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Abstract 

We have studied the effects of expansion of dusty 

matter in spherically symmetric atmospheres I on equivalent 

widths of the spectral lines form in such media. We have 

treated a two level atom in non-LTE. Initially the hydrogen 

Lyman Alpha line has been studied for the purpose of calculat­

ing the effects of number density of the neutral atoms on 

equivalent widths. The temperature variation has been deri­

ved from the assumption that the Planck function varies 

as l/r2 in an atmospheres with pure hydrogen gas. Using 

this temperature structure and Boltzmann equation I we cal­

culated the number of neutral atoms which formed the hydro­

gen Lyman Alpha Line. 

The dust has been introduced assuming that there 

is no reemission from the dust and that dust scatters iso­

tropically. This is because the emission of dust will be 

in the infrared and will not contribute to the emission 

to the hydrogen Lyman 

comoving frame method 

line transfer equation. 

Alpha Line. We have employed the 

for obtaining the solution of the 

The velocities of expansion are 

measured in terms of mean thermal units and the amounts 

of gas and dust are measured in terms of the respective 

optical depths. We have considered two atmospheres: one-

without emission and two- with emission in the medium due 

to thermalization of photons. 

In a static medium we obtain symmetric profiles and 

when the velocity of expansion is int roduced we generally 

obtain P-Cygni type profiles i.e.the absorption being shifted 
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towards the violet side or emission peak remains at the 

center gravity of the line. If we introduce dust the emi­

ssion reduce considerably wh i Ie dust scatters more photons 

into the absorpiton core. When there is no dust the absorp­

tion core is very wide extending approximately to three 

Doppler units of either side of the center of the lines. 

When the opt ical depth of the dust is large (say five) the 

width of the absorption core is reduced to only approximately 

1 .5 Doppler units on either side of the line of the center 

which means the dust scatters photons into the core of the 

line and removes photons from the wings. When we introduce 

velocity of the expansion the lines become a asymmetric 

the absorption core become narrow. 

When thermal emission is introduced there is substan­

tial amounts of emission on the both the sides of the line 

center with absorption at the center. If we introduce dust 

then the two peaks of emission wings are reduced substan­

tially, changing the width of the central absorption. If 

dust is further increased the emission from the wings will 

vanish completely or the line will have two small emission 

wings with two unequal heights. 

The equivalent widths corresponding to the changes 

in the amount of dust, expansion velocity, are di fferent 

in different cases. I f the dust opt ical depth is increased, 

the equivalent widths in a medium moving with velocity gra­

dients are reduced while the equivalent widths formed in 
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a shell moving with constant velocity increase the emission 

being considerably 

two emission peaks 

creased. 

reduced. The ratio of heights 

fall as the dust optical depth 

of 

is 

the 

in-



CHAPTER 1 

INTRODUCTION 

"STARS AND NEBULAE TELL AND SHOW US WHAT THEY PLEASE" 

1.1 Study of stellar spectra 

By analysing the observed stellar spectra it is 

possible to learn more about" the structure, temperature, 

chemical composition of stellar atmospheres and other 

conditions prevailing in the gaseous nebulae. The analysis 

may also provide information about the structure of the 

envelope, mode of energy transport through their atmosphere 

and the dynamics of stellar atmospheres. 

Known physical laws that specify the interaction 

of radiation with stellar material may be applied to derive 

mathemat i cal model s. From these models we try to infer 

the physical conditions in the atmospheres. 

1 



Infrared observations of T-tauri stars, cool super­

giants and objects like gaseous nebulae have shown the 

presence of dust around 

of dust and gas present 

the ionised core. The mixture 

in the stellar atmosphere inter-

acts with the radiation resulting in the change of inten­

si t y. The radiat ion is absorbed, scattered and re...emi t ted 

in other directions at different frequency level. 

1.2 Stellar atmosphere 

From line shapes (profile) and strengths we can 

obtain information regarding temperature, electron density, 

magnetic field,radial and rotationaY velocities and so 

on. Under the influence of stellar rotati~n, spectral 

lines get broadened. changes in the shapes of 

lines will tell us about the dynamics of the gases in the 

atmospheres. 

Due to transparency of stellar gas, the radiation 

escaping from the surface is the average of the emission 

from the underlying layers. Greater the temperature of 

the layer greater will be the emission as well as absorp­

t ion. The energy absorbed is less than that emitted in 

case of outer layers because the overlying layers are 

thin. Though emission is large from the interior layers 

the absorption also is more by the overlying layers. 

A layer can· be imagined in such a way that the 

radiation emitted by layers below it is totally absorbed 

and the contribution to the emergent radiation is solely 

2 



due to the layers above it. Since the radiat ion emerges 

from a variety of depths in the stellar atmosphere J it 

can not be expected to indicate a unique temperature that 

corresponds to anyone layer in the star. The temperature 

that we derive will be a representative temperature corres­

po~ding to some representative depth in the atmosphere. 

1.3 What can be learnt from stellar spectra 

Study of spectral lines is one of the major in­

terests in astrophysics as it is an established fact that 

they provide valuable information to infer the physical 

conditions of the gaseous material present in the stellar 

bodies. 

Stellar 

of the star. 

but di fferent 

atmospheric pressure affects the spectrum 

Spectra of two stars with same temperature 

pressures are found to differ. Degree 0 f 

ionization of atoms depends on the rate at which those 

atoms can recapture elect rons. The process of recapt ure 

depends on how closely they are packed together. At higher 

densities the particles are much closer than at lower 

densities hence recapture of electrons is easier. This 

is the reason why the fraction of atoms that are ionised 

at any instant of time is lower at high pressures than 

the gas at low pressures. 

1.4 Equivalent width of spectral line and curve of growth 

Since th e pro fi les .. of di fferent 1 ines di f fer in 

3 



shape it is convenient to define some measurable quantity 

that can be used to calculate the total amount of ' light energy 

that is subtracted from the spectrum by the line. The most 

commonly used measure is the "equivalent width". This is 

the width of a hypothetical line with rectangular profile 

of zero intensity along its ent ire width. Equivalent width 

represents the same subtraction of light from stellar spectrum 

as is removed by the actual line. It is a substitution for 

the integrated line strength, and is given by 

I 
WA= Jex> . c 

a 

- I 
L 

I 
c 

d)", 

where Ic and IL are the specific intensities in the continuum 

and the line centre respectively. It can also be measured 

in terms of flux from the stellar disc. Equivalent width 

is a measure of the line strength relative to the background 

continuum. The integrand of the above equation is known as 

residual intensity 

Y. t = 
~n 

and in terms of flux, the residual flux is 

Y 
flux 

4 



Figure 1.1. Schematic diagram showing equivalent width 
of a spectral line. The shaded and dotted regions have 
the same area. 

Spectral line profiles of varying equivalent widths are 

due to varying number of atoms that are present in the 

stellar photosphere which can produce that line. 

Strength of absorption line not only depends 

on the total abundance of the relevant atomic species 

but also those in a given ionized and excited state. Tempe-

rature and pressures are dependent on the depth of the 

photosphere. It can be calculated that which fraction 

of the atoms will be in the relevant excitation state. 

Since an absorption line arises from atoms at all depths 

throughout the atmosphere we must consider the contributions 

from all atoms at various layers to predict the equivalent 

5 
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width of the line. We h.ave tried to calculate how the 

equivalent. width will vary 
I 

with total number of atoms 

present .torming the line. . At lower abundances equivalent 

width is approximately proportional to the total number 

of atoms present'. The · .. .line saturates for ~ larger: numbeI;' 

of atoms and for abnormally high number of atoms in the 

atmosphere broad wings appear on the line due to collisional 

broadening. In this case the equivalent width increases 

as the square rootofithenumber of atoms present in the atmos-

phere. A graph that shows relationship between equivalent 

width of a line and the number of atoms that produce the 

line is called a curve of growth. 

1.5 Moving atmospheres 

It has been established by observations that 

there exist macroscopic motions in the stellar atmospheres. 

Wide range of motions even leading to the expansion of 

the atmosphere as a whole have been evidenced by observa-

tional data. 

Velocity fields have little effect on radiative 

transfer in the continuum. However, even a small Dopp-

ler frequen'cy shift of a line produces a major change in 

its absorptivity as seen by a stationary observer. This 



7 

strongly influences the line formation. struve and Elvey 

in theiir: analysis of the spectra of supergiants have 

discovered that the Doppler ~idths inferred from the posi-

tion of the flat part of the curve of growth were far 

in excess of the therma I value. They attributed this 

broadening to non-thermal lit urbulent" velocities presumed 

to have Gaussian distribution. These velocities are very 

small and act as additional line broadening agents and 

enhance the line strength. 

However the inferred velocities often approach 

or exceed the speed of sound in the material and it is 

clear that astrophysical microturbulent velocities are 

not to be identified with turbulence in the strict fluid-

dynamical sense, but rather with unresolved motions. 

Curves of growth also help in drawing inferences of micro 

turbulent velocity, but high resolution spectra have shown 

distinct Doppler shifts and asymmetries that fluctuate 

in t im:e', 

Evidence a large 
I 

scale for velocity patterns on 

was provided by Struve's observation that the ~ath,of JJine',' 

profiles in certain stars exceeded the Doppler widths 

obtained from the curve of growth of their spectra. Here 

one envisions areas on the stellar surface so large to 

be plTact ically independertcf atmospheres mov ing syst emat ically 

along the line of sight. Further, periodic Doppler shifts 

of the lines in some stellar spectra reveal that they 

are from pulsating stars. Beyond this, objects such as 

the WR stars I P-Cygni stars and early type super giants 



all show characteristic line profiles with blue shifted 

absorption components and red shifted emission coponents 

indicative of large scale expansion. It is desirable 

to know distribution functions describing the amplitudes 

and scales of the velocity patterns'. A truely consistent 

theory of stellar atmospheres will require a dynamical 

theory of the interaction of material velocities, the 

thermodynamic state of matter and the radiation field. 

Then only it is possible to fully understand the stellar 

chromospheres and coronae. An attempt is being made to 

understand the kinematics of radiative transfer in moving 

media, i.e. computation of the emergent spectrum using 

a given velocity field and model atmosphere. The presence 

of velocity gradient in the expanding medium was relaised 

by Sobolev which has simplified the problem of radiation 

transfer in the stellar medium. 

Sobolevl s method provides' an approximate solution 

in the case of rapid flow with large velocity gradients, 

where as comoving frame methods provide general solution 

applicable to lower velocities of few Doppler widths upto 

very large velocities, as well. 

1.6 Transfer equation in fluid frame 

For an observer 

and emissivity of the 

owing to the effects 

in a stationary frame the opacity 

material become angle dependent 

of Doppler shifts and aberration 

of light. This results in an inextricable coupling between 

frequency and angle which presents difficulties in the 

a 



calculations of scattering terms with a discrete quadrature 

term. In view of avoiding difficulties treatment of trans­

fer problem in a frame comoving with the fluid is consi­

dered. 

In comoving frames opacity and emissivity are 

isotropic and problems involving partial redistribution 

effects can be tackled byusing· standard static redistri­

but ion funct ions. While cal culat ing scattering int egral s 

it may be enough to consider only a small frequency band 

of width broad enough to contain the profile fully. This 

bandwidth is independent of the fluid velocity~ Dynamical 

calculations in spherical flow can be handled accurately 

in a Lagrangian coordinate system. 

The effect of high velocities plays an important 

role in formation of spectral lines in the outer layers 

of stars. In objects such 'as Wolf-Rayet stars, P-cygni 

stars, novae, quasers and planetary nebulae etc. the matter 

is observed to be moving with very high radia'l velocities. 

Earlier, attempts (by Kunasz & Hummer (1974), Peraiah and 

Wehrse (1978), Wehrse and Peraiah (1979) and others) have 

been made to solve the problem of transfer of line radia-

tion 

are 

the 

by moving media. Observer's frame 

restricted only to small velocities. 

formation of lines in rapidly moving 

calculations 

For knowing 

stellar atmos-

pheres one must study the solution of transfer in the 

comoving frame. 

9 
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Chandrasekhar (1945) and Abhyankar (1964) have 

developed methods for tackling this problem but they were 

restricted by several assumptions and were valid for plane 

parallel atmospheres. Mihalas and other workers in this 

fiel j have made considerable amount of work on comoving 

frame calculations. 

Here we adopt the method developed by Peraiah 

(1980) to obtain a direct.". solution of line transfer in 

comoving frame of the fluid within the frame work of dis-

crete space theory. 

The c.:omoving terms which appear in the transfer 

equation are 

(1_]..I2){ IV(r) +~2 dV("r) } CI(x ,]..I,r) 
r dr ax (I-I) 

where I(x,]..I,r) is the specific intensity of the ray with 

frequency 
v -v 

x = 0 ~ being standard frequency , some 
/).S 

interval, '00 is the central frequency of the line and )J 

is any frequency point in the line making an ang Ie e = 
-1 

Cos ]..I with the radius vector at a radial point r. v (r) 

is the velocity of the gas in mean thermal units at point 

r. Incorporating comoving terms given above in the radia-

tive transfer equation, 

For a non-LTE two level atom we write 



II or (x, ll, r) 

a r 

2 
.+ l-ll a r ( x 'll , r) = 

r all 

\ 

K(x,r)SL(r) + 

K (r)S (r)-[K(x,r)+K (r)]I(x,ll,r)+ 
c c c 

+ll 2 dV ( r) } 0 I ( x ,ll , r) 
dr a x 

and for an oppositely directed beam 

oI(X,-:ll,r) 
-ll 

or 

{( l- 2) VCr) + 2, dV(r)} oI(x,-lJ.,r) 
lJ. r II ar a x 

(1-2) 

(1-3) 

where K(x,r) and K (r) c are absorpt ion coefficients per 

unit frequency interval in the line and continuum respecti-

vely. 

fucntions. 

and S (r) are the line and continuum source c 

The H Lyman ~-line has a very large central opti-

11 

cal depth and therefore the diffusion of photons into the 



line \lings assumes greater importance. For an expanding 

spherical configuration the spectral line formation calcula­

tions for complete redistribution and for partial redistri­

bution have shown marked differences. As the effects of 

redistribution become stronger when the optical depth incre­

ases, it becomes necessary to take partial redistribution 

into account. H Lyma~ a -line formation for plane 

parallel) Panagia and Ranieri (1973) and Peraiah and Wehrse 

(1977) have shown that geometry of the medium does have 

an appreciable influence on the radiation field of the 

Lyman C(-line. Further it has been established that the 

expansion leads to considerable changes. Here we have 

tried to calculate the radiation fields taking partial 

redistribution, sphericity and also the expansion of 

the medium into consideration. Calculations are done 

for 

well 

atmospheres 

as those 

expanding with 

with velocities 

towards the outer surface. 

constant velocity as 

increasing linearly 

In chapter 4 we have tried the calculations 

for the line formation in comov ing frame with the 

partial frequency redistribution within the frame 

work of discrete space theory of transfer of radiat ion. 

