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” What happens when you stir a coffee cup ..”, is what stirred this thesis! In
fact that was how the apparently ‘counterintuitive idea’ contained in this thesis was
introduced to me by my guide Prof.Vinod Krishan...simply, intuitively. And as if
notwithstanding the ‘novelty’ of the idea ..there were the galaxies.. in waiting..to fuse
into a new picture of how it all came to be. Prof.Krishan always had an open mind
to both criticism as well as to new ways of looking at the problem. She encouraged a
strong ‘Do it yourself’ culture in me. There were limits though..to my meanderings,
my little quests..which she set with such deftness that you never could complain that
you never got your share of freedom! And that she would do it in an unsaid ”enough
..! now lets get down to business” fashion. What steered this thesis to its present
state is her guidance and NOT my so called ‘independent ways * of doing things! To
her I owe the successful execution of this splendid idea of ‘self -organization’, and
I must hasten to add that there is nothing of my ‘self’ in the way this thesis got
‘organised’ from a turbulent start! Left to myself I guess it would have still remained

‘turbulent’ and ‘disorganised’!
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Indeed I have had a very healthy social life at IISc. Friends like potatoes came in
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which often ranged widely between religious issues (of the Does GOD exist..?” kind
) and science and industry (of the ”do we need R and D ?” kind) and films and music
(of the "Wow Madhuri Dixit! » kind). Our neighbours must have had sleepless nights

with our frequent night-long debates and excited exchanges!!

Whatever that meant, at the end of the day my wife and me would get engaged
in another fresh debate over whether it was my garrulity (entertaining..?) or her
culinary capabilities ('yummmy! sllrrpp..’} that wins us friends ! All in all T have
always had lively company ..be it the CAIR gang..(Sartaj,Pravecn, Vinod,Srini et al
), or the Balaji-Sutapa duo or Sastry, Seshu, Srinivas Rao (the three musketeers!), or
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(Pandey,Arun, Sivarani,Reddy,Angom,Geetha et al), or my brother-in-law..Bhanu
and family (Lakshmi, darlings Ajit and Devasena)..or Mohan (and his nth hand car!)
or Rajguru or Sachin or Madhavi or Parker-Raju..(I guess this is data enough for a

thesis in Sociology!!)...(hope my other friends forgive me after secing this sentence
end).
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ABSTRACT

This thesis is an attempt to blend the latest observations of large scale coherent mo-
tions - coherent structures- observed in experiments with turbulent fluids, [6] with
different astrophysical situations where turbulent flow is more of a rule than an excep-
tion. We highlight the need to re-invoke the once suggested [2] but long ignored role
of turbulence in various astrophysical scenarios - viz.. the solar context, the galactic
level, as well as on the cosmic scale- in the light of some of the latest developments in
turbulence-studies. These studies have begun to emphasize the role of new invariants
related to HELICITY and Helical fluctuations in the flow [73]. We feel that these new
developments if incorporated in astrophysical fluid dynamics, may help in clarifying
some of the long standing problems in astrophysics related to large scale structures,

and large scale motions which are well known.

There is a well observed structural heirarchy in astrophysics viz. the way in
which the fundamental blocks - galaxies, are clustered in groups and these groups in
turn are re-grouped as superclusters over vast length scales ranging upto 100 Mpc
(1pc ~ 3 x 10¥®cm). For example our Galaxy - Milky Way - belongs to the Local
Group which consists of about 20 galaxies. A cluster may have upto 1000 galaxies.
A typical linear extent of a cluster could be about 5 Mpc. A supercluster may be
extending upto 50 Mpc. Further the ’Great Wall’ is a linear structure of size 60 Mpc
by 157 Mpc and is made up of several superclusters. The filamentary nature of matter

distribution is well known.

Using kolmogorovic arguments and the newly identified invariants related to he-
licity ( i.e the projection of vorticity along the velocity) and helical fluctuations viz.
the helicity-helicity correlations (called the I - invariant) we can work out the inertial
range stationary spectral behaviour for any turbulent medium whose net helicity is
zero but the helicity variance is a constant.This spectral dependence when translated
into real space reflects the average energy that resides on each length scale. Thus the

real space velocity fields also could carry a signature of this behaviour.

This approach is the 3D analogue of the 2D case where apart from energy, en-

strophy (i.e vorticity squared) is another invariant of the fluid flow. Upon inclusion
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of dissipation each of the invariants decay at different rates. The slowly decaying
invariant generally cascades towards the larger scales and the faster one cascades to

the smaller scales.

Levich et al. [73], had evolved after a detailed study of the mesoscale atmospheric
phenomena, a turbulent stationary spectrum which explains the energetics of the
cloud complexes over a range of scales. A similar spectrum was also employed to
study the solar granulation scales by Krishan [16], which again could match with the
observed and predicted energetics. Later, on a cosmic - scale too Krishan [8]and,
Krishan and Sivaram [17] showed that the entire heirarchy of structures ranging from
a galaxy to superclusters could be visualised as the consequence of similar turbulent
processes operating over the whole range and leading to self-organized coherent states

at various levels.

To further verify the full spectrum in the astrophysical context we fit the real space
velocity fields of various galaxies - known as ’rotation- curves’; with the predicted
spectrum [9]. This exercise has yielded remarkable agreement with the spectra and
galactic-velocity fields. The parameters of turbulence so extracted from the fits are

comparable with similar estimates made by other methods.

Next we test our proposed velocity-laws for the galactic velocity field, with the
well known Tully-Fisher relation which highlights a tight correlation between the
rotation velocity and the luminosity of a galaxy in various bands [87]. This is a
statistical study wherein our interest is focussed on the correlations between the
galactic luminosity with the ’turbulent’ and ’gravity ’ components of the velocity field
, which our model could resolve after the proper fits are performed to the observed
velocity fields. We confirm the normal trend of correlations with the total velocity
first . For the individual correlations between the galactic luminosity and each of
the velocity components , our study reveals an interesting feature. The turbulent
component correlates reasonably better than the gravity component in the shorter
wavebands . Whereas the gravity component correlates better than the turbulent
component in the longer wavebands. This implies that the so called 'scatter’ observed
in the shorter wavelength bands could be a feature of galactic-turbulence which might

be playing some constructive role in generating the observed large scale velocity field.



Abstract ix

Thus our study points out the necessity to re-consider the role of the self-organizing
aspects of turbulent flows on galactic scales. Our results also convey the fact that
our model is doing well in estimating the extent of gravity , and turbulence induced

velocities.

In an attempt to understand the generation of such large scale flows and other
features of self-organization Frisch et al had performed a multi scale analysis of the
Reynolds averaged set of Navier stokes equations with a well-defined forcing intro-
duced on the small scales. They discovered that there indeed exists a large scale
instability provided there is some small scale anisotropy in the flow. This is possible
if the turbulent medium lacks parity on small scales (i.e the statistical averages of
the medium are NOT reflection invariant). Such a situation can be brought about by
injecting helicity into the medium (on small scales), by rotation, or by compressibility
effects or by using the specific forcing term used by Frisch et al. in their analysis.
This mechanism has its analogue in the DYNAMO MECHANISM which is invoked
for the generation of large scale magnetic fields, called the alpha effect. In fact the
equation for the evolution of VORTICITY, and the evolution of the MAGNETIC

FIELD.. are similar in their structure.

In order to prepare the ground for studying the mechanism in the context of an
expanding universe we find a set of transformations which can help us in reducing
the equations in the expanding frame to the normal Navier Stokes formulation [98] .
This could then be used in the study of the formation of large scale structures in the

universe which is indeed a long standing problem.

Frisch et al, and Sulem et al [27];[71] had performed extensive numerical sim-
ulation of the incompressible Navier Stokes equation with a specific forcing term
which produces a parity breaking velocity field on small scales. Later Druzhinin and
Khomenko [101] also studied the same set of equations with compressibility effects

We have performed a 32 x 32 x 32 numerical simulation of a compressible fluid
(using spectral methods in a periodic box) on the IBM SP2 Convoy (as well as on
the Power Challenge system) with pafallelisation techniques implemented [102]. We
have not used any empirical model to close our Reynolds averaged set of equations

for the large and the small scales . Instead we perform a spatial averaging over the
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entire real domain of velocity field at every time step. We choose a suitable length
scale over which to average, so that we get a statistically significant number of points

over the grid. This we feel is a best approximation to the idea of ensemble averaging

We confirm that an inverse cascade of energy occurs when the fluid is forced
on small scales with a forcing function which violates parity. We also study the
evolution of helicity, vorticity, and density spectra in the simulation. We find that
the compressibility of the medium also aids in generating a velocity field which lacks

parity.
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Perhaps the Fundamental equation that describes the swirling nebulae and the
condensing , revolving, and exploding stars and galazies is just a simple equation for

the hydrodynamic behavior of nearly pure hydrogen gas

Richard.P.Feynman - Lectures on Physics, Chapter 41,”Flow of wet water”

Chapter 1

INTRODUCTION

1.1 Fluid turbulence: Then and Now

A simple definition of turbulence is the existence and interaction of many spatial and
temporal scales in a fluid. Fluid turbulence has remained the last unsolved classical
problem in physics for nearly 300 years [1]. Moreover it is also an all pervading
phenomenon. If the flow of blood in our arteries is turbulent so is the flow of air
blown out of a musicians flute, and so is the flow around automobiles and aircrafts.
The atmosphere of our planet is turbulent, thus keeping our meteorologists busy and
guessing all the time. Indeed, turbulence is as rich in variety as it is difficult to grasp.
Jupiter’s red-spot has long been thought of as a ’'perennial cyclone’ by researchers
and artists alike. Indeed they both have proved to be right for research has led us
to believe that turbulence is not just ’disordered motion’ it could also be a source of
‘order and structure’. Talking about structure, astronomers and astrophysicists have
long been wondering at the marvellous observations of ’structure on almost all scales’
which the universe presents us with. The cellular structures on our sun, the spiral
structure of galaxies, the clustering of galaxies, and superclustering of clusters - there

seems to be a mysterious undertone of order on all scales. Studying the origins of
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this ’order’ has been the preoccupation of many brilliant minds. von Weizacker 2],
George Gamow, [3] Jim Pecbles [4], Zeldovich [5] and many others have attempted
to study the role of turbulence in producing the vast fabric of observed structural
- heirarchy. Their efforts have borne out results ranging from skepticism regarding
the need to invoke turbulence (Peebles) to belief that turbulence is indeed needed.
This wide spectrum of conclusions is understandable since the study of 'laboratory
turbulence’ itself is a source of tremendous possibilities of behavior. It is only recently
that experiments have revealed the presence of 'coherent, structures’ in such turbulent
- media. The numerical simulations of turbulence have corroborated this view even
when restricted to their limited domain of computational capabilitios [6]. (We still do
not. have the resources to numerically simulate even the simplest. everyday turbulent,
phenomena like say the sinoke emanating out of a chimney!!). Yet such simulations do
give us an insight into the various processes at work in the evolution of a turbulent
fluid. Thus this provides 'food for thought’ for theoreticians who are way behind
in capturing the essence of such behavior in their equations to reproduce the zoo of
animals which turbulence harbors and which the experimenters have wall documented
by their painstaking observations. Looking at the infancy of these new developments
it is understandable that the diverse views held by scientists in other communitios
trying to *apply turbulence’ were just the reflections of an ‘incomplete pieture’. This
also requires that we take a fresh look at these interdisciplinary fields time and again
to update ourselves with sufliciently new tools and ideas before we consider their

application to any other discipline,

This thesis comes under such an interdiseiplinary effort. to highlight the role of
new ideas in the formation of coherent structures in o turbulent media, in structure
- formation scenarios in astrophysics. Although the major emphasis is laid on the
mechanism, the potential for applying it to cases of astrophysical interest have also
been explored with considerable suceess, (eg. solar granulation |7],[16], cosmic alpha

effect in clustering [8], rotation curves of galaxies [9] ete..)
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1.2 Turbulence - the Kolmogorovic way

Eventhough the problem of turbulence remains intractable till date, one of the most
ingenious insights into the nature of turbulence was provided by Kolmogorov in a
seemingly trivial style [10]. The essence of his path breaking find was based on
simple assumptions regarding the turbulence - energetics. Kolmogorov assumed that
the energy was being exchanged between different spatial scales (say from the large to
small scales) at a constant rate which was independent of the scale and the viscosity
of the fluid. Thus there exists a quasi-stationary range of scales called the inertial
range where the energy is exchanged among scales at a constant rate independent
of the scale. The energy cascades from large scales to small scales. This process
continues untill the energy reaches the smallest scales corresponding to the molecular

sizes where it is finally converted into heat due to the viscosity of the fluid.

Thus, if V is the typical velocity on a scale L , and say the energy of this scale
is drained to a subsequent scale within a time say T , then V?/T = ¢ where ¢ is the
rate at which energy is exchanged betwecen the scales and is a constant for any scale
within the inertial range. Therefore for any other scale ! with a velocity ¥ the rate
of energy dissipation is also ¢. If we assume that each scales retains it’s energy for a
period which is the same as the eddy - turnover time 7, then T=r = L/V (say). So,
V?/T = V3/L = € and thus for any other scale also, 43/l = ¢ = constant. Translating
the same into the fourier space, so that 7 = (kVi)™' , (where k is the wavenumber

and Vj is the velocity in the fourier space )we get :

(kVi)(Vi)? = ¢ (1.1)
The energy spectrum E(k) is defined as :
kEy = (Vi)? (1.2)
Equations (1.1) and (1.2) give:
k(kE(K))*? =€

or
KPPE(k)? =€
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from which we can see that
E(k) = 355/ (1.3)

Equation (1.3) is the famous ‘Kolmogorovs 5/3' rd law.

This approach helps us to predict the quasi-stationary spectral hehavior in the
inertial range. In two-dimensional inviscid fluid turbulence, apart from cnergy , a
quantity called enstrophy is also a conserved quantity. Enstrophy §2,is the volume

integral of vorticity (& = V x ¥) squared. i.e
Q= [ (wrdv (1.4)

Based on this we can work out the enstrophy spectrum as:

Qk = k:z ’U,rc2

or, using the equation (1.2),
Qx = K*E(k)

using the kolmogorov 5/3 rd law for the energy spectrum E(k), we get
Q= k17° (1.5)

Locking at the spectral dependence it can be seen that the enstrophy §0 with its
k dependence as k%3 will dominate at large k or small spatial scales, whereas the
kolmogorov encrgy spectrum E(k) o« k=% will dominate at small k. Upon inclusion
of dissipation , these invariants would decay. The decay rates are not necessarily
the same. Since Q is concentrated mostly on small seales, it would dissipate faster
than ecnergy. Eventually two different inertial subranges are formed whercin we find
different energy spectra depending on the type of spectral dependence of the invariant
with the scales. For 2D turbulence, in the inertial range corresponding to ensirophy,

we have :

(kVe)(k Vi) = ¢ (1.6)

Combining the above equation with equation (1.2) we have

k3 (kEk)a/lz = 6'
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or
KB = ¢
leading to :

12/3

E(k)=¢ k2 (1.7)

These relations are based on the fact that enstrophy exchange rate € is constant
like the energy exchange rate ¢ Thus energy is expected to cascade towards larger
. scales and enstrophy would cascade towards smaller ones. This is a case for Inverse

Cascade of Energy.

