..c; the eddy - turnover time r, then T=r = L/V (flay). So, 

V2 IT = V3 I L = f and thus for any other scale also, v3 I l = € = con.CJtant. Translating 

the same into the fourier space, so that r = (kVk)-l , (where k is the wavenumber 

and Vk is the velocity in the fourier space )we get: 

(1.1) 

The energy spectrum E(k) is defined a..c; : 

(1.2) 

Equations (1.1) and (1.2) give: 

k (kE(k))3/2 = f 

or 
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from which we can see that 

(1.3) 

Equation (1.3) is the famous 'Kolmogorovs 5/3' rd law. 

This approach helps us to predict the qua..c;i-st.at.ionary spectral beha.vior in t.lw 

inertial range. In two-dimensional inviscid fluid turbulenco, apart from enorgy , a 

quantity called enstrophy is also a conserved quantity. Enstrophy O,is the VO!tlIlHl 

integral of vorticity (w = \l x '\1) squared. i.e 

(1 A) 

Ba..c;ed on this we can work out the enstrophy spcctrum as: 

or, using the equation (1.2), 

using the kolmogorov 5/3 rd law for the oncrgy spectrum E(k), we) get. 

( l.fj) 

Looking at the spectral depcndc1llce it can be srl(lIl that, the cnstrophy S2 with it.H 

k dependence a..c; k4/3 will dominate nt. large k or small spatial Hcal~l'l, wlwr<~nR t.ll(! 

kolmogorovenergy spectrum E(k) ex k-r-./:I will dominat.e at sma.lI k. Upcm itl(~l\lsi(m 

of dissipation , t.hese illvariantfl would dC1Ca.y. Th(~ dcc:a.y rat.es nr(! 1101. lW(:(IHHurily 

the sa.me. Since n is concentrn.ted mostly on Hnmll sca.l(!R, it. WOllid di:-i."'lipat.(1 fIl.Ht(~r 

t.han energy. Event. ually two differcmt inertial RU bmng(~s am formed wlwr(1in w{! find 

different, energy spectra dep<mding on t.he type of spectral dopencicll(:e of t.h(! irlVllrhmt. 

with the scales. For 2D t,urbulencc, in the inertial rallgC1 corresponding t;() CflHt.mphy, 

we have: 

( 1.6) 

Combining the above equation with equation (1.2) we have 
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or 

leading to : 

k5/ 9E 3/ 2 _ ' 
k - € 

5 

(1.7) 

These relations are based on the fact that enstrophy exchange rate €' is constant 

like the energy exchange rate € Thus energy is expected to cascade towards larger 

. scales and enstrophy would cascade towards smaller ones. This is a case for Inverse 

Cascade of Energy. 

The foregoing discussion pertains to the selective dissipation hypothesis, wherein 

the system is said to relax towards a state of equilibrium with one invariant almost 

constant and the other decaying rapidly. For example in the 2D case enstrophy 

suffers larger dissipation than energy [11]. This problem of optimizing the state can 

be treated variationally. 

There is a direct numerical evidence showing that the above kolmogorovic argu­

ments coupled with the selective dissipation hypothesis are correct. Lilly et al [12] 

have shown such a behavior in their extensive numerical simulations. It would be 

natural to ask whether such an inverse cascade could occur in a three-dimensional 

medium. This question was not answered in the affirmative till recently. The reason 

being the lack of knowledge of invariants analogus to enstrophy in the 2D case. It 

is only a recent realization that the helicity related invariants viz .. helicity - helicity 

correlation , is a robust invariant. 

An example of Inverse Cascade in 3 D Magnetahydradynamics (MHD) is provided 

by the 'dynamo - model' far generating large scale magnetic fields from small scale 

seed fields (see for example, the review on Galactic Magnetism, by Beck et aI, [13]). 

The basic magnetic induction equation is : 

oR ( .... ) 2 .... at = v x V x B + 'lJV' B (1.8) 

Where '17 is the magnetic diffusivity of the medium (inversely proportional to the 

electrical conductivity), vis the turbulent velocity field. We decompose 13 in the form 



where Eo is tlw 'mean' field varying OIl a Htnlc I of t.h(~ turbulmH:(1. The mean and 

fluctuating part.s of (1.8) arc thml: 

oi~) .,. 'i. ... 
--;-'- == V X ( + 11" no at. 

Db (-) ... 2'" -:--) =:" x 'it x Bu +" x (; + 7,V b 
d 

(1.9) 

(1.10) 

where (' = (i1 x B)and G == i1 x 13 - t Eql1nt.i<m (1.10) (~Ht.ltblishcs a linear 

r<!iat.ionship bet.weml ;; and 13~) a.nd so lwtw('(1tl t and Bo. ThiH relationship in g<lMral 

admits expansioll in t.h(\ form: 

(1.11) 

Whnr(1 th(1 PS(!lHl0 t.ensor (!oeffidmt.H (~,j, #i.jk (~t.c .. arc! d(!t,nrmined by t,hn st.ntisl,ical 

prop(1rt,ies of Uw t.urbulctH!(\ and Uw pnl'Il.Hwt.('f 11. Explidl. d('1.(1rlllinat.ion of thnH(l 

c()('ffidnnt.H rH<}uirm; solut.ion of tJw fludua.t,ioll ('qllat,ion (1.10). TIl(! Himp1<1Ht Hit.llation 

iH t.hat. in which Uw umglwt.k Rl'ynolds 1I1lllllwr of t.llC' t.urhul(,I1(!(1, R"II =- 'uolj1}, iH 

small ('Uo hdng t.h(! root, nWll.l1 squmc vf'lndt.y). In t.his ('H.'i(! t.lw t.(~rlll V x G in 

('quat.ion (1.10) (~aIl b(' twgl(\<:(.<'d, and HI<! r('slIll.in~ lirH'ar I'cttUtt.ion limy he so\v(!d hy 

st.anda.rd P()Uri(lf t.(!ehlliqlws. 'I'll(' mmlt, fur t.ll(' \(,Ildin~ (~{)(ifli(·i('ut. (~iJ iH : 

( 1.12) 

wh(~r(~ H(k, w}is t.lw IIjwlidt.y Slwdrtlm" of t.lw turlmlml(,(~, i.e' l.lw Fuuri<!f t.ramlform 

or t.il(' quant.it.y 

(Ii(x, l).w(x I r, f t r)) 

This sI)(~<:t.rl1m obviomiiy ha.'i tJIC' prorwrt.y 

Thcrdorc w(' find n. dir{~d. rclnt.ionship hf't.w(~lI tJH! h(llidt,y Hp(~ctrum function 

anel the lending ord(~r t.<mll in t.lw important. rxpnmdon (1.11). If t.he t,llrhulenr,c 

is isot.ropic ( in n w(~ak Semi(!, t.o indkatc iuvn.rian(!(! undr.r rotations of t.he: fraIll(\ 
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of reference, but not necessarily under parity transformations) then the mean field 

equation (1.9) takes the form 

aB~ ... 2'" at = a V x Bo + ('l/ + ,8) \7 Bo (1.13) 

where we have assumed that a, and {3 are uniform and constant, as appropriate for 

turbulence that is homogeneous and statistically stationary. It is easy to see that this 

equation admits unstable solutions. 

The above equation shows that on large scales the viscous term is :relatively weaker 

than the 'curl' term. Thus for any large-scale perturbation there can exist modes 

which grow, leading to a subsequent amplification of magnetic field. The coefficient o! 

associated with the growing term vanishes for a fully isotropic medium, thus empha­

sising the fact that some anisotropy is needed for the dynamo to work. The presence 

of helici ty , h = v. V x v helps in bringing about such conditions. 

A striking analogy exists between the above induction equation for magnetic fields 

and the vorticity equation for a fluid. 

(1.14) 

For a fluid too the presence of helicity helps in more ways than one. First he­

licity is an invariant for an inviscid fluid and it is related to the knottedness of the 

vorticity-field. Second it has also been widely conjectured that any local concentra­

tion of helkity in a fluid stems the downward cascade of energy. The idea behind 

this conjecture is that the normal cascade of energy from the energy containing large 

scales to the energy draining small scale is attributed to the intensity of the v.Vii 

term in the Navier - Stoke equation. The convective term may be re-written as : 

(v.V)7J = 7J x W + V(v2 /2) 

it follows that presence of helicity i.e an alignment of v and w implies smallness of 

v x wand therefore the weakening of the non-linear term which would in turn imply 

a retardation of energy decay towards small scales. Many numerical simulations have 

borne evidence to this idea, thus establishing a definitive connection between helicity 

and the retarded energy decay process. 



Chapter 1 8 

The basic scenario of inverse cascade is based on the pertinent observations that 

coherent structures are inherently helical. But it is likely that most of the natural 

flows have zero net helicity, though they may have a random distribution of helicities 

Under such circumstances it may nevertheless happen that the higher moments of 

the helicity distribution are constant and exert an influence on the statistics of the 

flow. Suppose for example that the space is divided into cells Vi bounded by surfaces 

Sj (which move with the fluid) on each of which the condition n.w = 0 is satisfied (for 

all t) and let h(i) = Jv; u.wdV be the net helicity of the flow in the cell Vi. Then each 

h(i) is an inviscid invariant of the flow. Consider now a large volume V containing 

many such cells. We may define the moments: 

and these are all inviscid invariants. Hl is the mean helicity of the flow as previ­

ously defined. If Mi) are randomly distributed with equal probability of positive and 

negative values, then 

and Hl = O. However, all even moments (and in particular H2 are finite and 

non-zero; and although the mean helicity is zero, the fluctuations about the mean 

have constant variance. Indeed in many simulations it has been fond that helical 

fluctuations on all scales in a turbulent medium seem to play an important role in 

deciding the wvolution of the flow. A volume of fluid containing helicity - fluctuations 

seems to dissipate less! Theoretical analysis proves the invariance of the quantity 

called I, which is defined as follows: 

I = lim V1 J (h(x)h{x + r)) d3r 
v-+oo 

(1.15) 

The conservation of this integral is proved in Appendix B. The invariance of I has 

important consequences for the classical problem of the isotropic turbulence decay in 

its initial period. Kolmogorov found the decay laws: 

(1.16) 
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Here 3u2 = (v 2 ), t is time to is the fictitious time instant j the 'integral scale' lp is 

defined as lp = u-2 J~ (vp(O)vp(r)) dr where vp is the velocity projection on the vector 

f. 

Kolmogorov assumed the conservation of the Loitsiansky integral A 

(1.17) 

The energy spectrum Ek in the 'two - range model' is given as: 

K €2/3 k-5/3 kL ::; k ::; kd (1.18) 

- 0 k > kd 

In this model the conservation of the Loitsiansky integral is equivalent to the time 

independence of B. A and B can only be conserved approximately. Instead if the 

spectrum in the range of small k can be of the form Ek = Ck2 (Saffman [14])" where 

C is conserved, then the two -range model yields 

(1.19) 

The conservation of C is connected with the momentum conservation by Navier­

Stokes equations like the I - invariance , which is connected with the conservation 

of helicity, and the Loitsiansky invariant which is related to the angular momentum 

conservation. But the above model is inconsistent with the invariance of I , since it 

leads to unacceptable results: u2 = const, kL = const. 

Frenkel and Levich [15] suggested a new three range model for freely evolving 

homogeneous turbulence with high Reynolds numbers, in connection with the con­

servation of 1- the density of mean square helicity. The model is as follows: 

o ::; k :::; ks(t)j 

ks(t) :::; k ~ kdt) (1.20) 
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k8(t) ~ kdt) 

kL(t) ~ k ~ kd(t) 

The corresponding power law of energy decay was found to be slower than in 

conventional two-range models for all values of q. The slowness of the decay of 

energy spectrum derived from the invariance of I means that the flow at any instant 

of time contains large scale fluctuations such that each of them has a non-zero value 

of helicity. Then the transfer term V x (iJ x w) tends to zero, thus inhibiting the 

energy cascade to small scales. These large fluctuations of helicity, when the energy 

cascade to small scales is inhibited, are reminiscent of the picture of 'large eddies' 

envisaged by Townsend [15]. 

Thus in a three-dimensional medium apart from energy, I is also an invariant. 

We can work out the spectral dependence using dimensional arguments as follows: 

following equation (1.15),: 

where we have used volume integration for the ensemble averaging. Further using 

equation (1.2) we can see that 

now using J == f J(k)dk we have from the above equation 

J(k) = E(k)2 

Alternatively it has been shown that for a quasi - gaussian distribution of helicities, 

the J(k) spectrum would look like: 

J(k) ex: E(k)2 <X k-10/ 3 

Because of the steeper dependence on k it can be inferred that the I invariant 

dominates towards larger scales and the energy E(k) <X k-5/3 dominates at compari­

tively small scales. Translating the spectral law to physical space we find: (Refer to 
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Chapter 2 for the detailed derivation) 

E(l) ex Log(l/lz) 

where lz is any arbitrary normalizing length scale. This implies that very little energy 

is carried up to large scales. But with such a cascade more and more scales get involved 

in a correlated motion. But such a growth is restricted in the vertical direction by 

gravity or buoyancy. The largest vertical dimension of a fully 3D structure is given 

by the ratio 
J 

L= E2 =Lz 

, where L z is the characteristic vertical scale. When the correlation length of helicity 

fluctuations reaches the limit L z , it can only grow in the horizontal plane. The system 

becomes more and more anisotropic due to this. Under these circumstances, the 

vertical component of velocity Vz , becomes independent of (x, y, z) and the horizontal 

components Vx and Vy become independent of z leading to Wu;,y = (\7 x v)x,y = O. 

The J invariant then becomes 

J - J ((vzwz)2) dxdydz 

- L z (vz2 ) k2vk2k-2 

(1.21) 

From I = J J(k)dk, it follows that, J(k) ex k-5/ 3 L, now refers to the length 

scale in the horizontal plane. The J(k) spectrum here coincides with the energy 

spectrum of 2D turbulence E(k) ex k- 5/ 3 , corresponding to the inverse cascade. One 

expects that an increasing fraction of energy is transferred to large spatial scales as 

the anisotropy in the system increases. The growth of large structures in a highly 

anisotropic turbulence can be interrupted as a result of symmetry breaking caused by 

Coriolis force. The length scale Lc where the non-linear term of the Navier- Stokes 

equation becomes comparable to the Coriolis force can be determined from 

(v.V) v = 2 (v x n) - n x (0 x r) 
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or Lc = vlO, where 0 here is the angular velocity. Given Sufficient energy, structures 

of size Lc must form. At these large spatial scales, the system simulates 2D behavior 

and the enstrophy conservation begins to playa role. One may consider scales L ~ Lc 

as a source of vorticity injection into the system. The enstrophy then cascades towards 

small scales with a power-law spectrum given by 

(1.22) 

Thus there is a break in the energy spectrum, as energy must cascade to larger spatial 

scales as L2/3 and to small scales as L2. The energy must therefore accumulate at 

L ~ Lc and eventually pass on to the highest possible scales of the general circulation 

of the structure. 