We have considered: radial mass motidn of the medium and 

12 



photon redistribution from any given point 
I-V 

point in the frequency interval Vo : ( max 

where v o is the central 

C 

frequency of the 

to any other 
l+-V max 

to Vo ( ) 
C 

line and V 
max 

is the maximum gas velocity. Radiation field obtained 

in the comoving frame has been translated into the frame 

of reference of the observer at infinity as these will 

be useful for direct comparison with the observational 

facts. In figure 1.2 we have tried to describe this trans-

lation. 

Radiative transfer equation is solved in the co-

moving frame by assuming velocity distribution give~ by 

V(r) = VA + (r-A) (1-4) 
B - A 

where V(r) is the gas velocity at a radial point rand 

V are the velocities at inner and outermost atmos­
B 

pheric points at distances A and B from the stellar centre. 

All velocities are measured in mean thermal units. Density 

in the medium is considered to be varying as 1 ( - ). r 
Fre~ 

quency and angle dependent source functions S(r) are cal-

culated at every radial point by using the relation 

I 

r A. 
. 1 
1=1 

J 
E 

S(x. III 'IL )C. 
. 1 1 J n J 
J= (1-5 ) 

The optical depth is calculated along the parallel rays 

as shown in fig.l.2. From above consideration flux received 

at infinity can be calculated. 

Id 



Expanding envelope 

-cy-
Observer 

Figure 1.2. Schematic diagram of expanding envelopes 
surrounding a stellar atmosphere. Material in the occu­
lted region is blocked from view for an external observer 
by the stellar disc. It also shows how fluxes are cal­
culated by an observer at infinity. 

In a purely scattering medium we see absorption lines. 

When the velocities increase the line centres get shifted 

towards blue side. 

14 



Presence of dust has been evidenced by infrared 

observations of .many stellar objects. We have tried to 

study the line formation in dusty envelopes. Line forma-

tion calculations have been done taking into account the 

presence of dust, radial expansion, and geometrical exten­

sion of envelopes. Effects of dust and velocities of expan­

sion on the equivalent widths of spectral lines are shown 

at Chapter 5. We have studied the effect of pure scatter­

ing by dust and the effect due to absorption has been 

ignored. Modification: in the profiles for various dust 

optical depths and velocities has also been shown. 

15 



CHAPTER 2 

DISCRETE SPACE THEORY OF RADIATIVE TRANSFER EQUATION IN 

MONOCHROMATIC RADIATION FIELD. 

2.1 Introduction 

Energy generated in the stellar interiors is trans­

mitted on to the atmosphere and leaves the star. Radiative 

transfer equation is the basic tool for the study of trans­

mission of radiation through the stellar atmospheres. Since 

complex physical processes are going on in the atmosphere 

it is difficult to obtain the solution for radiative trans­

fer equat ion. Di f ferent peopl e work i ng in th i s area have 

proposed several methods. As early as 1862,G.G.Stokes 

obt.ained difference equations for reflection by a pile of 

identical glass plates. However the method suggested by 

Ambartzumian (1943) is better suited for solving the equa-

18 



t ion of radiat i ve trans fer. This method is based on the 

principle of invariant imbedding. This method has found 

extensive use for several workers in this field to calculate 

the reflection and transmission functions. Chandrasekhar 

(1960) has used this principle. The invariance pr inci pIes 

are consequences of an interaction principle and the star 

product which are essentially a statement of energy conser-

vation in a finite medium. Redheffer (1962) and Preisen-

dorfer (1965) have developed interaction principle and star 

product. Grant and Hunt (1969) have added the internal 

source terms which are useful in stellar atmospheres. This 

theory was extended to spherical system by Peraiah and Grant 

(1973). In what follows we shall give the details of the 

methods which we have used for our calculations. 

To obtain solution for the transfer equation follo-

wing steps are adopted -

1. The atmosphere is divided into a number of 'cells' whose 

thickness is defined by L 

to a critical thickness L. 
cr1t 

which is less than or equal 

This critical thickness 

of the cell is determined on the basis of physical chara-

cteristics of the medium,and is called optical depth. 

2. Integration of transfer equation is performed on the 

'cell' ,which is a two dimensional grid bound by [rn,rn+lJ X 

[ll'l ,].1,+,]. 
J-'2 J ~ 

3. We compare these discrete equations with the canonical 

equations of the interaction principle and obtain the trans-

mission and reflection operators of the shell. 

4. Finally we combine all the cells by star algorithm and 

obtain the radiation field. 

17 



2.2 Interaction Principle 

Interaction principle is a relation between the 

incident and emergent radiation fields from a medium of 

known optical properties. 

Consider a cell of optical thickness ~ with inci­

dent and emergent intensities 'at its boundaries (n ,n+l). 

Let us assume that the speci fic intensities u+ 
n 

and U- 1 
n+ 

are incident on the cell at these boundaries. Similarly 

- + U and U 1 are the specific intensities emerging from the 
n n+ 

cell at these boundaries. The symbols + and - represent 

specific intensities in ihward and the opposite directions. 

u+ n 

Transmitted and 
reflected input + 
rad iation 

Cont ribution 
to radiation 

u~ 

field due to field from 
internal sources the shell 

n+1 

Figure 2.1. Schematic diagram showing the interaction principle. 

n 

18 



If e = COS- l ~ is the angle made by a ray with radial vector 

indicating the direction in which n is increasing, we have 

0< ~ ~ 1 } 

and 

U- {u (-~): 0 < ~ < 1 } 
n n -

U~ - represents the specific intensity of the ray travell-

ing in the direction of ~ (inward, increasing • n ' ) and u­
n 

represents the speci fic intensity of the ray travelling 

in upward direction. We may select a finite set of values 

for~ (~j: 12 j2 m; O<]..ll <]..l2< ]..l3< 114···· llm~ 1) and writeU~ 

and U~ as vectors in m-dimensional Euclidean space as 

Un (lll ) Un(-]..ll) 

Un (].12) Un (...:.1l2 ) 

U+ = 
Un (]J3) 

and U = 
Un ( -].1 3 ) 

n n 

Here U+ and U are the incident and emergent intensity 
n n 

th - + vectors at the n layer. Similarly Un + l and U n+l are the 

corresponding intensity vectors at the (n+lr h layer. 

19 



The emergent radiation field will have dependence 

on the incident radiation and also has the contributions 

from the internal sources present in the layer. + Let r (n+1,n) 

and r-(n,n+1) be the contributions to the emergent intensity 

+ vectors Uh+1 and Un respectively. 

If we define t(n+l,n) and t(n,n+1) as linear ope-

rators of diffuse transmission and r(n,n+l) an~ r(n+1,n) as 

linear operators of diffuse reflection, the emergent field 

intensity vectors can be expressed interms of the reflected 

and transmitted input intensities together with contribu-

tions from internal sources as 

U~+l::: t(n+1,n) U~ + r(n,n+l)U~+l +r+ (n+l,n) 

U 
n 

::: r(n+l,n)U+ + t(n,n+l)U- 1 +1: (n,n+l) 
n n+ 

I( 2-1.) 

This pair of equations can well be written in a concise 

way as 

U 
n 

::: S(n,n+l) 

where S(n,n+l) ::: 

U 
n+1 

[
t(n+l,n) 

r(n+l,n) 

+ r (n,n+1) (2-2) 

r(n,n+l)] 

t(n,n+l) 
(2-3) 

20 



The above equation is called the 'principle of 

interaction' . Redheffer has developed a theory based on 

this principle of interaction without the source terms. 

Introduction of internal source terms was due to Grant and 

Hunt (1969a). Interaction principle mentioned above is 

of general form. Reflection and transmission operators 

include the properties of the medium and the geometry as 

well. It can be applied to plane parallel case and can 

also be used to spherical symmetry case. Effects of inhomo-

geneities of the medium can also be introduced into these 

operators without much difficulty. 

The problem is treated in two stages, i.e.determina-

tion of the fluxes emerging from the layers and the deter-

mination of flux at any internal layer. 

2.3 Star Product 
, 

Consider another layer with boundaries (n+l,n+2) 

adjacent to the (n,n+l) layer. Extending the interaction 

principle to this layer we an write 

where 

=S (n+l,n+2) + L (n+l,n+2) (2 -4) 
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s(n+l,n+2) = [
t(n+2,n+l) 

r(n+2,n+l) 

r(,n+l,n+2)] 

t(n+l,n+2) 

If we combine the two layers with boundaries (n,n+l) 

and (n+l,n+2) interaction principle for the combined shell 

can be written by eliminating and U~+l from equat ions 

(:2-2) and (2".-4) as 

U 
n 

+ E(n,n+2) (2-5 ) 

The relation between S(n,n+l), S(n+l,n+2) and S(n,n+2) is 

given by 

S(n,n+2) = S(n,n+l) * S(n+l,n+2) (2 -6) 

this was called 'star product' of two S-matrices by Redheffer 

(1962). 

The reflection and transmission operators, rand 

t, for this combined 'shell' bound by boundaries (n,n+2) 

are given by 

t(n+2,n) = t(n+2,n+l) [I-r(n,n+l)r(n+2,n+I)]-lt(n+l,n) 

t(n,n+2) = t(n,n+l) [I-r(n+2,n+l)r(n,n+I)]-lt(n+l,n+2) 

2 ') 
..., ..... 



r(n+2,n) = r(n+l,n)+t(n,n+l)r(n+2,n+l) 

-1 
[I~r(n,n+l)r(n+2,n+l)] ,t(n+l,n) 

r(n,n+2) = r(n+l,n+.2)+t(n+2,n+l)r(n,n+l) 

and 

-1 [I-r(n+2,n+l)r(n,n+l)] t(n+l,n+2) 

L (n,n+2) =A (n,n+l~n+2)r (n,n+l)+ A' (n~n+l,n+2) 

1: (n+l,n+2) 

where 1- is the identity matrix. 

And 

(2. -7) 

. (2 -8) 

tr(n+2,n+l) [I-r(n,n+l)r(ri+2,n+l)]-1 0 
i 

A (n,n+l;n+2)=' 

A'(n;n+l,n+2)= 

also 

t(n,n+l)r(n+2,n+l)[I-r(n,n+l)r(n+2,n+l}]-1 I 

I 

o 

-1 
t(n+2,n+l)r(n,n+1XI~r(n+2,n+l)r(n,n+l)] 

-1 e(n,n+l)[I-r(n+2,n+l)r(n,n+l)] 

(2-9 ) 
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I:(n+l,n+2) 

I:(n,n+l) (2-10 ) 

I:-~(n,n+l) 

In a similar way 

I:(n+l,n+2) may also be defined. 

The star product exists whenever either of the inverse 

operators 

-1 [I-r(n,n+l)r(n+2,n+l)] 

[ -1 I-r(n+2,n+l)r(n,n+l)] 

or 

exists. 

Here it may be noted that the existence of either operators 

impl ies that of the other. Grant and Hunt (1969) have 

elaborated the physical significance of these operators. 

Each shell has been stratified by pair of planes 

(n,n+l). It may be conveniently thought of such a shell 

independent of any system of coordinates. If we use S 

( a ) to denote the S operator for a cell designated by 

a, then we may write 

S (a * B) = S (a ) * s (f3 ) (2-11) 
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where ex * 8 denotes the region obtained by putting the 

two shells 0 and e together. If and only if the shells 

are homogeneous and plane parallel then we have 

ex *8 = '13 * (j (2-12 ) 

otherwise in general, star mul t ipl i cat ion is non-commu-

tative. I f we have three layers 0 I e and y taken in order, 

it is easy to verify that the result is independent of 

the order in which the operators are combined. 

i.e 

s [ex * (8 *"y)] = s [ (ex * 8 ) * y ] =s [ ex * 13 * y ] 

thus the star-multiplication is associative. If we have 

to add several shells then 

s[(o *(8 *"'()* ••• )]=s[(Cl*B)*y * .... ] (2-13) 

The entire slab of the medium bound by (a,b) is stratified 

into several layers or shells with varying radii 

.b = xl < x2 < x3 < •••••• ,xn+ l = a see figure 2.2. 

Restricting to discrete space theory S(x i , x i +1 ) can be 

found to desired accuracy from physical parameters at 

some point (x. x. 1) 
1 I 1+ • 
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Diffuse radiation 

Figure 2.2. Schematic diagram showing the diffuse radiation field in a 
spherically symmetric atmosphere. 



For any pairofvalues i and j with i < j we can write 

S (x. l'x.) 
]- ] 

In similar way we can writeL: (x. ,x.) as the linear 
l. ] 

functional for the sources. 

By adding a layer at a time complete exteranl 

response can be built up. Particularly a fast method of 

generat i ng S-opera tors for a medium wh i ch is homog eneous 

and very thick has been used and is known as 'doubl ing 

method' [Van-de Hulst (1965). It has been shown that 

(2 -14) 

where (p = 1,2,3 ... ) 

this shows that we can generate the S-rnatrix for a layer of 

thickness 2P d in p-cycles starting with S(d) rather than 

in 2P cycles of adding the Sed) 's one by one. For P = 

10, say, only a fraction lO/~O_ 10-2 of the effort requi-

10 red to add 2 layers of thickness d is needed. 

2.4. Calculation of radiation field at internal points 

For calculating radiation field at any internal 

point) non-n ega t i vi ty 0 f th e transmi ss ion and reflect ion 

operators is presumed. The necessary pre-condit ion for 

this to be satisfied is that the optical thickness of 

the shell is less than a certain value called the 'criti-

2? 



cal size' h'= T 't). If the optical thickness of any shell crl 

is larger than this critical value then the shell is divided 

into subshells in such a way that the thickness of no sub-

shell wi 11 be greater than T , t crl Star product algoritl1n 

is made use of to calculate the combined response from the 

subshells whose total thickness is T. In other words the 

entire medium is to be divided into a larger number of shells 

having optical thickness less than a critical value to cal-

culate the radiation field at any point in the stellar atmos-

ph ere. 

We have divided the medium into N-number of shells. 