The foregoing discussion pertains to the selective dissipation hypothesis, wherein
the system is said to relax towards a state of equilibrium with one invariant almost
constant and the other decaying rapidly. For example in the 2D case enstrophy
suffers larger dissipation than energy [11]. This problem of optimizing the state can

be treated variationally.

There is a direct numerical evidence showing that the above kolmogorovic argu-
ments coupled with the selective dissipation hypothesis are correct. Lilly et al [12]
have shown such a behavior in their extensive numerical simulations. It would be
natural to ask whether such an inverse cascade could occur in a three-dimensional
medium. This question was not answered in the affirmative till recently . The reason
being the lack of knowledge of invariants analogus to enstrophy in the 2D case. It
is only a recent realization that the helicity related invariants viz..helicity - helicity

correlation , is a robust invariant.

An example of Inverse Cascade in 3 D Magnetohydrodynamics (MHD) is provided
by the ‘dynamo - model’ for generating large scale magnetic fields from small scale
seed fields (see for example, the review on Galactic Magnetism, by Beck et al, [13]).
The basic magnetic induction equation is :

0B ~

- =V (v x B) +nV*B (1.8)

Where 7 is the magnetic diffusivity of the medium (inversely proportional to the
electrical conductivity), ¥ is the turbulent velocity field. We decompose B in the form

—_ — -

B = By(z,t) +b(z, t)
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where By is the 'mean’ field varying on a scale | of the turbulence. The mean and

fluctuating parts of (1.8) are then:

‘%;9 =V x ¥+ 4V By (1.9)
Qf?mvx (in ﬁo) +V x G+ (1.10)
ot '

where & = <1’Z X B>and G = il x B — ¢ Fquation (1.10) establishes a lincar
relationship between b and By and so between ¢ and B,. This relationship in general

admits expansion in the form :

OB,
¢ = vy Boj + Bie W

4 1.11
g * (1.11)

where the pseudo tensor coefficients oy, fByx ete.. are determined by the statistical
propertics of the turbulence and the parameter 7. Fxplicit determination of these
coeflicients requires solution of the fluctuation equation (1.10). The simplest situation
is that in which the magnetic Reynolds number of the turbulence, R, = wl/n, is
small (1p being the root mean square veloeity). In this case the term ¥V ox G in
equation (1.10) can be neglected, and the resulting lnear equation may be solved by
standard Fourier techniques. The result, for the leading coeflicient ey, is

(= 7;/ A“";H(l‘;‘f) dhedw (1.12)

w? 4tk

where H(k,w)is the "helicity spectrum™ of the turbulenee, Le the Fourier transform
of the quantity

(ti(x, )% + 1t + 7))

This spectrum obviously has the property
H = (V.3)

Therefore we find a direet relationship between the helicity speetrum function
and the leading order term in the important expansion (1.11). If the turbulence

is isotropic ( in a weak sense, to indicate invariance under rotations of the frame
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of reference, but not necessarily under parity transformations) then the mean field
equation (1.9) takes the form
8B,

757&_ =aV X EO =+ (77 +- ,H)Vzgo (1.13)

where we have assumed that «, and § are uniform and constant, as appropriate for
turbulence that is homogeneous and statistically stationary. It is easy to see that this

equation admits unstable solutions.

The above equation shows that on large scales the viscous term is relatively weaker
than the ‘curl’ term. Thus for any large-scale perturbation there can exist modes
which grow, leading to a subsequent amplification of magnetic field. The coefficient o
associated with the growing term vanishes for a fully isotropic medium, thus empha-
sising the fact that some anisotropy is needed for the dynamo to work. The presence

of helicity , h = .V X ¢ helps in bringing about such conditions.

A striking analogy exists between the above induction equation for magnetic fields
and the vorticity equation for a fluid.
a—l
'a% = [V x [7 x 3] + vV?3@ (1.14)
For a fluid too the presence of helicity helps in more ways than one. First he-
licity is an invariant for an inviscid fluid and it is related to the knottedness of the
vorticity-field. Second it has also been widely conjectured that any local concentra-
tion of helicity in a fluid stems the downward cascade of energy. The idea behind
this conjecture is that the normal cascade of energy from the energy containing large

scales to the energy draining small scale is attributed to the intensity of the 7.V4

term in the Navier - Stoke equation. The convective term may be re-written as :
(TN =T x 3+ V(1?/2)

it follows that presence of helicity i.e an alignment of v and w implies smallness of
v X w and therefore the weakening of the non-linear term which would in turn imply
aretardation of energy decay towards small scales. Many numerical simulations have
borne evidence to this idea, thus establishing a definitive connection between helicity

and the retarded energy decay process.
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The basic scenario of inverse cascade is based on the pertinent observations that
coherent structures are inherently helical. But it is likely that most of the natural
flows have zero net helicity, though they may have a random distribution of helicities

Under such circumstances it may nevertheless happen that the higher moments of
the helicity distribution are constant and exert an influence on the statistics of the
flow. Suppose for example that the space is divided into cells V; bounded by surfaces
S; (which move with the fluid) on each of which the condition n.w = 0 is satisfied (for
all t) and let A = Jy, u.wdV Dbe the net helicity of the flow in the cell V;. Then each
K@ is an inviscid invariant of the flow. Consider now a large volume V containing

many such cells. We may define the moments:
: 1 (in)
H, = lim =Xh
Voo V

and these are all inviscid invariants. H; is the mean helicity of the flow as previ-
ously defined. If A®) are randomly distributed with equal probability of positive and
negative values, then

A0 ~ Y12

and H; = 0. However , all even moments (and in particular H, are finite and
non-zero; and although the mean helicity is zero, the fluctuations about the mean
have constant variance. Indeed in many simulations it has been fond that helical
fluctuations on all scales in a turbulent medium seem to play an important role in
deciding the wvolution of the flow. A volume of fluid containing helicity - fluctuations
seems to dissipate less! Theoretical analysis proves the invariance of the quantity
called I, which is defined as follows:

I=jim —‘17 [ (W@ + )y dbr (1.15)

The conservation of this integral is proved in Appendix B. The invariance of I has
important consequences for the classical problem of the isotropic turbulence decay in

its initial period. Kolmogorov found the decay laws :

u? o (t— t0) 71, o (t— to)" (1.16)
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Here 3u? = (v?), t is time %, is the fictitious time instant ; the ‘integral scale’ [, is
defined as I, = u™2 f§° (v,(0)vp (r)) dr where v, is the velocity projection on the vector

T.

Kolmogorov assumed the conservation of the Loitsiansky integral A
o0
A= /0 * (v, (0)up(T)) dr = const (1.17)

The energy spectrum Fj in the ‘two - range model’ is given as:

E, = Bkt 0< k<kg
= K353 kp <k<kg (1.18)
=0 k> kg

In this model the conservation of the Loitsiansky integral is equivalent to the time
independence of B. A and B can only be conserved approximately . Instead if the
spectrum in the range of small k can be of the form E; = Ck? (Saffman [14]),, where

C is conserved, then the two -range model yields
u? o (E— o) "5 1, o (t —1)?/° (1.19)

The conservation of C is connected with the momentum conservation by Navier-
Stokes equations like the I - invariance , which is connected with the conservation
of helicity, and the Loitsiansky invariant which is related to the angular momentum
conservation. But the above model is inconsistent with the invariance of I , since it

leads to unacceptable results : u? = const, kz = const.

Frenkel and Levich [15] suggested a new three range model for freely evolving
homogeneous turbulence with high Reynolds numbers, in connection with the con-

servation of I- the density of mean square helicity. The model is as follows:

E, = CkK* 0 <k < ky(d);
M)k~ ks(t) < k < kp(2) (1.20)
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ka(t) S kL(t)
= Ke3(t)k™53/3, kr(t) < k < kq(t)

The corresponding power law of energy decay was found to be slower than in
conventional two-range models for all values of g. The slowness of the decay of
energy spectrum derived from the invariance of I means that the flow at any instant
of time contains large scale fluctuations such that each of them has a non-zero value
of helicity. Then the transfer term V x (7 X &) tends to zero, thus inhibiting the
energy cascade to small scales. These large fluctuations of helicity, when the energy
cascade to small scales is inhibited, are reminiscent of the picture of ‘large eddies’

envisaged by Townsend [15].

Thus in a three-dimensional medium apart from energy, I is also an invariant.
We can work out the spectral dependence using dimensional arguments as follows:

following equation (1.15) , :
I=(0.3)° x VOLUME = v%(kvy)?L®

where we have used volume integration for the ensemble averaging . Further using

equation (1.2) we can see that
I=KEk)*L® = kE(k)?
now using I = [ I(k)dk we have from the above equation
I(k) = E(k)?

Alternatively it has been shown that for a quasi - gaussian distribution of helicities,
the I(k) spectrum would look like:

I(k)  E(k)? oc k71973

Because of the steeper dependence on k it can be inferred that the I invariant
dominates towards larger scales and the energy E(k) oc k~5/3 dominates at compari-

tively small scales. Translating the spectral law to physical space we find: (Refer to
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Chapter 2 for the detailed derivation)
E(l) o Log(l/1,)

where [, is any arbitrary normalizing length scale. This implies that very little energy
is carried up to large scales. But with such a cascade more and more scales get involved
in a correlated motion. But such a growth is restricted in the vertical direction by
gravity or buoyancy. The largest vertical dimension of a fully 3D structure is given
by the ratio ;

L=EELZ

, where L, is the characteristic vertical scale. When the correlation length of helicity
fluctuations reaches the limit L,, it can only grow in the horizontal plane. The system
becomes more and more anisotropic due to this. Under these circumstances, the
vertical component of velocity v,, becomes independent of (z,y, z) and the horizontal
components v, and vy become independent of z leading to wyy = (V X ¥),, = 0.

The I invariant then becomes

I = /<(v,w,)2> dzdydz
= L, <vz2> K22k~

x vx2 = kE(k) oc L¥® (1.21)

From I = [I(k)dk, it follows that, I(k) o« k=5/3 L, now refers to the length
scale in the horizontal plane. The I(k) spectrum here coincides with the energy
spectrum of 2D turbulence E (k) o k~%/3, corresponding to the inverse cascade. One
expects that an increasing fraction of energy is transferred to large spatial scales as
the anisotropy in the system increases. The growth of large structures in a highly
anisotropic turbulence can be interrupted as a result of symmetry breaking caused by
Coriolis force. The length scale L, where the non-linear term of the Navier- Stokes

equation becomes comparable to the Coriolis force can be determined from

@FV)F=2(Fx ) =0 x (Ax7)
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or L, = v/§, where  here is the angular velocity. Given Sufficient energy, structures
of size L, must form. At these large spatial scales, the system simulates 2D behavior
and the enstrophy conservation begins to play a role. One may consider scales L > L.
as a source of vorticity injection into the system. The enstrophy then cascades towards

small scales with a power-law spectrum given by
E(k) x k~3andE(L) x L? (1.22)

Thus there is a break in the energy spectrum, as energy must cascade to larger spatial
scales as L?/® and to small scales as L?. The energy must therefore accumulate at
L ~ L, and eventually pass on to the highest possible scales of the general circulation

of the structure.

Since the larger structures are formed by an inverse cascade process their energy
should definitely not exceed the energy contained in the small scales . This argument
leads to an upper limit to the scale on which structures can be formed. In the case
of the earth’s atmosphere this has lead to a conclusion that structures on the scale of

300 km can be formed starting from clouds of the size of say 3 km.

In conclusion, we learn using the dimensional arguments of Kolmogorov that the
energy spectrum consists of several branches; beginning with k~%3 at small scales,
going as k!, then again as k~%/3 to k™% at the largest scales. Evidence for such a
spectrum has been seen in atmospheric turbulence. We reproduce the entire spectrum

below.
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E@®) !

Figure 1.1: The complete turbulent energy spectrum. L, - scale of the first break due

to anisotropy; L. - scale of the second break due to the Coriolis force.
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The same spectrum has also been employed by Krishan [16], and Krishan and
Sivaram [17], to explain the heirarchy of structures that have been observed on the

solar atmosphere as well as for the heirarchy of structures observed in the universe.(See
also (18] [19] ).

Further in this thesis we shall be studying the role played by Log(l) branch, in

explaining the flat rotation curves of spiral galaxies.

1.3 Turbulence - the Navier - Stokes way

In the preceding section we have seen how the quasi steady-state energy spectra
could be derived with the use of simple dimensional arguments. We would, in fact,
wish to obtain a more rigorous proof for all that which the Kolmogorovic arguments
lead us to. That is, we would expect our system of equations for a fluid ..viz.
the momentum equation - the Navier- Stokes equation, and the mass- conservation
equation , continuity equation,~ to yield such an energy distribution in the course
of evolution of a turbulent fluid. In fact , simple as it may seem , the problem of
turbulence addressed this way, leads to tremendous problems both of the analytical
and conceptual kind. The Navier - Stokes equation is plagued with non-linearities

generated by the advective term (¢7.V).7 .

If a turbulent medium is treated in a statistical sense of considering averages only
implementing the ideas of Reynolds-averaging, we encounter a closure problem . By
this we mean that whatever we do we are always left with more unknowns in our
system of equations than the number of equations ! There is no way around this
problem. The only alternative is to artificially close the system of equations with

empirical inputs or some other closure hypothesis for dealing with the averages .

Apart from this statistical approach, there are only a handful of specific situa-
tions where the Navier-Stokes equations can be solved exactly. In general, the only
alternative is the Direct Numerical Simulation ! Even on the Computing front the
picture is not all that bright. It calls for a huge computing infrastructure to verify

what Kolmogorov predicted with his brilliant insight. Today, we are just beginning
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to have a glimpse of success , for the Kolmogorov spectrum is well- observed in some

of the recent numerical simulations [20].

Khomenko et al [21] have, using a statistical approach, shown that the compress-
ible turbulence can give rise to large scale structures, through an effect analogous
to the Alpha Effect for the generation of large scale magnetic field. They call it the
Hydrodynamic Alpha Effect ! They treat such a phenomena as a case for the origin of
structures in non-equilibrium systems, turbulence being regarded as one of the most
widespread distributed non-equilibrium system in nature. Since, there generally is an
external scale which feeds energy into the system , and a dissipation scale where the
energy is dissipated into heat, the turbulent system is regarded as an open system.
Their statistical analysis leads to the result that if the turbulence is considered to be
helical i.e homogeneous, isotropic, but without being invariant under reflection, then
the vorticity equation for the mean flow does exhibit a growing large scale instability.
The evolution is accompanied by the transfer of energy from small-scale to large-scale
sizes. They emphasize that the structures so generated are not relics of the average
flow as the von Karman vortices and the instability is not ¢ modification of the in-
stability of shear flows. What plays an important role is the fact that the turbulence
s not invariant under reflection. In such circumstances the velocity correlators are

expressed in the following form :

(Vi(31, t1)-Vi(x2, 82)) = Kij(x1, X2) (1 — t2)

where r = x; — Xz and

T = X1 — Xa| =/ Ei(@1i — 22:)? = \/(T)z

The spatial part of the correlator is expressed as:
Kij(.’llh $2) = C(T)&;j + B(’I‘)T,‘T‘j +g(r)eijkrk

The last term g(r) is the consequence of the fact that the turbulence is not invariant
under reflection (helical), while g(0) has the meaning of the average value of the

product of the turbulent velocity and its curl. Let us calculate the average helicity

(7) as:
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(7.3) = (9.(V x 7))

= :z:1—->.’]iizr;%—>tz .aTzieijk <luj($2’ t2)luk($1’ tl))
. —7T; 6
= Hmeiji [T] B (C(r)sx + B(r)rsme + g(r)€jmmy) ¢(t — t2)

?