Since the larger structures are formed by an inverse cascade process their energy 

should definitely not exceed the energy contained in the small scales. This argument 

leads to an upper limit to the scale on which structures can be formed. In the case 

of the earth's atmosphere this has lead to a conclusion that structures on the scale of 

300 km can be formed starting from clouds of the size of say 3 km. 

In conclusion, we learn using the dimensional arguments of Kolmogorov that the 

energy spectrum consists of several branches; beginning with k;-5/3 at small scales, 

going as k-1 , then again as k-5/ 3 to k-3 at the largest scales. Evidence for such a 

spectrum has been seen in atmospheric turbulence. We reproduce the entire spectrum 

below. 
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Figure 1.1: The complete turbulent energy spectrum. Lz - scale ()f tJl(~ fin.;t, rm~n.k dun 

to anisotropy; Lc - scale of the second break due to the Coriolis fOf<!(l. 
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The same spectrum has also been employed by Krishan [16], and Krishan and 

Sivaram [17], to explain the heirarchy of structures that have been observed on the 

solar atmosphere as well as for the heirarchy of structures observed in the universe. (See 

also [18] [19] ). 

Further in this thesis we shall be studying the role played by Log(l) branch, in 

explaining the flat rotation curves of spiral galaxies. 

1.3 Turbulence - the Navier - Stokes way 

In the preceding section we have seen how the quasi steady-state energy spectra 

could be derived with the use of simple dimensional arguments. We would, in fact, 

wish to obtain a more rigorous proof for all that which the Kolmogorovic arguments 

lead us to. That is, we would expect our system of equations for a fluid .. viz .. 

the momentum equation - the N avier- Stokes equation, and the mass- conservation 

equation, continuity equation,- to yield such an energy distribution in the course 

of evolution of a turbulent fluid. In fact, simple as it may seem, the problem of 

turbulence addressed this way, leads to tremendous problems both of the analytical 

and conceptual kind. The N avier - Stokes equation is plagued with non-linearities 

generated by the advective term (v.V').i1 . 

If a turbulent medium is treated in a statistical sense of considering averages only 

implementing the ideas of Reynolds-averaging, we encounter a closure problem. By 

this we mean that whatever we do we are always left with more unknowns in our 

system of equations than the number of equations! There is no way around this 

problem. The only alternative is to artificially close the system of equations with 

empirical inputs or some other closure hypothesis for dealing with the averages. 

Apart from this statistical approach, there are only a handful of specific situa­

tions where the Navier-Stokes equations can be solved exactly. In general, the only 

alternative is the Direct Numerical Simulation! Even on the Computing front the 

picture is not all that bright. It calls for a huge computing infrastructure to verify 

what Kolmogorov predicted with his brilliant insight. Today, we are just beginning 
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to have a glimpse of success, for the Kolmogorov spectrum is well- observed in some 

of the recent numerical simulations [20]. 

Khomenko et al [21] have, using a statistical approach, shown that the compress­

ible turbulence can give rise to large scale structures, through an effect analogous 

to the Alpha Effect for the generation of large scale magnetic field. They call it the 

Hydrodynamic Alpha Effect! They treat such a phenomena as a case for the origin of 

structures in non-equilibrium systems, turbulence being regarded as one of the most 

widespread distributed non-equilibrium system in nature. Since, there generally is an 

external scale which feeds energy into the system , and a dissipation scale where the 

energy is dissipated into heat, the turbulent system is regarded as an open system. 

Their statistical analysis leads to the result that if the turbulence is considered to be 

helical i.e homogeneous, isotropic, but without being invariant under reflection, then 

the vorticity equation for the mean flow does exhibit a growing large scale instability. 

The evolution is accompanied by the transfer of energy from small-scale to large-scale 

sizes. They emphasize that the structures so generated are not relics of the average 

flow as the von Karman vortices and the instability is not a modification of the in­

stability of shear flows. What plays an important role is the fact that the turbulence 

is not invariant under reflection. In such circumstances the velocity correlators are 

expressed in the following form : 

where r = Xl - X2 and 

The spatial part of the correlator is expressed as: 

The last term g(r) is the consequence of the fact that the turbulence is not invariant 

under reflection (helical), while g(O) has the meaning of the average value of the 

product of the turbulent velocity and its curl. Let us calculate the average helicity 

h) as: 
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(v.W) - (71.(\7 x iJ)) 

lim aa €ijk (Vj(X2, t2)Vk(Xl, t 1)) 
:1:1-+:1:2 jtl -+t2 X2i 

[-r.] a - lim €ijk -~ -a (C(r)8jk + B(r)rjrk + g(r)€jklrl) ¢(tl - t2) 
'1"-+0 r r 

~~( -l)€ijk€jkl [g~)' rirl + g(r)8il] ¢(O) 

- -6g(0)¢(0) (1.23) 

Thus it can be seen that g(O) relates to the average helicity. We can also obtain 

the equation for the evolution of the mean velocity as well as the mean vorticity, for 

a turbulent medium. For doing so, we need to write the instantaneous fluctuating 

quantities as 

instantaneous value= mean value + fluctuation 

Next, the Reynolds averaging approach is adopted. This allows us to separate the 

equations for the mean and the fluctuations. Ignoring higher order quantities in the 

equations we finally arrive at equations which look like [70]: 

For the mean velocity : 

a ~: > _ ~g(o) [\7 x < v>] = v'\12 < v> - !(po)\1 < P> (1.24) 

where the quantities inside the brackets ' <>' are ensemble averages, and Po is 

some constant density, v' is renormalised viscosity 

1 
v' = 1/ + '4C(O) 

v being the original molecular viscosity which is used in the Navier-Stokes equation, 

and C(O) is the correlation coefficient as shown earlier. !(Po) is some function of Po, 

which we do not need here. taking the curl of the above equation (1.24) we can get 

the equation for the evolution of mean vorticity < W > as follows: 

a < W > 1 (0) ['t'7 ...] , 't'72 ... at - "2 g v x < w > = 1/ v < w > (1.25) 
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First we note that in the above equation that if helicity vanishes, the large .'1cale 

configurations are damped out. Let us look for solutions of the kind: 

(1.26) 

upon substitution in the equation (1.25) we get, 

. .... 1 ( ) [..... ....] I ( 'k)2 .... ~W< Wk > - '2g 0 'lk x < Wk > = V 'I. < Wk > (1.27) 

Multiply both the sides of the above equation by (-i), take the dot product with the 

same vector on each side and use the fact that ik,Wk = 0 (since V.w = 0, the"indicatm; 

unit vectors.)' we get the following dispersion relation: 

(1.28) 

and hence for the growth rate 'Y = iw , looking for unstable solutions we get, 

'Y = -Vi k2 + ~ Ig(O) Ik (1.29) 

The maximum growth rate "(max occurs for a wavenumber ko, 

ko = 1.0(0)1 
4v l 

and equals 

We note that large-scale structures can develop, provided t.ho lwlidt.y is non-zero. 

The size of the structure with the mum growth rate is giV<!tl hy ko• We find t.hat. t.ll(! 

size L of the dominant structures is proportional t.o t.he ratio of C(O)(oc< v:l » t.o 

g(O), that is to the ratio of the energy invariant to t}H~ topoiogi(:(xl (hdidty) irwari(mt. 

Moiseev et al. show that the linearized equation for tl1(~ mean vorticit.y itn. .. c.; t.he 

same form as the appropriate a effect equation in the mean fi(!ld elcctrociynamicH vb,:: 

the uniform coefficients a and 11 are related to the random velocity field parame­

ters. The second term leads to the exponential growth of vorticity. The idea that. t.he 



Chapter 1 18 

helicity of the turbulence may influence the energy transfer from small scales to large 

ones has been discussed by Kraichnan [23] ,Brissaud et al [24], Andre and Leisur [25] 

, and Moffat [26], but the averaged equations were not derived in these papers and 

so the large scale instability was not talked about. 

Later people like Sagdeev, Moiseev , 'fur, Gvaramadze, Khomenko ,Frisch and 

Sulem and many others found examples of alpha effect in hydrodynamics. They had 

considered the incompressible case. In all cases some additional factors, such as in­

homogeneous regular flow, stable or unstable stratification, gravity force or anisotropy 

must supplement helical turbulence to provide the instability. The a: term in these 

cases assumes a tensorial nature aij instead of a scalar form as in the above equation. 

The characteristic size of the unstable scale is found to be : L -1 = (~~~t~~t), 
which is just a ratio of the two invariants viz .. helicity and energy. Thus the charac­

teristic scale on which structures form is determined by the 'natural' characteristics 

of turbulence, its invariants, and it is an internal property of turbulence itself. Also 

it is to be noted that the structures thus generated are helical themselves for they are 

characterized by a non-vanishing scalar product related to the helicity. 

There are some perturbation techniques at our disposal, with which we can study 

the weakly nonlinear regimes of the equations to understand the stability, of the flows 

that ensue. We shall elaborate Frisch's multiscale approach, here to understand that 

there are situations wherein a large scale instability may be generated. Assuming 

that the basic flow u (0) is driven by a time - dependent space and time periodic force 

(in the deterministic sense), or a random homogeneous and stationary force, f(r,t), 

the equations in the incompressible case assume the form : 

(1.30) 

Let lo and to be the characteristic spatial and temporal scales of the basic flow, and 

Va the velocity amplitude. The R = l02'0 is the small scale Reynolds number. Also 

assume < f >= O. Now, perturb the basic flow UO ~ u with a large scale component 

such that w =< U >, is assumed to vary on scale L » lo and time T » to. The 

small scale flow ii = u - w which is advected by the mean How satisfies the following 

equation: 
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(1.31) 

We may assume w to be uniform and constant in the equation (1.31). The 

small scale Reynolds stresses R;j = (U(Uj) then become dependent on the wand thus 

contribute to the large scale dynamics. The large scales obey the following equation: 

(1.32) 

To solve the above equation we must actually calculate the Reynolds stresses. To 

do so, we are required to solve for the small scales first. The equation for perturbed 

small scales may either be solved by using an expansion in powers of small scale 

Reynolds number or numerically. The equation (1.32) is referred to as the AKA 

equation. If the mean field is weak, the Reynolds stresses may be Taylor-expanded 

as follows: 

(1.33) 

We may obtain the perturbed small scale flow from a linearized version of eq. (1.31) 

and use it to obtain the linearized AKA equation: 

(1.34) 

with O!iJ"Z = - [8(au,"lij )] The tensor O!iJ"1 may vanishes in many circumstances viz. 
WI w=o 

i). when the basic flow is parity-invariant 

ii)" when the basic flow is random isotropic 

iii). when the basic flow is time independent, then the tensor calculated pertur­

batively in powers of the Reynolds numbers, vanishes to leading order. 

iv). when the basic flow is random and delta-correlated in time 

v). for ABC flows (i.e Beltrami flows). 

Frisch. et al., [27] consider a specific example with a particular forcing function 

which produces a flow lacking parity-invariance to show the growth of large scale 

structures from Reynolds stresses generated by small scales. 
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1.4 Astrophysical Turbulence 

The scope of the new ideas and developments outlined in the preceding sections arc 

by no means limited to the field of fluid dynamics only. With the range of scales 

ranging from a few parsecs to Megaparsecs and thus unimaginably large Reynolds 

number flows, the field of astrophysics could serve as a rich test bed for models which 

aim at understanding the complex order that has been observed over the years. Be 

it the identification of large scale structure of the universe or the solar granulation or 

the highly complex heirarchy of structures seen in the galactic environment, all such 

cases lack the backing of a unifying model. 

The numerous N-body simulations with Hot and Cold dark matter compositions 

of varying proportions (Mixed or warm dark matter too !!) have failed to elicit the 

underlying mechanism for the formation of the heirarchy of structures around us viz .. 

the assumption of a homogeneous and isotropic universe has proved out to be a £a18(\ 

one even on the largest observable scale [28],[29],[30],[31],[32]. Added to this, the 

origin of angular momenta of galaxies still eludes a viable solution [33], [34], [35]. 

The gravitational tidal torques also do not explain the spin of galaxy fully. There is 

factor of 2-10 discrepancy in this regard. As explained by Shu these problems d(lmana 

the consideration of other 'non-gravitational' mechanisms for trying alternative waYH 

to understand these problems. Fluid -dynamic processes offer richer and hitherto 

unexplored ways of generating vorticity, (and thus the spin of the galaxy) [36], [38]. 