Interaction principle can be written down for each shell 

and the whole system of equations are solved (Peraiah 1980). 

In the above figure we try to show the atmosphere 

with a diffuse radiation. To calculate the internal radia-

tion field, the atmosphere is divided into N-shel1s with 

A and B as the inner and outer radii between 1st shell, 

+ -(the outermost) and the Nthshell, the solutions Un+land Un 

can be obtained from the relations 

+ 
r(l,n+l)U~+l + v+ 

Un+l = n+"2 

(2-15 ) 

Un = t(n,n+l)U- 1 + Vn+~ n+ 

with the boundary condition 

(2-16 ) 
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+ The quantities r(l,n+l), Vn+~ , Vn+~appear"in.g in equation 

("2 -15) are calculated by imposing the initial conditions 

r(l,1) = 0, 

by computing recursively 

r(l,n+l) = r(n,n+l)+t(n+1,n)r(1,n)X 

where 

" 

-1 [I-r(n+l,n)r{l,n)] t(n,n+1) 

A + + _ 
= t(n+1,n)Vn_~ + L (n+1,n)+Rn+~ E (n,n+l) 

A + -= r(n+1,n)Vn_~ + Tn+~ L (n,n+l) 

t(n+l,n) = t(n+l,n)[I-r(1,n)r(n+1,n)]-1 

" )]-1 r(n+l,n) - r(n+l,n)[I-r(1,n)r(n+1,n 

(2 -17) 

(2 -18) 

(1-19) 

and (2-20) 

R = t(n+1,n)r(1,n) 
n+~ 

T = [I-r(n+l,n)r(1,n)]-1 
n+~ 
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also in Eqn.(2-l5) 

t(n,n+l) = T 
n+~ 

t(n,n+l) (.2 -21 ) 

Radiation field at internal points is calculated by adopt-

ing the following procedure: 

1. The medium is divided into a large number of shells 

say N with N+l boundaries. 

2. The pairs of reflection and transmission operators 

r(n+l,n): r(n,n+l) and 

t(n+l,n); t(n,n+l) in each shell are calculated by apply-

ing star algori thn if the optical thickness of each sh'ell 

is larger than a critical value Lcrit ). If the medium 

is thick and homogeneous I doubling method I is adopted for 

calculating these operators. 

3. Boundary condition that r(l,l) = 0 and v~ = uta) is im-
2 

posed and the reflection, transmission operators mentioned 

above are computed recursively from shell 1 toshell N i.e. 

from the outermost layer at B to the innermost at A. 

4. Then swept back from A to B calculating the radiation 

field as given in equation (2:-15) with the boundary condi-

tion 

un+l = U(a) 
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It may be noted here that the operators r(l,n+l), 
.... + 

t(n,n+I),V +k 
n 2 

and V' 1 for each shell calculated are 
n+'2 

retained and utilised wherever necessary while calculating 

the radiation field. 

For a reflecting surface we have 

(2-22 ) 

where rG is the reflection operator. For a totally reflect­

ing surface 

= 1 

therefore we have 

(2-23 ) 

from this Uh +l can be calculated with the help of equation 

(.2-22). 

The solution obtained within the frame work of 

discrete space theory can be checked for conservation of 

flux i.e. the system should neither create nor destroy 

th e energy. It can effectively be checked by introducing 

some flux at the point A and calculating the fluxes that 

emerge at A and B. 
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If F-denotes the flux we must have 

(2 -24) 

where F(b) is the flux emerging at r = band F+ (a) is the 

flux scattered back into the inner regions. 

2.5 Derivation of reflection and transmission operators 

for the 'cell' 

Radiative transfer equation in spherical symmetry 

is written as (Peraiah and Grant 1973) 

lJ 2 _a_ {r2 I ( r,~ )} + ! _a_ { (1"iJ 2 ) I ( r,~ )} +a ( r) I ( r 'll ) 
r oar r a~ 

1 +1 
= 0 ( r) [{ 1 - w ( r)} b ( r ) + '2 w (r) J P ( r,j.l ,~ , ) I ( r,~ , ) dlJ ' 

-1 

(2-25) 

where r.radius, ~ is cosine of the angle made by the beam 

with radius vector. oCr) is the absorption coefficient, 

w(r) is the albedo for single scattering, b(r) represents 

the sources within the medium, I(r,ll)-specific intensity 

of the ray and P(r,~ , ~ ') is the phase function which is 

normalised as 

1 +1 
2' f -1 P ( r , ~ , ]J' ) dlJ' = 1 "(2-26) 



P(r, II ,ll') being a positive quantity with II and l-l' having 

values between -1 and +1. By substituting 

and 

b(r) = 

U(r, II ) 

2 
47T r 

B(r) 
2 

4TT r 

then the equation of transfer for an outward going beam 

can be written as 

+1 
= 0 (r) [{ l-w ( r)} B ( r) + 1:.. w (r) J P ( r 'll ,ll ' ) d ( r 'll 1 ) dl-! ' 

2 -1 

for an oppositely directed beam 

-ll a u ( r ,-ll) _ 1:.. ...a.... { (1-11 2 ) U ( r ,-ll) +0 ( r) U ( r ,-ll ) 
a r r all 

1 +1 
=O(r)[{ (l-w(r)} B(r)+ 2"w (r) I P(r'-1-I 'll')U(r/jl' )dJ,l' 

-1 

(2-27) 

~ 2-28 ) 

II is restricted to lie in the interval [0,1] for some dis-

crete points. 
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In the 'cell' method of deriving difference equationsj (2,-

2.7) and (~2 -28) are integrated within the boundaries defined 

a two dimensional grid (Carlson 1963, Lathrop and Carlson 

1967). 

Utilizing the roots j..Ij and their corresponding weightsC, 
..J 

of the Gauss-Legendre quadrature formula of order J over 

an interval [0,1] and writing j..I~ = a we define 
2 

J 

j..Ij+~ = l: Ck ' 
k=l 

1,2, ... J j = (2 -29) 

From the interpolatory character of the Gauss formula it 

may be seen that 

j..IJ' 1 ~ \.1, 
-"2 J 

< j..I, 1 
... J + "2 

First considering the angle integration, equation (2'-27) 

over the interval [j..IJ' 1 , j..IJ'+~l. 
-"2 2 
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We obtain 

+c .o(r)u~(r) = o(r)CJ.[(l-w(r)B(r) 
J J 

1 J 
+ - ( r) {++ + +- -2 w J.tkl P (r) ",C .• U.,(r)+P (r) ".C .• U.,(r)}] = JJ J J JJ J J 

where 

+ U.(r) = 
J 

Similar 

loss of 

+ U-
j+~ 

U(r'l1') I 
J 

uj (r) = 

equation can be got 

+ 
accuracy the terms U-

j+~ 

+ 
( ~j+l-l1j+~) U-:+( 

J --
J.lj+l - 11· J 

U(r'-l1.) 
] 

for (2 -28) • 

are defined by 

+ 
J.lj+~-l1j)Uj+l 

(2 -30) 

with little 

writing 

('2 -31) 
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where j = 1,2, .•.. ,(J-l). 

for convenience if we put u~ = u~ by interpolation 
2 

(2.-32) 

Writing 

+ -u- ( r) 1 

+ 
( r) u-

2 

u+ 
~ (r) = ( 2-33) 

+ 
( r) u-

J 

making use of this and also equations (2'-31), (';2-32) 

equation ('2 -30) can be rewritten for all the angles in 

the matrix form as 

('2-34) 

In similar way equation ( 2 -28) takes the form 



-M aU-(r) - ~ rA+U-(r) - ~-~+(r)]+u(r)g-(r) 
ar 

(2 -35) 

where C and M are diagonal matrices with elements [C. o .. ,] 
J J J , 

and [ll. 6 .. ,] respectively. 
J JJ 

+ Band B are source vectors 

+ 
and A. ' f\ are curvature scattering matrices of dimension 

J X J as defined in chapter ",3, by equations . (~,-2 7) and 

(13-28). These matrices should satisfy the identity 

J 

E l~.J'( A~k - A~k) = 0 j = ._ _J _J 
(2 -36) 

Now by integrating over the radial co-ordiante from r 
n 

to r l' equations (·2 -34) and ( 2 -35) give n+ 

+ 1 ++ = L 1 [ ( l-W ,) B , + ( -w , P 1 C 
n + "2 n + '2 ..... n + '2 2 n + '2 -n + '2-

p{\.+ + 1 +-
_,.c::-) U 1 + (-w 1 P 1 C-
T 
n+~ 

_n+"2 2 n+'2~n+'2-

pf 
T 
n+~ 

("2 -37) 

3 '7 



+( I w p-+ C p~- ) u+ + 
2 n+~-n+~-

Tn+~ ~n+~ 

+( !w p C 
P A+ 

)u- ;,1 + ~ 
2 n+~-n+~ ..... 

Tn+~ 
_n+ 2 

(2. -38) 

Here !:t = u+ (r )and the variables subscripted with n+~ are 
~n ,N. n 

averages over the cell whose radial boundaries are r nand 

We define 

b.r , = r - r I 
n+"2 n+l n 

p= 
b.r 

n+~ 

T =0 b. r ;, 
n+~ n+~ n+ 2 

where r ,.is a suitable mean radius such that 
n+'2 

r = 
n+~ 
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The quantities U+ and U are replaced by 
n+~ n+~ 

and 

( "2 -39) 

This is the conventional 'diamond' difference scheme. 

2.6 Equations for reflection and transmission opera-

tors and source vectors: 

substituting equation (2 -39) in the previous 

two equations viz.(1 -37) and (:2-38) and rearranging 

the input and output intensities in the form of 

interaction principle, further comparing these equa-

tions with those given in Equation ("2 -1) we obtain 

rand t operators in the matrix form as 

= 2t-r-+ b,+M - -

r.(n,n+l) 
+ +-= 2t r b, M 

jI'<o.J f"oJ ,....,,...,. 
( .2 -40) 

and 



t(n,n+l) = t b,. S -+ +­+ r r ] 

and the source vectors are given by 

+ 

where 

t+ +- -+ -1 
[!-~ 

-+ +- -1 
= [ I -r r ] , t = ~ ] - - -

+- + +- -+ - -+ r = t:. S r = b. S 

and 

+ [M 1 ++ -1 
= t- 2" Ln+~ (!.-2.n+~) ] b,. --

[M 1 -- -1 
b. = + 2" Ln+~(!.-2n+~) ] 

~o 

( ('2-41) 

('2-42) 

(2-43) 

('2-44 ) 

( .2 -45) 

( ·2-46) 

( . 2 -46) 



-+ 
S 
~. 

,f-":' 
S 

while 

Q++ 
-n+!z 

2~~!z 

and 

-+ 
gn+~ 

I -+ 
= 2" Tn+~ gn+~ 

I +-
= "'i T' , Q 1 .:. r'I+~-n+'2 

= I p++ -w 2 _ c 

I = "2 w p C 

J.L 
Tn+~ 

+ 
+ J...~_ 

Trt+~ 

I -+ ()A =-wp C+~ 2 _ 

J..!l-

(2 -47) 

(:2 -48 ) 

(2 -49 ) 

Reflection and transmission operators must be non-negative 

for satisfying this condition k is necessary that ~+,~-,S++ 
~ - ~ 

and S must all be positive. 

This positivity is possible ~nly if 
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where 

T . crlt = min ( 2 -50) 
j 

By so calculating the rand t operators corresponding to 

this critical optical depth we can obtain the radiation 

field for a shell of larger optical thickness making use-of 

the star algorithm. 
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CHAPTER 3 

FORMATION OF SPECTRAL LINES IN THE EXPANDING STELLAR 

ATMOSPHERES IN THE REST F~AME 

3.1 Introduction 

In the expanding atmospheres the physical proper­

ties of med i urn a re affected by the local conditions of 

the moving matter. This complicates the problem of cal-

culating the spectral lines in expanding atmosopheres, 

because the absorpt ion coefficient becomes a funct ion of 

angle and frequency in the rest frame. For smaller veloci­

ties of the order of one or two mean thermal units rest 

frame can be used for simulation of spectral lines. Dis-

advantage of the rest frame, is the angle-frequency mesh 

increases in size with the velocities of the expanding 

medium because of Doppler effect. However, in the comoving 
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frame, one need not worry about the Doppler effect and 

can employ high velocities with smaller angle-frequency 

mesh. Effects of photon frequency redistribution on the 

spectral line formation in stellar atmospheres is of grea­

ter importance. The frequency redistribution of photons 

after several scatterin~ and absorptions in the line, will 

change the escape probability of photon through the outer 

surface of the stellar atmosphere. 

panding 

shifted. 

When the matter in the atmosphere is 'radially ex­

the line emitted by this gas continuously gets 

It means that the wing photons which would have 

escaped frcm the atmosphere had the medium been stationary. 

Due to expansion they will be absorbed and re-emitted with 

redistribution in both angle and frequency at a different 

radial point in the atmosphere. As a result of this in 

a moving medium the source function is changed and the 

redistribution of photons in angle as well as frequency 

becomes more complicated to understand. The process becomes 

much more complicated when curvature factor is introduced. 

Redi st r ibut ion in frequency is in fluenced by the velocity 

gradients in the gas while the redistribution in angle 

coupled with the sphericity will affect both photon fre­

quency redistribution and the motion of gas itself through 

the radiation pressure in the line. Hence it is important 

to treat the problem of transfer of line radiation by tak­

ing into account angle dependent frequency redistribution 

in an expanding spherical atmosphere. 
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3.2 Line transfer in the rest frame of the star 

A study of the effects of angle dependent partial 

redistribution functions on the formation of spectral lines 

in 'the spherically symmetric expanding medium is made. 

For simplicity let us first solve the line transfer in the 

rest frame of the star (Peraiah 1978,Peraiah and Wehrse 

(1978) . 

In this event, we have the frequency of the line photon 

shifted by 

x = Xl±V\l 

where Xl = 
V -\I 

o 

(3-1) 

6\1 D being the Doppler width and v is the velocity of the 

gas in thermal units and \l is the cosine of the angle be~ 

ween the ray and the radius vector. The +,- signs represent 

the oppositely directed beams of the photons of frequency 

X I. The gas is assumed to be expanding radially outwards 

with a steady velocity. 