= lim(-1)e;rejm [g(:) TiTy +9(T)5u] ¢(0)
= —69(0)6(0) (123

Thus it can be seen that g(0) relates to the average helicity. We can also obtain
the equation for the evolution of the mean velocity as well as the mean vorticity, for
a turbulent medium. For doing so, we need to write the instantaneous fluctuating

quantities as
instantaneous value= mean value + fluctuation

Next, the Reynolds averaging approach is adopted. This allows us to separate the
equations for the mean and the fluctuations. Ignoring higher order quantities in the

equations we finally arrive at equations which look like [70]:

For the mean velocity :

o<v> 1 " ' "
——éjt— - 59(0) [VX <V >] =vV2i<i> —f(po)v <p> (124)
where the quantities inside the brackets ¢ <>' are ensemble averages, and po is

some constant density, ' is renormalised viscosity
1
V=v+ ZC (0)

v being the original molecular viscosity which is used in the Navier-Stokes equation,
and C(0) is the correlation coefficient as shown earlier. f(po) is some function of pq,
which we do not need here. taking the curl of the above equation (1.24) we can get
the equation for the evolution of mean vorticity < & > as follows:

o] 1 p
9%-3 390 [Vx <B>] =V V2 <G> (1.25)
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First we note that in the above equation that if helicity vanishes , the large scale

configurations are damped out. Let us look for solutions of the kind:
(@) = (@) eilriex) (1.26)
upon substitution in the equation (1.25) we get,
W< Wy > — -;-g(O) [ik x < & >] = v/ (k)< & > (1.27)

Multiply both the sides of the above equation by (-i), take the dot product with the
same vector on each side and use the fact that ik.cj; = 0 (since V.& = 0, the"indicates
unit vectors.), we get the following dispersion relation :

(w—i'k?)" = -‘239(0)%2 (1.28)

and hence for the growth rate v = iw , looking for unstable solutions we get,
, 1
y=—v k2+§|g(0)|k (1.29)

The maximum growth rate ym. occurs for a wavenumber kg,

_ 1g(0)]
kO - 4]/1
and equals
_ 9(0y?
Ymax 16

We note that large-scale structures can develop, provided the helicity is non-zero.
The size of the structure with the mum growth rate is given by kg. We find that the
size L of the dominant structures is proportional to the ratio of C(0)(x< v* >) to

9(0), that is to the ratio of the energy invariant to the topological (helicity ) invariant.

Moiseev et al. show that the lincarized equation for the mean vorticity has the

same form as the appropriate « effect equation in the mean ficld clectrodynamics viz:

at(:) +aVxXg= VV2C-U‘

the uniform coefficients o and v are related to the random velocity field parame-

ters. The second term leads to the exponential growth of vorticity . The idea that the
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helicity of the turbulence may influence the energy transfer from small scales to large
ones has been discussed by Kraichnan [23] ,Brissaud et al [24], Andre and Leisur [25]
, and Moffat [26], but the averaged equations were not derived in these papers and

so the large scale instability was not talked about.

Later people like Sagdeev, Moiseev , Tur, Gvaramadze, Khomenko ,Frisch and
Sulem and many others found examples of alpha effect in hydrodynamics. They had
considered the incompressible case . In all cases some additional factors , such as in-
homogeneous regular flow, stable or unstable stratification, gravity force or anisotropy
must supplement helical turbulence to provide the instability. The « term in these

cases assumes a tensorial nature oy; instead of a scalar form as in the above equation.

The characteristic size of the unstable scale is found to be : L™ = %z,
which is just a ratio of the two invariants viz.. helicity and energy . Thus the charac-
teristic scale on which structures form is determined by the ‘natural’ characteristics
of turbulence, its invariants, and it is an internal property of turbulence itself. Also
it is to be noted that the structures thus generated are helical themselves for they are

characterized by a non-vanishing scalar product related to the helicity.

There are some perturbation techniques at our disposal, with which we can study
the weakly nonlinear regimes of the equations to understand the stability, of the flows
that ensue. We shall elaborate Frisch’s multiscale approach, here to understand that
there are situations wherein a large scale instability may be generated. Assuming
that the basic flow u‘®) is driven by a time - dependent space and time periodic force
(in the deterministic sense), or a random homogeneous and stationary force, f(r,t),

the equations in the incompressible case assume the form :
atuio ~+ aj (‘U-,;O‘U,jo) = —81'230 -+ VVZu,-O -+ f-i (130)

Let ly and tq be the characteristic spatial and temporal scales of the basic flow, and
Vo the velocity amplitude. The R = L‘%’Q is the small scale Reynolds number. Also
assume < f >= 0. Now, perturb the basic low u® — u with a large scale component
such that w =< u >, is assumed to vary on scale L >> [, and time T >> t;. The
small scale flow i = u— w which is advected by the mean flow satisfies the following

equation:



Chapter 1 19

O¢t; + w;0;1; + 0; (ﬂiﬁj) = -8 +vV2i; + fi (1.31)

We may assume w to be uniform and constant in the equation (1.31). The
small scale Reynolds stresses R;; = (%ju;) then become dependent on the w and thus

contribute to the large scale dynamics. The large scales obey the following equation:

Bywi + 0; (wiw; + Rij) = —8;p + vV (1.32)

To solve the above equation we must actually calculate the Reynolds stresses . To
do so, we are required to solve for the small scales first. The equation for perturbed
small scales may either be solved by using an expansion in powers of small scale
Reynolds number or numerically. The equation (1.32) is referred to as the AKA
equation. If the mean field is weak, the Reynolds stresses may be Taylor-expanded

as follows:
0 {di;)
3wl

Ry = (uu,) + wz[ } _ + O(w?). (1.33)

We may obtain the perturbed small scale flow from a linearized version of eq. (1.31)

and use it to obtain the linearized AKA equation:

Oyw; = a,-ﬂ@jwl —Oip+ szw;, (134)
with o5 = — [ﬂgﬁﬁ]wﬂ The tensor o;; may vanishes in many circumstances viz.

i). when the basic flow is parity-invariant
ii). when the basic flow is random isotropic

iil). when the basic flow is time independent, then the tensor calculated pertur-
batively in powers of the Reynolds numbers , vanishes to leading order.

iv). when the basic flow is random and delta-correlated in time

v). for ABC flows (i.e Beltrami flows).

Frisch. et al.,[27] consider a specific example with a particular forcing function

which produces a flow lacking parity-invariance to show the growth of large scale

structures from Reynolds stresses generated by small scales.
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1.4 Astrophysical Turbulence

The scope of the new ideas and developments outlined in the preceding sections are
by no means limited to the field of fluid dynamics only. With the range of scales
ranging from a few parsecs to Megaparsecs and thus unimaginably large Reynolds
number flows, the field of astrophysics could serve as a rich test bed for models which
aim at understanding the complex order that has been observed over the years. Be
it the identification of large scale structure of the universe or the solar granulation or
the highly complex heirarchy of structures seen in the galactic environment, all such

cases lack the backing of a unifying model.

The numerous N-body simulations with Hot and Cold dark matter compositions
of varying proportions (Mixed or warm dark matter too !!) have failed to clicit the
underlying mechanism for the formation of the heirarchy of structures around us viz..
the assumption of a homogeneous and isotropic universe has proved out to be a false
one even on the largest observable scale [28],(29],[30],(31],[32]. Added to this, the
origin of angular momenta of galaxies still cludes a viable solution [33], [34], [35].
The gravitational tidal torques also do not explain the spin of galaxy fully. There is
factor of 2-10 discrepancy in this regard. As explained by Shu these problems demand
the consideration of other non-gravitational’ mechanisms for trying alternative ways
to understand these problems. Fluid -dynamic processes offer richer and hitherto
unexplored ways of generating vorticity, (and thus the spin of the galaxy) [36], [38].
The possibility of considering the galaxy as cquivalent to a gaseous disk with fluid
properties were already explored earlier by Hunter. This permits us to study the role
of the new developments in fluid dynamics with the same model of a galaxy. This
certainly opens up the possibility of understanding the dynamics of the galaxy with
respect to generating structures and ‘ordered flows’. Besides there is considerable
amount of work done on aspects of interstellar turbulence, both from a theorctical as
well as observational point of view [39]-[45]. Recent studies have also shown that the
statistical properties of turbulence in molecular clouds seem to be remarkably similar
to those determined from numerical simulations of ordinary compressible turbulence!
[46].
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1.5 Primordial Turbulence

The possibility of a turbulent beginning to the universe was long thought of by none
other than von Weiszacker,Gamow, Ozernoy,Chernin and others. Gamow [3] realised
that there need to be some source of seed - perturbations which could later be am-
plified by gravitational instability mechanism to evolve into structures of the present
day. The statistical fluctuations of the thermodynamic nature, if they had arisen dur-
ing the non-relativistic phase of the expansion of matter, would not have been able to
grow in an expanding universe to a value at which they would have been capable of
forming gravitationally bound systems. ( The case for an N body system to generate
sufficient seed perturbations was well exemplified by Bonnor). Bonnor’s study showed
that for a collection of N=3 x 1057 molecules of an ideal gas (typical for a nebula of
hydrogen) if the initial perturbation was taken to be of the order of N~2/2 i.e 1034 in
this case , then even after 1000 yrs from the singular state the amplitude would have
grown to only 10~2°. Thus it was concluded that small perturbations cannot grow into
nebulae in the time available [47]. This was contrary to the analysis of Jeans who
showed that it was possible that the initial perfurbations could amplify exponentially
in a gravitationally unstable static medium. Bonnor identified the flaw in Jean’s
analysis due to his assumptions of a static universe, and concluded that the growth of
perturbations in an ezpanding universe model was in fact much slower. From another
point of analysis von Weiszacker studied the parameters for the interstellar gas and
concluded that since the observed velocity difference at scales of the size of molecular
clouds and HII regions could not be those generated by their thermal fluctuations,
these motions had to be attributed to a compressible turbulent medium. Compres-
sion meant that the velocity fluctuations could give rise to density fluctuations, and
turbulence meant irregular fluctuations of velocity. The thin filamentary structure of
the Pleiades nebula on scales of 105 ¢cm (which is a reflection nebula) forced one to
think that even if the mean free path of the dust particles was of the order of 10%
cm, it was the coupling of the dust with the gas which could by virtue of its turbulent
state lent it’s velocity fluctuations to the dust. This was because the observations

were made in absorption spectrum which signify velocity fluctuations and thus reflect
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the kinematical pattern of the medium. Considering the fact that the stellar sys-
tems of the present day could not however be treated as hydrodynamic systems von
Weiszacker did emphasize that they could have originated in a turbulent environment
though. He argued that in a galaxy an equipartition of energies of the single stars
cannot be reached within a few billion years. But the fact that the systems actually
seem to have reached equipartition , indicates that such a state is easily reached when
the matter is not yet united in stars because then the high turbulent momentum trans-
fer is available. Therefore the sort of degree of equipartition in a system which is not
dense enough to achieve it by stellar interactions, may give a hint as to the stage of
evolution of the system in which it’s gas was transformed into stars. He then invoked
the primordial role of turbulence in producing such irregularities [2].The issue then
was when exactly could turbulence be invoked. If it was put in the post de-coupling
era ..it would decay much faster even before structures form . If it was invoked in
the era when matter and radiation were coupled, then it could produce a spectrum
of irregularities in the Cosmic Microwave Background radiation which could be used
to constrain it’s amplitude. The major issue involved was the production of density
irregularities ..through velocity perturbations provided by turbulence. That could be
only achieved if we could somehow generate longitudinal velocity fluctuations . from
purely vortical ones. The vortical velocity perturbations were assumed to he either
induced by thermal - instabilities (Tomita){48] , or due to photon turbulence in the

radiation- dominated era (Ozernoi [49)).

Tomita et al. studied the decay laws of primordial turbulence and derived the
heating rates by its dissipation in an expanding medium . They showed that matter
could not be maintained at the required temperature of 108K which was necessary
for the sustenance of turbulence and thus galaxy formation by thermal instability.
They concluded that in the absence of any heating mechanism the matter tempera-
ture drops faster than the radiation temperature after the epoch of decoupling (i.c at
T, = 4000 K ). In the matter dominant stage the excess of thermal energy is rapidly
carried away by the Compton scattering process thus aiding in lowering the mat-
ter temperature further. Qort [50] pointed out another attractive feature of cosmic

turbulence that a large-scale turbulent eddy might bring matter together in such a



Chapter 1 23

fashion that the galaxies are formed in close association that has positive total energy.
Thus we could witness the formation of structures which are close together but which
are not gravitationally bound. Peebles [4] analysed the case for primeval turbulence
stressing that the assumption of the velocities after matter decoupling was important
in studying the after effects of mater turbulence . He found that if weak velocities
were assumed (weak turbulence) then the model couldn’t generate enough angular
momentum at galactic scales (keeping the restrictions on the growth of density con-
trast). There was almost an order of magnitude difference between the observed
and predicted values. Peebles ruled out the possibility of any accumulated compu-
tation error or the assumptions linking the perturbation-growth to the development
of proto-galaxies or any inconsistency in the arguments forwarded for the statistical
calculations of root mean square velocity in his analysis. On the other hand if very
large velocities were assumed then the matter evolution would be a highly compress-
ible one which can’t be resisted by any source of thermal pressure . Thus turbulence
would decay faster than before and thus end up forming structures (which are much
denser than galactic densities) much earlier than expected. Peebles does conclude
that there could be other possible (but fancier) conclusions in favour of turbulence
but ends up concluding that the the most straightforward conclusion would appear to

be that there was not a primeval strong turbulence.

Ozernoy et al.[49],[51], pointed out that there could exist a range of scales for
cosmic turbulence in the radiation - dominated era which could carry over to the
matter dominated era to produce shocks and thus generate density perturbations.
The gravity of the plasma in the radiative phase was found to be ineffective in causing

a perturbation. So, photon - induced turbulence was adopted.

They developed the view according to which the existing peculiar motions of
galaxies reflected (like their internal motions) an initial vortical state of the meta-
galactic substratum. In their proposed 'photon-eddy ’ hypothesis they concluded that
the actual density irregularities were a result of the post-matter-radiation-decoupling
effect, due to which the sound velocity of the medium drops drastically and thus
generating strong density fluctuations from potential motions. On larger scales the

contrast would have been considerably small and these scales participate in the hub-
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ble expansion. Hydrodynamic instability is found to constitute the dominant aspect
of the proposed mechanism , whereas gravitational instability would have become

important only at a relatively late stage.