The possibility of considering the galaxy as equivalent to a. gaseous disk wit.h fluid 

properties were already explored earlier by Hunter. This permits us to study t.he rolc\ 

of the new developments in fluid dynamics with the same model of a ga.laxy. This 

certainly opens up the possibility of understanding tlw dynamics of the galaxy wit.h 

respect to generating structures and 'ordered flows'. Besides there is considerable 

amount of work done on aspects of interstellar turbulence, both from a theoretical H.'"l 

well as observational point of view [39]-[45]. Recent studies have also shown that th(~ 

statistical properties of turbulence in molecular clouds seem to be remarkably similar 

to those determined from numerical simulations of ordinary compressible turbulcncd 

[46]. 
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1.5 Primordial Turbulence 

The possibility of a turbulent beginning to the universe was long thought of by none 

other than von Weiszacker,Gamow, Ozernoy,Chernin and others. Gamow [3] realised 

that there need to be some source of seed - perturbations which could later be am­

plified by gravitational instability mechanism to evolve into structures of the present 

day. The statistical fluctuations of the thermodynamic nature, if they had arisen dur­

ing the non-relativistic phase of the expansion of matter, would not have been able to 

grow in an expanding universe to a value at which they would have been capable of 

forming gravitationally bound systems. (The case for an N body system to generate 

sufficient seed perturbations was well exemplified by Bonnor). Bonnor's study showed 

that for a collection of N=3 x 1067 molecules of an ideal gas (typical for a nebula of 

hydrogen) if the initial perturbation was taken to be of the order of N-1/2 i.e 10-34 in 

this case, then even after 1000 yrs from the singular state the amplitude would have 

grown to only 10-29 • Thus it was concluded that small perturbations cannot grow into 

nebulae in the time available [47]. This was contrary to the analysis of Jeans who 

showed that it was possible that the initial perturbations could amplify exponentially 

in a gravitationally unstable static medium. Bonnor identified the flaw in Jean's 

analysis due to his assumptions of a static universe, and concluded that the growth of 

perturbations in an expanding universe model was in fact much slower. From another 

point of analysis von Weiszacker studied the parameters for the interstellar gas and 

concluded that since the observed velocity difference at scales of the size of molecular 

clouds and HII regions could not be those generated by their thermal fluctuations, 

these motions had to be attributed to a compressible turbulent medium. Compres­

sion meant that the velocity fluctuations could give rise to density fluctuations, and 

turbulence meant irregular fluctuations of velocity. The thin filamentary structure of 

the Pleiades nebula on scales of 1015 em (which is a reflection nebula) forced one to 

think that even if the mean free path of the dust particles was of the order of 1020 

em, it was the coupling of the dust with the gas which could by virtue of its turbulent 

state lent it's velocity fluctuations to the dust. This was because the observations 

were made in absorption spectrum which signify velocity fluctuations and thus reflect 
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the kinematical pattern of the medium. Considering the fact that the stellar sys­

tems of the present day could not however be treated as hydrodynamic systems von 

Weiszacker did emphasize that they could have originated in a turbulent environment. 

though. He argued that in a galaxy an equipartition of energies of the single stars 

cannot be reached within a few billion years. But the fact that the systems actually 

seem to have reached equipartition , indicates that such a state is easily reached when 

the matter is not yet united in stars because then the high turbulent momentum tran.~­

fer is available. Therefore the sort of degree of equipartition in a system which is not 

dense enough to achieve it by stellar interactions, may give a hint as to the stage of 

evolution of the system in which it's gas was transformed into stars. He then invoked 

the primordial role of turbulence in producing such irregularities [2].The issue then 

was when exactly could turbulence be invoked. If it was put in the post de-coupling 

era . .it would decay much faster even before structures form, If it was invoked in 

the era when matter and radiation were coupled, then it could produce a spectrum 

of irregularities in the Cosmic Microwave Background radiation which could be used 

to constrain it's amplitude. The major issue involved was the production of dcmsity 

irregularities .. through velocity perturbations provided by turbulence. That could be 

only achieved if we could somehow generate longitudinal velocity fluctuations. from 

purely vortical ones. The vortical velocity perturbations were assumed to b(l eithnr 

induced by thermal - instabilities (Tomita) [48] , or due to photon turbulence in the 

radiation- dominated era (Ozernoi [49]). 

Tomita et al. studied the decay laws of primordial turbulence and derived the 

heating rates by its dissipation in an expanding medium. They show(ld that matter 

could not be maintained at the required temperature of 105 K which was Iwcessu,ry 

for the sustenance of turbulence and thus galaxy formation by thermal instability. 

They concluded that in the absence of any heating mechanism the matter tempera­

ture drops faster than the radiation temperature after the epoch of decoupling (i.e at 

Tr = 4000 K ). In the matter dominant stage the excess of thermal energy is rapidly 

carried away by the Compton scattering process thus aiding in lowering t.he mat­

ter temperature further. Oort [50] pointed out another attractive feature of cosmic 

turbulence that a large-scale turbulent eddy might bring matter together in such a 
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fashion that the galaxies are formed in close association that has positive total energy. 

Thus we could witness the formation of structures which are close together but which 

are not gravitationally bound. Peebles [4] analysed the case for primeval turbulence 

stressing that the assumption of the velocities after matter decoupling was important 

in studying the after effects of mater turbulence. He found that if weak velocities 

were assumed (weak turbulence) then the model couldn't generate enough angular 

momentum at galactic scales (keeping the restrictions on the growth of density con­

trast). There was almost an order of magnitude difference between the observed 

and predicted values. Peebles ruled out the possibility of any accumulated compu­

tation error or the assumptions linking the perturbation-growth to the development 

of proto-galaxies or any inconsistency in the arguments forwarded for the statistical 

calculations of root mean square velocity in his analysis. On the other hand if very 

large velocities were assumed then the matter evolution would be a highly compress­

ible one which can't be resisted by any source of thermal pressure. Thus turbulence 

would decay faster than before and thus end up forming structures (which are much 

denser than galactic densities) much earlier than expected. Peebles does conclude 

that there could be other possible (but fancier) conclusions in favour of turbulence 

but ends up concluding that the the most straightforward conclusion would appear to 

be that there was not a primeval strong turbulence. 

Ozernoy et aL[49],[51], pointed out that there could exist a range of scales for 

cosmic turbulence in the radiation - dominated era which could carryover to the 

matter dominated era to produce shocks and thus generate density perturbations. 

The gravity of the plasma in the radiative phase was found to be ineffective in causing 

a perturbation. So, photon - induced turbulence was adopted. 

They developed the view according to which the existing peculiar motions of 

galaxies reflected (like their internal motions) an initial vortical state of the meta­

galactic substratum. In their proposed 'photon-eddy' hypothesis they concluded that 

the actual density irregularities were a result of the post-matter-radiation-decoupling 

effect, due to which the sound velocity of the medium drops drastically and thus 

generating strong density fluctuations from potential motions. On larger scales the 

contrast would have been considerably small and these scales participate in the hub-
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ble expansion. Hydrodynamic instability is found to constitute the dominant aspect 

of the proposed mechanism, whereas gravitational instability would have become 

important only at a relatively late stage. 

Ozernoi and Chibisov [52] considered the isolation of protogalaxies from UH1 ex­

panding medium (after virialisation of the kinetic energies) by allowing for t.he adi­

abatic cooling of the macroscopic motions due to cosmological expansion. Here the 

hydrodynamic damping is compensated by energy inflow from larger scales, including 

the largest scale of all , where the decline in energy is governed by the cosmological 

expansion. The basic cosmogonic parameters derived in this analysis viz. galaxy 

radius - ma..<;s relation, specific angular momentum - mass relation mat.ched quite well 

with observations. They also conjectured that spiral galaa;ie,~ will be Jormed in regiow~ 

oj medium having primarily v~rtical motion.~, while elliptical galaxie,q will appI!flf in 

region.~ with predominantly irrotational velocitie.~. Lator OZClrnoi [53J a.1so cOllflidered 

the growth of clusters by gravitational instability, after the generation of thc~iG from 

the rotational component of the post -recombinat.ion turbulent. era (by induced ir­

rotat.ional component due t.o shock - wave formations wh(m AOllIld velodty dropfl by 

a largo magnitude). The epoch of isolation of rich dust.ors matched well wit.h t.hat. 

inferred from observations. A compariRon of t.he obsorv(!d relat.ion bct.w(lon tlw mMIl 

virial donsity of cluster systems with the size, C1!\pcdally with the da.t.a of HUlllf\''iOIl, 

Mayall, Sandag<! de Vaucouleurs and Holmherg ( a.ll systcmat,izcd by KaradHmtsC1v) 

also revealed a striking resemblance t.o similar relat.ioIls dcriv(~d by the modnl, dnHpit.(~ 

its simplicity. This work also successfully oxplained the obsorved rnlat.ionship hn1.wc(m 

the mean dClIlSit.y of a clust.er a.nd it's nlorphologi<:1111.YI>C1. 

At. t.his point we would like to point out. t.hat a very comprdHmsiv(~ r(wi(~w OIl t.lw 

subject of origin of gala.xies involving both tlH1 view point;f.l viz .. Gravit.ll.t,ionn.! Im;t.a.­

bilit.y Pict.ure, and the Cosmic Turbulener. Tlwory, ha.., been writ.t.<m by JotHlS [M]. H 

cont.ains a very good introduction t.o bot.h cosmoloh"Y and cosmk-hydrodynamicH M 

well. But. since much has been achievod in the underst.anding of t.urbulcIlC(l sinc!(! t.h(l 

80's we must bear in mind that the 'turbulcnc() picture' is incomplct(l. 

There were some pertinent difficulties with theori(lS of primordial co.'1mic turlm­

lence viz. 1) The amplitude of t.he turbulence required to explain t.he large - scale 
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structure was in conflict with the observed high degree of isotropy of the microwave 

background radiation. 2)Following recombination, the turbulence would have be­

come supersonic and produced too large density contrasts on scales of galaxies and 

clusters of galaxies 3) A specific physical picture which would have explained the 

generation of turbulence in the first place was lacking. 

So, the conflict with well established observations scuttled any hope of incorpo­

rating turbulence in the models of the universe. But the recent work of Goldman 

and Canuto [55] has addressed these problems in the light of inflation. Their work 

has revived the possibility of re-considering the role of cosmic turbulence as a viable 

theory for understanding cosmic structure. Goldman and Canuto have argued that 

inflation naturally provides mechanisms for the direct generation of turbulence on 

the same scales on which density perturbations are formed. They find that by the 

end of inflation, the amplitude of the generated turbulent velocity is suppressed by 

a factor of 10100 thus avoiding the conflict with observations of CMBR fluctuations. 

They have shown that the density fluctuations generated by inflation can excite lon­

gitudinal turbulence after they reenter the Hubble radius at the later cosmic epochs. 

The scales on which this happens are much smaller than those of galaxies. The 

largest scale corresponds to a present epoch size of S 6.3Kpc and contains a mass of 

:::; 3.6 x 104 M 0 . This turbulence can have an important impact on the formation of 

structure on scales of galaxies and clusters of galaxies mainly because any part of the 

turbulence that survived dissipation by the radiative viscosity will become supersonic 

following the decoupling time . Shock collisions will lead to large density contrasts , 

and such an early population of objects of the above mass can serve as a seed that 

could help the growth of density on the scales of galaxies and clusters of galaxies. 

Besides, this provides us with a novel setting for considering the inverse- cascade 

scenarios that may be operational at various levels. 
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FLAT ROTATION - CURVES OF 

GALAXIES 

The seemingly disparate phenomena oj 

(i) non-equilibrium motions on stellar surJaces, 

(ii) the generation oj large scale magnetic fields, and 

(iii) the large scale structure oj the Universe .. 

have their origin in the inverse cascade oj energy 

leading to selJ-organisation in an otherwise 

turbulent medium. 

- Vinod K rishan -

2.1 Introduction 

1 In this chapter we have modelled the rotation curves of 76 galaxies observed by 

Amram et. al [56],[57] and Rubin et al. [58],[59] by combining the effects of rigid 

rotation, gravity and turbulence. The main motivation behind such modelling is to 

study the formation of coherent structures in turbulent media and explore its role in 

the formation of large scale structures of the universe. The values of the parameters 

Ipaper appeared in ApJ,428,483 (1994) 
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for the galaxies such as mass, turbulent velocity and angular velocity derived from 

our model are in good agreement with those derived from the prevalent models. 

The rotation curves of galaxies have been the subject of great speculation in the 

recent past. If galaxies are considered as solid bodies in rotation then their rotational 

velocity must increase in a linear manner i.e V ex: r where r is the radial distance from 

the center of the galaxy. The trouble arises when the picture of a 'falling curve' a..c; 

predicted by the Newtonian gravity for the outer region of a galaxy doesn't tally with 

what is observed. We get a flat rotation -curve on the outer scales. This has given 

birth to a lot of models which try to account for flat rotation curves. The suggestions 

include (1) a modification of the Newtonian force(e.g., [61], [62], [63] and references 

therein), (2) the effect of the magnetic stresses(e.g., [64], [65] and references therein), 

(3)the presence of a large amount of hidden mass that does the trick! (e.g., [29], 

(30], and references therein) . Other recent ideas include treating the rotation curve!=; 

as consequence of the hydrodynamic characteristics of galactic disks. These studic!=; 

are based on the assumption that since most of the velocity measurements are derived 

from emission lines emitted by the galactic gas, (either neutral or ionized), it mnk()s 

them inappropriate as tracers of the galactic gravitational potential [66] Soares in­

troduces an effective potential meant to describe the hydrodynamics inside a ga..c;eolls 

disk, and using the Tully-Fisher relation [88]- which highlights a tight correlation be­

tween the galactic luminosity and it's rotational vclocity- as an additional constraint, 

models the observed rotation of the galaxies. Filippov and Zhcdanov [67] on the othor 

hand study a simple model for the dust-media describing evolution of syst.ems lik(! 

spiral galaxies .Starting with an initial densit.y fold which is quasi- one dimem;ional 

(bar-like ), unlike the two dimensional disk -like distribution, they find that. t.he disk 

like feature appears only during the evolution. Their model also naturally reproduces 

some essential features of the galaxies, in particular, it reproduces all the observed 

typical forms of the rotation curves for spiral galaxies, with a characteristic minimum 

and plateau. They interpret the plateau to be corresponding to matter escaping and 

not bound gravitationally. Similarly, Ambartsumyan also hypothesizes that the star 

clusters, galaxies, and their clusters are strongly unstable objects which arose as the 

results of an explosion of some protostar substance [68]. Such a hypothesis rules out 
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the applicability of the virial theorem to such systems then. Moreover Filippov and 

Zhedanov also comment that the so called 'rotation curves' do not describe rotation 

but instead correspond to some complicated kinetic processes in the system. Some 

others like Mannheim [69] like to think about the possibility that the entire departure 

of galactic rotational velocities from their luminous Newtonian expectation is cosmo­

logical in origin. He shows that within the framework of conformal gravity every 

static observer sees the overall Hubble flow as a local universal linear potential which 

is able to account for the available data without any need for dark matter. 

The issue of Dark matter has kicked considerable dust in this area, and the gravity 

of the dark matter appears to be a favorite candidate. This must be tested against it's 

alternatives. Verschuur [32] has revived the old debate of the missing mass versus the 

missing physics. In fact 'dark matter' has also been dubbed as the folly of the twentieth 

century, similar to the concept of ether in the nineteenth century! The appearance 

of large scale structures in turbulent flows, [70], [22], [27], [71], [72], [73], [11] and 

references therein) which are stationary, anisotropic and parity-violating has become 

an exciting prospect potential enough to playa major role in the astrophysical context. 