The mean intensity J and the net flux (F ) towards nee 

the surface of the atmosphere at each boundary rn are given 

by the relations 

1 +1 
J = "2 I Ud\l = 

-1 

J 
1 I (U- + U+) CJ. "2 . 1 n n 

J= 
{3-2 ) 

45 



and 

+1 
= 27T J U dlJ. = 

-1 

J 
27T I: 

j=l 
- + (U - u ) lJ..C. 
n n J ) (3 -3) 

calculation of the diffuse field requires the correct esti-

ma t i on of reflect ion and transmi ssion matr ices for each 

shell of the medium. Since the physics of the medium is 

being described fully by these matrices we are trying to 

show how these r and transmission matrices for a differen-

tially expanding spherical medium. in which the photon redistri­

bution occurs in a line with zero natural width. 

3.3 Calculat ion 0 f reflect ion and transmission operators 

in a shell of given physical properties. 

The equation of line transfer describes the physi­

cal and geometrical properties of the medium. The equation 

is to be integrated with partial frequency redistribution. 

The equation of line transfer for a two level atom 

in spherical symmetry is given by 

dI(x,lJ.,r) + l-iJ 2 ar(x,l.l,r) = T<L[a+~(x, ll,r)]X 
~ ar ---- a1.l r 

[ s ( x , 1.l , r ) - I ( x,]J , r ) ] ( 3"-4) 
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and for an oppositely directed beam 

r 

.. (3-5) 

where I(x,\.l,r) is the specific intensity ~t an angle 9= 

COS-1J.l'[\.l dO,l)] at the radial point r and frequency x = 
" -\) __ .;;.0 t,v is 
6~s 5 k . 

some standard frequency interval. The 

, Q c 
quantlty p = - / is the ratio of the opacity due to conti-

kL 

nuous absorption per unit interval of frequency x to the 

opacity that in the line. The source functions S(x,).I ,r) 

and S(xl-u,r) are given by 

and 

41 ( X / \.l , r ) S L ( x,).1 ,r) + a S c ( r ) 

<I>(x,u,r)+ a 

(x,-).I,r)SL(x/-J.l,r)+a sc(r) 

4> (x,-u,r)+ a 

(3-6) 

(3 -7) 

\Y'h ere '1. and Sc 
f t ' ns l'n the line and are the source unc ~o 

in the continuum respectively and 
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( 3 -8) 

B - Planck function at frequencyv and effective temperature 

T . 
e 

p - is an unspecified parameter. 

The line source function is given by 

1- e: 

¢l(x/ll,r) 

+0:> + 1 
Loo f R ( x,ll ; x' 'lJ ,r) X 

-1 

I ( x' I j.l , r ) dj.l • 'dx' +E: B ( r ) 

+00 +1 l-e; Loo f R ( x III ; x ' III I r) X 
cp(x,-j..I,r) -1 

l(x' ,+j..I,r}dj.l' dX'+e;B(r) 

(3-9) 

(3-10 ) 

R(x/±j.l;X' I~,r) represent partial frequency redistribution 

functions, ¢l (x,± j..I ,r) give the profile functions of the 

line and 

e; = ('3.-11) 
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is the probability per scattering that a photon is lost 

from the line by collisional de-excitation. 

The equations 3 -4) and ( 3 -5) are integrated follow-

ing the methods suggested by Peraiah and Grant (1973), 

Grant and Peraiah (1972). Frequency, angle and space co-

ordinates have been discretised. 

For frequency discretjz ation, we have chosen dis-

crete points x. and weights a. , so that 
~ ~ 

+00 I 
J ¢ ( x ) f ( x ) dx - 1: a . f ( x . ) ; 

-. I ~ ~ 
_00 ~=-

I 
1: 

i=-I 
a. = 1 
~ 

.\ 3-12) 

For angular di scret i zat ion, we have chosen, (lj) and we ight 

(C j ) such that 

1 m m 
J f(~,dd~:: r b,f(~.), r b. = 1 

o j=l J J j=l J 
,(3-13) 

and 

B' (v ,T (r)) = 4Tfr 2B(V ,T (r) 
o e n 0 e 

'(3-14 ) 

The transfer equations are integrated by using the 'cell' 

method as given by Lathrop and Carlson (1957). Integration 

is performed over an interval 
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defined on a two dimensional grid. The roots~. and weights 
) 

C. of Gauss-Legendre quadrature formula of order J over 
) 

(0, 1 ) 

by 

are chosen and the set 11· +. k 
) 2 

is calculated as given 

j 

~j+~ = E C k ,j=l,2 •••••• j 
k = 1 

(3 -15) 

we shall define the boundat:y 11~ =·0., ].1j4 ~ ].1 j ~ ].1j+~ 

Angle integration of equations ( 3 -4) and (3 -5) gives 

au:,j(r) 
1:. { 2 + 2 + 

[C. ].1. 1 + (1-].1·+k)U, ·+k(r)-(l;.t. k)U, . k 
) ) a r 

r .. ) 2 1,) 2 )-2 1')-2 

+ c).KL(r)} X{13 + <1>: .( )} U~ .(r)]=C.KL{r) x. 
1,) r 1,) ) 

1 J + 
[ { p 13+ <1>-:. ( r)} B' ( r) + '2 (1-£) E R. ., . ., ( r )-,E 

1J j'=l 1,1 ,J,) 

and 

{-c o~ • . J J 

+ +- -
Co, U 0, ,,( r) + R . ., . , ( r) C J' , U. .., r) ] 

J 1,) 1 ,1 ,),) 1,) 

au-:- oCr) 
1 , ) 

a r 

{ - }-1 +C.KL(r) 13+ ¢ .. (r) U .. (r) 
J 1 , J 1 , J 

(r) 

(3-16) 
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1 j -+ + 
[ (p S +<1> -:- . ( r) B ' ( r ) + -2 (l-e:) L { R . ., . ., ( r) C . , u . . ( r ) 

1.J j'=1 1.,1. rJ,J J 1.,J 

where 

+ . 
U .. (r) =U(x.,\.1.,r) 

1.,J 1. J 

R:+., J' J.,(r) = R(X i ,\.1.; X~'\.1.,;r) 
1.,1. ; , J 1. J 

R -:-+ " . ., ( r) = R ( x· , -\.1 . ; x. , , \.l . , : r) 
1.,1. ;J,J 1. J 1. J 

+ <1> .. (r) =Ql(x 1·,\.1J.,r) 
1. , J 

<1>-:-- .. (r) =¢(x.,-\.1.,r) 
1.,J 1 J 

We shall define U+ and U~, by 
j+~ J+~ 

j =I,2, ...•. (J-l) 
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and 

11. 1 - 11. ,) u. + ( 11. , - 11. ) U -:- 1 
J+ J+::Z ) )+'2 J J+ 

)Jj + 1 - l-lj 

j=1,2, •••. (J-l) .( 3 -20) 

by interpolation, 

U(x i ,]11,rn ) 

U(x., 112,r ) 
1 n 

U(x. ,]13,r ) 
1 n 

+ 
U. U. = ; l,n l,n 

U(X·,l1 ,rn ) 
1 m 

and 

M = (fl· Q'k); m J J 

+ 
~. (r) = 

1 , m 

¢(xi,lll,r) 

¢(x i ,1l2,r) 

(3-21 ) 

U ( xi' -11 1 ' r n ) 

U ( xi' -11 l ' r n ) 

U ( x . , -11 3 ' r ) 1 n 

= 

U ( Xi' -]1 m ' r n ) 

.( 3-22) 



and 

~. (r) = l,m 

¢ (Xi,-lll,r) 

¢ (X i, -1l 2 ,r) 

Redistribution functions are given: by 

++ 
R .. ,(r) = 

l 11 

-+ 
R. ., ( ) = 1 11 r 

R(X i ').11 :xi ').11 :r) 

R(xi').12:xi').11 ;r) 

R ( x. ,).1 3 : x ~ '11 ; r ) 
1 l 1 

R(X i' -).11: x i').1L: r ) I 

R(x. '-).12;x!,).1 ;r) 
111 

R(X i' -).13;x i' ).1l;r) 

. 
R ( Xi' -).1 ; x ~ 1).1 ; r) 

rn 1 m 

(3 -23 ) 

(:3 -24) 

Equat ions ( 3 -16) and ( 3 -17) can be rewritten for the 

set of angles (ll.) over (0,1) as 
J 
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= K L ( r ) { ( p 8+ E: <1>: ( r ) B ' ( r) + 12 ( 1 ... E: ) X 
1 , m 

++ ++ + +- +- - } [R .. ,(r)a., (r)C U.,(r)+R .. ,(r)a., (r)C U.,(r)] 
1,1 1 m 1 1,1 1 m 1 

'(3 -25) 

Similarly for an oppositely directed beam 

:"'M 
-m 

aU~(r) 
1 

a r lr [1\ + U ~ ( r ) +A - u:- ( r) ] + K L ( r ) { s +<P -:- ( r )} XU. ( r ) 
m 1 m 1 1,m 1 

= kL ( r) { (p 8+ <I> ~ ( r) B ' ( r) + !.2 (l-E: ) [R ~- .. ~ r) X 1,m 1,1 ' 

- -+ -+ ~ 
a., (r)C U.,(r)+R. ,,(r)a., (r)C U.,(r)] 

1 m 1 1,1 1 m 1 

(3-26) 

1:'+ -where Ii and A are square JXJ matrices are called curvature .n m 

scattering matrices and are defined by 
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/1+ 
jk 

and 

2 
(l-~.+!,,)(~. ~-ll.) = J 2 J+ 2 J k = j+1,j=1,2, ••• (J-1). 

= 

= 

C.(ll·l - ~.) 
J J+ J 

(1- ~~. ~ ( ~. 1-].l· l,..) 
J+ 2 J+ J+'"2 

C.(~. 1 -~.) 
J)+ ) 

C.(~. -~. 1) 
) ) J-

k = j,j=1,2, ... )J-1),J. 

2 
(1-~. l,..)(~.-~. l,..) 

J-'"2 ) )-'"2 

c . ( ~ . -~. 1) 
] ] ]-

, k=j-1,j=2,3, .•• J 

(3-27 ) 

p-28 ) 

].l'S and c's are the roots and weights of Gauss-Legendre qua-

drature on ~E(O,l). 

The integration over [ r n ,rn+1Jof equations (3-25) 

and ("3-26) gives 

( + +) (+ + -" - ) M U. +1- U" +p A"U. +!,,+A. U. +l,.. m ~ , n 1 , n c"'Jn 1, n 2 m 1 , n '"2 
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'T ~a-+¢e:+.) B' 1 
n+~ m,l n+~ n+~ 

" 

1 ++ ++ + +- +-+ - T k(l-e:)(R .. , lao k CD ., k+ R a X 
2 n+2 1,1 ,n+~ 1,n+2 1 n+ 2 i,i',n+~ i',n+~ 

CU-:-, k) 
1 ,n+ 2 

(3 -29) 

and 

- - + - - + 
Mm ( U i , n - U i ,n + 1 ) - Pc (A rn U i , n + ~ -+l\ m U i , n + loz ) 

1 -+ -+ - --+ -2 'T 1 (1- e: ) (R . ., 1 a.' , CU. , + R. ., 1 X n+"2 1,1 ,n+"2 1,n+"2 1,n+"2 1,1,n+"2 

a ~~ , Cu-:- , + k ) (3 -30) 1 ,n+"2 1, n 2 

where Pc is the curvature factor defined as 

6.r 
and 'T n+~ 

Subscript In' refers to rn 

n+1 refers to r n +1 

n+loz refers to r +k n 2 

(3.-31 ) 
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r refers to the parameter averaged over shell bounded by. 
n+~ 

rn and r n +1 - the weights are defined as 

a. , C. 
~'n+"2 J 

(.3 -32) 

the subscript k is defined as 

(i I j)== k == j+ (i-I) j I l~ k~ K = IJ. 

I and J are the number of frequency and angle po ints res-

pectively and i,j are the corresponding running indices_ 

By putting 

and 

+ 
4>n+~= 

+ 
U1 ' ,n 

-+ 
U 

I/n 

Equations (.3_-29) and (_3~-30) are rewI:'itten including all 

the frequency points as follows 
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and 

1 - - 1 
T <I> + -U = T S 1 + - (l-e:) X 
n+~ rl+~ 2 n+~ n+~ n+~ 2 

-+ -+ + 
T +~[R W U n 2 

where 

M = 

and 

-- -- -
+ R W U] +:J", n 2 

M m 

M 
m 

.. 

M 
m 
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{3:-34) 



+ 1\-
m 

± 
1\ 

m 

Using the 'diamond' scheme of Grant and Peraiah (1972) 

the average intensities in the iuations are 

replaced by 

f.3- 35 ) 

with x = ! I for diamond scheme and I is the identity 

matrix. By using equation 3-35),( :3 -33) and ( 3 -

34) can be written as 

x 
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Go 

= 

QT -+ -+ ~ A-M- T [",- 6 -- --] 1 AT 
4 R W + 2"" c '2 't' - '2 R. W + '2P c 

(3 -36) 

wh ere 0 = 1- e: 

On comparison of equation (3 -36) with equation ( 3 .-1) 

of interaction principle two pairs of transmission and 

reflection operators are obtained 

( 3 -37) 



and the shell source vectors are 

+- + + +- --= G [ll S + 9 II S ] "[ 

-+ - - -+ + + 
L = G [ll S + 9 II S h 

along with the following auxiliary quantities 

+- +- -+ -1 
G = [I-g 9 ] 

+- 1 + 
g = 2,,[1~ y 

-+ 1 -
g = -"[lI y+ 2 

M 
1 z D = - -"[ 
2 

A M 
1 

Z = - -"[ 
2 + 

+ 
[M 1:. Z ]-1 /:, = + 2 "[ + 

/:, [M 1 ]-1 = + -"[2 
2 

-t 6 R ++W++ri-P II + 1"[ Z+ = q,' - '2 c 

z = 4> - _ 6 ----"2 R W - p 
c 
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!o -+ -+ P A- /T y+ = R W + 
2 c 

!o +- +- A -y = R - W -p /T. 
2 c (3-39) 

Transmission and reflection operators given in equations 

3 -37) and (3 -38) for a shell of optical depth T and 

curvature factor Pc' describe the radiation field in any 

medium either static or moving. 

The hurdle in the rest frame is to restrict only 

to smaller gas veloci ties of the order of 2 or 3 mean 

thermal units. For higher velocities the frequency angle 

mesh becomes unmanageably large. Hence for objects with 

atmospheres expanding at larger velocities one has to 

adopt an alternative approach. 
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CHAPTER 4 

LINE FORMATION IN EXPANDING STELLAR ATMOSPHERES IN THE 

COMOVING FRAME 

4.1 Introduction 

It is a well known fact that in the outer layers 

of WR stars, quasers ,novae and P-cygni stars, the matter 

is flowing outward with very high radial velocities. 