Ozernoi and Chibisov [52] considered the isolation of protogalaxies from the ex-
panding medium (after virialisation of the kinctic encrgies) by allowing for the adi-
abatic cooling of the macroscopic motions due to cosmological expansion. Here the
hydrodynamic damping is compensated by encrgy inflow from larger scales, including
the largest scale of all , where the decline in encrgy is governed by the cosmological
expansion. The basic cosmogonic parameters derived in this analysis viz. galaxy
radius - mass relation, specific angular momentum - mass relation matched quite well
with observations. They also conjoctured that spiral galazies will be formed in regions
of medium having primarily vortical motions, while clliptical galazies will appear in
regions with predominantly irrotational velocities. Later Qzernoi [53] also considered
the growth of clusters by gravitational instability, after the generation of these from
the rotational component of the post -recombination turbulent era (by induced ir-
rotational component due to shock - wave formations when sound velocity drops by
a large magnitude). The epoch of isolation of rich clusters matched well with that
inferred from observations. A comparison of the observed relation between the mean
virial density of cluster systems with the size , especially with the data of Humason,
Mayall, Sandage de Vaucouleurs and Holmberg ( all systematized by Karachentsev)
also revealed a striking resemblance to similar relations derived by the model, despite
its simplicity. This work also successfully explained the observed relationship between

the mean density of a cluster and it’s morphological type.

At this point we would like to point out that a very comprehensive review on the
subject of origin of galaxies involving both the view points viz.. Gravitational Insta-
bility Picture, and the Cosmic Turbulence Theory, has been written by Jones [54]. 1t
contains a very good introduction to both cosmology and cosmic-hydrodynamics as
well. But since much has been achieved in the understanding of turbulence since the

80’s we must bear in mind that the 'turbulence picture’ is incomplete.

Therc were some pertinent difficulties with theories of primordial cosmic turbu-

lence viz. 1) The amplitude of the turbulence required to explain the large - scale
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structure was in conflict with the observed high degree of isotropy of the microwave
background radiation. 2)Following recombination , the turbulence would have be-
come supersonic and produced too large density contrasts on scales of galaxies and
clusters of galaxies 3) A specific physical picture which would have explained the

generation of turbulence in the first place was lacking.

So, the conflict with well established observations scuttied any hope of incorpo-
rating turbulence in the models of the universe. But the recent work of Goldman
and Canuto [55] has addressed these problems in the light of inflation. Their work
has revived the possibility of re-considering the role of cosmic turbulence as a viable
theory for understanding cosmic structure. Goldman and Canuto have argued that
inflation naturally provides mechanisms for the direct generation of turbulence on
the same scales on which density perturbations are formed. They find that by the
end of inflation , the amplitude of the generated turbulent velocity is suppressed by
a factor of 10'% thus avoiding the conflict with observations of CMBR fluctuations.
They have shown that the density fluctuations generated by inflation can excite lon-
gitudinal turbulence after they reenter the Hubble radius at the later cosmic epochs.
The scales on which this happens are much smaller than those of galaxies . The
largest scale corresponds to a present epoch size of < 6.3Kpc and contains a mass of
< 3.6 x 10*Mg. This turbulence can have an important impact on the formation of
structure on scales of galaxies and clusters of galaxies mainly because any part of the
turbulence that survived dissipation by the radiative viscosity will become supersonic
following the decoupling time . Shock collisions will lead to large density contrasts ,
and such an early population of objects of the above mass can serve as a seed that
could help the growth of density on the scales of galaxies and clusters of galaxies.
Besides, this provides us with a novel setting for considering the inverse- cascade

scenarios that may be operational at various levels.
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FLAT ROTATION - CURVES OF
GALAXIES

The seemingly disparate phenomena of
(i) non-equilibrium motions on stellar surfaces,
(i) the generation of large scale magnetic fields, and
(i) the large scale structure of the Universe ..
have their origin in the inverse cascade of energy
leading to self-organisation in an otherwise
turbulent medium.

- Vinod Krishan -~

2.1 Introduction

! In this chapter we have modelled the rotation curves of 76 galaxies observed by
Amram et. al [56],[57] and Rubin et al. [58],[59] by combining the effects of rigid
rotation, gravity and turbulence. The main motivation behind such modelling is to
study the formation of coherent structures in turbulent media and explore its role in

the formation of large scale structures of the universe. The values of the parameters

Lpaper appeared in ApJ,428,483 (1994)
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for the galaxies such as mass, turbulent velocity and angular velocity derived from

our model are in good agreement with those derived from the prevalent models.

The rotation curves of galaxies have been the subject of great speculation in the
recent past. If galaxies are considered as solid bodies in rotation then their rotational
velocity must increase in a linear manner i.e V oc r where r is the radial distance from
the center of the galaxy. The trouble arises when the picture of a ‘falling curve’ as
predicted by the Newtonian gravity for the outer region of a galaxy doesn’t tally with
what is observed. We get a flat rotation -curve on the outer scales. This has given
birth to a lot of models which try to account for flat rotation curves. The suggestions
include (1) a modification of the Newtonian force(e.g., [61], [62], [63] and references
therein), (2) the effect of the magnetic stresses(e.g., [64], [65] and references therein),
(8)the presence of a large amount of hidden mass that does the trick ! ( e.g., [29),
[30], and references therein) . Other recent ideas include treating the rotation curves
as consequence of the hydrodynamic characteristics of galactic disks. These studies
are based on the assumption that since most of the velocity measurements are derived
from emission lines emitted by the galactic gas, (cither neutral or ionized), it makes
them inappropriate as tracers of the galactic gravitational potential [66] Soares in-
troduces an effective potential meant to describe the hydrodynamics inside a gaseous
disk, and using the Tully-Fisher relation [88]- which highlights a tight correlation be-
tween the galactic luminosity and it’s rotational velocity- as an additional constraint,
models the observed rotation of the galaxies. Filippov and Zhedanov [67] on the other
hand study a simple model for the dust-media describing evolution of systoms like
spiral galaxies .Starting with an initial density fold which is quasi- one dimensional
(bar-like ), unlike the two dimensional disk -like distribution, they find that the disk
like feature appears only during the evolution. Their model also naturally reproduces
some essential features of the galaxies, in particular, it reproduces all the observed
typical forms of the rotation curves for spiral galaxics, with a characteristic minimum
and plateau. They interpret the plateau to be corresponding to matter escaping and
not bound gravitationally. Similarly, Ambartsumyan also hypothesizes that the star
clusters, galaxies, and their clusters are strongly unstable objects which arose as the

results of an explosion of some protostar substance [68]. Such a hypothesis rules out
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results of an explosion of some protostar substance [68]. Such a hypothesis rules out
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the applicability of the virial theorem to such systems then. Moreover Filippov and
Zhedanov also comment that the so called ’rotation curves’ do not describe rotation
but instead correspond to some complicated kinetic processes in the system. Some
others like Mannheim [69] like to think about the possibility that the entire departure
of galactic rotational velocities from their luminous Newtonian expectation is cosmo-
logical in origin. He shows that within the framework of conformal gravity every
static observer sees the overall Hubble flow as a local universal linear potential which

is able to account for the available data without any need for dark matter.

The issue of Dark matter has kicked considerable dust in this area, and the gravity
of the dark matter appears to be a favorite candidate. This must be tested against it’s
alternatives. Verschuur [32] has revived the old debate of the missing mass versus the
missing physics. In fact ‘dark matter’ has also been dubbed as the folly of the twentieth
century, similar to the concept of ether in the nineteenth century! The appearance
of large scale structures in turbulent flows, [70], [22], [27], [71], [72], [73], [11] and
references therein) which are stationary, anisotropic and parity-violating has become
an exciting prospect potential enough to play a major role in the astrophysical context.
The major weakness of all structure -formation models (eg. CDM, Gravitational
instability models) till date is their inability to reproduce the large scale structures,
observed in the universe (of the order of 100 Mpc). Krishan and Sivaram [17] showed
that the clustering and superclustering of galaxies and clusters respectively could be
viewed as the outcome of the ‘inverse cascade’ process in a turbulent medium. Here
we model the flat rotation curves of the galaxies by combining the effects of rigid

rotation, gravity and turbulence.

2.2 The Inverse Cascade

As reiterated by Scalo,” The properties of the interstellar medium strongly suggest
that it is the turbulence in the generalized sense of nonlinear systems which exhibits
unpredictable temporal behavior accompanied by self- organizing spatial fluctuations
covering a wide range of size scales” [74]. A particularly interesting type of self-

organizing behavior occurs in turbulent fluids in which more than one quantity is
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conserved, a situation reviewed by Hasegawa [11]. In these cases one conserved quan-
tity becomes spatially chaotic by means of a direct cascade from large scales to small
scales, while the other self-organizes into large structures by undergoing an inverse
cascade from small scales to large scales [74).

The concept of such an "inverse cascade ” is well established for two dimensional
flows in fluids as well as magnetohydrodynamic flows [75]. The three dimensional
MHD case is also well established. The case for a three dimensional inverse cascade
in fluids is gaining ground with the identification of a new invariant I, related to
the helicity density. Numerous numerical studies are also corroborating the same

viewpoint.

The problem of turbulence is addressed in two ways:

1. The Kolmogorov approach, in which we study the statistically stationary states

by dimensional arguments. [73], [17]

2. The Navier stokes way, in which we look for the solutions of the Navier-Stokes
equations hoping that the stationary solutions would comply with the predic-

tions of the former approach [8].

2.3 The Kolmogorov approach

Large helicity fluctuations present in a turbulent medium play an essential role in the
inverse cascade of energy in a 3D system. The helicity density -y, a measure of the

knottedness of the vorticity field &, is defined as

y=V.35,d=VUxV (2.1)
It is found that the quantity I, defined as
1
I=2 [(v(@)y(z+r)d%s (2.2)

is also an invariant of an ideal 3D hydrodynamic system in addition to the total cnergy

(see Appendix B). On the inclusion of dissipation, these invariants decay differentially.
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The nature of the non-linear interaction between the fluid elements is such that the
slow decaying invariant (I, here) cascades towards large spatial scales, and the fast
decaying invariant ( energy, here ) cascades towards smaller spatial scales (see section
1.2). By assuming a quasi-normal distribution of helicities the I-invariant can be
expressed as :

I= const./E2(k)dk (2.3)

Here E = [ E (k) dk is the total energy per unit gram.

In the inertial range for the energy invariant we have, using Kolmogorov hypothesis

that energy exchange rate between different scales is a constant,
(RV)VE = e=V7/r (24)

where k = wave number, 1} is the initial rms velocity on small scales T is the duration
for which this energy is available V}, = velocity in fourier space. e = average energy

exchange rate between the scales (ergs/gm/sec).

This, combined with kE(k) = V;2 yields the well known Kolmogorov spectrum:

E(k) = &/3k~5/3 (2.5)

It would be appropriate to comment on ¢ here. Kolmogorov [10] conjectured that
in the quasi-steady state there should be a stationary flow of energy in the k space
from the source to the sink. Thus the energy transfer rate per unit mass should
be a constant and be equal to the dissipation rate at the sink. Although numerous
experiments have confirmed that e is a strongly fluctuating quantity, surprisingly there
is no experimental evidence indicating a deviation from the Kolmogorov spectrum
[76].

The value of e for the Galaxy has been estimated to be of order of 8 x 1072 ergs
¢~! 57! by considering the various sources ( such as supernovae, stellar winds, etc.)
which contribute to the turbulence energetics. In the same vein 7 is calculated to be

3x 107 yrs [77]. From equation (2.5), we find total energy

E= / E(k)dk
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or in real space
E(l) = &3 (2.6)

The corresponding velocity field may be described as
V() = L) (1/1)? 2.7)

for some normalizing length [,. Similarly in the inertial range for the I-invariant, we

have
(kVi) (RE(K)) = € = I/ (2.8)

where ¢ = the mean square helicity density exchange rate between the scales. Com-

bining this with

kE(k) =V (2.9)
gives
E(k) = (Io/7)*/°k (2.10)
Or in real space: ,
E(l) = (Io/7)*®1n(1/L,) (2.11)

Here, the normalizing length [, marks the transition from one inertial law eq. (2.7)
to the other eq. (2.11). The velocity field in this range may be described as
V() = (e,7)*(y/In(l/1,) (2.12)

where

Iy =V{, (2.13)

which follows from equations (2.8) and (2.9).

2.4 Modelling of Rotation Curves

The complete energy spectrum in a helically turbulent medium [16], [17] is shown in
Fig.(1.2)
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In this chapter we model the rotation curves of 76 galaxies observed by Amram
et. al [56],[57] and Rubin et al. [59] [58] using the Kolmogorov branch (V (1) o 1*/3)
and the flat branch (V(I) « vInl). We propose a law of velocities which is of the

type
V() = Al + BI*3 (2.14)

in the inner regions i.e., for [ <[, and

V() = CI™? 4 Dy/In(l/1,) (2.15)
in the outer regions i.e.,for [ > [, of a galaxy, where A, B, C and D are the
coefficients to be determined from the fits, with the observed velocity-fields.

The first terms on the right hand side of equations (2.14) and (2.15) correspond

to rigid rotation and gravity respectively, therefore,
A=w (2.16)
the angular velocity of a galaxy, and
C=VvVGM (2.17)

(where G is the universal gravitational constant), refers to the Mass of a galaxy. The
second terms on the right hand side of the Eqn. (2.14), & Eqn. (2.15) are due to the
turbulent cascading so that

B =¢/3 (2.18)

and

1/5

D= (ezlz'r) (2.19)

By a judicious choice of I, we can estimate: Vg, 7, €, w and mass M of a galaxy.

2.5 Results

The values of Vj, T, ¢ — the parameters of turbulence — for each of the galaxies are

shown in tables (2.1,2.3 & 2.4). The galaxy parameters w, l, & Mass M are shown in
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tables (2.2,2.5 & 2.6). In order to compare the masses derived from our model with
the standard masses in use, we have also included the mass(global) M, (Table(2.1) col.
[3]) calculated from the dark matter model assuming spherical symmetry [80] and the
stellar mass Mg (Table(2.1) col. [4]) determined from the stellar models, using M/L
ratios (mass-luminosity ratios)[80]; [60] and luminosities taken from Amram et. al
[56]. This exercise has been done for the set of galaxies observed by Amram et al.[56].
The uncertainities in the M/L ratios and in the stellar models have to be taken into
account before attempting any comparative study of the various types of masses. We
also present the histograms (Fig(2.32)-Fig(2.37)) for each of the quantities calculated

for the galaxies. Our model gives typical values of the various quantities as
Vo &= 100 km/sec

T~ 10 sec
e ~ 10™%ergs/gm/sec
w1078 sec™?
Mass ~ 10"M,.

One must note that we didn’t have to choose any abnormal values of I, for obtaining
the best fits and it lies in the range 2-10 kpc. This tells us that on scales smaller
than [,, the turbulence is isotropic and on the scales equal to and larger than I,
the turbulence becomes more and more anisotropic facilitating the inverse cascade
of energy. We find some odd ones out in our sample of 76 galaxies, viz. UGC 3282
and NGC 2558 etc . They have exceptionally large values of the turbulent velocity
Vo and exceptionally small values of the energy injection rate parameter e. It would
be interesting to see if these recur in other data sets and examine if the peculiarities

earn these galaxies a separate class.