The major weakness of all structure -formation models (eg. CDM, Gravitational 

instability models) till date is their inability to reproduce the large scale structures, 

observed in the universe (of the order of 100 Mpc). Krishan and Sivaram [17] showed 

that the clustering and superclustering of galaxies and clusters respectively could be 

viewed as the outcome of the 'inverse cascade' process in a turbulent medium. Here 

we model the flat rotation curves of the galaxies by combining the effects of rigid 

rotation, gravity and turbulence. 

2.2 The Inverse Cascade 

As reiterated by Scalo," The properties of the interstellar medium strongly suggest 

that it is the turbulence in the generalized sense of nonlinear systems which exhibits 

unpredictable temporal behavior accompanied by self- organizing spatial fluctuations 

covering a wide range of size scales" [74]. A particularly interesting type of self­

organizing behavior occurs in turbulent fluids in which more than one quantity is 
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conserved, a situation reviewed by Hasegawa [11]. In these cases one conserved quan­

tity becomes spatially chaotic by means of a direct cascade from large scales to small 

scales, while the other self-organizes into large structures by undergoing an inverse 

cascade from small scales to large scales [74]. 

The concept of such an "inverse cascade " is well established for two dimensional 

flows in fluids as well as magnetohydrodynamic flows [75]. The three dimensional 

MHD case is also well established. The case for a three dimensional inverse cascade 

in fluids is gaining ground with the identification of a new invariant I, related to 

the helicity density. Numerous numerical studies are also corroborating the same 

viewpoint. 

The problem of turbulence is addressed in two ways: 

1. The Kolmogorov approach, in which we study the statistically stationary states 

by dimensional arguments. [73], [17] 

2. The Navier stokes way, in which we look for the solutions of the Navier-Stokos 

equations hoping that the stationary solutions would comply with the predic­

tions of the former approach [8]. 

2.3 The Kolmogorov approach 

Large helicity fluctuations present in a turbulent medium play an essential role in the 

inverse cascade of energy in a 3D system. The helicity density ",(, a measure of the 

knottedness of the vorticity field W, is defined as 

'Y = V.w,w = V' x V (2.1 ) 

It is found that the quantity I, defined as 

(2.2) 

is also an invariant of an ideal 3D hydrodynamic system in addition to the total cncr!.,,), 

(see Appendix B). On the inclusion of dissipation, these invariants decay different.ially. 
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The nature of the non-linear interaction between the fluid elements is such that the 

slow decaying invariant (I, here) cascades towards large spatial scales, and the fast 

decaying invariant ( energy, here) cascades towards smaller spatial scales (see section 

1.2). By assuming a quasi-normal distribution of helicities the I-invariant can be 

expressed as : 

1= const. J E2(k)dk (2.3) 

Here E = J E (k) dk is the total energy per unit gram. 

In the inertial range for the energy invariant we have, using Kolmogorov hypothesis 

that energy exchange rate between different scales is a constant, 

(2.4) 

where k = wave number, Va is the initial rms velocity on small scales T is the duration 

for which this energy is available Vk = velocity in fourier space. € = average energy 

exchange rate between the scales (ergs/gm/sec). 

This, combined with kE(k) = Vk2 yields the well known Kolmogorov spectrum: 

(2.5) 

It would be appropriate to comment on € here. Kolmogorov [10] conjectured that 

in the quasi-steady state there should be a stationary flow of energy in the k space 

from the source to the sink. Thus the energy transfer rate per unit mass should 

be a constant and be equal to the dissipation rate at the sink. Although numerous 

experiments have confirmed that € is a strongly fluctuating quantity, surprisingly there 

is no experimental evidence indicating a deviation from the Kolmogorov spectrum 

[76]. 

The value of € for the Galaxy has been estimated to be of order of 8 x 10-3 ergs 

g-l S-l by considering the various sources ( such as supernovae, stellar winds, etc.) 

which contribute to the turbulence energetics. In the same vein T is calculated to be 

3 x 107 yrs [77]. From equation (2.5), we find total energy 

E = J E(k)dk 
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or in real space 

(2.6) 

The corresponding velocity field may be described as 

(2.7) 

for some normalizing length lz. Similarly in the inertial range for the I-invariant, we 

have 

(2.8) 

where €' = the mean square helicity density exchange rate between the scales. Com­

bining this with 

(2.9) 

gives 

(2.10) 

Or in real space: 

E(l) = (Io/r)2/5In(l/lz) (2.11) 

Here, the normalizing length lz marks the transition from one inertial law eq. (2.7) 

to the other eq. (2.11). The velocity field in this range may be described as 

where 

(2.13) 

which follows from equations (2.8) and (2.9). 

2.4 Modelling of Rotation Curves 

The complete energy spectrum in a helically turbulent medium [16], [17] is shown in 

Fig.( 1.2) 
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In this chapter we model the rotation curves of 76 galaxies observed by Amram 

et. al [56],[57] and Rubin et al. [59] [58] using the Kolmogorov branch (V(l) ex ll/3) 

and the flat branch (V(l) ex v1nl). We propose a law of velocities which is of the 

type 

V(l) = Al + Bl l / 3 (2.14) 

in the inner regions i.e., for l ~ lz and 

V(l) = Ol-1/2 + nJln(l/lz) (2.15) 

in the outer regions i.e.,for l ~ lz of a galaxy, where A, B, C and D are the 

coefficients to be determined from the fits, with the observed velocity-fields. 

The first terms on the right hand side of equations (2.14) and (2.15) correspond 

to rigid rotation and gravity respectively, therefore, 

A=w (2.16) 

the angular velocity of a galaxy, and 

(2.17) 

(where G is the universal gravitational constant), refers to the Mass of a galaxy. The 

second terms on the right hand side of the Eqn. (2.14), & Eqn. (2.15) are due to the 

turbulent cascading so that 

(2.18) 

and 

(2.19) 

By a judicious choice of lz we can .estimate: Va, 7, €, wand mass M of a galaxy. 

2.5 Results 

The values of Vo, 7, € - the parameters of turbulence - for each of the galaxies are 

shown in tables (2.1,2.3 & 2.4). The galaxy parameters w, lz & Mass M are shown in 
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tables (2.2,2.5 & 2.6). In order to compare the masses derived from our model with 

the standard masses in use, we have also included the mass(global) Mg (Table{2.1) col. 

[3]) calculated from the dark matter model assuming spherical symmetry [80] and the 

stellar mass Ms (Table{2.1) col. [4]) determined from the stellar models, using MIL 

ratios (mass-luminosity ratios) [80]; [60] and luminosities taken from Amram et. al 

[56]. This exercise has been done for the set of galaxies observed by Amram et al.[56]. 

The uncertainities in the MIL ratios and in the stellar models have to be taken into 

account before attempting any comparative study of the various types of masses. We 

also present the histograms (Fig{2.32)-Fig{2.37)) for each of the quantities calculated 

for the galaxies. Our model gives typical values of the various quantities as 

Va r:::::: 100 kml sec 

r ~ 1014 sec 

€ ~ 10-2 ergsl gml sec 

One must note that we didn't have to choose any abnormal values of lz for obtaining 

the best fits and it lies in the range 2-10 kpc. This tells us that on scales smaller 

than lz, the turbulence is isotropic and on the scales equal to and larger than lz 

the turbulence becomes more and more anisotropic facilitating the inverse cascade 

of energy. We find some odd ones out in our sample of 76 galaxies, viz. uac 3282 

and NGC 2558 etc . They have exceptionally large values of the turbulent velocity 

Va and exceptionally small values of the energy injection rate parameter E. It would 

be interesting to see if these recur in other data sets and examine if the peculiarities 

earn these galaxies a separate class. 

We show here the fits for all the galaxies observed. Firstly we show a set of 

21 galaxies wherein we have also shown the observational error bars. These error 

bars were useful in deciding about which points to be weighted when the fits were 

performed. For the remaining set error bars were not given in the published data. 

But a look at the first set of 21 galaxies convinces us that all the fits would fall well 

within the error bars. 
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Table 2.1: Table showing the 'Turbulence Parameters' for the set of galaxies observed 

by Amram et. al [56] 

Name I Va (Km/s) I e(10-2 ergs/gm/s) I 1'(1013 s) 

NGC6045 31 63.4 1.5 

UGC10085 338 1.6 7100 

UGC3269 85 17 42 

UGC3282 8021 1.8xlO-2 3.5 x108 

NGC4911 62 45 8.4 

Z160-058 87 9.6 78 

Z130-008 0.026 12.9 5.2 xlO-6 

NGC4848 157 53 46 

Z160-106 169 15.5 180 

NGC4921 68 1.7 270 

NGC2558 5588 6.1 xlO-3 5.1 x 108 

Z119-043 171 1.2 2.4 x103 

UGC4386 46 38 5.5 

Z119-043 81 11 59 

NGC2595 191 98 37 

UGC4329 58 3.5 94 

NGC7536 211 2.5 1700 

UGC12498 42 47 3.6 

NGC7593 74 11.6 47 

NGC7643 26 0.3 210 

NGC7631 107 21.2 53 
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Table 2.2: Table showing the values 

Name (lOlOMO), M (1010 Mo), M; (1010 M) Mb 0, S W(10-16S-1) Lz{kpc) 

NGC6045 23.7 4.5 1.7 0.4 12.0 

UGC10085 0.2 5.8 2.3 21.9 0.9 

UGC3269 1.0 12.3 5.5 3.0 3.0 

UGC3282 0.9 6.0 2.3 12.4 2.6 

NGC4911 6.6 16.9 7.5 5.9 4.4 

Z160-058 8.9 2.9 1.1 0.3 14.0 

Z130-008 3.6 1.4 0.5 1.2 6.2 

NGC4848 0.8 15.8 7.9 94.0 0.6 

Z160-106 2.0 5.1 2.6 0.6 4.9 

NGC4921 8.6 17.5 8.7 1.4 16.2 

NGC2558 3.6 8.5 4.2 20.4 3.6 

Z119-043 0.1 - - 16.6 0.9 

UGC4386 14.6 6.3 2.8 0.1 11.4 

Z119-043 1.2 - - 0.07 4.2 

NGC2595 0.6 6.0 2.3 151.1 0.4 

UGC4329 0.7 1.8 0.7 5.6 2.7 

NGC7536 0.9 5.9 2.6 2.8 4.0 

UGC12498 1.0 2.9 1.3 6.4 2.9 

NGC7593 0.6 1.6 0.6 3.9 2.5 

NGC7643 4.7 1.7 0.6 10.0 5.7 

NGC7631 0.7 4.9 2.2 4.5 2.1 

la Global mass from dark matter model 2b Mass in the stars (derived from assuming 

the global M / L ratios of each of the morphological types; Giovanelli and Haynes 

(1988) [80]) 
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Table 2.3: Table showing Turbulence parameters for the set of galaxies observed by 

Amram, and Rubin 

Name I Vo{Km/s) I €(10-2 ergs/gm/s) I 7{1013 s) 

NGC668 121 39.3 5.6 

NGC669 34 1.0 3 x 105 

NGC688 92 4.8 3.3 x 102 

UGC1347 52 1.2 2.0 x 102 

NGC753 162 35.3 6.1 

UGC1493 37 4.1 3.0 x 103 

Z119051 50 4.2 2.1 x 102 

NGC3861 18 0.1 4.8 x 106 

NGC3883 2 ~ 10-5 3.6 X 1011 

UGC8161 51 2.2 1.2 x 102 

11179 102 2.9 2.6 x 101 

NGC6050 43 2.8 4.7 x 103 

NGC6054 35 1.3 4.5 x 103 

NGC7591 79 25.5 4.6 x 101 

J2318+0633 31 0.4 8.3 x 103 

NGC4605 27 0.7 4.1 x 103 

NGC1035 63 2.7 9.1 x 101 

NGC4062 121 22.9 1.5 x 101 

NGC2742 153 23.1 3.5 

NGC701 98 4.3 0.2 

NGC2608 26 1.2 1.3 x 103 

NGC3495 110 5.5 8.9 x 101 

NGC1087 54 3.5 2.5 x 102 

UGC3691 83 2.1 1.0 x 102 

NGC4682 119 18.4 2.7 x 101 

NGC3672 40 0.3 1.9 x 104 

NGC1421 98 15.0 3.4 x 104 

NGC2715 134 11.2 2.9 

NGC4321 14 0.2 2.3 x 106 

1467 91 4.1 8.6 x 101 



.9hapter 2 37 

Table 2.4: 'furbulence Parameters continued .. 

Name I Vo(KmJs) I €(10-2 ergsJgmJs) I r(1013 s) I 
NGC7541 53 9.8 7.1 x 102 

NGC7664 28 0.7 6.1 x 104 

NGC2998 168 30.6 9.2 

NGC753 69 21.6 1.5 x 102 

NGC801 137 20.7 1.5 x 101 

UGC2885 129 46.2 2.5 x 101 

NGC4800 13 0.2 1.6 x 106 

NGC2708 174 21.4 1.0 

NGC3067 118 17.9 5.1 

NGC4448 185 51.6 0.3 

NGC1515 143 62.7 0.1 

NGC1353 12 0.1 1.0 x 107 

NGC1325 159 16.2 5.7 

NGC7537 17 0.1 8.7 x 105 

U11810 75 6.7 1.3 x 102 

NGC7171 23 0.1 2.7 x 105 

NGC7217 271 322.1 0.1 

NGC1620 176 29.6 2.8 x 101 

NGC3054 56 1.0 2.1 x 104 

NGC2590 200 130.1 1.7 

NGC2815 30 0.9 1.5 x 105 

NGC1417 129 34.4 5.1 x 101 

NGC1085 64 5.7 4.8 x 103 

NGC3145 54 0.7 2.3 x 104 

NGC3223 97 3.7 4.9 x 102 

NGC7606 253 52.4 0.7 

NGC3200 127 44.3 4.3 x 101 
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Table 2.5: Table showing the values of masses, wand L z for the set of galaxies 

observed by Amram and Rubin 

NGC668 0.1 13.7 1.4 

NGC669 0.16 56.3 1.2 

NGC688 0.39 6.5 5.1 

UGC1347 0.06 3.4 3.7 

NGC753 0.28 2.8 3.9 

UGC1493 0.01 51.4 0.4 

Z119051 0.01 5.3 0.9 

NGC3861 0.42 34.3 2.4 

NGC3883 0.71 4.6 11.6 

UGC8161 0.02 3.3 1.9 

I1179 0.44 1.0 12.0 

NGC6050 0.03 25.9 0.9 

NGC6054 0.02 18.0 1.0 

NGC7591 0.11 102.3 0.6 

J2318+0633 0.08 16.9 2.1 

NGC4605 0.01 9.9 1.0 

NGC1035 0.08 4.9 2.9 

NGC4062 0.07 0.1 2.5 

NGC2742 0.24 0.1 4.9 

NGC701 0.37 2.5 6.9 

NGC2608 0.01 57.5 0.5 

NGC3495 0.36 1.3 7.9 

NGC1087 0.03 10.5 1.5 

UGC3691 0.25 1.2 8.9 

NGC4682 0.08 0.8 2.9 

NGC3672 0.49 7.8 6.9 

NGC1421 0.08 8.2 2.0 

NGC2715 0.28 0.3 6.9 

NGC4321 0.01 78.6 0.5 

1467 0.17 2.2 5.9 



Chapter 2 39 

Table 2.6: Table showing the values of masses, wand L z for the set of galaxies 

observed by Amram and Rubin contd .. 