Attempts have been made by several people to study the 

line formation problem in spherically symmetric expanding 

media. T he rest frame calculations were to be restricted 

only to lower velocities because the frequency-angle mea, 

becomes quite large for .higher velocity of expansion. 

Hence an alternative approach to compute lines 

in rapidly expanding media has been adopted. In this 

approach the observer is moving along with the expanding 
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medi um. 

4.2 Comoving frame calculation of profiles 

In the comoving frame the complications arising 

out of Doppler effect have been conveniently avoided. 

One can employ very high velocities with much smaller 

frequency-angle mesh. This method has an advantage parti-

cularly when one tries with angle dependent partial fre­

quency redistribution. 

The method of finding solution for line transfer 

in comoving frame has to adopt specific velocity law. 

Here we have considered spectral line formation with non-

LTE two level atom approximation I in a spherically symme-

tric medium expanding with velocity 

V(r) :: VA + ( r-A) (4 -1) 

where VA and VB are the velocities in mean thermal units 

for gas at the inner point with radius A and outer point 

with radius B. vCr) is the velocity at any radial point 

r. The equation of radiative transfer for a non-LTE two 

level atom in the comoving frame in spherical symmetry 

is given as 

64 



K (r ) S( r) - [K ( x ,11 , r ) + K (r)] r ( x III , r) 
c c c 

2 
+[ (I-i) ~ + 11 dV(r) 

r dr 
ar(x,ll,r) 

a x 

and for an oppositely directed beam 

( 4" -2) 

= K(x,r)St(r) 

+K (r)S (r)-[K(x,r)+K (r)]I(x,-l1/r) 
c c c 

r dr 

a r ( x I -ll I r ) 
ax 

(4 -3) 

where I(x/11,r) is the specific intensity of the ray making 

-1 an angle Cos 11 with the radius vector at the radial point 

r corresponding to frequency point, 

\) - Vo 
x = 

D.s 

v being central frequency of the line and D.S is a stand­
o 

ard frequency interval in the line. K(x,r) ,K (r) are 
c 

the absorption coefficients per unit frequency interval 

in the line and the continuum respectively, where as 

SL (r) and Sc (r) represent the source functions in the 

line and continuum respectively and are given by 
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1 
= '2 (l-e:) 

+00 
f ,1 ( x , r ) 4> ( x ) d X + e: B ( r ) 

--'00 

and S (r) = -pC r) B ( r) 
c 

K ( X I r ) = K L ( r)4> (x) 

(4 -4) 

( '4 -5) 

( 4 -6) 

KL(r) is the absorption coefficient at the line centre and 

4>(x) is the normalised line profile. The profile is nor-

malised such that 

t oc 4> ( x ) dx = 1 ( 4-7) 
-00 

B(r) is the Planck fucntion P (r) is an unspecified para-

meter. 

We have chosen Voigt profile 

4>(a,x) a 
= 1f 

+00 
f 

2 
e-:-y dy 

2 2 (x-y) +a 

and optical depth in the line is given by 

1 (x,r) = K(x,r) 6. r = 

E is the photon destruction probability per scattering 

from the line due to collisional deexcitation. J(x,r) 

is the mean intensity. 
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The radiative transfer equation in spherical symmetry 

can be solved by integrating over a shell and the discrete 

equations are written as 

Similarly 

( 4 -9) 

where 

( 4-10) 

t indicating transpose of the vector. 

I ('r , \J l ' x . ) 
n J. 

I h , \J2 ,x. ) 
n J. 

("4 -Ii ) 
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I and J indicate the total number of frequency and angle 

points respectively 

('4-12) 

k 
c 

8= T the ratio of absorption coefficients at the conti-

nuum and line centre per unit frequency interval. 

k = j+(i-l)J: l~ k~K = IJ 

i,j are the running indices of angle and frequency quadrature. 

(n+~) subscript represents the average of the parameter 

over the shell bounded by radii rand r 1: also n n+ 

= q, (x. , f..!.) 
1 ] 

s 
n+~ 

tl>i Wk = 

where 

a. = 
1 

a.C. 
1 ] 

I 
L A.<I>(x.) 

i=-I 1 1 

( 4-13) 

( 4 -14) 
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A, I S are the quadrature weights for the frequency points. 
1 

+ 
The matrices MandA-are given by 

M = 

with 

+ 

M 
m 

-

M 
m 

M = [\J' 8 J' k] 
~m J 

+ 
1\ 

1 
= 

( 4 -15) 

1\- are the curvature matrices and are given by equation 

(" 3 -27) and ( 3 -28) \JIS and CIS being roots and weights, 

for J = 2, 

\J = 0.21132 
1 

" = 0.78868 t-'2 

l-0.25 

-.0.75 
0. 75 l 

-0.75 
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where as for J = 4 

111 = 0.06943 and C1 

112 = .33001 C2 

113 = 0.66999 

114 = 0.93057 

0.46494 2.2359 

-1.78139 -0.04258 

= o -1.15005 

o o 

A- = -2.87476 0j,1 0k,1 
, 

= 

= 

0.17393 = C4 

0.32607 = C3 

o 

1.15005 

-0.75945 

o 

o 

0..58343 

-0.73228 -1.09379 

The quantity M d Un+~ in the Equations ('4 -8) and (4. -9) 
...... ...... ..... 

are the equivalents of the comoving terms in equation 

(4 -2) and (4 -3) we can write 

(:4. -16) 

,M1 = ( 4 -17) 

70 



1 
M2 [ 2 ] = (l-l-!.)C· I m J J 

( 4 -18 ) 

j,I = 1,2, ... J; ~v = V - V 
n+~ n+l n 

The matrix d is determined from the condition of flux 

conservation and it is given by 

d = -d 
4 

-d 
I 

( 4 -19) 

:: (x. 1 -
1+ 

x. 
1-1 

) -1 
tor i=2,3, ... (I-1). 

We have set the boundary condi t ion '\ = dI = 0 

on the frequency integration. 

The average intensities U+ , I U- are 
-n+"2 -n+~ 

the 'diamond' scheme 

1 (u+ + U+ ) 
'2.-.."n t-wn+l = 

approximated by 

('4 -20) 
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and 

4.3 Reflection and transmission operators 

substituting ~l from equation ('4.-16·) in equations 

( 4-8) and ( : 4 -9) and arrang ing the result i ng equat ions 

in the form of interaction principle equations, reflection 

and transmission operators for the shell are obtained by 

making following substitutions 

a=l-e: 

Z=Ij>-Y 
.,.., - .... 

Y Y 
Pc A-

= + ~ 
..... + ,.... t 

Y = Y P -- ... U ... - <tV 

t 

+ ~1~ 
~+ = Z + P I\. IT-

c- T 

Md· 
+ .... 1_ 

Z = Z - P I\. IT- --
"' ..... c ..... T 

+ 1 
r- = [M - '2 ~±] 

J"4 

7·2 



+­
Il 

(4 -21) 

In simi 1ar way 8 -+ and Cl -+ are al so defined .Ut i Uzing' the .... ,... 
above equations rand t matrices and source vectors are 

written as 

t(n+1,n) +- [Ll + r+ =Cl ,... ,... ,.. ,.... 

r(n+l,n) -+ -+ + 
=Cl 8 [ I+Ll 

~ 

and 

,... 

+­=-rQ 
r' 

.... ..... ,... 

'+-
+8 8-+] 

.--. 

( -4 -22) 

r+] ... 

('4-23) 

Operators t(n,n+1),r(n,n+l) andE-+;!", are obtained by inter-_ _ _n 2 

changing the + and - signs in the above equations. 

The critical optical thickness can be estimated 

from the condition of non-negativity of rand t operators. 

Radiation field can be transformed to a point at infinity 

or on to a rest frame. Spectral lines are calculated for 

both the rest frame and the comoving frames.(VA = 

o corresponds to static medium}. 
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In a statj.c medium there are no velocity fields 

and velocity gradients are also assumed to be absent. 

We have presented the frequency dependent fluxes in the 

line for various'ta,and V values V wi th a two level atom appro-
A B 

ximation. 



CHAPTER 5 

EFFECTS OF VELOCITY AND DUST ON THE EQUIVALENT WIDTHS 

OF SPECTRAL LINES IN THE EXPANDING STELLAR MEDIUM 

5.1 Introduction: 

If spherical stellar atmospheres expanding radi­

ally contain dust what impact will it have on the spectral 

lines.? Several properties can be 'ascribed to the dust, 

like isotropic scattering, uniform distribution throughout 

the medium etc. 

Infrared observations of many stellar objects 

like gaseous nebulae" T-tauri stars and atmospheres of 

cool supergiants have shown ample evidence about the pre­

sence of dust. Brehmsstrahlung (free-free radiat ion) and 

thermal emission from dust grains are the two important 

mechanisms in producing the observed infrared excess. 
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This has been revealed by the study of early type of stars 

by Allen (1973). Investigations in the far infrared and 

of S140 IRS by Schwartz et ~ (1983) have shown that there 

is good coupling between dust and gas. Circumstellar dust 

envelopes are also predicted around the stars with promi­

nent infrared continua (Allen and Swings 1972). Extensive 

survey of many objects such as BN and CRL 490 has shown 

the presence of a dusty shell around hard core of ionised 

gas. Though many people have studied the emission of infra­

red radiation from extended stellar envelopes, the study 

of line formation in dusty envelopes is. in its early stages. 

A. Peraiah et al (1987) have made a study of line formation 

in expanding spherical medium. Hummer and Kunasz (1980), 

Wehrse and Kalkofen (1985), Peraiah and Wehrse (1978) have 

studied radiative transfer effects in a medium containing 

both dust and gas. 

We have tried, on the lines suggested by 

A.Peraiah (1987), to calculate the effect of dust and also 

the velocity of the radially expanding medium on the equi­

valent width of the line. Presence of dust, sphericity 

of the atmosphere and variations in temperature and density 

of the gas radially have been considered in our calcula-

tions. Calculations have been done for both static and 

moving media with velocities upto 50 mtu. 

5.2 Method of solution for line transfer in comoving frame 

In the comoving frame the radiative transfer 

equation is to include the term 
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(1-u2 )V(r) + idV(r) 
r r 

a I (r 'v ,x) 
ax ( ·5-1 ) 

(Ref.Chandrasekhar 1945, Mihalas et al 1975, and Mihalas 

1978) . 

where I (r, j.J ,x) is the specific intensity of the ray with' 

a standarised frequency x and making an 
-1 ' 

angle Cos U with 

the radial vector point r. vCr) is the radial velocity 

of the gas at the point r given in mean thermal doppler 

units (mtu). Now the equation C?f line transfer including 

absorption and emission due to gas and dust may be written 

as (Fe.raiah (1984) ,Wehrse and Kalkofen (1985» 

= K L ( r ) [<I> ( x ) + B] [5 ( r, jl' x ) - I ( r , l-l ' x ) ] 

a I (r.'}l , x) 
a x 

+Kd t(r)[5 d (r'jl,x)-I(r'jl'x)] 
us ust , 

In similar way for an oppositely directed beam 

2 _ aI(r,-w x ) _!..=...l:! 
jl a r r 

ar( r I -U ,x) 
all 

[ 5 ( r , - jl , x ) _ I ( r I -ll ' x ) ] + [ ,( ~ -J) v ( r ) + jl2 d V ( r ) ] ar ( r , - jl , x ) 
r dr a x 

(5-2) 
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(S-3) 

Where Case has values between 0 and 1. 

KL (r) is -the absorption coefficient at 

cp(x) is the Doppler profile function. 8 
k 

the line centre, 

is the ratio of 

c 
kL 

continuum to line opacities (i.e.S = 

The source function is given by 

= ~(x) 
~f3 

and line source fucntion is 

S (r,x) c 

1 -e:: I+ oo +1 
= -r -00 ¢ ( x) I I ( r , ]..I' ,x) dxd l.l ' +c B ( T ( r) ,x ) 

-1 

S (r) the continuum source function is given by c 

S (r) =p(r) B(T(r)x) c 

(5-4) 

(5-5) 

(5-6) 

e:: being the probability per scattering that a photon is 

lost by collisional de-excitation from the line. B(T(r) ,x) 

is the Planck function at temperature T(r) and p (r) is 

an arbitrary quantity. Kdust(r) absorption 

of dust and source function is given by 

coefficient 
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+00 
Sdust(r,.±l,J.,x) = (l-W)Bdust + ~ foo p(jJ ,jJ' ,r)I(r,jJ' ,x)djJ' 

($ -7) 

.Bdust planck function for dust emissi~/w-albedo of t~e dust 

and P-the scattering phase function. Since re-'emission 

from dust is at a much different frequency from that of 

the line frequency Bdust will not contribute much to the 

line radiation. 

Transfer equation is solved by· the lIcell ll method 

using discrete frequency points x. and weights a. 
~ 1 

+00 
J ~ (x) f ( x) dx = 

! a· = 1 
i=-l 1 

Angle discretization is done as 

+1 m 
I f ( x) dll = 

o 
L r:.f(ll.); 

j=l J J 

m 
L 

j=l 
c. = 1 

J 

The integration is performed over a cell bound by 

where 

(5 -:-8) 
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j = 1, 2 I •••• m (5- 10) 

where j..l 's and c' s are the roots and weights of Gauss-Le-

gendre quadrature. 

By introducing 

.J (lJ 1 I X i I Tn) 

':(ll2 /x i ' Ttl) 

l I(ll IX,I T) ..:..- m 1 n 

I ( -]I 1 ' x , IT) 
_' 1 n 

I(-ll2'X' IT ) _ ]. n 

- 2 
U, = 4'[T r 

1 Inn 
I ( -]l , X"T ) _ In ]. n 

and 

h = [l,l, .... l]T 

(5-11) 

( 5-12) 

( 5-13) 

(5-14) 
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where T indicates the transpose. 