We show here the fits for all the galaxies observed. Firstly we show a set of
21 galaxies wherein we have also shown the observational error bars. These error
bars were useful in deciding about which points to be weighted when the fits were
performed. For the remaining set error bars were not given in the published data.
But a look at the first set of 21 galaxies convinces us that all the fits would fall well

within the error bars .
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Table 2.1: Table showing the ‘Turbulence Parameters’ for the set of galaxies observed
by Amram et. al [56]

Name Vo (Km/s) | (1072 ergs/gm/s) | 7(10% s)
NGC6045 31 63.4 1.5
UGC10085 338 1.6 7100
UGC3269 85 17 42
UGC3282 8021 1.8x1072 3.5 x108
NGC4911 62 45 8.4
Z160-058 87 9.6 78
Z130-008 0.026 12.9 5.2 %108
NG(C4848 157 53 46
Z160-106 169 15.5 180
NGC4921 68 1.7 270
NGC2558 5588 6.1 x1073 5.1 x108
7119-043 171 1.2 2.4 %108
UGC4386 46 38 5.5
Z119-043 81 11 59
NGC2595 191 98 37
UGC4329 o8 3.5 94
NGCT7536 211 2.5 1700
UGC12498 42 47 3.6
NGC7593 74 11.6 47
NGC7643 26 0.3 210
NGC7631 107 21.2 53
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Table 2.2: Table showing the values

Name (101°Mp), M | (10* M), Mz (10M,), M? | w(10-6571) | L,(kpc)
NGC6045 23.7 4.5 1.7 0.4 12.0
UGC10085 0.2 5.8 2.3 21.9 0.9
UGC3269 1.0 12.3 5.5 3.0 3.0
UGC3282 0.9 6.0 2.3 124 2.6
NGC4911 6.6 16.9 7.5 5.9 4.4
7160-058 8.9 2.9 1.1 0.3 14.0
7130-008 3.6 14 0.5 1.2 6.2
NGC4848 0.8 15.8 7.9 94.0 0.6
2160-106 2.0 5.1 2.6 0.6 4.9
NGC4921 8.6 17.5 8.7 14 16.2
NGC2558 3.6 8.5 4.2 20.4 3.6
2119-043 0.1 - - 16.6 0.9
UGC4386 14.6 6.3 2.8 0.1 114
7119-043 1.2 - - 0.07 4.2
NGC2595 0.6 6.0 2.3 151.1 04
UGC4329 0.7 1.8 0.7 5.6 2.7
NGC7536 0.9 5.9 2.6 2.8 4.0
UGC12498 1.0 2.9 1.3 6.4 2.9
NGC7593 0.6 1.6 0.6 3.9 2.5
NGC7643 4.7 1.7 0.6 10.0 5.7
NGC7631 0.7 4.9 2.2 4.5 2.1

1e Global mass from dark matter model 2 Mass in the stars (derived from assuming
the global M/L ratios of each of the morphological types; Giovanelli and Haynes
(1988) [80])
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Table 2.3: Table showing Turbulence parameters for the set of galaxies observed by

Amram, and Rubin

Name Vo(Km/s) | €(1072 ergs/gm/s) | 7(10% s)
NGC668 121 39.3 5.6
NGC669 34 1.0 3 x 108
NGC688 92 4.8 3.3 x 102
UGC1347 52 1.2 2.0 x 102
NGC753 162 35.3 6.1
UGC1493 37 4.1 3.0 x 10
7119051 50 4.2 2.1 x 102
NG(C3861 18 0.1 4.8 x 108
NGC3883 2 ~ 1078 3.6 x 101
UGC8161 51 2.2 1.2 x 102
11179 102 2.9 2.6 x 101
NGC6050 43 2.8 4.7 x 108
NGC6054 35 1.3 4.5 x 103
NGC7591 79 25.5 4.6 x 10
J2318+0633 31 0.4 8.3 x 103
NGC4605 27 0.7 4.1 x 108
NGC1035 63 2.7 9.1 x 101
NGC4062 121 22.9 1.5 x 10*
NGC2742 153 23.1 3.5
NGC701 08 4.3 0.2
NGC2608 26 1.2 1.3 x 10°
NGC3495 110 5.5 8.9 x 10!
NGC1087 54 3.5 2.5 x 102
UGC3691 83 2.1 1.0 x 102
NGC4682 119 18.4 2.7 x 10!
NG(C3672 40 0.3 1.9 x 104
NGC1421 08 15.0 3.4 x 10*
NGC2715 134 11.2 2.9
NGC4321 14 0.2 2.3 x 10°
1467 91 4.1 8.6 x 101
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Table 2.4: Turbulence Parameters continued..

Name | Vo(Km/s) | €(10~2 ergs/gm/s) | 7(10%2 s)
NGC7541 53 9.8 7.1 % 102
NGC7664 28 0.7 6.1 x 10*
NGC2998 168 30.6 9.2
NGC753 69 21.6 1.5 x 102
NGC801 137 20.7 1.5 x 10!
UGC2885 129 46.2 2.5 x 101
NGC4800 13 0.2 1.6 x 108
NGC2708 174 21.4 1.0
NGC3067 118 17.9 5.1
NG(C4448 185 51.6 0.3
NGC1515 143 62.7 0.1
NGC1353 12 0.1 1.0 x 107
NGC1325 159 16.2 5.7
NGC7537 17 0.1 8.7 x 10°
U11810 75 6.7 1.3 x 102
NGCT7171 23 0.1 2.7 x 108
NGC7217 271 322.1 0.1
NGC1620 176 29.6 2.8 x 10!
NGC3054 56 1.0 2.1 x 104
NG(C2590 200 130.1 1.7
NGC2815 30 0.9 1.5 x 10°
NGC1417 129 34.4 5.1 x 101
NGC1085 64 5.7 4.8 x 108
NGC3145 54 0.7 2.3 x 10*
NGC3223 97 3.7 4.9 x 102
NGC7606 253 52.4 0.7
NGC3200 127 44.3 4.3 x 101
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Table 2.5: Table showing the values of masses, w and L, for the set of galaxies

observed by Amram and Rubin

Name Mass (10" M, | w(10716s71) | Iz(kpc)
NGC668 0.1 13.7 1.4
NGC669 0.16 56.3 1.2
NGC688 0.39 6.5 5.1
UGC1347 0.06 34 3.7
NGC753 0.28 2.8 3.9
UGC1493 0.01 51.4 0.4
7119051 0.01 5.3 0.9
NGC3861 0.42 34.3 2.4
NGC3883 0.71 4.6 11.6
UGC8161 0.02 3.3 1.9
11179 0.44 1.0 12.0
NGC6050 0.03 25.9 0.9
NGC6054 0.02 18.0 1.0
NGC7591 0.11 102.3 0.6
J23184-0633 0.08 16.9 2.1
NGC4605 0.01 9.9 1.0
NGC1035 0.08 4.9 2.9
NGC4062 0.07 0.1 2.5
NGC2742 0.24 0.1 4.9
NGC701 0.37 2.5 6.9
NGC2608 0.01 97.5 0.5
NGC3495 0.36 1.3 7.9
NGC1087 0.03 10.5 1.5
UGC3691 0.25 1.2 8.9
NGC4682 0.08 0.8 2.9
NGC3672 0.49 7.8 6.9
NGC1421 0.08 8.2 2.0
NGC2715 0.28 0.3 6.9
NGC4321 0.01 78.6 0.5
1467 0.17 2.2 5.9
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Table 2.6: Table showing the values of masses, w and L, for the set of galaxies

observed by Amram and Rubin contd..

Name | Mass (10" M, | w(107571) | Iz (kpc)
NGC7541 0.02 74.6 0.5
NGC7664 0.03 35.3 1.0
NGC2998 0.32 0.9 4.9
NGC753 0.01 45.8 0.5
NGC801 0.40 7.0 3.9
UGC2885 0.20 30.9 1.5
NGC4800 0.02 76.0 0.5
NGC2708 1.02 2.5 79
NGC3067 0.10 1.5 2.9
NGC4448 0.32 0.5 3.9
NGC1515 0.18 204 1.5
NGC1353 0.06 50.5 1.0
NGC1325 0.44 0.1 7.9
NGC7537 0.05 15.2 2.0
U11810 0.05 7.5 2.0
NGC7171 | 0.46 11.9 49
NGC7217 0.35 1.9 2.0
NGC1620 0.34 0.6 5.9
NGC3054 0.46 7.9 5.9
NGC2590 0.16 1.0 2.0
NGC2815 0.14 73.1 1.0
NGC1417 0.24 21.0 2.0
NGC1085 0.21 414 1.5
NGC3145 1.00 9.2 7.9
NGC3223 0.98 7.7 7.9
NGC7606 1.63 0.7 9.9
NGC3200 0.14 21.2 1.5
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2.6 Discussion and Conclusion

The velocity-radius relation for galaxies has been derived using Kolmogrov arguments.
We believe that the matter at alarge radius exhibits a balance of hydrodynamic forces,
i.e., dynamical pressure, and Reynolds stresses- produced by the forced small-scale
flow-without the necessity of invoking a gravitational force, generated out of a mass
distribution of the type M o r(which is what is required of the dark-matter models).

In other words, our system is hydrodynamically bound.

We also find that € and 7 values for each of the galaxies obtained by us are almost
of the same order as that quoted for our Galaxy [77]. Therefore it appears possible to
model the observed rotation curves of the galaxies by suitably combining the effects
of rigid rotation, gravity and turbulence. The validity of the ”turbulence model” can
be further substantiated by confronting it with the observations of the velocity fields
on the larger scales like clusters and superclusters. In a recent paper Sanchez-Salcedo
[82], it was claimed that the inverse cascade hypothesis (ICH) has been critically
examined as an alternative to dark matter hypothesis for explaining flat rotation
curves of galaxies .Some issues related to the applicability of the ICH spectrum and
the virial theorem were raised. Here, we clarify these points and provide a possible

validation of the inverse cascade hypothesis.

We modelled the flat rotation curves of several galaxies without invoking the
presence of any type of dark matter. Instead our model makes use of some very
special properties of helically turbulent media. Sanchez-Salcedo [82] pointed out that
the application of inertial range of ICH spectrum to a galaxy implies that scales larger
than the galactic scales must exist. Indeed this is so. In the ICH hypothesis a galaxy
has not been treated as an isolated object. It is but one element of the heirarchy
of structures spanning a range of a few Kpc to hundreds of Mpc believed to exist in
the universe. Further, since a galaxy is not an isolated system- it participates in the
formation of larger structures through vortex-vortex nteraction- the virial theorem is
not applicable at the galactic scales. As discussed below, this is true for the entire

inertial range (see Fig. (1.2)) [17] since it represents interacting scales .

The new realization in astrophysics is that most of the observed structures in



Chapter 2 68

astrophysical environs are helical in forﬁx and helicity is an essential ingredient of a
three dimensional medium (Shore [81] Kitamura[86)) . Large scale helical vorticies
are expected to be generated in galactic disks (Khomenko et al)[21] . In accordance
with observations (Ruzmaikin et al.)[77] , small- scale turbulent motions in galactic
disks are characterized by the correlation time 7., >~ 3 x 10'4s ; and the correlation
length Acor =~ 3 x 102°cm.(33pc) That corresponds to a typical velocity of 105cms™1
and the non - linear term V.VV =~ V2/L turns out to be 10~%cms™2. From our fits
of flat - rotation curves , we find a typical velocity V =~ 100km/s at a typical scale
of L ~ (5 — 10)Kpc , the non -linear term V?2/L turns out to be 3 x 10~%cms~2
which is of the same order as found at small scales. The energy injection rate ¢ is
found to be 10~%ergsgm™'s}, which is close to the value obtained from our fits of
the rotation curves.. The helicity is estimated to be 1/3 x 10~%c¢ms™2. The ratio of
energy to helicity gives the typical length scale of the order of 10?!¢rn . That is helical
vortices of the scale of Kpc can exist in a time T =~ 10%yrs (at the same rate as large
scale magnetic - fields, Khomenko et al.[21]).

Equivalently in the absence of net helicity , the second moment of the helicity the
I - invariant is to be considered ; the ratio of I/E? (Levich and Tzvetkov [73]) gives a
length scale of the order of a few Kpc. Such vorticity structures (4 Kpe in size) have
been observed in the case of the galaxy Mrk1040. (Afans’ev and Fridman [85]) . This
does strengthen the case for the existence of a heirarchy of helical structures much
beyond few hundred parsecs, as was conventionally thought. In fact in the survey
conducted by Afanas’ev et al. they conclude that more than half of all the spiral
galaxies have 'velocity- jumps’ like the one seen in Mrk 1040 . Therefore all these are
good candidates for supporting vortices. Qur sample of fits also includes many such

galaxies.

In this scheme of inverse cascade in 3D , the maximum correlation length is de-
termined by the rate of energy - injection and the duration for which this rate is
maintained. It must be appreciated that in the spectrum shown in fig. (1.2) the
energy cascades to small scales near the origin, the inverse - cascade occurs in the
intermediate range of scales, and stops when there is not enough energy and time to

form the larger structure . Consequently the size of the system is always larger than
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the size of the coherent structures found in it (Shore [81}).

The Reynolds stresses produced by small scale flow can act as a source for driving
the large scale flow through Anisotropic-Kinetic -Alpha effect [27], the evidence for
this is seen in their computer simulations [71]. No coherent force is required as
argued by Sanchez [82). It is reasonable to assume that a random ,anisotropic forcing
with zero spatial and time averages exists in a galaxy with stellar explosions and
interstellar turbulence. In fact there is ample proof to show that the interstellar
medium is being driven by primarily a random force associated with kinetic energy
release by supernovae and young stars. The interstellar turbulence is considerably
helical. According to some conservative estimates the value of &, which is responsible

for the dynamo action- is a few tenths of the turbulent velocity [78].

In conclusion ,we believe that the issue of applicability of the ICH inertial range
to a galaxy , and therefore the non-applicability of the virial theorem at inertial
range scales has been addressed adequately and the inverse cascade hypothesis stands
vindicated . The most favorable setting for ICH would be the early stages of galazy-
formation. We may then visualize the present day scenario as one which retains the

initial signatures of velocity field.

Some more points need to be clarified. viz..

1. First, breaks in the spectrum mark transitions from one inertial range to the
next. Just as in 2D system the two invariants enstrophy and energy give rise
to two inertial ranges in different spatial domains, similarly in 3D helically
turbulent system there are two inertial ranges (k~%/® and k') corresponding to

the I-invariant and the energy invariant.

2. There is an increasing amount of evidence in favour of the k™! energy spectrum
for large scales, in the atmosphere. Moiseev and Onishchenko, [83] report the
analysis of experiments using an active Doppler radiolocation probe. These
observations were performed under conditions of tropical convective atmosphere
in the western part of the Pacific ocean. A study of the property of the space-
time structural function of the second order revealed interesting results. The

fourier image E(k) of the spatial part of the structural function of the second
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order is of the order of k1. (See also [84])

3. We do not claim (neither is it needed for ICH to work ), that € should have a
unique value for all the galaxies.e is a measure of turbulent energy in a galaxy
and it’s value depends upon the particular sources of turbulence in a given
galaxy. The sources of turbulence like Supernovae explosions and stellar winds
vary from galaxy to galaxy, leading to the scatter in epsilon values. Neither
there is any universality or uniqueness in the observed rotation curves. This
is ratified by our fits of rotation curves for nearly eighty galaxies. No single
parameter can justify a mechanism but what we claim is, the fitting of rotation
curves through ICH gives values of epsilon which are close to those obtained by
other estimates. A galaxy may or may not show a flat rotation curve depending
upon the value of epsilon and the duration for which this epsilon is maintained.
Thus for small values of epsilon much larger duration would be required in order
to produce large scale flow, manifested in a flat rotation curve. A typical value
of epsilon 10~2 erg/gm/sec and a duration of 10° yrs seem to be the average

values characteristic of a galaxy showing a flat rotation curve.