NGC7541 0.02 74.6 0.5 

NGC7664 0.03 35.3 1.0 

NGC2998 0.32 0.9 4.9 

NGC753 0.01 45.8 0.5 

NGC801 0.40 7.0 3.9 

UGC2885 0.20 30.9 1.5 

NGC4800 0.02 76.0 0.5 

NGC2708 1.02 2.5 7.9 

NGC3067 0.10 1.5 2.9 

NGC4448 0.32 0.5 3.9 

NGC1515 0.18 20.4 1.5 

NGC1353 0.06 50.5 1.0 

NGC1325 0.44 0.1 7.9 

NGC7537 0.05 15.2 2.0 

U11810 0.05 7.5 2.0 

NGC7171 0.46 11.9 4.9 

NGC7217 0.35 1.9 2.0 

NGC1620 0.34 0.6 5.9 

NGC3054 0.46 7.9 5.9 

NGC2590 0.16 1.0 2.0 

NGC2815 0.14 73.1 1.0 

NGC1417 0.24 21.0 2.0 

NGC1085 0.21 41.4 1.5 

NGC3145 1.00 9.2 7.9 

NGC3223 0.98 7.7 7.9 

NGC7606 1.63 0.7 9.9 

NGC3200 0.14 21.2 1.5 
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Figure 2.1: Rotation Curve of vac 12498 in the Pegasus cluster. Observed by 

Amram et al. The observational error bars are also shown. The solid line is our 

model-fit. 
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Figure 2.2: Rotation Curve of NGC 7593 in Pegasus cluster. 
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Figure 2.3: Rotation curve of NGC 7631 in Pegasus cluster. 
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Figure 2.4: Rotation curve NGG 2558 in the Cancer cluster. 
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Figure 2.5: Rotation curve of NGC 2595 in the Cancer cluster. 
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Figure 2.6: Rotation curve of NGG 4848 in the Coma cluster. 
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Figure 2.7: Rotation curve of NGC 4921 in the Coma cluster. 
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Figure 2.9: Rotation curve of Z 130-008 in the Coma cluster. 
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Figure 2.10: Rotation curve of Z 119-043 in the Cancer cluster. 
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Figure 2.11: Rotation curve of Z 119-053 in the Cancer cluster. 
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Figure 2.13: Rotation curve of Z 160-058 in the Coma cluster. 
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Figure 2.14: Rotation curve of NGC 4911 in the Coma cluster. 
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Figure 2.15: Rotaion curve of UGC 10085 in the Hercules cluster. 
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Figure 2.19: Rotation curve of UGC 4329 in Cancer cluster 
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Figure 2.22: Rotation curves of galaxies from Rubin's data 
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Figure 2.25: Rotation curves of galaxies from Rubin's data contd .. 
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2.6 Discussion and Conclusion 

The velocity-radius relation for galaxies has been derived using Kolmogrov arguments. 

We believe that the matter at a large radius exhibits a balance of hydrodynamic forces, 

i.e., dynamical pressure, and Reynolds stresses- produced by the forced small-scale 

flow-without the necessity of invoking a gravitational force, generated out of a mass 

distribution of the type M ex r( which is what is required of the dark-matter models). 

In other words, our system is hydrodynamically bound. 

We also find that E and 'l" values for each ofthe galaxies obtained by us are almost 

of the same order as that quoted for our Galaxy [77]. Therefore it appears possible to 

model the observed rotation curves of the galaxies by suitably combining the effects 

of rigid rotation, gravity and turbulence. The validity of the "turbulence model" can 

be further substantiated by confronting it with the observations of the velocity fields 

on the larger scales like clusters and superclusters. In a recent paper Sanchez-Salcedo 

[82], it was claimed that the inverse cascade hypothesis (lOB) has been critically 

examined as an alternative to dark matter hypothesis for explaining flat rotation 

curves of galaxies .Some issues related to the applicability of the ICB spectrum and 

the virial theorem were raised. Here, we clarify these points and provide a possible 

validation of the inverse cascade hypothesis. 

We modelled the fiat rotation curves of several galaxies without invoking the 

presence of any type of dark matter. Instead our model makes use of some very 

special properties of helically turbulent media. Sanchez-Salcedo [82] pointed out that 

the application of inertial range of ICH spectrum to a galaxy implies that scales larger 

than the galactic scales must exist. Indeed this is so. In the IOH hypothesis a galaxy 

has not been treated as an isolated object. It is but one element of the heirarchy 

of structures spanning a range of a few Kpc to hundreds of Mpc believed to exist in 

the universe. Further, since a galaxy is not an isolated system- it participates in the 

formation of larger structures through vortex-vortex nteraction- the virial theorem is 

not applicable at the galactic scales. As discussed below, this is true for the entire 

inertial range (see Fig. (1.2)) [17J since it represents interacting scales. 

The new realization in astrophysics is that most of the observed structures in 
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astrophysical environs are helical in form and helicity is an essential ingredient of a 

three dimensional medium (Shore [81],Kitamura[86}) . Large scale helical vorticies 

are expected to be generated in galactic disks (Khomenko et al) [21] . In accordance 

with observations (Ruzmaikin et al.)[77] , small- scale turbulent motions in galltctic 

disks are characterized by the correlation time Tcor ::::: 3 x 10148 ; and the correlation 

length Acor ::::: 3 >< l02ocm.(33pc) That corresponds to a typical velocity of 1Q6cm8-1 

and the non -linear term V.V'V ~ V 2/L turns out to be 10-9cms-2 . From our fits 

of flat - rotation curves , we find a typical yelocity V ~ lOOkmj s at a typical scale 

ofL ~ (5 - 10)Kpc , the non -linear term V2/L turns out to be 3 x lO-9cms-2 , 

which is of the same order as found at small scales. The energy injection rate € is 

found to be 10-2erg8gm-1 8-1, which is close to the value obtained from our fits of 

the rotation curves.. The helicity is estimated to be 1/3 x 10-9 cms-2 . The ratio of 

energy to helicity gives the typical length scale of the order of 1021 cm. That is helical 

vortices of the scale of Kpc can exist in a time T ~ 109yrs (at the same rate as large 

scale magnetic - fields, Khomenko et a1.[21]). 

Equivalently in the absence of net helicity , the second moment of the helicity the 

I - invariant is to be considered ; the ratio of 1/ E2 (Levich and Tzvetkov [73]) gives a 

length scale of the. order of a few Kpc. Such vorticity structures (4 Kpc in size) have 

been observed in the case of the galaxy Mrk1040. (Afans'ev and Fridman [85]) . This 

does strengthen the case for the existence of a heirarchy of helical structures much 

beyond few hundred parsecs, as was conventionally thought. In fact in the survey 

conducted by Afanas'ev et a1. they conclude that more than half of all the spiral 

galaxies have 'velocity- jumps' like the one seen in Mrk 1040 . Therefore all these are 

good candidates for supporting vortices. Our sample of fits also includes many such 

galaxies. 

In this scheme of inverse cascade in 3D , the maximum correlation length is de­

termined by the rate of energy - injection and the duration for which this rate is 

maintained. It must be appreciated that in the spectrum shown in fig. (1.2) the 

energy cascades to small scales near the origin, the inverse - cascade occurs in the 

intermediate range of scales, and stops when there is not enough energy and time to 

form the larger structure . Consequently the size of the system is always larger than 
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the size of the coherent structures found in it (Shore [81]). 

The Reynolds stresses produced by small scale flow can act as a source for driving 

the large scale How through Anisotropic-Kinetic -Alpha effect [27], the evidence for 

this is seen in their computer simulations [71]. No coherent force is required as 

argued by Sanchez [82]. It is reasonable to assume that a random ,anisotropic forcing 

with zero spatial and time averages exists in a galaxy with stellar explosions and 

interstellar turbulence. In fact there is ample proof to show that the interstellar 

medium is being driven by primarily a random force associated with kinetic energy 

release by supernovae and young stars. The interstellar turbulence is considerably 

helical. According to some conservative estimates the value of 0: , which is responsible 

for the dynamo action- is a few tenths of the turbulent velocity [78]. 

In conclusion ,we believe that the issue of applicability of the ICR inertial range 

to a galaxy, and therefore the non-applicability of the virial theorem at inertial 

range scales has been addressed adequately and the inverse cascade hypothesis stands 

vindicated. The most favorable setting for ICH would be the early stages of galaxy­

formation. We may then visualize the present day scenario as one which retains the 

initial signatures of velocity field. 

Some more points need to be clarified. viz .. 

1. First, breaks in the spectrum mark transitions from one inertial range to the 

next. Just as in 2D system the two invariants enstrophy and energy give rise 

to two inertial ranges in different spatial domains, similarly in 3D helically 

turbulent system there are two inertial ranges (k-5/ 3 and k-1) corresponding to 

the I-invariant and the energy invariant. 

2. There is an increasing amount of evidence in favour of the k-1 energy spectrum 

for large scales, in the atmosphere. Moiseev and Onishchenko, [83] report the 

analysis of experiments using an active Doppler radiolocation probe. These 

observations were performed under conditions of tropical convective atmosphere 

in the western part of the Pacific ocean. A study of the property of the space­

time structural function of the second order revealed interesting results. The 

fourier image E(k) of the spatial part of the structural function of the second 
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order is of the order of k-1. (See also [84]) 

3. We do not claim (neither is it needed for lOR to work ), that e should have a 

unique value for all the galaxies. I: is a measure of turbulent energy in a galaxy 

and it's value depends upon the particular sources of turbulence in a given 

galaxy. The sources of turbulence like Supernovae explosions and stellar winds 

vary from galaxy to galaxy, leading to the scatter in epsilon values. Neither 

there is any universality or uniqueness in the observed rotation curves. This 

is ratified by our fits of rotation curves for nearly eighty galaxies~ No single 

parameter can justify a mechanism but what we claim is, the fitting of rotation 

curves through ICB gives values of epsilon which are close to those obtained by 

other estimates. A galaxy mayor may not show a flat rotation curve depending 

upon the value of epsilon and the duration for which this epsilon is maintained. 

Thus for small values of epsilon much larger duration would be required in order 

to produce large scale flow, manifested in a flat rotation curve'. A typical value 

of epsilon 10-2 erg/gm/sec and a duration of 109 yrs seem to be the average 

values characteristic of a galaxy showing a fiat rotation curve. 

4. As we know in studies of turbulent systems for example a k-5/3 energy spectrum 

is translated into a velocity spectrum going as £1/3, where the L is identified 

with the real space. This implies that the average velocity on such a scale L 

goes as Ll/3. There is in fact no special scale or direction which is preferred. 

With the data for rotation curves of the galaxies being the only source of the 

galactic - velocity field information, we use this data set for fitting the velocity 

laws that we proposed. True that the galactocentric radius need not be the only 

scale in question but it is also a good representative of the ensemble, that we 

need to average over. 
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TURBULENCE, GRAVITY & 

THE TULLY-FISHER RELATION 

Let 'Chaos' storm 

Let Cloud shapes swarm 

I WAIT ..... FOR FORM ... 

3.1 Introduction 

- Ro bert Frost -

[Pertinax] 

1 In the preceeding chapter we had proposed a model for the flat rotation curves of 

spiral galaxies. Therein we could resolve the galactic velocity field into a 'turbulent' 

and a 'gravity' component. Since the Tully-Fisher relationship ([88]) highlights a tight 

correlation between the galactic velocity and its luminosity we think it is worthwhile to 

study the individual correlation between the luminosity of a galaxy and its turbulent 

and gravity components of velocity. Towards this end we have modelled the velocity 

fields of 76 galaxies and the individual correlations were studied in the U,B,V,I and 

123.5 bands. This sample is severely limited by the fact that the overlap between 

1 paper appeared in Bull.Astron.Soc.lndia, 24,787 (1996) 
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the set of galaxies which have been photometrically observed in all the related bands 

and the set consisting of galaxies whose rotation curves are available is very small. 

Nevertheless, the study revealed an interesting feature viz. the 'turbulent' component 

of the velocity appeared to correlate better than the 'gravity' component, for the U,B 

and V bands. Intriguingly enough the 'gravity' component correlated better with 

the luminosity in the I bands. In view of the fact that the luminosity of a galaxy is 

more sensitive to the mass in the longer wavelength regime, and much dominated by 

scatter in the shorter wavelength regime, we conclude that this study certifies that 

our velocity resolution law is indeed doing well in identifying the better correlating 

components as 'turbulent' and 'gravitational' in the respective regimes (Prabhu and 

Krishan[87]). 

3.2 The Sample And The TULLY - FISHER Re­

lation 

The necessary data for studying the Thlly - Fisher relation consists of apparent mag­

nitudes, (usually corrected for Galactic and internal extinction,) and some measure 

of rotation velocities, corrected for projection effects due to the galaxy's inclination 

in the plane of the sky. Usually rotation velocity is obtained via the doppler broaden­

ing of the HI 21cm line, although Fabry -Perot imaging and long slit rotation curves 

(both obtained via Hex) are useful as well. 

The TF relation has been studied with samples drawn from the set of galaxies 

which are sufficiently close by . This was done presumably to get rid of the environ­

ment effects The relation has been studied in different bands also. 

Hitherto the rotational velocity was obtained either by finding out the maximum 

of the rotation curve Vmax or the rotational velocity at a suitably chosen radius (Holm­

bergh radius)- corresponding to a suitable aperture magnitude definition. Estimates 

of V max using the line profile measured at 20% of the peak, have also been used. 

We use a different way to characterize the galactic velocity field. Since our model 

gives a good fit for the velocity field we use the fiat portion of the curve to estimate 



Chapter 3 73 

the average velocity in that regime. We use our proposed law to do this averaging 

numerically. As for the photometric properties of our sample, we obtained the data 

from the NASA extragalactic database, and the Re3 catalogue. 