Integration of the equations of line transfer in comoving 

frame with dust. and gas reduce to: 

I + 
B I h 
_gln+\ 

1 I 

+ 2" '( g,n+~ an+~ <P i,n+\ 1.~'-I a' l +' (hhT)C (u++ u-) 
1. In l'2 --- ""m"'" ,... irn+~ 

+ 1:.2 "[ w (p++ C u: + p+- C u- ) 
d,n + ~ n + ~ .- m , n + \~ ffi"" 1. , n + ~ -- m , n + r m- i , n + ~ 

+ MI . , d. , U +, l.. +"[ 1 (l-w) , B I ,+ , h 
, 1. + '2 ~1. + ".2 - i + '2 I n + "2 d,n + '2 n + r d , n + l'2 

and 

M (u-:-
-Ill -1 ,n 
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1 I 
+ -2 L i-r ~ a ~ <I> ~ L ( h" h T ) ( u+ - ) ':I' n+ 2 n+ 2 i ,n+ 2 ., _ I a ., 1 C + U ., , 

1 -- 1 ,n+~ -m - - 1,n+~ 

+ 1 L W (p + C U:- + p T - C U -:-, ,) 
2 d,n+~ n+~ -m,n+~ -m-1,n+~ -m,n+~ -rn -1,n+~ 

- , + 
+ M . 1 d. ~ U ~ k + Ld + ~ ( l-w ) , B' h -1, l+~ -1+ 2 -i+ 2 ,n+ 2 ,n 2 n+='2 d, (5··-16 ) 

where 

M = [\-I,.. O. k ] 
m ]] 

c = [C. O'k] 
~m -]] 

($·-17 ) 

-1 
d. , =(x. 1 -x.) , 
1+~ 1+ 1 

= 1 (U~ + U± ) 
2 -1 -i+l 

(5-18) 

+ 
Am ' Am are the curvature matr ices. 



~l '+1. , ,1 ~ 

'where 

= M. , II V , + M. , P V , 
-1+:OZ ..... n+:oz .... l+:OZ c ..... n+~ 

I::. v l.. = 
n+~ 

and also 

"[ n+~ = Kgas. f::. r, "[ 
d,n+~ = Kdust · 

0' 
n+~ = 1- En+~ 

f::.r 

The curvature factor is expressed as 

r 
n+~ 

(5-1,=,,) 

( 5--2.1,' 

'{ 5-22 ~ 

++ +- -+ P The phase matrices of m dimension P , P , P , will 

have all their elements equal to unity for the isotropic 

scattering case. 

For,! frequency points equations (5-15) and (5-16) get modi-

fied and may be written as 
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'" u+ + .+T +' ~ ~ , g,n:oz n+"2 -n+:oz 

, + + 
+T (l-oo)B' + M dU d,n+!z n+!z ...... d,n+~ -1--n+!z 

and 

+T cI> U +T EU = T S-
g,n+~ n+~-n+~ d,n+~ --n+!z g,n+~ ...... n+~ 

1 -+ + 
+ -2Td +~w , (p cu + P ,n 2 n+:oz - ...... 

where 

U ± = [ U::t- U ± U ± ±] T 
1 2 '········· .U I ...... n ...... ,n ...... ,n -1,n ...... ,n 

T being transpose. 



k = j+(i-l)m, 1< k< K = mI 

i and j indicating the frequency and angle discretisation, 

and 

sH­
n+~ 

A. = 
1 I 

a·,f,· 
1. 'f'1. 

E A. <I>(x.) 
• I r 1. 1 
1 =-

E is unit matrix .. "If (K X K) dimension and 

= 

l 

{ 5-26} 
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Further 

, + 
B 1-

....... d 1 n+~ 

, + 
:; B ,- 1 h 

....... d ,n+"2 ....... 

. 1 
M ....... m 

( 5-2~) 

( 5-2'8) 

i .t1! = I (1J ~ 0 j 1 ) (S-29} 

(5 -30) 

j,l = l,2, ..• m 

The matrix d being defined as in equation ('4-

19) and determined from the flux conservation conditions. 

By diamond scheme we have got 
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= 

u , = -21 (U- + U- ) .... n+"'2 .... n .... n+1 ( 5-31) 

If these are substituted in equations (5-23) and (3-24) we 

get 

1 - 1 T 1 +-
- - p. A + - '[ cr <¢> <I> W ) + -'[ P C 2 c r.J 4 9 ,..;....... 4 d .... 

U 
n ,.., 

-
~n+l 
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$+ I ,+ ,., B 
+ T T (l-w) 

..... 
9 + 

d ,- (5-32) s B 
-: 

E is a unit matrix (5--33,) 

with the help of the quantities as defined below in the 

following equations, we can write the reflection and trans-

mission matrices. 

~++ 

(5-34) 

z 

(5-35) 

b, + = ,.., 

(5 .... 36) 

('5-37 ) 
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-+ 1 T 1 
Y = 2 cri2 ~ + 2 (5 -'3-8 ). 

M 
1 z++ D M 

1 
L Z A = - L = -2 g~ 2 g-

('5-39 ) 

+- 1 + ...f.- -+ 1 - -+ 
:I = 2 

L 6. y . 
~ = "2 L 6. Y 

g~ ~ g- - ('5-40 ) 

+- [E _ +- -+]-1 
G = ~ ~ , 

-+ -+ +- -1 
G = [§ - ~ 9 ] (:5-4] ). 

s+ + Ld • ,+ = S + - (l-W)~d -1 Lg 
(5 .... 42) 

Ld , 
~l S (l-w)~d 

,-
= + -

Lg 
(.5 ... 43 ) 

Hence reflection and transmission matrices are 

+- -+ 
t(n+1,n) G+-(6.+A + 9 9 ) = (5-44) - ............ 

t(n,n+l) 
-+ - -+ +-= G (6. D + ~ 53 ) ............ (5-45) 

r(n+1,n) -+ -+ + 
= ~ 9: (~ + ~ ~) (5-46) 

r(n,n+l) +- +-
= ~ 9: (~+ f.e) (5-47) 

Corresponding source vectors are given by 

r+ L G+-(6.+S+ +- - - <p,-48) = + ~ ~ ~l) g- - ~l 

L -+ -- g-+L\+S+) (5-49) = Lg~ (~~l + _ -.. _1 



These reflection and transmission operators as well as 

the source vectors are estimated in each shell with its 

thickness not exceeding a critical thickness, (T ) crit . 

This critical thickness is determined on the basis of the 

physical characteristics of the stellar medium. 

Radiation field at the internal points is calcul-

ated using the procedure described in chapter II [see 

A.Peraiah (1984)] Frequency dependent radiation field so 

calculated may be transformed on to the' observer's frame 

at infinity. 

5.3 Effect of dust in line formation 

We have studied the effect of dust in different 

amounts present in the atmosphere in the formation of lines. 

We have also tried how the velocity of the expanding ste­

llar medium affects the line formation. Computation is 

done for various velocities of the order upto 50 mean ther-

mal units. Rest frame and comoving frames have been consi-

dered and the effects on equivalent widths is shown. 

Since the variable parameters are large, we have 

got huge number of line profiles. In our calculations 

we have chosen trapezoidal points for frequency integration 

and Gauss-Legendre points for angle integration. Nine 

frequency points ( l-9 ) with one point always at the line 

centre and two angles in each half space (1Il = 2). 'ltl.e 
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whole stellar atmosphere is divided into N = 100 layers 

and the size of the matrix is (18 X 18). The calculations 

are performed for flux conservation. Dust present in the 

atmosphere is apsumed to scatter the radiation isotropi-

cally. Dust is assumed to be distributed uniformly throu9Q-

out. We have selected ten dust optical depths ranging 

from 0, 0.01,0.02,0.03,0.05,0.1,0.5,0.75,2.0 and 5.0. 

The ratio of outer to inner radii of the atmospheric shell 

is chosen B/A = 16.~ Velocity of expansion of the medium 

is assumed to satisfy the equation of continuity given 

by 

2 
4 IT r p( r) V ( r ) = con s tan t (5-50) 

p(r) and V(r) are the density and velocity of expan'sion 

at the radial point r. Velocity is ,expressed in Doppler 

units. Electron density is taken as 101 0 at the core and 

is assumed to vary radially as (l/r). Optical depth of 

each shell and the total optical depth of the entire spheri-

cal shell is calculated using the electron density. 

5.4 Boundary conditions 

Conditions have been imposed such as (1) no radia-

tion is incident on to the spherical shell from outside 

at the outermost shell and the optical depth is zero for 

this shell i.e.at r = B, no incident radiation from outside 

and T = 0, (2) uni t intensity radiation is inc ident at the 

innermost layer at r = A and the optical depth is maximum 

for this point i.e.'t = Tmax = T, for a pure, scattering 
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(3) for a medium where there is internal emission within 

the medium radiat ion is given at neither the inner nor 

at the outer boundaries. 

In other words we have 

U (T = T'l-j) = 1 

( 13= e:= 0) (5 - 51) 

+ 
0, ~) U (T = = 0 

13-
(5 -52) 

e:= 

and 

U-('T= T, ~) = 0 
10-5 j 13= 

+ l-j) 10-4 (·5-5:3 ) 
U (1"'''' T, = 0 13= 

B is the ratio of absorption coefficients per unit fre-

quency interval in the cont inuum and at the line centre 

k (13= c/k L ). 

e:-proba bi1ity of destruction per scattering of a photon 

by collisional de~excitation. The frequency derivative 

for boundary condition is 
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+ au 
ax = 0 at ( X ; X ) 

max 

Velocity at 

(~-5i1 ) 

For veloci t y gradients in the medium we have set VA f VB 

(5'-55) 

and for spherical shell moving with constant velocity 

V = V A B 

In this case we have tried the velocities 0,5,10,20,30,40 

and 50 Doppler units for both VA and VB, and for velocity 

gradient case we have kept VA = 0 and VB is given all velo-

cities. from 5 upto 50 mtu. The profiles are shown interms 

of fluxes integrated over the whole stellar disc versus 

the normalised frequency. 

5.5 Calculation of line profiles 

Since the equation of line transfer in comoving 

frames has found its solution in the normalised frequency 

co-ordinates, profiles are conveniently described 

in the frequency co-ordiantes. Traditionally 
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also the- theoretical line profiles are shown in such co-

ordinates (see Avrett 1966: Kunasz and Hummer 1975). Pro-

files are shown as plots of (FX/Fc)-+ X where Fx Fare c 

the integrated fluxes at the frequency point X and at the 

continuum respectively. 

We have also made the study of the variation of 

equivalent widths with dust optical depth (Equi;Width-+ 

ld) for V.A = 0, and VB = 5,10,20,30,40,50 three sets of 

curves for 

e: = 0, a = 0 

e: = 10-4 a = 0 

e: = 10-4 B = 10-5 

are obtained. 

Similar set of plots for V A = V B also are shown. These 

curves show how the equi val ent width' undergoes;' 'VarIation· .with 

the presence of different 'luantities of dust in the atmos-

phere. The variation in the equivalent widths with velo-

city for the same amount of dust in the atmosphere is also 

shown in the figures. 

Ld - dust optical depth 

T - total gas optical depth at the line centre. 

In our cal culat ions we have divided. th e spherical atmos-

pheric shell into 100- elementary shells.' Internal radia-

tion field and also the emergent radiation fields are cal-
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culated by using "Interaction principle and star pro-

duct" algori thm as described in the 'Discrete Space Theory' 

(A.Peraiah 1984). 

Gas optical depth of each shell according to the 

variation of density at different radial points is cal-

culated. Dust optical depth of each shell will be 

La shell = 
Ld 

N(=lOO) 

The profiles that we have plotted show maximum optical 

depth T = 32, 2 when the gas density is changing as (r -1 ) 
~g'l.s 

a represents the dust optical depth due to scattering alone 

(w = I, refers to the pure scattering case). The profiles 

are symmetric for static medium and the symmetry is lost 

when velocity is increased for the outer layers. We also 

see tht the increased dust content in the medium shows 

increase in the absorption core. It is found to be maximum 

for (l'd- maximum). As the velocity of expansion is incre-

ased dust scatters more photons back into the line core. 

It is observed that the dust in an expanding medium changes 

the profiles in a variety of ways. 



CHAPTER 6 

EQUIVALENT WIDTHS OF SPECTRAL LINES IN EXPANDING 

DUSTY SPHERICAL ATMOSPHERES 

6.1.1. Introduction 

In recent years the problem of velocity fields 

in the outer layers of stars has become important because 

of the stellar windswhichcause,rnassloss .. Which in turn affects 

the process of st ellar evolut ion. The ultra-violet absorp­

tion in strong lines indicates the magnitude of the terminal 

velocities of the flows. However, the problem is the inter­

action of the velocity fields in the deeper layers where 

the stellar photospheres merge wi th the outer layers and 

the st ellar winds. The flow gets accelerated through the 

sonic point and becomes supersonic flow. 

The flow becoming supersonic depends on the complex 

interaction of dynamical processes of the matter and radia-
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tion. Therefore one requires the knowledge of the velocity 

profiles to study the internal dynamics of the matter in 

the outer layers and in deeper layers. 

The line profiles which we observe in e.arly type 

stars and supergiants are the result of large scale expan­

sion of the matter in the outer layers, rotation of the 

atmospheres and perhaps the turbulent velocity fields which 

are responsible for the non-thermal 1 ine broadening. The 

line broadening may be due to microturbulence or macrotur­

bulence or the velocity gradient effects in an expanding 

atmospheres (Sletteback 1956). There is possibjlit:y.' of 

non-radial pulsational modes (Stothers and Chin 1977; Vemury 

and Stothers 1977). This physical effect produces asymmetry 

and broadening while stellar rotation produces symmetric 

broadening of the lines. 

By means of very sensitive analytical techn.iques 

or by constructing physically meaningful models one might 

be able to unravel the different effects described above. 

Recently Fourier analysis has been employed to find out 

the detailed veloci ty structure in the outer layers. In 

the case of static atmospheres this technique yields fairly 

reliable estimates of both stellar radial velocity and tur­

bulent velocity (Gray 1975; 1976, 1978; Smith and Gray 1976). 

These techniques have been employed by Ebbets (1978) and 

Duval and Karp (1978) for the expanding atmospheres and 

however, the accuracy of the results remain open to question. 

The calculations of line profiles in expanding 

atmospheres is more complicated than for· the static atmos­

pheres (see Pecker and Thomas .(1961) for general discussion). 
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Underhill (1947) calculated the profiles of the lines in 

an atmosphere with plane parallel stratification with a 

depth independent expanding velocity. She showed that with 

such a velocity field the equivalent width of a line does 

not change although the shape of the flux profiles becomes 

asymmetric by the variation of the projected line of sight 

velocity over the stellar disc. .Van Hoof and Deurnick (1952) 

calculated line profiles with a constant expansion velo­

cities by convolving an intrinsic line profile. with a broad­

ening function which accounts for the variation of line 

of sight velocity over a limb darkening disc. They found 

98 

that weak lines are more affected than strong lines in produc-

ing the asymmetry of the lines. None of the above methods 

have taken velocity gradients correctly into account. 