4. As we know in studies of turbulent systems for example a k=33 energy spectrum
is translated into a velocity spectrum going as L'/3, where the L is identified
with the real space. This implies that the average velocity on such a scale L
goes as L!/3. There is in fact no special scale or direction which is preferred.
With the data for rotation curves of the galaxies being the only source of the
galactic - velocity field information, we use this data set for fitting the velocity
laws that we proposed. True that the galactocentric radius need not be the only
scale in question but it is also a good representative of the ensemble, that we

need to average over.



Chapter 3

TURBULENCE, GRAVITY &
THE TULLY-FISHER RELATION

Let ‘Chaos’ storm
Let Cloud shapes swarm
I WAIT.....FOR FORM...
- Robert Frost -

[Pertinaz)

3.1 Introduction

! In the preceeding chapter we had proposed a model for the flat rotation curves of
spiral galaxies. Therein we could resolve the galactic velocity field into a ‘turbulent’
and a ‘gravity’ component. Since the Tully-Fisher relationship ([88]) highlights a tight
correlation between the galactic velocity and its luminosity we think it is worthwhile to
study the individual correlaticn between the luminosity of a galaxy and its turbulent
and gravity components of velocity. Towards this end we have modelled the velocity
fields of 76 galaxies and the individual correlations were studied in the U,B,V,I and

Io35 bands. This sample is severely limited by the fact that the overlap between

! paper appeared in Bull. Astron.Soc.Indie, 24,787 (1996)
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the set of galaxies which have been photometrically observed in all the related bands
and the set consisting of galaxies whose rotation curves are available is very small.
Nevertheless, the study revealed an interesting feature viz. the ‘turbulent’ component
of the velocity appeared to correlate better than the ‘gravity’ component, for the U,B
and V bands. Intriguingly enough the ‘gravity’ component correlated better with
the luminosity in the I bands. In view of the fact that the luminosity of a galaxy is
more sensitive to the mass in the longer wavelength regime, and much dominated by
scatter in the shorter wavelength regime, we conclude that this‘study certifies that
our velocity resolution law is indeed doing well in identifying the better correlating
components as ‘turbulent’ and ‘gravitational’ in the respective regimes (Prabhu and
Krishan[87]).

3.2 The Sample And The TULLY - FISHER Re-

lation

The necessary data for studying the Tully - Fisher relation consists of apparent mag-
nitudes, (usually corrected for Galactic and internal extinction,) and some measure
of rotation velocities, corrected for projection effects due to the galaxy’s inclination
in the plane of the sky. Usually rotation velocity is obtained via the doppler broaden-
ing of the HI 21cm line, although Fabry -Perot imaging and long slit rotation curves

(both obtained via H o ) are useful as well.

The TF relation has been studied with samples drawn from the set of galaxies
which are sufficiently close by . This was done presumably to get rid of the environ-

ment effects The relation has been studied in different bands also.

Hitherto the rotational velocity was obtained either by finding out the maximum
of the rotation curve V,,,, or the rotational velocity at a suitably chosen radius (Holm-
bergh radius)- corresponding to a suitable aperture magnitude definition. Estimates
Of Vg, using the line profile measured at 20% of the peak, have also been used.
We use a different way to characterize the galactic velocity field. Since our model

gives a good fit for the velocity field we use the flat portion of the curve to estimate
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the average velocity in that regime. We use our proposed law to do this averaging
numerically. As for the photometric properties of our sample, we obtained the data
from the NASA extragalactic database, and the RC3 catalogue.

Our sample of galaxies were drawn from different clusters and field galaxies as
observed by Rubin et al.[58], [59], and Amram et al.[56],[57]. Our primary interest was
to get a sufficiently large set of galaxies, (irrespective of their distance, environment,
mass, radius , or luminosity) for which the photometry (U,B,V,I& Io35) was done and
velocity fields mapped. All in all our sample consisted of:

20 Sb galaxies - observed by Rubin et al. [58]

21 Sc galaxies - observed by Rubin et al. [59]

35 other galaxies -observed by Amram et al. [56],[57]

(drawn from different cluster environments viz. the Coma, Pegasus, Abel, Her-
cules,.. etc)

We reproduce the photometric data in the tables (3.1,3.2 & 3.3) We also list the
values for the average turbulent velocity component and average gravity - component

in the following tables. Note that the values are in general comparable.(Tables 3.4 -
3.6)
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‘Table 3.1: Table showing the Photometric data obtained mainly from the NASA

extragalactic database. ‘-’ means no data available

Name r(MPC) | UZ B} V¢ Ir | Is
NGC668 59.96 - 13.10 - - -
NGC669 63.20 - 13.00 | - - -
NGC688 54.90 | 12.65 | 12.70 | 12.18 - -
UGC1347 73.04 | 13.30 { 13.40 | 12.83 - -
NGC753 64.73 | 12.26 | 12.30 | 11.81 - -
UGC1493 55.24 - 13.20 - - -
7119051 66.47 - - - 13.80 | 13.98
NGC3861 67.66 | 13.19 | 13.10 | 12.42 | 11.31 | 11.42
NGC3883 92,56 |13.31 | 13.20 | 12.53 | 11.20 | 11.45
UGC8161 88.86 | 14.76 | 14.56 | 13.86 | 12.97 | 13.05
11179 146.30 | 15.93 | 15.68 | 15.15 - -
NGC6050 125.73 1 14.97 | 15.04 | 14.47 | 13.70 | 13.79
NGC6054 | 147.77 | 15.36 | 15.37 | 14.93 | - -
NGC7591 65.20 | 13.04 | 12.96 | 12.32 | 11.50 | 11.64
NGC7536 62.53 | 13.29 | 13.38 | 12.95 | 11.87 | 11.95
NGC7593 54.73 | 13.78 | 13.91 | 13.33 | 12.47 | 12.53
UGC12498 | 55.60 | 13.90 | 13.89 | 13.27 | 12.03 | 12.18
NGC7631 49.97 | 13.14 | 13.07 { 12.45 | 11.44 | 11.51
NGC7643 51.16 | 13.92 | 13.69 | 12.87 | - -
NGC4848 95.52 | 13.45 | 13.61 | 13.17| - -
2160058 100.84 | 14.59 | 14.58 | 14.06 | - -
NGC4911 10549 | 13.52 | 13.38 { 12.68 | - -
NGC4921 72.66 |{13.21 | 12.85 1 12.05 | - -

2160106 94.66 - 14.80 - - -
2130008 96.60 - 15.30 - - -
2119043 59.33 - 15.00 - - -

UGC4329 54.46 | 13.63 | 13.77 | 13.27 | 13.41 | 13.51
NGC2558 66.64 | 13.71 | 13.48 | 12.73 - -
7119053 64.66 - 15.10 - - -
UGC4386 61.73 13..39 13.28 | 12.57 { 11.18 | 11.22
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Table 3.2: Table showing the Photometric data, contd..

Name |r(MPC)| U2 | BS A Ip | Ips
NGC2595 57.64 | 12.60 | 12.59 | 12.02 | 10.98 | 11.10
UGC3269 118.76 - 14.02 - 12.83 | 12.90
UGC3282 109.64 - 13.99 - 12.66 | 12.79
UGC10085 | 120.64 | 14.47 | 14.44 | 13.95 | 13.04 | 13.17
NGC6045 133.13 | 13.71 | 13.81 | 13.13 - -
NGC4605 5.80 10.11 | 10.27 | 9.82 - -
NGC1035 24.50 - 12.19 - - -
NGC4062 14.80 | 11.26 | 11.28 | 10.62 - -
NGC2742 2730 |11.46 | 11.47 | 11.01 - -
NGCT01 36.50 | 12.18 | 12.27 | 11.73 - -
NGC2608 4120 | 12.54 | 12.53 | 11.94 - -
NGC3495 19.00 - 10.74 - - -
NGC1087 30.50 | 10.84 | 10.97 | 10.55 - -
UGC3691 41.50 - - - - -
NGC4682 43.00 - - - - -
NGC3672 33.10 - 11.41 | 10.82 - -
NGC1421 39.70 | 10.78 { 11.00 | 10.71 - -
NGC2715 29.70 | 10.90 | 11.09 | 10.67 - -
NGC4321 20.00 9.93 | 9.98 | 9.33 - -
1467 44.30 | 12.12 | 12.22 | 11.75 ~ -
NGC17541 57.50 | 11.49 | 11.57 | 11.09 - -
NGC7664 74.20 | 12.61 | 12.66 | 12.08 - -
NGC2998 95.60 - 12.52 { 12.07 - -
NGC801 119.00 | 12.60 | 12.44 | 11.83 - -
UGC2885 118.00 - - - - -
NGC4800 19.50 - 12.13 - - -
NGC2708 35.50 | 12.54 | 12.43 | 11.76 - -
NGC3067 28.30 }12.19 12.22 | 11.70 - -
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Table 3.3: Table showing the Photometric data , contd..

Name |r(MPC)| U2 | BY | V@ | Ir | I
NGC4448 | 19.00 |11.53|11.28 | 10.52 | - -
NGC1515| 19.10 |11.1411.01 | 10.39 - -
NGC1353 | 30.00 |11.96}11.73]10.93| - -
NGC1325 | 30.00 |[11.48 | 11.51 |10.99 - -
NGC7537 | 57.30 |12.46|12.69 | 12.30 | - -
U11810 98.30 | 13.33 | 13.50 | 13.07 | - -
NGC7171 | 57.40 |12.31|12.38{11.80]| - -
NGC7217 | 24.70 |10.78 | 10.53 | 9.67 - -
NGC1620 | 68.40 |12.37]12.2711.70| - -
NGC3054 | 43.10 - - - - -
NGC2590 | 95.80 - 12.99 | 12.32 | - -
NGC2815 | 45.50 |11.65|11.42 | 10.82 | - -
NGC1417 | 81.50 |12.3012.26 { 11.69 | - -
NGC1085 | 136.00 - - - - -
NGC3145| 68.80 |11.97|11.82(11.19| - -
NGC3223 | 52.40 |11.071]10.96 | 10.35|9.42 | 9.50
NGC7606 | 47.50 - 10.88 | 10.29 | -~ -
NGC3200{ 65.30 |11.75|11.68 | 11.13| - -
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Table 3.4: Table showing the individual velocity components viz. ‘gravity’ and the

‘turbulent ’ components, resolved by our mgdel

Name (Viotal) (Km/ S) (VturbuzenD (Km/ S) (Vgravity) (Km/ S)
NGC668 185 105 80
NGC669 333 265 68
NGC688 214 87 127
UGC1347 101 41 60
NGC753 205 108 97
UGC1493 173 144 29
7119051 98 73 25
NGC3861 273 137 136
NGC3883 166 56 110
UGC8161 93 60 33
11179 139 35 104
NGC6050 181 132 49
NGC6054 142 106 36
NGC7591 222 152 70
NGC7536 171 108 63
NGC7593 149 75 74
UGC12498 136 51 85
NGC7631 193 126 67
NGC7643 194 15 179
NGC4848 265 166 99
2160058 200 38 162
NGC4911 281 96 185
NGC4921 171 20 151
7160106 200 85 115
7130008 151 2 149
7119043 144 41 103
UGC4329 129 73 o6
NGC2558 245 113 132
2119053 112 72 40
UGC4386 265 52 213
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Table 3.5: Table showing the ‘gravity ’ and ‘turbulent’ velocity components contd..

Name | (Vigtar) (Km/s) | (Viursutent) (Km/S) | (Vgravity) (Km/s)
NGC2595 296 231 65
UGC3269 176 98 78
UGC3282 207 140 67
UGC10085 165 135 30
NGC6045 317 72 245
NGC4605 82 50 32
NGC1035 121 39 82
NGC4062 153 76 77
NGC2742 165 53 112
NGC701 152 6 146
NGC2608 109 73 36
NGC3495 168 48 120
NGC1087 123 77 46
UGC3691 128 31 97
NGC4682 162 96 66
NGC3672 191 57 134
NGC1421 169 105 64
NGQC2715 143 45 g8
NGC4321 184 157 27
1467 141 66 75
NGC7541 201 170 31
NGC7664 187 152 35
NGC2998 207 115 92
NGC801 214 121 93
UGC2885 265 208 57
NGC4800 162 98 64
NGC2708 243 21 222
NGC3067 140 50 90
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Table 3.6: Table showing the ‘gravity’ and ‘turbulent’ velocity components, contd..

Name | (View) (Km/5) | (Viurvutens) (Km/5) | (Vyraving) (Kem/s)
NGC4448 192 38 154
NGC1515 173 54 119
NGC1353 196 114 82
NGC1325 176 43 133
NGC7537 143 89 54
U11810 151 97 54
NGC7171 195 74 121
NGC7217 256 111 145
NGC1620 225 121 104
NGC3054 2377 116 121
NGC2590 226 134 92
NGC2815 278 188 90
NGC1417 268 159 109
NGC1085 303 208 85
NGC3145 263 97 166
NGC3223 253 89 164
NGCT7606 262 72 190
NGC3200 266 200 66
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3.3 Discussions

We observe an interesting trend in our statistical analysis. (see figure fig(3.1)- for the
scatter plot; fig(3.1a)- for the table.)

Firstly the total velocity correlated in the same conventional way as it does for a
standard Tully -Fisher relation. We confirmed the normal trend wherein the correla-
tions improve as we go to the longer bands (from U to the I bands). So, we confirm
the Tully-Fisher relation in the first step. While modelling the rotation curves of
galaxies we have separated the contributions from gravity and turbulence velocity.
We find that the turbulent component correlates better than the gravity component
in the U, B, and V bands.(It is to be noted here that our model gives comparable
magnitudes for both the components . Thus it is interesting to note that something
else other than the gravity -induced velocity is correlating better !). This trend is
reversed as we approach the I bands , viz. the gravity component correlates better.
This is to be expected since the longer wavelength bands are more sensitive to the
mass component (i.e the gravity - induced velocity..) 2. We believe that the so called
‘turbulent’ component which our model resolves could be more than just scatter, for
the correlations are statistically very significant (see Appendix A). We conjecture
that it could be the ‘coherent’ velocity field which is contributing to the rotation as
observed . Thus it would be erroneous to interpret the observed spectral line widths
as ‘those induced by gravity alone’. This also emphasizes the need to study the self-
organizing aspects of turbulent media, which could enrich the structure - formation

scenarios in astrophysics.

Lastly, as a matter of convention we also present the mass to luminosity ratios
(ML) which we calculate for the set of galaxies in each of the photometric bands (fig
3.2 - fig 3.6 ) We find that almost all the values fall within an M/L ratio of 10. This is
very much unlike the ‘dark -matter’ scenarios where this value increases steadily from
the galactic - level (say 50s -100s) to the clusters (where it runs into 1000s). Thus

our model can do away with the excess ‘matter’ required to explain the observations.