Our sample of galaxies were drawn from different clusters and field galaxies as 

observed by Rubin et aL[58], [59], and Amram et al.[56],[57]. Our primary interest was 

to get a sufficiently large set of galaxies, (irrespective of their distance, environment, 

mass, radius, or luminosity) for which the photometry (U,B,V,I& 123 .5) was done and 

velocity fields mapped. All in all our sample consisted of: 

20 Sb galaxies - observed by Rubin et al. [58] 

21 Sc galaxies - observed by Rubin et al. [59] 

35 other galaxies -observed by Amram et al. [56],[57] 

(drawn from different cluster environments viz. the Coma, Pegasus, Abel, Her­

cules,. . etc) 

We reproduce the photometric data in the tables (3.1,3.2 & 3.3) We also list the 

values for the average turbulent velocity component and average gravity - component 

in the following tables. Note that the values are in general comparable. (Tables 3.4 -

3.6) 
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Table 3.1: Table showing the Photometric data obtained mainly from the NASA 

extragalactic database. '-' means no data available 

Name I r(MPC) I U~ I B~ I V~ 
NGC668 59.96 - 13.10 - - -
NGC669 63.20 - 13.00 - - -
NGC688 54.90 12.65 12.70 12.18 - -
UGC1347 73.04 13.30 13.40 12.83 - -
NGC753 64.73 12.26 12.30 11.81 - -

UGC1493 55.24 - 13.20 - - -
Z119051 66.47 - - - 13.80 13.98 

NGC3861 67.66 13.19 13.10 12.42 11.31 11.42 

NGC3883 92.56 13.31 13.20 12.53 11.20 11.45 

UGC8161 88.86 14.76 14.56 13.86 12.97 13.05 

11179 146.30 15.93 15.68 15.15 - -
NGC6050 125.73 14.97 15.04 14.47 13.70 13.79 

NGC6054 147.77 15.36 15.37 14.93 - -
NGC7591 65.20 13.04 12.96 12.32 11.50 11.64 

NGC7536 62.53 13.29 13.38 12.95 11.87 11.95 

NGC7593 54.73 13.78 13.91 13.33 12.47 12.53 

UGC12498 55.60 13.90 13.89 13.27 12.03 12.18 

NGC7631 49.97 13.14 13.07 12.45 11.44 11.51 

NGC7643 51.16 13.92 13.69 12.87 - -
NGC4848 95.52 13.45 13.61 13.17 - -
2160058 100.84 14.59 14.58 14.06 - -
NGC4911 105.49 13.52 13.38 12.68 - -
NGC4921 72.66 13.21 12.85 12.05 - -
Z160106 94.66 - 14.80 - - -
Z130008 96.60 - 15.30 - - -
Z119043 59.33 - 15.00 - - -
UGC4329 54.46 13.63 13.77 13.27 13.41 13.51 

NGC2558 66.64 13.71 13.48 12.73 - -
Z119053 64.66 - 15.10 - - -
UGC4386 61.73 13.39 13.28 12.57 11.18 11.22 



Chapter 3 75 

Table 3.2: Table showing the Photometric data, contd .. 

Name I r(MPC) I U~ I B~ I Vj! I IT I 123.5 I 
NGC2595 57.64 12.60 12.59 12.02 10.98 11.10 

UGC3269 118.76 - 14.02 - 12.83 12.90 

UGC3282 109.64 - 13.99 - 12.66 12.79 

UGC10085 129.64 14.47 14.44 13.95 13.04 13.17 

NGC6045 133.13 13.71 13.81 13.13 - -
NGC4605 5.80 10.11 10.27 9.82 - -
NGC1035 24.50 - 12.19 - - -
NGC4062 14.80 11.26 11.28 10.62 - -
NGC2742 27.30 11.46 11.47 11.01 - -
NGC701 36.50 12.18 12.27 11.73 - -
NGC2608 41.20 12.54 12.53 11.94 - -
NGC3495 19.00 - 10.74 - - -
NGC1087 30.50 10.84 10.97 10.55 - -
UGC3691 41.50 - - - - -
NGC4682 43.00 - - - - -
NGC3672 33.10 - 11.41 10.82 - -
NGC1421 39.70 10.78 11.00 10.71 - -

NGC2715 29.70 10.90 11.09 10.67 - -
NGC4321 20.00 9.93 9.98 9.33 - -

1467 44.30 12.12 12.22 11.75 - -
NGC7541 57.50 11.49 11.57 11.09 - -
NGC7664 74.20 12.61 12.66 12.08 - -
NGC2998 95.60 - 12.52 12.07 - -
NGC80l 119.00 12.60 12.44 11.83 - -
UGC2885 118.00 - - - - -
NGC4800 19.50 - 12.13 - - -
NGC2708 35.50 12.54 12.43 11.76 - -
NGC3067 28.30 12.19 12.22 11.70 - -
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Table 3.3: Table showing the Photometric data 1 contd .. 

I Name I r(MPC) I U~ I B~ I V~ I IT I [23.5 I 
NGC4448 19.00 11.53 11.28 10.52 - -
NGC1515 19.10 11.14 11.01 10.39 - -
NGC1353 30.00 11.96 11.73 10.93 - -
NGC1325 30.00 11.48 11.51 10.99 - -
NGC7537 57.30 12.46 12.69 12.30 - -
U11810 98.30 13.33 13.50 13.07 - -
NGC7171 57.40 12.31 12.38 11.80 - -
NGC7217 24.70 10.78 10.53 9.67 - -
NGC1620 68.40 12.37 12.27 11.70 - -
NGC3054 43.10 - - - - -
NGC2590 95.80 - 12.99 12.32 - -
NGC2815 45.50 11.65 11.42 10.82 - -
NGC1417 81.50 12.30 12.26 11.69 - -
NGC1085 136.00 - - - - -
NGC3145 68.80 11.97 11.82 11.19 - -
NGC3223 52.40 11.07 10.96 10.35 9.42 9.50 

NGC7606 47.50 - 10.88 10.29 - -
NGC3200 65.30 11.75 11.68 11.13 - -
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Table 3.4: Table showing the individual velocity components viz. 'gravity' and the 

'turbulent ' components, resolved by our rnddel 

Name I (Vtotal ) (Km/s) I (Vturlmlent)(Km/s) I (Vgravitll)(Kmjs) I 
NGC668 185 105 80 
NGC669 333 265 68 

NGC688 214 87 127 

UGC1347 101 41 60 
NGC753 205 108 97 

UGC1493 173 144 29 

Z119051 98 73 25 

NGC3861 273 137 136 

NGC3883 166 56 110 

UGC8161 93 60 33 

I1179 139 35 104 

NGC6050 181 132 49 

NGC6054 142 106 36 

NGC7591 222 152 70 

NGC7536 171 108 63 

NGC7593 149 75 74 

UGC12498 136 51 85 

NGC7631 193 126 67 

NGC7643 194 15 179 

NGC4848 265 166 99 

Z160058 200 38 162 

NGC4911 281 96 185 

NGC4921 171 20 151 

Z160106 200 85 115 

Z130008 151 2 149 

Z119043 144 41 103 

UGC4329 129 73 56 

NGC2558 245 113 132 

Z119053 112 72 40 

UGC4386 265 52 213 
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Table 3.5: Table showing the 'gravity' and 'turbulent' velocity components contd .. 

Name (vtotaZ) (Km/s) (vt'Urb'ULent) (Km/s) (Vgra'Uity) (Km/s) 

NGC2595 296 231 65 

UGC3269 176 98 78 

UGC3282 207 140 67 

UGCI0085 165 135 30 

NGC6045 317 72 245 

NGC4605 82 50 32 

NGCI035 121 39 82 

NGC4062 153 76 77 

NGC2742 165 53 112 

NGC701 152 6 146 

NGC2608 109 73 36 

NGC3495 168 48 120 

NGC1087 123 77 46 

UGC3691 128 31 97 

NGC4682 162 96 66 

NGC3672 191 57 134 

NGC1421 169 105 64 

NGC2715 143 45 98 

NGC4321 184 157 27 

1467 141 66 75 

NGC7541 201 170 31 

NGC7664 187 152 35 

NGC2998 207 115 92 

NGC801 214 121 93 

UGC2885 265 208 57 

NGC4800 162 98 64 

NGC2708 243 21 222 

NGC3067 140 50 90 
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Table 3.6: Table showing the 'gravity' and 'turbulent' velocity components, contd .. 

I Name I (vtotal) (Km/s) I (vtuTlrolent)(Km/s) I (VgTavity)(Km/s) I 
NGC4448 192 38 154 

NGC1515 173 54 119 

NGC1353 196 114 82 

NGC1325 176 43 133 

NGC7537 143 89 54 

U11810 151 97 54 

NGC7171 195 74 121 

NGC7217 256 111 145 

NGC1620 225 121 104 

NGC3054 237 116 121 

NGC2590 226 134 92 

NGC2815 278 188 90 

NGC1417 268 159 109 

NGCI085 303 208 95 

NGC3145 263 97 166 

NGC3223 253 89 164 

NGC7606 262 72 190 

NGC3200 266 200 66 
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3.3 Discussions 

We observe an interesting trend in our statistical analysis. (see figure fig(3.1)- for the 

scatter plot; fig(3.1a)- for the table.) 

Firstly the total velocity correlated in the same conventional way as it does for a 

standard Tully -Fisher relation. We confirmed the normal trend wherein the correla­

tions improve as we go to the longer bands (from U to the I bands). S(), we confirm 

the Tully-Fisher relation in the first step. While modelling the rotation curves of 

galaxies we have separated the contributions from gravity and turbulence velocity. 

We find that the turbulent component correlates better than the gravity component 

in the U, B, and V bands.(It is to be noted here that our model gives comparable 

magnitudes for both the components . Thus it is interesting to note that something 

else other than the gravity -induced velocity is correlating better 1). This trend is 

reversed as we approach the I bands, viz. the gravity component correlates better. 

This is to be expected since the longer wavelength bands are more sensitive to the 

mass component (i.e the gravity - induced velocity .. ) 2. We believe that the so called 

'turbulent' component which our model resolves could be more than just scatter, for 

the correlations are statistically very significant (see Appendix A). We conjecture 

that it could be the 'coherent' velocity field which is contributing to the rotation as 

observed. Thus it would be erroneous to interpret the observed spectral line widths 

as 'those induced by gravity alone'. This also emphasizes the need to study the self­

organizing aspects of turbulent media, which could enrich the structure - formation 

scenarios in astrophysics. 

Lastly, as a matter of convention we also present the mass to luminosity ratios 

(M / L) which we calculate for the set of galaxies in each of the photometric bands (fig 

3.2 - fig 3.6 ) We find that almost all the values fall within an MIL ratio of 10. This is 

very much unlike the 'dark -matter' scenarios where this value increases steadily from 

the galactic - level (say 50s -1 ~Os) to the clusters (where it runs into 1000s). Thus 

our model can do away with the excess 'matter' required to explain the observations. 

2we thank Dr.Matthew Colless (Mount Stromlo and Siding Spring Observatories, Australia), for 

bringing this to our notice 
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Figure 3.1: The scatter plot between different velocity components and luminosities 

of the galaxies in different bands viz. U , B l V, I and [23.5' 
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Table summarizing the statistics of the sample. 

averaQe 

Up 

V r tot 

Low 

P 

Up 

V r turb 

Low 

P 

Up 

V r 
gray 

Low 

P 

df 

r 
Up 
Low 
P 
*** => 

PHOTOMETRIC BANDS 

U B V 

0.65 0.69 0.74 

0.5 0.58 0.62 
0.31 0.43 0.47 

-4 
10 * * * 10-8 * * * 10-7 *** 

0.64 0.59 0.61 

0.49 0.45 0.46 

0.29 0.27 0.27 

-4 *** 10-5 *** -4 *** 10 10 

0.20 0.28 0.33 

-0.02 0.09 0.13 

-0.24 -0.10 -0.08 

0.83 ns 0.44 ns 0.30 ns 

52 68 56 

correlation coefficient 
upper limit on r (90% confidence interval) 
lower limit on r (90% confidence interval) 
probability from t statistics 

I 

0.85 

0.71 

0.40 
** 0.001 

0.54 

0.21 

0.20 

0040 ns 
0.80 

0.63 

0.27 

0.006 ** 

15 

** => 
P < 0.001 (very significant correlation) 
0.001 <P<0.01 (quite Significant correlation) 
not significant ns 

df degrees of freedom 

I 
23.5 

0.85 

0.72 
0.41 

** 0.001 

0.57 

0.25 

0.17 

0.39 ns 

0.80 

0.64 

0.29 

0.005 ** 

15 
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Chapter 4 

ROLE OF HELICITY IN AN 

EXPANDING FLUID 

.. the topology of the atmosphere probably should be presented as a helix inside a 

helix, inside a helix, etc., a vastly complicated and stable construction. 

- E.Levich and E. Tzvetkov -

4.1 Introduction 

We had seen in the preceeding chapters that that there is enough observational evi­

dence, pointing out the role of turbulence as well as the helical nature of structures 

observed. Here in order to study the role of helicity in the context of structure forma­

tion in the universe, we consider the model of an expanding fluid. Extending Kurskov 

and Ozernoi's [89] work to the case of a compressible fluid we find suitable transfor­

mations using which the equations of the perturbed flow are reduced to the standard 

Navier - Stokes form. Subsequently it is found that there are situations when helicity 

evolution is coupled to the density evolution. Even though the special case which 

we consider may seem trivial, this is of vital consequence to the study of large scale 

structures in the astrophysical context. Our study underlines the need to emphasize 

the role of helicity in the hydrodynamic evolution of the universe [7]. 