Kubikowski and Ciurla (1965) calculated the equivalent widths 

in an atmosphere moving with velocity gradients;they showed 

that the velocity gradients increase the equivalent widths 

and they also show that velocity grdients tend to desaturate 

strong lines and prolong the linear part of the curve of 

growth. They also show that the flat part of the curve 

of growth is raised and the difference in the raise is attri­

buted to the turbulence, which is actually due to the velo-

city gradients. Ci urla (1966) has given a more detailed 

discussion on these things. He showed that in an atmosphere 

expanding outward with increasing velocity, lines tend to 

be skewed towards the shorter wavelengths. This result 

is exactly opposite to the geometrical distortion effect 

produced by model with constant depth independent expanding 

veloci ty. In this case it is assumed that the velocity 

was increasing linearly with geometrical height and lines 
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were calculated in LTE whi ch is in pure absorpt ion. This 

approximation is good only for very thin layers. If one 

desires to employ thick layers and scattering is to be taken 

into account (non-LTE effec t s) one has to study a more compli-

cat ed trans fer probl em. Karp (1973) calculated the line 

profiles assuming LTE and again using hydrodynamic model 

atmospheres of Cephieds he found that the effects in strong 

lines are much smaller (1975). More recen1ty Karp (1978) 

calculated the observed flux from a stellar atmosphere with 

velocity gradients by usi ng an analytical solution. He 

used a slowly varying sour c e function which he assumes that 

it represents scattering process. Worrail (1969) and Canfield 

(1970) followed the method. These assumptions are not 

correct concpet ually. All the above calculations are done 

as suming LTE. So one must consider the correct physics 

in such media. The scat t ering in the line is important 

mechanism in formation of the lines. Rybicki (1970), Grant 

an d Peraiah (1972), Simonneau (1973), Noerdlinger- and Rybicki 

(1974), Mihalas, Kunasz, Hummer (1976) have treated the 

line calculations in non-LTE. 

When the velocities are considered in the expanding 

med i urn it is important to treat high velocities and solve 

velocity gradients. If we treat the equation of transfer 

( (1974) Kalkofen in the observer-' s frame Kunasz and Hummer ' 

(1970), Peraiah and Wehrse (1978), Wehrse and Peraiah (1978) 

it becomes di fficult to treat high velocities. Therefore 

it is necessary to treat such high velocities. In the cornov--
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ing frame of the gas. Such calculations were first started 

by Chandrasekhar (1945) I Abhyankar (1964a,b and 1965). 

However I they have treated only coherent scattering by the 

atom and two stream appro x imat ion. The lat ter assumpt ion 

is not adequate and gives unphysical results (Noerdlinger 

and Rybicki 1974). These latter authors have developed 

a general technique for plane parallel geometry with arbi­

trary velocity gradients by using a Feautrier type elimina­

tion scheme. Based upon Rybick.i type elimination scheme, 

Mihalas and Kunasz (1975) developed the solution of transfer 

equation in a comoving frame. 

scale computational facilities. 

These methods require large 

Peraiah (1980) developed 

a solution of the transfer problem in the lines in the co­

moving frame of the fluid,based on the Discrete space theory 

and this requires minimum computer time. This method has 

been employed in calculating the lines in a comoving frame 

in the moving atmospheres which contains dust (Peraiah, 

Varghese and M.S.Rao 1987). In the following chapter we 

shall be using the above technique in estimating the equiva­

lent widths of lines formed in expanding atmospheres with 

dust. 

6.1.2. Hydrogen Lyman Alpha Line 

Curve of growth yield important and reasonably 

good information regarding the chemical abundances in the 

stellar atmospheres. Generally curves of growth are made 

use 0 f stationary stellar atmospheres. However obser­

vations have established the existance of stellar winds 

in many types of stars. The matt er in the atmospheres of 



stars is in continuous radial motion. Absorption and scatt-

ering of radiation by the moving .medium creates compli-

cations which cannot be revealed through the ordinary curve 

of growth. Therefore one must study the problem by constru­

cting theoretical models of curves of growth. 

The effective optical depth is limited by the velo-

city gradient in a moving medium. For an electron ,scatter-

ing atmosphere the optical depth is defined as 

("6· -1-1 ) 
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wherea is the electron scattering coefficient vth the thermal 

velocity of the medium in motion and (~;) is the velocity gra­

dient. As the radiation force on the lines becomes negli-

gibly small the above relation is used to a fairly good 

approximation though it is invalid for stellar photospheres. 

In such situations it is difficult to obtain the information 

about the number density that is influencing the line forma-

tion. We have made investigations based on the effect of 

expansion velocities 0 f the atmospheres and the presence 

of dust on the equivalent widths of resonance lines. For 

this purpose we have chosen Hydrogen Lyman Alpha line whose 

parameters are well known. We have assumed a spherically 

symmetric atmosphere containing varying amounts of dust. 

6.1.3.Calculations 

We have made calculations for a comoving frame 

and the equation of transfer is written as Peraiah et al 
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(1987) and aimed at the investigation of the 

effects of 

dust and radial expansion of the outer layers on the equi-

va lent widths. These equ i valent widths in t urn indicate 

the total amount of absorpt ion or emission. 

Temperature distribution at different radl'al . 
~ol.nts 

of the atmosphere is ca1cu lated by assuming that 

B (T ) 
v r 

is the Planck 

) 

function at 

("6 -1,2) 

frequency v and Tr is 

the temperature at radi a 1 point r in the spherical shell. 

Tr indicates the temperature at the inner radius of the 
o 

shell. From the above equ at ion 

2hV~ 
(~ ) 

c 

1 

h V/KT 
r 

(e -1) = 

e 
h'V/KT 

r 

which simplifies to 

T( r) = hV 
K 

1nl1+( 

= 

-1 ) 

1 

r )2 ( hv /KT 
r e ro 

o 

1 
hV/KT 

rO 
e -1 

) 

( 6 -1.3) 

A temperature of 1.5,0000 K has been assumed at the 

inner shell r = ro • For the assumed electron density figure 

6 ' d d'stribution as shown .1.2 we have obtalne the temperature 1 

in Figure 6.1.1. 
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Stellar atmospheres consist of a mixture of atoms 

at var ious st ag es 0 f ion i zat ion and excitation. In normal 

stellar atmospheres hydrogen is the most abundant consti-

tuent. At high t...emperat ures hydrogen is appreciably ionised, 
. 

it contributes most of the electrons to the gas. Hence 

for a pure hydrogen gas the electron density is given by 

(Mihalas 1978) 

ne(H) = (\> -1 (N ,¢ + 1 ) ~ -1 ] 
H H 

Where 

~ H = C T-3 / 2 
1 

and 

= 2.07 x 10-16 CGS units Cl 

Ul and U2 are partition functions. 

Total number of particles is given by 

(6 -1.4) 

(6-1.5) 

("6-1.6) 

N = Neutral atoms (N ) + Number of ions + number of electrons. 
o i.e 

N = N 
o 

hence 

+ n 
p 

N = N + 2n o e 

+ n e 

Subst it ut ing th i s in ('6":-1 _ 4) 

( 6' -1- 7) 



n (H) 
e 

n q, +1 e 

1 
= 'W 

H 

~ 
[{(N +2n )$H + 1}2_1] 

o e 

1.: = [(N +2n }I> +1] 2 
o e 

(n $+1)2 = (N + 2n )<1> +1 
e 0 e 

or 

2 
n $ = N e 0 

Hence 

(6-1.8) 

( 6.-1.9) 

Distribution of neutral atoms in the atmosphere is plotted 

in Figure (6.1.3). 

For obtaining absorption coefficient we need to 

know the number 0 f hydrogen atoms in level 1 (nl ) This 

is done by using Boltzmann law which gives the fundamental 

relationship of the fraction of atoms in 

tat ion in terms of the total 

of ionization namely 

N. 1,r 
N· 1 

e 
- E. /KT l,r 

number N. 
~ 

th 
r level of exci-

. h .th 
~n t e ~ stage 

( 6-1.10) 

where E. is excitation energy of the level above ground l,r 

level and g. is the statistical weight of that level, T 
1,r 

is the temperature U. 
1 

is the partition function. 

and N 2 are the number of hydrogen atoms in levelland 

2 respectively and gl I ~ are the corresponding statistical 
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weights eomparision of population of 2 d 1 
n evel to that 

in ground level is given by Boltzmann equation (Aller 1963) 

log = - 8e: + log 
(6 -1.11) 

where e = 5040 
--T-and e: the excitation energy in e1etron volts. 

Total number of neutral atoms 

hence N 
o 

or 

= a 

N 
o 

l+a ( 6-1.12) 

Number 0 f neutral atoms No is obtained from Saha I s equaion 

by defining t"he electron pressure and temperature T (Aller 

1963) 

log 

where 

P = N KT 
e e 

NI 5040 
P = ---

No e T 

2 Ul (T) 

I + 2.5 log T - 0.48 + log U (T) 
o 

(6.-1.13) 

I = ionization potential in volts 

in dynes/em 
2 p = Electron pressure e 

Nl = density of ionized atoms 

N = density of neutral atoms 
0 
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Ur(T) = Partition function for the neutral atoms 

N = n + n = 2n r p . e e 

Nr 
for a given 'P e and T we can calculate ( ~ ). 

o 
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(6: -1.14) 

For hydrogen Lymann Alpha Line we ca~ calculate the absor-

ption coefficient 

Xl! v) = 
n1 B12h v 

¢v (1-
n 2 gl 

) ( 6.-1.15) 
41T n l 9 2 

2h v 
3 

but A21 = -2 B21 
c 

and 

92B21 91B12 B21 
9 1 

= =-- B 
9 2 12 

or 

2hv 3 g1 
A21 = B12 --y- 9 2 C 

i.e 

B12 A21 
9 2 c2 

= 
2hv3 gl 

hence 

('6.·.-1.16 ) 

where ~l is Einstein coefficient for spontaneous emission, 

C is speed of li9ht and v is the central frequency of 

Hydrogen Lyman Alpha Line and ¢v is the profile function 

of the line such that 



(6 -1.17) 

We have employed Doppler profile. 

optical depth in each shell of the medium is plotted 

in Figure 6.1.4 and the total opt ical depth upto every 

shell is plotted in Figure 6.1.5. The medium is assumed 

to contain dust in addition to gas. The amount of dust 

and its distribution is represented by the dust optical 

depth. The spherically symmetric medium is expanding radi-

ally outwards. We have studied the expansion with and 

wi thout velocity gradient s. Line Transfer equations (5-

2) and (5-3) are solved in a comoving. frame as explained 

in the Chapter 5. 

In solving the transfer equations phase function 

of dust is assumed to be isotropic. 

6.1.4. Results 

We have adopted a non-LTE line with a two-level 

atom approximation, set e: = 0, hence no internal source 

is assumed. 

Following boundary conditions are imposed: 

e: = 0, 

and 

f3 = 0 B(T(r) ,x) = 0 

0, ]1., 
J 

x.) = 0 
1. 

107 



VA and V B are the veloci ties in Doppler units at A and 

B Figure 1.2. 

We have considered two cases viz. 

(l) VA = VB and 

(2)VA = 0, VB> ° 

In the first case we have an expanding spherical shell 

and in the second case we have expanding shell with velocity 

gradients. The profiles of Hydrogen Lymann Alpha Line 

are shown in Figures from 6.1.6 to 6.1.10 for specific 

dust opt ical depths ·t = 0,0.1,0.5,1,5. The figures give. 

the relation between the ratio 

F = 21T JI fld fl x x 

F = 2TIJI fldfl c c 

F 
x 

F c 
and x where 

(6 -1.18) 

( 6': -1.19) 

I and I being the intensities in the line and continuum 
x c 

respectively. 

Figure 6.1.6 is for VA = VB = 0 i.e. for a static 

medium for various dust optical depths. It is observed 

that as the dust optical depth increases more and more 

photons are scattered into the line centre indicating in 

diminution of absorption depth. 

Figure 6.1.7 is for outer velocity VB = 5 mean 

thermal units while VA = ° introducing a velocity gradient. 

Here we notice P-Cygni type profiles. Absorption is being 

lOR 



shifted towards violet side while emission peak remains 

at the centre of the line. When dust optical thickness 

is increased the emission is reduced considerably while 

more photons are scattered by the dust into the absorption 

core of the line. It may yield an obvious inference that 

dust has opposite effects in emission wing as compared 

to that in the absorption core. 

In Figure 6.1.8 the expansion velocity is increased 

to VB = 10 mtu I same effect is observed as in the previous 

case. 

In Figure 6.1.9 and 6.1.10 we have considered the 

spherical shell to be expanding with constant velocities 

VA = VB = 5 mtu and 10 mtu respectively. Here we observe 

that the emission wing has become broader and the absorption 

core has been narrowed. Further the shiftsciabsorption 

cores in both the cases from the centre of the line are 

almost the same as that of the expansion velocities used. 

Almost symmetrical broadening of the emission wing is also 

noticed. 

In Figures 6.1.11 to 6.1.15 we have shown the rela­

tion between neutral atoms and the equivalent width of 

the line which has been explained in Chapter 1.4 in detail. 

In Figure 6.1.11 we have the relation plotted for 

a static medium. This has a close resemblance to the curve 

of growth. We have a 1 in early increasing portion then 

a flat part and further increasing linearly. 

In Figure 6.1.12 we have velocity gradient VB 

5 rntu and VA = O. 

= 



This shows a slight modification in the flat portion of 

the curve of growth. 

equivalent width with 

It may be noticed here that for same 

a dusty medium results in a larger 

number of neutral atoms. Th is is a very important obser-

vat ion. It hints that caution is to be exercised in deriv-

ing the number of neutral atoms producing the line if the 

presence of dust is not iced through infrared observat ions 

or by any other means. Figure 6.1.13 is for increased 

expansion velocity with dust. It is showing similar effect. 

In Figures 6.1.14 and 6.1.15 we have considered steadily 

expanding spherical shell with velocities of expansion 

5 mt u and 10 mt u.respect i vely without velocity gradients & 

In these cases though the increasing part of the curve 

of growth is the same as one expects in static medium, 

however after equivalent width reaches a maximum with the 

increasing number of neutral atoms, the width falls and 

the line becomes more of emission I which means that the 

emission part of P-Cygni type of profiles is larger than 

the absorpt ion part. 

equivalent width. 