?we thank Dr.Matthew Colless (Mount Stromlo and Siding Spring Observatories, Australia), for

bringing this to our notice
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Figure 3.1: The scatter plot between different velocity components and luminosities

of the galaxies in different bands viz. U, B, V, I and ly3s.
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Table summarizing the statistics of the sample.
PHOTOMETRIC BANDS
U B \"4 | |
average 23.5
Up 0.65 0.69 0.74 0.85 0.85
w|T 10.5 0.58 0.62 |0.71 0.72
Low 0.31 0.43 0.47 0.40 0.41
P 10 & * k ok 10_8 * ok k| g7 KA 0.004 0.001
Up 0.64 0.59 0.61 0.54 0.57
wol T 10.49 [0.45 0.46 |0.21 0.25
Pleag™ *#%%| g5 **¥ 0™ ***¥ 040 ns|039 ns
Up 0.20 0.28 0.33 0.80 0.80
e {7002 1 0.09 0.13 0.63 |0.64
- - -0. 0.29
Low 0.24 0.10 0.08 0.27
Pl0o83 ns|o044 ns|030 ns|0.006 **|0.005 **
df 52 68 56 15 15
r correlation coefficient
Up upper limit on r (90% confidence interval)
Low lower limit on r (90% confidence interval)
P probability from t statistics
ro=> P <0.001 (very significant correlation)
*» => 0.001<P<0.01 (quite significant correlation)
ns not significant
df degrees of freedom
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ROLE OF HELICITY IN AN
EXPANDING FLUID

..the topology of the atmosphere probably should be presented as a heliz inside a
helix, inside a helix, ete ., a vastly complicated and stable construction.

- E.Levich and E.Tzvetkov -

4.1 Introduction

We had seen in the preceeding chapters that that there is enough observational evi-
dence, pointing out the role of turbulence as well as the helical nature of structures
observed. Here in order to study the role of helicity in the context of structure forma-
tion in the universe, we consider the model of an expanding fluid. Extending Kurskov
and Ozernoi’s [89] work to the case of a compressible fluid we find suitable transfor-
mations using which the equations of the perturbed flow are reduced to the standard
Navier - Stokes form. Subsequently it is found that there are situations when helicity
evolution is coupled to the density evolution. Even though the special case which
we consider may seem trivial, this is of vital consequence to the study of large scale
structures in the astrophysical context. Our study underlines the need to emphasize

the role of helicity in the hydrodynamic evolution of the universe [?].

The role played by helical motions is believed to be central to the problem of

86
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understanding the dynamics of fluid turbulence and the myriad features which have
been reported by the observations of fluid turbulence, [90],(72] and [91]. Amongst
these it has been realised that features like intermittency and the appearance of
large scale coherent structures in turbulent media can be understood by studying the
nonlinear interactions in terms of helical - decomposition of the flow [92]. Such a
study clearly spells out the possibility of the inverse cascade of energy to large scales
starting from the small scales, thus aiding structure formation. (See also [93]- [96])

4.2 The basic equations and the transformations

The Navier - stokes equations for a fluid with density p and velocity components v;
(where i=1,2,3 are the x,y,and z components respectively)are

8u,- 8u,- ap 8 au,- 3u_,') 2 a’uk 5 ) ( 4 1)
e ot — S AR 2 ) 0 .
Pat TP Oz; pXi 3 0z <N (6‘:0,- Bz;)  V30c,

Where X; , is the i component of the body force acting on a fluid element; z, is
the molecular viscosity of the fluid; p, is the pressure and; &, is the kronecker delta

function ( i.e &; = 1 when ¢ = j, and zero for 4 not equal to j )

The continuity equation expressing the conservation of mass for such a fluid is,

dp  Oew) _, (4.2)
-ét_-’- Bz,-

( the Einstein summation convention is followed here )

If the fluid is self gravitating the system has to satisfy Poisson equation also viz.
V¢ = 4nGp (4.3)

where G is the universal gravitation constant and ¢ is the potential produced by

. . tion
the mass distribution specified by density function p. The body force in equati
(4.1) then is given as, e "

i ble flow
In order to model the expanding universe we must incorporate the Hub

in component Over
into the above equations. Hubble flow may be treated as the main comp
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and above which the evolution of perturbations can be studied. Therefore we resolve
the velocity, pressure, density and potential into a mean and a fluctuating component

in each case and write;

u = wy+v

P = Do+m

p = pot+m

¢ = ¢ot+ 1 (4.5)

where the subscript ‘0’ is used for denoting the unperturbed quantity and the
subscript ‘1’ is used to represent the perturbed component. For the velocity, u rep-
resents the total flow which much satisfy equation (4.1), up is the Hubble flow and
v represents the perturbed component, viz. the peculiar flow. The Hubble flow is
represented as, up = Hr, where H is the Hubble constant. The Hubble constant is
also represented as H = ¢ , where a is the scaling factor and is a function of only

a

time. Therefore,

uo = Zr (4.6)
a

We may note that for such an expanding fluid the viscosity terms of equation
(4.1) which involve a double derivative vanish. Therefore a uniformly ezpanding fluid

obeying the Hubble flow doesn't experience viscosity.

If we assume the unperturbed pressure py, to be constant then in the equation for

the unperturbed flow ug only the body force term remains. Thus

Dug
Y- vy 4.7
Dt do (4.7)

here we have used ‘ED;’ to represent the material derivative, ((—% + uo.V)
Taking the divergence of equation (4.7) and using equation (4.6) and equation
(4.3) we arrive at the following relation,

a 47I'poG
== 4.8
- 3 (4.8)
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implying that pg is a function of time and it satisfies the equation:

d
7;% + V. (poue) =0
or
Opo a_ 9(pad®) _
ot T =g =0 49

To get the equation for the perturbed flow we simply subtract equation (4.7)

from equation for u. We obtain,

Dv  av Vo, 4
=+ —+VV)v=-V¢ - — =~ +1vViv + -V (Vv 4.10
Dt a v-¥) # (po + p1) 3 (v-v) @10

where we have replaced % by v the kinematic viscosity. Similarly the perturbed

component of density p;, obeys the following equation,

D 3a
LAV (o + ) V) + = =0 (4.12)

Now going over to the comoving frame we merely have to effect the following

substitutions for the temporal and spatial derivatives,

6t+uo. B ‘Dt— at comoving

aV = Vcomouin_q (4' 1 2)

Henceforth we shall drop the subscript ‘comoving’ and simply use the normal nota-

tion to mean the comoving frame. Also the % symbol shall be freely used to imply
the material derivative in the comoving frame.
Therefore the new set of equations for the perturbed quantities (including) the

potential) are ,

ov a (v.V)v V1 A\ vViv vV (V)

A =Y + 413

ot e’ T e a  ap+p1) T@ 3a? (4.13)
?ﬂ + V. ((a + p1) V) + 3ap =0 (4.14)

ot a a
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Vi

a2

4nGp (4.15)

We would like to see if it is possible to restore the standard ‘Navier -Stokes’ form
by any set of transformations which would help us in getting rid of the extra terms
in equations (4.13) and (4.14).

To begin with let us effect the following transformations,[6]

v = -g—v*
2
da g 0
8t 208t (4.16)

Inserting these into equation (4.13) and multiplying both sides by 37‘? gives,

da Vp 4a Vi

ST, T

Palpp+m) ¢ a
fa g

4a g 2 ® - L
yg2 2a2V v +1/g2 6a2v (V") (4.17)

50 +—v)+(v Vv =

av*+<v_*a_g 24
got g

We can see that the above equation can be made to resemble the Navier-Stokes
momentum equation if the second and third terms on the left hand side (enclosed
within braces) vanish. Therefore the necessary condition simplifies as,

10 24
.__g_ -+ _E =(
gotr g

or transforming from ¢* to t coordinate we obtain,

(4.18)

Q@ |-
il
|
|

that implies that g.a = k (constant).
Now if we redefine the pressure, potential and viscosity (kinematic) in the starred

frame as,
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4
ot = ".% (4.19)
1/* = —%v

ga

We can rewrite equation (4.17) as

E i ;PII 2 v ®
=+ V' V)V = — T V4 VR —T (Vv 4.20)
att (V )'V (Po + ) ¢1 4 v 3 ( ) (

. Note that we still have to reduce the density equation to the normal form and
that would effect the transformation of the pressure term above (which is why we
have used the primed notation for pressure and not the starred notation which would

mark the final stage of transformation).

Let us transform the density variable as

p=pa (4-21)

Substituting this relation in equation (4.14), multiplying both the sides by 3
and using the velocity and time transformations along with the substitution of g

from equation (4.20) we get,

249, [(o )] =0 02

Now we may use the equation (4.9) for the unperturbed density

in the above equation (4.22) to get ,

8 (o, ;.9043) +V.[(4 + poa®) v =0 (4.23)

Thus redefining our density as

we arrive at the standard form of the continuity equation for k=1. Equation
(4.24) , implies that (og + p1) = po +fha™2 = o + (7”@ — po) = p*a”
Substituting this in the denominator of the pressure term of equation (4.20) the

new pressure is defined as:
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4p,
n*= o= (4.25)

Finally we see that equations (4.16), (4.18), (4.19) and (2.21), (4.24)and (2.25)

are the set of transformations which allow us to reduce the equations of the perturbed

Bow in the comoving frame to the standard form .

4.3 Helicity and density evolutions

Having reduced the equations of motion to the standard form we are now in a position
10 talk about the conservation of helicity in the expanding frame too. In general, the

governing equations for an inviscid fluid driven by an external force F are,[2]

DV -1 _
v _ ! 7 4.96
5= Vp+ (4.26)

Mass conservation would imply,

op .
%P V(%) =0 4.27)
pn + V.(p¥) (
or
% | p(VF)+@V)p=0 (4.28)

ot
multiplying both sides of the above equation by %?— and simplifying :

391 _%vy+a (v.vl) =0 (4.29)
Otp » p

o . 1 ;
Now taking the curl of the equation (4.26),multiplying both sides by , assuming

the fluid is barotropic and simplifying we get

0

1
S LIV + -
p3t+p ( p

Adding equation (4.30) to equation (4.29) we get :

-G
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where p is the density of the fluid, p = p (o) the pressure (for a barotropic fuid),
and F = -y » the conservative body force. We can define helicity as the volume
integral in the form given below

H= (%) pdV (4.32)

where h = V.3 .

Then the rate of change of H, would be given as

dH, D h)J
2= [ =) pdV (4.33)
it thKp ’
That implies that,
D (1.3 3DV _D (w)
=[] = —Z4¥=|—~
Dt\ p p Dt Dt \p
I bl - FV}V
pLp o 2
= .a_J i.*.f].*_ﬂ[v(l)]
pl s Io 2
3 [ [v?
- 359
= Z.[vq]
Y
= v @0 (4.34)
p
D (h .__(.‘fi,v)Q-_-lv,@Q) (4.35)
Dt \p p p
where ,
Q=%-e—¢ (4.36)
and ;
= [% (4.37)
=2

Is the enthalpy per unit mass.
Substituting equation (4.35) in equation (4.33) and converting the volume integral

into surface integral we have for a vorticity surface on which 3.4 =0,
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dH, s
-?E— = /;(wn)QdS= 0

This proves the conservation of helicity.

4.4 Interesting features of the evolution

Expanding equation (4.35) we find that
1Dh hDp (d
—— ==V
p Dt oDt (p ) ¢
This equation reveals an interesting feature for the case &.VQ = 0. We find ,
1Dh _1Dp (4.38)
hDt pDt
which clearly states that the helicity and mass density of a fluid packet evolve together

Let us recall the equation for a steady flow of a barotropic fluid i.e,

V) ¥ = _Yf_’ ~ V¢ (4.39)

Using the vector identity for V(A.B) we may substitute for the nonlinear term in the

above equation and obtain

2
V(z}—)+ﬁx{;=—ﬂ"'v¢
2 P
which can be rewritten as
a SRV
V(—2—+5+¢) +@xv=0
or
VB+oxv=10

where B= % 1 ¢ 4 ¢ is the Bernoulli function.( Compare this with @ = £ ~ e — g),

¢ is the same as in equation (4.37), and ¢ is the potential of a conservative force F.
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I we take the dot product of the above equation with & we obtain
JVB=0

Now the above result implies that &.VQ can also be equal to zero only when V”
18 ger0. Therefore our assumption is valid only when v? is constant i.e on constant
€nergy surfaces,

Rﬂturmng now back to the equation (4.38) we discuss it’s nature qualitatively.
We find that since helicity can be of either positive or negative sign and density can

only have a positive sign, the following cases arise.

Lo+ + 4
2 + - -
8 - + -
4 - - +

Cases 1 and 4 imply that in regions where helicity of either sign grows (say posi-
tive becomes more positive or negative becomes more negative) density also grows.
Whereas in regions where helicity decays density also shows the same trend (cases
2 and 3). These two conclusions point out the possibility of explaining the growth
of ‘voids * and density structures in the astrophysical context, where interestingly
Such features are all the more prominent( i.e the existence of large volumes of voids
and large scale structures is well established.). This observation has to be viewed
With seriousness in the astrophysical context, to understand more precisely how he-
licity influences the density evolution in various structure formation scenarios [8). We
would also like to emphasize that just as vorticity is generated through changes in the
Bernoulii function in a steady flow (Crocco’s theorem) [37], the changes in helicity
can be produced through the variation of the function Q in a non-steady flow. At this
boint it may be appropriate to mention that Belyan et al. [99] studied the problem
of sound propagation in a turbulent medium and found that the transformation of
& sound wave (analogus to density perturbation in our case) into vortical motions
is possible during its propagation through a turbulent medium, and these vortical
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mﬁﬁiﬂs were shown to be helical in the case when the turbulence helicity is nonzero.

Bhate work vindicates the connection between helicity and density derived here.

4.5 Conclusion

I view of the increasing realization of the role played by helical motions in the
ofolution of fluid turbulence we have tried to understand its role in the case of an
xpanding fluid. This would help us in introducing the concept of helicity and helical
&;mmposition of flows in the context of astrophysical flows as well [92], [97]. It

I8 found that a suitable set of transformations can be arrived at thus simplifying
| thie equations for the perturbed flow, into the standard Navier - Stokes form. The
tonnection between the helicity evolution and density evolution is clearly established.
A particular cage (ie when @.VQ = 0 ) is qualitatively analyzed whereby it is shown
that the density growth is enhanced in regions of growing helicity of any sign whereas

density is depleted in regions where helicity decays.



Chapter 5

SIMULATING ‘INVERSE
CASCADE’

THE PURPOSE OF SIMULATIONS IS ‘INSIGHT’ NOT ‘N UMBERS’

5.1 Coherent Structures in turbulence

12 The study of coherent structures in turbulence has provided considerable ex-
perimental and theoretical evidence that such features are a consequence of ’self-
organization’ of the flow. These ideas are very much relavent to the field of astrophysics
wherein we still lack a definitive theory of the formation of the observed large scale
structure of the universe and the role of turbulence in producing such an organisation
is still not appreciated by the community. Be it the observed heirarchy of structures
(galaxies,clusters of galaxies,superclusters..etc), or the granulation scales on the sun
; all such order seems to be the fallout of a self-organized system! What causes this

self-organisation is believed to be related to inverse - cascade of energy in the system.