The role played by helical motions is believed to be central to the problem of 
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understanding the dynamics of fluid turbulence and the myriad features which have 

been reported by the observations of fluid turbulence, [90],[72] and [91]. Amongst 

these it has been realised that features like intermittency and the appearance of 

large scale coherent structures in turbulent media can be understood by studying the 

nonlinear interactions in terms of helical - decomposition of the flow [92]. Such a 

study clearly spells out the possibility of the inverse cascade of energy to large scales 

starting from the small scales, thus aiding structure formation. (See also [93]- [96]) 

4.2 The basic equations and the transformations 

The Navier - stokes equations for a fluid with density p and velocity components Uj 

(where i=1,2,3 are the x,y,and z components respectively)are 

p au, + pu' au, = pXi _ 8p +.£.. (p (au; + ~Uj) _ P-32 ~Uk 6,j) 
at 3 aXj 8x; aXj 8xj UXi vXk 

(4.1) 

Where Xi , is the i component of the body force acting on a fluid element; p, is 

the molecular viscosity of the fluid; p, is the pressure and; 6;j, is the kronecker delta 

function ( i.e 6;,j = 1 when i = j, and zero for i not equal to j ) 

The continuity equation expressing the conservation of mass for such a fluid is, 

8p + 8 (pu;) == 0 (4.2) 
{)t ax, 

( the Einstein summation convention is followed here .) 

If the fluid is self gravitating the system has to satisfy poisson equation also viz. 

(4.3) 

.' t t d ,I, is the potential produced by 
where G is the universal gravItatlOn cons an an 'I' 

. f' The body force in equation 
the mass distribution specified by denSIty unctIOn p. 

(4.1) then is given as, 
x == -v¢ (4.4) 

st' orporate the Hubble flow 
In order to model the expanding universe we mu me 

d the main component over 
into the above equations. Hubble flow may be treate as 
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IJmd above which the evolution of perturbations can be studied. Therefore we resolve 

the velocity, pressure, density and potential into a mean and a fluctuating component 

in each case and write; 

U - uo+v 

p - Po + Pl 

P - PO+Pl 

4> - <Po + 4>1 (4.5) 

where the subscript '0' is used for denoting the unperturbed quantity and the 

subscript '1' is used to represent the perturbed component. For the velocity, u rep­

resents the total flow which much satisfy equation (4.1), Uo is the Hubble flow and 

v represents the perturbed component, viz. the peculiar flow. The Hubble flow is 

represented as, Uo = Hr, where H is the Hubble constant. The Hubble constant is 

also represented as H = ! ' where a is the scaling factor and is a function of only 

time. Therefore, 

a 
Uo =-r 

a 
(4.6) 

We may note that for such an expanding fluid the viscosity terms of equation 

(4.1) which involve a double derivative vanish. Therefore a uniformly expanding fluid 

obeying the Hubble flow doesn't experience viscosity. 

If we assume the unperturbed pressure Po, to be constant then in the equation for 

the unperturbed flow Uo only the body force term remains. Thus 

Duo = -V'<Po 
Dt 

here we have used' Et' to represent the material derivative, (It + uo.v) 

(4.7) 

Taking the divergence of equation (4.7) and using equation (4.6) and equation 

(4.3) we arrive at the following relation, 

a 47rpoG 
- = ----'--
a 3 

(4.8) 
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implying that Po is a function of time and it satisfies the equation: 

or 

(4.9) 

To get the equation for the perturbed flow we simply subtract equation (4.7) 

from equation for u. We obtain, 

Dv av VPl v 
Dt +-+(v.V)V=-V<Pl- ( ) +vV2v+-3V(V.v) (4.10) 

a PO+Pl 

where we have replaced ~ by v the kinematic viscosity. Similarly the perturbed 

component of density Pl, obeys the following equation, 

( 4.11) 

Now going over to the comoving frame we merely have to effect the following 

substitutions for the temporal and spatial derivatives, 

(:t + uo.V) - ~t = (!) cmnoving 

a V - V cmnO'Ving (4.12) 

Henceforth we shall drop the subscript 'cmnooing' and simply use the normal nota­

tion to mean the co moving frame. Also the gt symbol shall be freely used to imply 

the material derivative in the comoving frame. 

Therefore the new set of equations for the perturbed quantities (including) the 

potential) are, 

av + ~v + (v.V) v = _ V<Pl _ VPl + vV2v + vV (V.v) (4.13) 
at a a a a (Po + PI) a2 3a2 
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(4.15) 

We would like to see if it is possible to restore the standard 'Navier ~Stokes' form 

by any set of transformations which would help us in getting rid of the extra terms 

in equations (4.13) and (4.14). 

To begin with let us effect the following transformations, [6] 

v = !!.v* 
2 

a 9 a 
= at 2a8t* 

(4.16) 

Inserting these into equation (4.13) and multiplying both sides by ,. gives, 

-+ --+-v + v.v V =-- ----+ 8v* (v* 8g 2& ") (" M)" 4a VPl 4a V¢l 
at* 9 at" 9 g2 a (Po + Pl) g2 a 

4a 9 2.. 4a 9 "(" *) 112"-2 V v +112'-6 2 Y V.V 
9 2a 9 a 

(4.17) 

We can see that the above equation can be made to resemble the Navier-Stokes 

momentum equation if the second and third terms on the left hand side (enclosed 

within braces) vanish. Therefore the necessary condition simplifies as, 

~ ag + 2& = 0 
gat* 9 

or transforming from t* to t coordinate we obtain, 

~=-~ (4.18) 
g a 

that implies that g.a = k (constant). 

Now if we redefine the pressure, potential and viscosity (kinematic) in the starred 

frame as, 
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(h* 4qh 
= 92 (4.19) 

1/* 
2 

= -1/ 
ga 

We can rewrite equation (4.17) as 

&v* 
at* + (v*.\7)v* = ( 4.20) 

,Note that we still have to reduce the density equation to the normal form and 

tha.t would effect the tra.nsformation of the pressure term above (which is why we 

:ha.ve used the primed notation for pressure and not the starred notation which would 

mark the final stage of transfonnation), 

Let us transform the density variable as 

(4.21) 

Substituting this relation in equation (4.14), multiplying both the sides by a3 

and using the velocity and time transformations along with the substitution of g 

from equation (4.20) we get, 

Now we may use the equation (4.9) for the unperturbed density 

in the above equation (4.22) to get, 

Thus redefining our density as 

(4.22) 

(4.23) 

(4.24) 

we arrive at the standard form of the continuity equation for k=1. Equation 

(4.24) , implies that (Po + PI) = Po + Aa-3 = Po + (p*a-3 - po) = p*a-3 

Substituting this in the denominator of the pressure term of equation (4.20) the 

new pressure is defined as: 
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(4.25) 

Finally we see that equations (4.16), (4.18), (4.19) and (2.21), (4.24)and (2.25) 

are the set of transformations which allow us to reduce the equations of the perturbed 

low in the comoving frame to the standard form . 

4~8 Helicity and density evolutions 

Having reduced the equations of motion to the standard form we are now in a position 

to talk about the conservation of helicity in the expanding frame too. In general, the 

governing equations for an inviscid fluid driven by an external force F are,[2] 

Dv -1 ... 
-=-Vp+F 
Dt p 

Mass conservation would imply, 

or 

~ + V.(pY) = 0 

f)p + p(V.v) + (v.V)p = 0 
at 

multiplying both sides of the above equation by =1 and simplifying: 

... f) 1 W (~ .... )' .... ( ... t"7 1) - 0 W.-- - - v.v +w. v.v- -
atp p P 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

Now taking the curl of the equation (4.26) ,multiplying both sides by ~, assuming 

the fluid is barotropic and simplifying we get 

! f)w + !w(V.v) + !(v.V)w - (0..v) v= 0 
pat p p p 

(4.3D) 

Adding equation (4.30) to equation (4.29) we get: 

(4.31) 
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ifbere p is the density of the fluid, p = p (p) the pressure (for a barotropic fluid), 

., = - V rP , the conservative body force. We can define helicity as the volume 

inkgral in the form given below 

Hs = Iv (~) .pdV 

where h = v.w . 
Then the rate of change of Hs would be given as 

dHs = f ~ [(!:.)] .pdV 
dt iv Dt p 

That implies that, 

~ (fl.w) 
Dt p 

- - = -.V Q=-V.(wQ) D (h) (w) 1 ... 
Dt p p p 

where 

and 

is the enthalpy per unit mass. 

v2 
Q=--e-¢ 

2 

e= /~ 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

Substituting equation (4.35) in equation (4.33) and converting the volume integral 

into surface integral we have for a vorticity surface on which w.n = 0, 
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d!s = Is (w.n) QdS = 0 

This proves the conservation of helicity. 

4.4 Interesting features of the evolution 

Expanding equation (4.35) we find that 

~ Dh _ ~ Dp = (e.V') Q 
pDt p2Dt p 

This equation reveals an interesting feature for the case w. VQ = O. We find, 

IDh IDp 
hDt =-PDt 

(4.38) 

which clearly states that the helicity and mass density of a fluid packet evolve together 

Let us recall the equation for a steady flow of a barotropic :fluid i.e, 

(v.V)v=- \!p -Vr/J 
p 

(4.39) 

Using the vector identity for V'(A.B) we may substitute for the nonlinear term in the 

above equation and obtain 

which can be rewritten as 

or 

M(V2) ..... \lp""I, 
v "2 + w x v = --;; - v 'I' 

VB+wxv=O 

where B = !!f + e + 4> is the Bernoulli function. ( Compare this with Q = ~ - e - </J), 

e is the same as in equation (4.37), and ¢ is the potential of a conservative force F. 
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If we take the dot product of the above equation with w we obtain 

w.VB = 0 

Now the above result implies that w.VQ can also be equal to zero only when V~ 
is zero. Therefore our assumption is valid only when v2 is constant i.e on constant 
energy sUrfaces. 

Returning now back to the equation (4.38) we discuss it's nature qualitatively. 

We :find that since helicity can be of either positive or negative sign and density can 

only have a positive sign, the following cases arise. 

h Dh !22 
Dt Dt 

l. + + + 
2. + 
3. + 
4. + 

Cases 1 and 4 imply that in regions where helicity of either sign grows (say posi­

tive becomes more positive or negative becomes more negative) density also grows. 

Whereas in regions where helicity decays density also shows the same trend (cases 

2 and 3). These two conclusions point out the possibility of explaining the growth 

of 'voids ' and density structures in the astrophysical context, where interestingly 

such features are all the more prominent( i.e the existence of large volumes of voids 

and large scale structures is well established.). This observation has to be viewed 

with seriousness in the astrophysical context, to understand more precisely how he­

licity influences the density evolution in various structure formation scenarios [8]. We 

would also like to emphasize that just as vorticity is generated through changes in the 

Bernoulii function in a steady flow (Crocco's theorem) [37], the changes in helicity 

can be produced through the variation of the function Q in a non-steady flow. At this 

point it may be appropriate to mention that Belyan et al. [99J studied the problem 

of sound propagation in a turbulent medium and found that the transformation of 

a SOund wave (analogus to density perturbation in our case) into vortical motions 

is possible during its propagation through a turbulent medium, and these vortical 
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.. were shown to be helical in the case when the turbulence helicity is nonzero. 

- work vindicates the connection between helicity and density derived here. 

4 .. 5 Conclusion 

~ .. ' view of the increasing realization of the role played by helical motions in the 

~l'lltion of fluid turbulence we have tried to understand its role in the case of an 

~g fluid. This would help us in introducing the concept of helicity and helical 

ct~mposition of flows in the context of astrophysical flows as well [92], [97]. It 

W'found that a suitable set of transformations can be arrived at thus simplifying 

tlie equations for the perturbed flow, into the standard Navier - Stokes form. The 

connection between the helicity evolution and density evolution is clearJy established. 

A particular case (i.e when w. \7Q = 0 ) is qualitatively analyzed whereby it is shown 

that the density growth is enhanced in regions of growing helicity of any sign whereas 

density is depleted in regions where helicity decays. 



Chapter 5 

SIMULATING 'INVERSE 

CASCADE' 

THE PURPOSE OF SIMULATIONS IS 'INSIGHT' NOT 'NUMBERS' 

5.1 Coherent Structures in turbulence 

1 2 The study of coherent structures in turbulence has provided considerable ex­

perimental and theoretical evidence that such features are a consequence of 'self­

organization' of the flow. These ideas are very much relavent to the field of astrophysics 

wherein we still lack a definitive theory of the formation of the observed large scale 

structure of the universe and the role of turbulence in producing such an organisation 

is still not appreciated by the community. Be it the observed heirarchy of structures 

(galaxies,clusters of galaxies,superclusters .. etc), or the granulation scales on the sun 

, all such order seems to be the fallout of a self-organized system! What causes this 

self-organisation is believed to be related to inverse - cascade of energy in the system. 

The alpha-effect, which is a large scale Magnetohydrodynamic instability, usually 

associated with helical flow, is well known. It is believed to play an important role in 

1 Paper presented at the 4th International Conference on Computational Physics, 

Singapore,(1997) 

2 Poster accepted in the International Symposium on Supercomputing -Tokyo,(1997) 
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tile generation of large scale magnetic fields which are well observed in astrophysics. 

There is indeed a known analog for the alpha effect in compressible ordinary fluid 

dynamics [22].But for statistically isotropic incompressible and helical flow no such 

large scale instability is obtained [100]. On the other hand anisotropic flows in 2D 

and 3D are known to have large scale instabilities of the negative viscosity type where 

the growth rate is proportional to the wavenumber unlike the alpha - effect. 

Frisch et al. [27] asked a relevant question as to whether there exists an analog to 

the alpha effect for three dimensional flows which are incompressible. Their analysis 

led them to conclude that indeed there exists a large scale instability provided the 

small scale flow lacks parity. By parity - invariance we mean invariance under the 

simultaneous reversal of the position and velocity vectors with respect to a suitable 

centre, in a deterministic or statistical sense as the case may be . As reiterated by 

Frisch, lack of parity invariance is a broader concept than the (essential) presence 

oj helicity, and could have in some instances (e.g. PRIMORDIAL TURBULENCE 

) have its origin in parity non-conservation of electroweak interactions. This inverse 

cascade could be the result of a large - scale - instability , whose existence was 

confirmed by Frisch et.al.([27];[71]) for the case of an incompressible fluid with forcing 

, and is since known as the Anisotropic Kinetic Alpha effect. The AKA effect is also 

the analogue of the well-known alpha effect for the generation of large scale magnetic 

fields from seed fields. A perturbative expansion of the incompressible Navier - Stokes 

equation using the small scale Reynolds number as a small parameter shows that the 

solvability condition for the set of linear PDEs obtained with multi-scale analysis, 

resembles the dynamo -like equation for magnetic fields. The key requirement for the 

AKA instability to manifest itself is the lack of reflectional symmetry in the medium 

(Parity non-invariance). 

5.2 The basic equations 

We model the flow using the Reynolds-averaged N avier Stokes equations, where the 

flow is separately described by the equations for mean flow and equations for small 

scale random flow. We force the small scales using a forcing function similar to that 
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of Frisch et.al. which ensures that the flow on small scales is not parity invariant. We 

list the respective equations below: 

The main equations in the non-dimensionalized form. 

(5.1) 

(5.2) 

In deriving the above equations in dimensionless form with the following transforma­

tions: 
x 

x='y, 

vt 
t=. £2 

U 
U: U 

p:!.. 
Po 

we have also used the polytropic relation between the pressure and density P = 
~c2 r? / Po , c being the sound speed and Jl = ~ where Jl is the ratio between the mach 

number M (M = ~) and Reynolds number Re. 

where, !i -is the forcing function periodic in space and time,uj is the total velocity 

and p the total density. The assumption of Reynolds averaging implies that any 

randomly varying variable (velocity or density here) can be split into two parts, one 

consisting of the Mean and the other the fluctuating component with zero mean. (say 

Uj = Wi (mean) + Vi (fluctuations) ) The ensemble averages () would imply: 

(U) = W 

(v) = 0 

(ji) = 0 

(p) = Pm 

(/) =0 

(5.3) 
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(Pm is the mean - density and pt is the fluctuating part) 

From Eq. (5.1) and eq. (5.2) we obtain the separate equations for Large and Small 

seales uSing the relations in eq. (5.3). They are : 

Equations for Large Scale :How. 

Equations for small scale flow 

where, ii in Eq. (5.6) is given by the function 

Ix = v'2cos (~ + ~!) ; fy = v'2cos (~ - ~;) ; I: = fz + fy (5.8) 

5.3 Simulation and results 

We have simulated the above set of equations adopting the highly accurate spectral 

method and using Runge-Kutta Fourth order explicit time marching using a 32 cube 

grid [102],[103]. The RK4 scheme used is as follows: Let U be the solution function at 

all grid points at a given time t. We can compute the derivatives ~~ at all grid points 

and then integrate the time derivatives to get the numerical solution at a later time. 

We denote the time level tn with a subscript 'n'. RK4 requires three intermediate 

steps: 

Ul = U + ~At (dU) 
1'I 2 dt 

1'I 
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1 (dU) U2=Un+2~t di 1 

Un+1 = Un + !ilt ((dU) +2 (dU) + 2 (dU) + (dV) ) 
6 dt n dt 1 dt 2 dt 3 

The time derivatives are calculated by evaluating the spatial derivatives in the 

equations. The RK4 time marching is accurate to the fourth order in ilt. We used an 

extremely small time step ilt = 0.0005 for our simulations thus leading to errors of 

the order of say ~ 10-16 . The conservation of total mass enclosed within the periodic 

box at any instant of time was used as a tool for consistency check of the simulation 

at every step (See Fig.( 5.1)). This takes care of any spurious mass addition effects 

which are known to set in for compressible simulations, due to a change in the nature 

of equations in spatial regions with different mach numbers. 

In our simulations the ensemble averages at each point were calculated by taking 

the 'average of sufficient number of points surrounding each grid point. This preserves 

the gradient-information of the averages thereby retaining the spatial structure. We 

feel that this is a close approximation to the concept of ensemble averages. Thus 

we could avoid the need to use' any model to close the equations by specifying a 

particular form for the two-point correlations that we encounter. It is to be noted 

here that in the conventional practice the empirical form of the correlation tensor 

used would not have preserved the anisotropic nature of the flow, since none of the 

models really assume any small scale anisotropy. So, it was safe on our part to adopt 

a different strategy for the ensemble averages in question. By doing so, we are not 

tampering with the anisotropic nature of the flow. As the simulation proceeds we find 

that these averages do grow in magnitude and eventually become comparable to the 

remaining terms. This clearly marks the role of Reynolds stresses in the evolution of 

the Large scale flows. While calculating the power in each mode ( for any quantity in 

the fourier space) the wave-vectors were so grouped into each shell that the density of 

states within each bin is such that it resembles the continuum distribution .. viz goes 
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as the square of the wavenumber. Then as seen from the fig.( 5.2), it is evident that 

the higher wavenumber modes (i.e modes for which (Log(k) is greater than 1.2 , here 

in the case of 32 cube grid, .. ) do not contribute at all to the physical picture. They 

must be ignored. We specify random initial values over the grid for the small scale 

velocities ( there is no Large scale component to start with) and ensure that there is 

maximum power in the small scales. We choose the initial conditions in such a way 

that most of the power resides in the small scales only. The typical parameters which 

we used for the simulation are: 

II - 0.1 

Re - 10.0 

J.L - 0.1 (5.9) 

lo - 27r/4 

At - 0.0005 

(forcing amplitude) - 10-6 

Forcing at k - 4.0 

As the simulation progresses, we notice the onset of the large scale instability , 

as the energy in the wave mode k = 1 and k = 2 keep increasing steadily. We also 

note that a steady saturation stage is reached soon which may mark the non-linear 

saturation by feed-back from small scales i.e as the small scales deplete their energy 

the contribution towards Reynolds stress terms also depletes thus reflecting itself in 

a saturated large scale mode! 

Another feature of interest which we observe in our simulation is that of helicity 

evolution. With an initial helicity distribution which is mainly has lot of small scale 

power, our simulation clearly shows that there is a strong polarization seen in the fi?w 

in terms of well developed regions of positive and negative helicity (see Fig. (5.10)). 

This evolution may also be in accordance with the helicity-dynamics which some of 

the recent shell-model studies of turbulence are revealing [97). '( Although it is also 

seen that helicity as such decays.) This lends support to the idea that helicity -
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helicity correlation (or the I - invariant,) may cascade towards larger spatial scales as 

a fluid evolves. This is 'precisely what was expected from our dimensional analysis of 

chapter 2 , also! We also note that since the flow is not inviscid, helicity conservation 

is not what matters. Moreover as pointed out by Levich the total helicity , no matter 

which predominant sign we choose to start the simulation with, eventually tends to 

zero! (Fig. 5.8) Thus the second order moment viz. Helicity-helicity correlation gains 

prominence now. 

We map the large scale velocity field at one instant of time in Figs. ( (5.11) and 

(5.12)). We note that the flow is strongly driven by the density distribution viz .. 

regions of high and low density both aid in driving such a parity - violating flow!(see 

also the fig. (5.13)). Thus as explained by Moiseev, compressibility ensures that the 

0: term (refer to Chapter 1.) doesn't vanish. This is because the Reynolds terms 

are no longer symmetric with respect to reflections . The evolution was studied both 

with and without forcing Ji and the evolution of the energy in wave - modes k=1,2,6 

is shown in Fig. 5.3 and in Fig. 5.4. We confirm the presence of a three dimensional 

large scale instability leading to inverse cascade of energy as can be seen from the 

figure (5.5). The simulations were performed on the IBM SP2 as well as on the 

Power challenge platforms. The averaging routines of the code were paral1elized for 

greater optimization of execution time per iteration. The execution time for each 

time-step was roughly 20 sees, and each run of the simulations was continued for 

almost 5000-6000 iterations. 
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Figure 5.1: Figure showing the constancy of total mass inside the periodic box 
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Figure 5.2: Figure showing the density of states, which is made to resemble Contin­

uum distribution by suitably binning the modes into shells. For a 32 cube grid, the 

above figure shows the density of states for 70 shells. 
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Figure 5.3: The evolution of the energy in wave modes k=1,2,and 6 with forcing (at 

k=4) 
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Figure 5.4: The evolution of the energy in wave modes k=1,2,anci 6 without forcing. 
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energy 

Figure 5.5: The energy Spectrum ,(E(k) .vs. Log(k)), ( .. * .. dotted =initial) (- con­

tinuous=fina]) 
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Figure 5.6: The helicity spectrum (initial) (H(k) vs. Log(k)) 
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Figure 5.7: The helicity spectrum (final) (H(k) vs. Log(k)) 
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Figure 5.8: The evolution of total Helicity with time. 
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Figure 5.9: The vorticity spectrum .(w(k) vs. Log(k))(*-* = initial) (~= :final) 
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Figure 5.10: The spatial distribution of helicity at two different instants. Top: initial; 

Bottom: final. The color code is : the values range from negative (blue) and increase 

through green,yellow(zero), red and pink(positive). 

Figure 5.11: The initial velocity field along a z-y plane. Note that there is no mean 

flow here, and the velocity vectors are randomly oriented. The color code is just a 

superposition of the density information. density increases (from a positive value) 

through blue,green,yellow,red and pink. 

Figure 5.12: The final mean velocity field along the z-y plane. Note that a distinct 

large scale flow has emerged which is also driven by the density distribution as can 

be seen from the overlaping color code for density. 

Figure 5.13: The density evolution is shown above. On the left is the density spectrum 

p(k):vs.Log(k), with both the intial(yellow) and final(green) spectra superposed. On 

the right-top is shown the initial density distribution in space.The box on the right­

bottom shows the final density clumping as seen. color code: density increases (from 

a positive value) through blue,green,yellow,red and pink. 



Appendix A 

Statistics 

A.I Correlation coefficient 

This appendix sums up the statistics used to arrive at the results indicating significant 

correlations between the variable under study. 

To calculate the correlation coefficient we employed the following formula: 

EYIY2 - (Ey1EY2) In 
r = -;::=============:::::::::======= J[ (E(yt}2 - (EY1)2 In) (E(Y2)2 - (I;Y2)2/n)] 

We can also calculate the standard error in the calculation of the correlation 

coefficient, and perform a t-test to determine the probability that it is equal to zero. 

A probability of less than 0.05 is considered evidence of a significant correlation. 

Note·that we have based our criteria for the significance of the correlation on this 

and displayed the corresponding values in the Table. 

We can also calculate the probability that N measurements of two uncorrelated 

variables would give a coefficient r as large as ro (which is our observed value from the 

data) i.e PN (Irl >= Ira!). Here too a probability ofless than 5 percent(i.e P <= 0.05) 

is considered to be indicative of a significant correlation. This value is calculated from 

the following integral below: 

2r [(N - 1)/2] J1 ( 2) (N-4)/4 
PN (Irl >= Iro!) = yI1Tr [(N _ 2)/2] Irol 1 - r dr 
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JA.2 Skewness and Kurtosis 

The Skewness and Kurtosis of a given distibution can be found out as follows: Let N 

be the total number of samples, and the mean < x >: 

and let 

also define 

where J.t2 = (J is the variance. 

EfiXi 
<x>=~ 

Using the above definitions skewness is calculated as: 

and kurtosis is calculated as: 

J.t3 
Skewness = 2(J3 

(A.l) 

(A.2) 

(A.3) 



Appendix B 

Notes on the 1- Invariant 

B.l The Proof of 1- invariance 

Helicity as is an exact topological integral of motion of the Euler equation, and is 

also the measure of knottedness of the vorticity field ([72] w = V x if) lines. From 

the Euler equation 

: + (v.v}U' = -(\7p)j p (B.l) 

taking a curl of the above equation we get, 

(B.2) 

we take the dot product of (B.1) with W , and add it with the dot product of 

(B.2) with v. We get: 

[w. ~~ + if. :] + w.V(v2/2) + w. :P - fi. (\7 x (fix w» = 0 (B.3) 

expanding the last term in equation (B.3) as: 

-ii. (V x (v x w)) = -iJ. [V. (V.w) - w(V.V) + (w.iJ)fi - (i1.V)w] 

= v. [(V'.V)w - (w.V)Vj + v.(V.V)w 

= fi.«v.V)w) +i1. [(w.\l)fi- 2.(w.\l)fi+ (V.fi)w] 

= v. «(v.V)w + (w.\7)V) + 11. (V.V)W - v.2(w.V)fJ 
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= v.V H + HV.v - v.2(w."V)fJ 

= (V.Hi!) _ 2w.V (~2) 

using the above relation in (B.3) we finally obtain: 

~~ + V(fJH) = w.V [~p + ~2] 

Now that implies: 

where F = w (-p + v2/2). 

= V.[w(-P+v2j2)] 

DH ... 
-=divF 
Dt 
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(BA) 

(B.5) 

(B.6) 

By applying the above equation (B.6) at two points x, and x + r, averag­

ing and using homogeneity, one obtains the following equation for the correlation 

(H(x)H(x + r)): 

gt (H(x)H(x + r)) = divr [(H(x + r)F(x)) + (H(x)F(x + r))] (B.7) 

after integrating, one arrives at the conservation law: 

1= / (H(x +r)H(x)) d3r = constant 

In deriving the I-invariant, the existence of a small viscous term on the right hand 

side of equation (B.6) is assumed. Otherwise the ensemble of helicities would not 

have been possible, since helicity itself is the exact invariant for inviscid flows. The 

I-invariant is such only with the accuracy of viscous terms. Below we derive it's 

relation 'With the energy spectrum for a quasi-normal distribution of helicities. 
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.~2 Proof of l(k) ex E(k)2 

This appendix gives the derivation of the helicity - variance spectrum, that was em­

ployed in our model [104]. The Helicity spectral density H(k) may be written as: 

H(k) = ES(k)V(k').w(-k') 

where, the summation ES(k) extends over one shell in k space, k <= lV(k') I <= 
{k + 1). 

Since the velocity vectors in fourier space are complex: quantities, ( with a Real 

part R(k') and an imaginary part I(k') ) we can simplify the above spectrum as : 

H(k) = 2;S(k)2k'. [R(k') x I(k')] 

or 

H(k) = 2;S(k)2kR(k')J(k')sirup(v') 

We assume that ¢ is uniformly distributed over the interval [O,21TJ, then 

(H(k)) = (sin¢(k)) = 0 

We further assume that the random variables R(k),I(k) and ¢(k) are statisti· 

cally independent and that fourth order cumulants are negligible. Also, the reality 

constraint on the velocity values in the real space implies that v(k) = v*(-k). Then, 

In this approximation the amplitudes of the velocity and the energy spectral den­

sity are related by (R(k)2) = (J(k)2) = (E(k)jN(k)) where N(k) is the number of 

modes per shell, approximately equal to 41Tk2 p. The density of modes in Fourier space 

p = (Vj(21T))3 is equal to one in our simulation. We obtain for the variance of helicity 

spectrum: 
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2/E(k))2 4k2 2 
= ES(k)4k \N(k) = N(k) (E(k)) 

= ~ (E(k))2 
'Tr 

Which is the relation that we employed in our model. Note here that 1 = 

J {'Y(Oh(r) dV = J I(k )dk So, the above result is directly related to the 1- invariant. 
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