The alpha-effect, which is a large scale Magnetohydrodynamic instability, usually

associated with helical flow, is well known. It is believed to play an important role in

1 Poper presented ot the 4th International Conference on Computetional Physics,

Singapore, (1997)
2 Poster accepted in the Internotional Symposium on Supercomputing -Tokyo,(1997)

a7
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the generation of large scale magnetic fields which are well observed in astrophysics.
There is indeed a known analog for the alpha effect in compressible ordinary fluid
dynamics [22].But for statistically isotropic incompressible and helical flow no such
large scale instability is obtained [100]. On the other hand anisotropic flows in 2D
and 3D are known to have large scale instabilities of the negative viscosity type where

the growth rate is proportional to the wavenumber unlike the alpha - effect.

Frisch et al. [27] asked a relevant question as to whether there exists an analog to
the alpha effect for three dimensional flows which are incompressible. Their analysis
led them to conclude that indeed there exists a large scale instability provided the
small scale flow lacks parity. By parity - invariance we mean invariance under the
simultaneous reversal of the position and velocity vectors with respect to a suitable
centre, in a deterministic or statistical sense as the case may be . As reiterated by
Frisch, lack of parity invariance is a broader concept than the (essential ) presence
of helicity, and could have in some instances (e.g. PRIMORDIAL TURBULENCE
) have its origin in parity non-conservation of electroweak interactions. This inverse
cascade could be the result of a large - scale - instability , whose existence was
confirmed by Frisch et.al.([27];[71]) for the case of an incompressible fluid with forcing
, and is since known as the Anisotropic Kinetic Alpha effect. The AKA effect is also
the analogue of the well-known alpha effect for the generation of large scale magnetic
fields from seed fields. A perturbative expansion of the incompressible Navier - Stokes
equation using the small scale Reynolds number as a small parameter shows that the
solvability condition for the set of linear PDEs obtained with multi-scale analysis,
resembles the dynamo -like equation for magnetic fields. The key requirement for the

AKA instability to manifest itself is the lack of reflectional symmetry in the medium

(Parity non-invariance).

5.2 The basic equations

We model the flow using the Reynolds-averaged Navier Stokes equations, where the
flow is separately described by the equations for mean flow and equations for small

scale random flow. We force the small scales using a forcing function similar to that
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of Frisch et.al. which ensures that the flow on small scales is not parity invariant. We

list the respective equations below :

The main equations in the non-dimensionalized form.

8yu; + ReusOui = —R; '™ 20;p + 8us + (5.1)
Oip + Rea,- ('Lbjp) =0 (5.2)
In deriving the above equations in dimensionless form with the following transforma-
tions:
s Z
L
vt
t= 'L—z'
)
U
=2
P= £o

we have also used the polytropic relation between the pressure and density P =
5620/ po , ¢ being the sound speed and 4 = 2 where 4 is the ratio between the mach
number M (M = ¥) and Reynolds number R..

c

where, f; -is the forcing function periodic in space and time,u; is the total velocity
and p the total density. The assumption of Reynolds averaging implies that any
randomly varying variable (velocity or density here) can be split into two parts, one
consisting of the Mean and the other the fluctuating component with zero mean. (say

u; = W;(mean) + v;(fluctuations) ) The ensemble averages () would imply :
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(m is the mean - density and ¢ is the fluctuating part)
From Eq. (5.1) and eq. (5.2) we obtain the separate equations for Large and Small

scales using the relations in eq. (5.3). They are :

Equations for Large Scale flow.

OW; + RW;0;Wi + Re(v;0;u;) = =R ™28, py + 8* Wi (5.4)

Bubm + Redk(pmWi) + Rebi(wee') = 0 (5.5)

Equations for small scale flow
3tv,~+ReW_,-8jw+Revj8jW,-+Revj0jv,: *-Re(’l)jajvi) = —R;1N—2aipt+02vi+fi- (5'6)

8:p* + Rei (0mvn) + Redi (0 Wi + 1) — Re(B({p'))) = 0 (5.7)
where, f; in Eq. (5.6) is given by the function

= Vieos (3 +72)sfy=Veos (3~ )i fe=fet fy (59

5.3 Simulation and results

We have simulated the above set of equations adopting the highly accurate spectral
method and using Runge-Kutta Fourth order explicit time marching using a 32 cube
grid [102],(103]. The RK4 scheme used is as follows: Let U be the solution function at
all grid points at a given time t. We can compute the denvatlves at all grid points
and then integrate the time derivatives to get the numerical solutlon at a later time.

We denote the time level ¢, with a subscript 'n’. RK4 requires three intermediate

steps:

du
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1 dU
Uy =U, + EAt (—t)l

1 du

1 du dU du dUu
Ui =U, 4+ A —_— —_ il -
wmvergs((&), (&), 2(5), (%))

The time derivatives are calculated by evaluating the spatial derivatives in the
equations. The RK4 time marching is accurate to the fourth order in At. We used an
extremely small time step At = 0.0005 for our simulations thus leading to errors of
the order of say ~ 10~¢. The conservation of total mass enclosed within the periodic
box at any instant of time was used as a tool for consistency check of the simulation
at every step (See Fig.( 5.1)). This takes care of any spurious mass addition effects
which are known to set in for compressible simulations, due to a change in the nature

of equations in spatial regions with different mach numbers.

In our simulations the ensemble averages at each point were calculated by taking
the average of sufficient number of points surrounding each grid point. This preserves
the gradient-information of the averages thereby retaining the spatial structure. We
feel that this is a close approximation to the concept of ensemble averages. Thus
we could avoid the need to use any model to close the equations by specifying a
particular form for the two-point correlations that we encounter. It is to be noted
here that in the conventional practice the empirical form of the correlation tensor
used would not have preserved the anisotropic nature of the flow, since none of the
models really assume any small scale anisotropy. So, it was safe on our part to adopt
a different strategy for the ensemble averages in question. By doing so, we are not
tampering with the anisotropic nature of the flow. As the simulation proceeds we find
that these averages do grow in magnitude and eventually become comparable to the
remaining terms. This clearly marks the role of Reynolds stresses in the evolution of
the Large scale flows. While calculating the power in each mode ( for any quantity in
the fourier space) the wave-vectors were so grouped into each shell that the density of
states within each bin is such that it resembles the continuum distribution..viz goes
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as the square of the wavenumber. Then as seen from the fig.( 5.2), it is evident that
the higher wavenumber modes (i.e modes for which (Log(k) is greater than 1.2 , here
in the case of 32 cube grid,..) do not contribute at all to the physical picture. They
must be ignored. We specify random initial values over the grid for the small scale
velocities ( there is no Large scale component to start with) and ensure that there is
maximum power in the small scales. We choose the initial conditions in such a way
that most of the power resides in the small scales only. The typical parameters which

we used for the simulation are:

v = 0.1
R, = 10.0

g = 0.1 (5.9)
o = 2r/4
At = 0.0005

(forcing amplitude) = 107
Forcing at £ = 4.0

As the simulation progresses, we notice the onset of the large scale instability ,
as the energy in the wave mode k = 1 and k = 2 keep increasing steadily. We also
note that a steady saturation stage is reached soon which may mark the non-linear
saturation by feed-back from small scales i.e as the small scales deplete their energy

the contribution towards Reynoids stress terms also depletes thus reflecting itself in

a saturated large scale mode!

Another feature of interest which we observe in our simulation is that of helicity
evolution. With an initial helicity distribution which is mainly has lot of small scale
power, our simulation clearly shows that there is a strong polarization seen in the ﬂpw
in terms of well developed regions of positive and negative helicity (see Fig. (5.10)).
This evolution may also be in accordance with the helicity-dynamics which some of
the recent shell-model studies of turbulence are revealing [97]. ( Although it is also
seen that helicity as such decays.) This lends support to the idea that helicity -
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helicity correlation (or the I - invariant,) may cascade towards larger spatial scales as
a fluid evolves. This is 'precisely what was expected from our dimensional analysis of
chapter 2 , also! We also note that since the flow is not inviscid, helicity conservation
is not what matters. Moreover as pointed out by Levich the total helicity , no matter
which predominant sign we choose to start the simulation with, eventually tends to
zerol(Fig. 5.8) Thus the second order moment viz. Helicity-helicity correlation gains
prominence now.

We map the large scale velocity field at one instant of time in Figs.( (5.11) and
(5.12)). We note that the flow is strongly driven by the density distribution viz..
regions of high and low density both aid in driving such a parity - violating flow!(see
also the fig. (5.13)). Thus as explained by Moiseev, compressibility ensures that the
o term (refer to Chapter 1.) doesn’t vanish. This is because the Reynolds terms
are no longer symmetric with respect to‘ reflections . The evolution was studied both
with and without forcing f; and the evolution of the energy in wave - modes k=1,2,6
is shown in Fig. 5.3 and in Fig. 5.4. We confirm the presence of a three dimensional
large scale instability leading to inverse cascade of energy as can be seen from the
figure (5.5). The simulations were performed on the IBM SP2 as well as on the
Power challenge platforms. The averaging routines of the code were parallelized for
greater optimization of execution time per iteration. The execution time for each

time-step was roughly 20 secs, and each run of the simulations was continued for

almost 5000-6000 iterations.
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Figure 5.4: The evolution of the energy in wave modes k=1,2,and 6 without forcing .
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Figure 5.10: The spatial distribution of helicity at two different instants. Top: initial;
Bottom: final. The color code is : the values range from negative (blue) and increase

through green,yellow(zero), red and pink(positive).

Figure 5.11: The initial velocity field along a z-y plane. Note that there is no mean
flow here, and the velocity vectors are randomly oriented. The color code is just a
superposition of the density information. density increases (from a positive value)

through blue,green,yellow,red and pink.

Figure 5.12: The final mean velocity field along the z-y plane. Note that a distinct
large scale flow has emerged which is also driven by the density distribution as can

be seen from the overlaping color code for density.

Figure 5.13: The density evolution is shown above. On the left is the density spectrum
p(k).vs.Log(k), with both the intial(vellow) and final(green) spectra superposed. On
the right-top is shown the initial density distribution in space.The box on the right-
bottom shows the final density clumping as seen. color code: density increases (from

a positive value) through blue,green,yellow,red and pink.



Appendix A

Statistics

A.1 Correlation coefficient

This appendix sums up the statistics used to arrive at the results indicating significant

correlations between the variable under study.

To calculate the correlation coefficient we employed the following formula:

Ly — (Zy:1Zg) /n
(B2 - 23 /n) (2 ~ (Saa)* /n)]

We can also calculate the standard error in the calculation of the correlation
coefficient, and perform a t-test to determine the probability that it is equal to zero.
A probability of less than 0.05 is considered evidence of a significant correlation.

Note-that we have based our criteria for the significance of the correlation on this

and displayed the corresponding values in the Table.

We can also calculate the probability that N measurements of two uncorrelated
variables would give a coefficient r as large as ro (which is our observed value from the
data) i.e Py (|r| >= |ro|). Here too a probability of less than 5 percent (i.e P <= 0.05)
is considered to be indicative of a significant correlation. This value is calculated from

the following integral below:

P () >= ) = SO [ (1 )9y

Irol
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A.2 Skewness and Kurtosis

The Skewness and Kurtosis of a given distibution can be found out as follows: Let N

be the total number of samples, and the mean < z >:

_ Zfim
<zT>= N
-and let
_ Zfi(zi)*
Vg = N
also define

_Lfilzi— <z >)*
- N

Kk

where uy = ¢ is the variance.

Using the above definitions skewness is calculated as:

Skewnegs = Ha
20

and kurtosis is calculated as:

paf (1)* — 3

Kurtosis = 5

(A1)

(A2)

(A.3)
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Notes on the I- Invariant

B.1 The Proof of I- invariance

Helicity as is an exact topological integral of motion of the Euler equation, and is
also the measure of knottedness of the vorticity field ([72] & = V x ) lines. From

the Euler equation

% +(@V)T=—(Vp)/p (B-1)
taking a curl of the above equation we get,
%‘;i+vX[v(v2/2)—ﬁx (V x8) =0 (B.2)

we take the dot product of (B.1} with & , and add it with the dot product of
(B.2) with 7. We get :

] A V — - —
{J.% + 'D'%ﬂ +@3.V(¥*/2) +(.75.—;JE -3 (Vx{@xad)=0 (B.3}

expanding the last term in equation (B.3) as:

-7 (Vx(@x®d) = —0.[7.(Vd)~3(VE)+ (@.0)7~ (0.V)J]
7.[(8.V)d — (@.V)7) + 7.(V.0)@
= F((@V)I)+ 7 [(@.V)T - 2.(a.V)T+ (V.0)d)
7. (B.V)& + (8.V)0) + 7.(V.0)3 ~ 7.2(8.V)T
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S.VH + HV.5 - 5.2(3.V)7
2
= (V.HD)- 23V (32-) (B.4)

using the above relation in (B.3) we finally obtain:

ot p 2

%H  vwm) = av [ZE#JEJ
= V.[3(-p+v%2)] (B.5)

Now that implies:

DH =
E = divF (BG)

where F = @ (—p + v2/2).
By applying the above equation (B.6) at two points z, and z + 7, averag-

ing and using homogeneity, one obtains the following equation for the correlation
(H(z)H(z +r)):

D

i (H(z)H(z + 1)) = div, [<H(a: +r)ﬁ(a:)> -+ <H(3:)}-7"(z + 7‘))} (B.7)

after integrating , one arrives at the conservation law :

I= / (H(z +r)H(2)) d*r = constant

In deriving the I-invariant, the existence of a small viscous term on the right hand
side of equation (B.6) is assumed. Otherwise the ensemble of helicities would not
have been possible, since helicity itself is the exact invariant for inviscid flows. The
invariant is such only with the accuracy of viscous terms . Below we derive it’s

relation with the energy spectrum for a quasi-normal distribution of helicities.



Biendix 114

B.2 Proof of I(k) x E(k)?

This appendix gives the derivation of the helicity - variance spectrum, that was em-
ployed in our model [104]. The Helicity spectral density H (k) may be written as:

H(k) = S ¥ (k)8 (- )

where, the summation Ts() extends over one shell in k space, k <= [#(k )| <=
k+1).

Since the velocity vectors in fourier space are complex quantities, ( with a Real

part R(k') and an imaginary part I(k') ) we can simplify the above spectrum as :
H(k) = Sen2K . [R{K) x I(k)]
or
H(k) = Ssy 2kR(K ) (K) sing(¥)

We assume that ¢ is uniformly distributed over the interval [0, 27], then

(H(k)) = (sing(k)) =0

We further assume that the random variables R(k), I(k) and #(k) are statisti-
cally independent and that fourth order cumulants are negligible. Also, the reality

coustraint on the velocity values in the real space implies that ¥(k) = ¥#*(—k). Then,
(sin(K)sing(p)) = (sin*$(L)} (Fip + dii-s)

1
= 5 (5k,p + dk,—p)

In this approximation the amplitudes of the velocity and the energy spectral den-
sity are related by (R(k)?) = (I(k)* = (E(k)/N(k)) where N(k) is the number of
modes per shell, approximately equal to 47k?p. The density of modes in Fourier space
p = (V/(2n))? is equal to one in our simulation. We obtain for the variance of helicity

spectrum :
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= Sy ik’ <%> - Jé%k_) (E(k)?

= (B

Which is the relation that we employed in our model . Note here that I =
Jr(@~(r)ydV = [ I(k)dk So, the above result is directly related to the I- invariant.
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