6.1.5. Conclusion 

The presence 0 f dust increases the 

Calculations have been performed to show the effect 

of veloc it Y 0 f expansion 0 f the stellar atmospheres and 

the presence of dust in the atmosphere on the equivalent 

width of Hydrogen Lymann Alpha line simultaneously. It 

is found that there is noticeable change in the equivalent 

widths due to presence of dust in the expanding medium. 
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T 

20 40 60 80 100 

N 
Figure 6.1.1. Temperature at various points in the spherical 

shell in which hydrogen Lyman ex line is forming. 

Here T (ra> = 15000 K. Shell No.1 is at r = rmax 

and shell No.100 is at r = r . 
o 
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Figure 6.1.2. Electron density (Ne) at different shells N. 
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N 

Figure 6. 1. 3 • Number of neutral atoms (No) at different 1 ayers 

(N) of the stellar atmosphere in Hydrogen Lyman ct. 

line calculations. 
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Figure 6.1.4. optical depth in each ahell of the stellar mea1um. 
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Figure 6.1.5. 
N 

Total optical depth at variou~ 1~yers of the 
medium. 
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Figure 6. 1. 6 Hydrogen Lyman ex line profiles formed in a static 

medium with different amounts of' dust ('t'd)' 

Distribution of dust is constant throughout the 
atmosphere. 
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Line profiles of hydrC?gen Lyman ex formed in a 
medium moving with velocity of expansion Vb- 5 mtu 

(with velocity gradient). 
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Same as in Figure.6.1.7 but the velocity of expan­
sion is equal to 10 mtu. 
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Hydrogen Lyman ~ line profiles formed in a medium 
expanding with velocity 5 mtu and without velocity 
gradients. 
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Figure 6.1.10. Same as in Figure 6.1.9.but the velocity of expan­

sion is equal to 10 mtu. 
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Figure 6.1.11. Variation of equivalent widths of the hydrogen 

Lyman a line with the increasing number of neutral 
atoms (log No) for a atatic medium and for various 
dust optical depths (Td ). 
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Fiqure 6.1.12. Same as in Fiqure 6.1.11 ))ut the atmosphere is 
expanding with velocity gradient, expansion velocity 
is equal to 5 mtu. 
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Figure 6.1.14. Same as in Figure 6.1.12 .but without velocity grad­
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6.2.1 Dust in the Spherical Shells 

Presence of dust in the outer layers of stars has 

been inferred from the infrared observations of these 'stars. 

Alpha line radiation was observed in Becklin-Neugebauer 

object in Orion by Grasdalen (1976). These objects 

show the presence of ionised gas and several of such objects 

as BN and CRL 490 seen to Pose.s.s dusty shells around a 

hard ionised gas core. The majority of Be stars .have 

circumstellar dust to give rise to an infrared excess over 

and above that of free-free emission. Brv ' Bfv Brv infra­

red lines have been obse:rvedin the compact molecular clouds 

by Simon et al (1981,1985). Persi et al (1983) derived 

mass loss rates for 15 :<1:-type stars based upon infrared 

photometric observations 'from 2.3 '\.l m to 10 )lm. Infrared 

observations of several objects such as gaseous nebulae, 

active galactic nuclei, T-Tauri stars, atmospheres of cool 

super giants show the presence of dust in the outer layers 

of these objects. Allen's study (1973) of several early 

119 

type emission line stars has revealed that Bremmsstrahlung 

and thermal emission from dust grains are the causes of 

infrared excess. Giesel (1970), Allen and Pol Swings (1972) 

have found that almost all stars with prominent infrared 

cant inua appear to have circumstellar envelopes. Schwart z 

et al (1983) st udi ed th e far infrared and submi 11 imeter 

mapping of S140 IRS and have concluded that there is a 

good coupling between the dust and gas. Huggins et al 

(1984) derived abundances in the envelopes of IRC+I0216 

line analysis following the approach of Kwan and Hill (1977) 
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and Henkel et al (1983). Felli studied the infrared emi-

ssion from extended stellar envelopes. 

Line formation calculations have" taken into account 

of the velocity of expansion, presence of dust, geometrical 

extension of outer shell and the chemical species present. 

We have considered non-LTE, two-level atom approximation 

and the dust is assumed to scatter isotropically. The 

envelope is divided into 100 shells and the total optical 

depth is about 300. We have neglected absorption due to 

dust by setting albedo w = 1. We have tried two types 

of expanding shell (I) with veloc it y gradi ent and (2) with 

out velocity gradients. Recent ly there have been calcula­

tions including dust and velocity of expansion (Peraiah 

and Wehrse 1978, Wehrse and Peraiah 1979, Hummer and Kunasz 

1980, Wehrse and Ka1kofen 1985, Peraiah et al 1987). Obser­

ver's frame method of solving is disadvantageous if scatter­

ing is to be considered because of large number of angles 

anQ frequencies that have to be used to obtain accurate 

results. For such flows, a solution in the comoving frame 

is better suited. 

6.2.2. Calculations 

Radiative transfer equation in 

were first explored by S.Chandrasekhar 

(1964,1965), Mihalas et al (1975) and 

a comoving frame 

(1945), Abhyankar 

Miha1as (1978). 

Here we perform the ca1culat ions taking the equation of 

transfer written as (Peraiah et al 1987) 
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~ OI(r,~,X) + ~2 oI(r,y,x) = 
or r a~ 

KL(r) [~(x)+8] [S(r'~/x)-I(r,~,x)] 

+ {( 1- 2) V ( r) + 2 dV ( r) } 
~ r ~ dr 

( ·6.-2.1 ) 

Similarly for an oppositely directed beam we have 

-I(r,-~,x)] 

(6 -2.2) 

where ~ = cose e: (0,1) and I)" (r), 8 I <j,(x) I S etc have usual 

meaning as explained in Chapter V. 

E the probability per scatter that a photon is ther-

malized due to collisional de-excitation is given by 

e: = (6-2.3) 

where C21 is collisional de-excitation rate and A21 is spon-

taneous emission rate. I(r, ~ ,x) is the specific intensity 

of the ray making an angle e = Cos .-1 ~ wI th the radius 

vector r at a standardised frequency x given by 



v-v 
x = o 

('16 -2.4) 

6 being mean thermal Doppler width. V(r) is the velocity 

of expansion of gases in Doppler units. Normal i sed line 

profile (Doppler) ¢(x) is employed 

.1- 00 

.r ¢(x)dx = 1 (6 -2.5) 
00 

For a two-level atom approximation the statistical equili-

brium equation is given by 

(6 -2.6) 

where B12 and B2l are Einstein cc3efficients and Nl ' N2 are 

the population densities in levels 1 and 2 respectively. 

The quantity Sdust(r, ±).I ,x) is the source function due to 

dust and is given by 

+00 

Sdust(r,±).I,x)-(l-w)Bdust + ~ f p( J.ldl' ,r)I(r,J.l' ,x)d]J' (6 -2.7) 
_00 

Where Bdust is the Planck function for the emission, w 

is the albedo for single scattering and P(]J, ).I' ,r) is the 

phase funct ion. Emission from dust is not having much 

influence on the profile shape hence is neglected. Equiva-

lent width is calculated by using the formula 

W = 
-ex 

F 
x ) dx 

Fc 
(6 -2.8) 
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Where a is half band width of the line i. e. a = max I x I ' 
Fc is the flux in the immediate neighbourhood continuum 

of the line and F is the flux at point x. 
x 
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Solut ion to equat ions ( 6 -2.1 and 6 -2.2) is obtained 

on the lines explained in detail in Chapter 5 . 

6.2.3 Results and Discussions 

The equation of transfer is solved as described 

earlier. We have chosen trapezoidal points for ftrequency 

integration and Gauss-Legendre points for angle integration. 

We have employee nine frequency points with one point always 

at the line centre and two angles~ i.e. I=9 and m = 2 in 

each half space. This brings the working matrix of cal-

culations (18xI8). This is accurate enough to give preci-

sion permi t t ed 

at the Indian 

by the computer (Mighty 

Institute of Astrophysics, 

Frame II located 

Bangalore). We 

have several physical situations to study, hence the number 

of parameters will be qui te large and therefore we have 

to restrict to physically meaningful parameters. We have 

set the dust density constant throughout the medium. 

Boundary Conditions: In the case of a purely scattering 

medium it is assumed that there is no radiation entering 

the shell from outside where the radius r = B and the opti­

cal depth at this point is 0 T = 0) while radiation of 

unit intensity is incident at r = A and the optical depth 



here is maximum i. e. l"max = T. Further when there is emi-

ssion from within the medium radiation is assumed to be 

incident neither at A nor at B. Boundary conditions imposed 

here are 

ll.) = I 
J 

+ U (l" = 0, ].1.) = 0 
J 

and for internal emission 

+ 
U (l"= O,J.I.) = 0 

J 

( 6-2.9) 

('6' -2.10) 

In the case of the boundary condition of the frequency 

derivative it is taken 

+ 
~ (at X = I X I) - 0 ax max-

(6 -2.11) 
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and the velocities at A and B are set as VA and VB respecti-

vely. For the case 0 f shell which is expanding wi th con-

stant velocity we have 

(6 -2.12) 

for a static medium 

V A = VB = 0 (6-2.13) 



while for the expanding medium with velocity gradients 

we have taken 

VA = 0 and VB> ° (5,10,20,30,40 and 50 mtu) 

Profiles are described in terms of the integrated fluxes 

over the whole disc versus the normalised frequency. We 

have varied the parameters in the following way and the 

corresponding results have been presented graphically. 

B R . - = atlo 
A 

of the outer to inner radii of the spherical 

shell. 

€ is the probability per scattering that a photon is therma-

lised by collisional de-excitation. 

Sis the rat io 0 f the absorpt ion coe ffi cient per unit fre-

quency interval in the continuum to that at the line centre. 

VA = Velocity in Doppler units at the point r = A. 

VB = Veloc i t Y 0 f the expanding spher ical medi urn at a po int 

with radius r = B. 

V = Velocity of expansion of the shell. 

1 = Total dust optical depth. 
d 

T = Total gas optical depth at the line centre. 

The spherical shell has been divided into 100 subshells. 

Optical depth of each shell and the total optical depth 

upto any internal point as well as the emergent and the 

internal radiation fields are calculated by using the algo-

ri thrn suggest ed by Peraiah (1984). We have chosen the 

ratio B/A to be 20 and is kept constant for all cases stu-
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ied •. Total gas optical depth at the line centre has worked 

out to be 300 U! all the calculat ions. 

Figures 6.2.1 to 6.2.4 show the line profiles plott­

ed with respect to the normalised frequency x in a stat ic 

medi urn ( VA = = 0). Dust optical depths 0,0.5,2 and 

5 are considered. It is observed that the emission in 

the wings falls rapidly for increased dust optical depth. 

For dust optical depth 'fd = 5 there is hardly any emission 

and the absorption core is reduced to almost half of that 

when there was no dust and the absorption core is very 

wide extending upto 3 Doppler units on either side of the 

line center. Substantial emission is observed in the wings 

when there is no dust. This shows that dust scatters photons 

mostly into the cores of the absorption lines and removes 

them from the wings. 

In Figures 6.2.5 to 6.2.8 expansion velocity 5 

mt u is given wi th veloci ty gradients. Lines have become 

asymmetric. Here also we observe the wing emission eroding 

rapi dl Y with the presence of dust in the atmospheres. 

For dust optical depth 5 the emission in the wings is almost 

nil and the absorption core becomes too narrow indicating 

that the photons have been removed due to scattering by 

dust and they have been added to the cores. These lines 

are for a medium in which the radiation is scattered by 

dust and gas without any emission. 

9 t 6 2 1 2 thermal emission is For Figures 6.2. 0 •• 

included by -4 'd' setting e: = 10 in the statlc me lum. These 

curves h th d t scatters r adiation when we show us ow e us 



have thermalisation of photons. Substantial amount of 

emission is seen on either side of the absorption core 

at the centre. Though the presence 0 f dust reduces the 

emission in the wings gradually and vanishes completely 

for T d = 5, the absorpt ion core width is observed to be 

unaffected. In Figures 6.2.13 to 6.2.16. we have considered 

expansion velocity with velocity gradient. This brings 

in a sudden asymmetry in the lines. In case 0 f dust free 

medium we see two peaks of unequal hights, the larger among 

them is observed on the lower frequency side of the cent~e. 

P-Cygni type profiles develop whenTa = 0.5 with substantial 

reduction in emission. Absorption core developed is obser-

ved to be shifted towards violet side while emission peak 

remains on the red side of the line centre. On increasing 

the dust furthr (T d= 2) emission is found to reduce further 

while absorption core persists. For dust optical depth 

5 the absorption core deepens to such an extent that it 

becomes almost dark with hardly any emission in the wings. 

In Figures 6.2.17 to 6.2.20 the velocity of expan­

sion has been increased to 10 mtu. We observe the same 

effect as observed for lower velocity of expansion 5 mtu 

with a diference of lowering of absorption depth compariti­

vely. 

In figures 6.2.21 to 6.2.24 we have plotted the 

profiles for an expanding spherical shell with constant 

velocity without velocity gradients Le.V A = VB = 5 mtu. 



As observed in the previous case we see two peaks of emi-

ssion. The peak on the red side is larger is comparision 

with that on violet side but it is flat-topped. When 

dust is introduced T d = 0.05 emi ssion reduced to 1/3 the 

previous retaining its flat-top. Further increase in dust 

causes disappearance of emission peak and deepening of 

abso rpt ion core. 

Increasing the velocity of expansion to 10 mtu 

is showing almost the. samE:· behaviourwhich has been shown 

in Figure 6.2.25 to 6.2.28. 

Figures 6.2.29 to 6.2.44 are drawn for the pro­

files formed in a medium which has continuum emission 

tog ether with the line emi ssion. These have similar fea-

tures as seen in the earlier figures 6.2.9 to 6 •. 2.28. 

In Figures 6.2.45 and 62.46 we have plotted the 

equivalent widths of different lines against different 

dust optical depths. While Figure 6.2.45 shows the 

equivalent widths corresponding to the lines formed in 

a medium without velocity gradients those in Figures 

6.2.46 are for a medium expanding with velocity gradients. 
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In both these cases we have considered scattering of radi­

at ion by both dust and gas. We have observed quite a 

noticeable difference in the equivalent widths of the 

lines formed in a medium without velocity gradients as 

compared to those formed in a medium with velocity gradients. 

In 6.2.45 we see that th e equi val ent wi dth increases with 

the increase in dust optical depth while in Figure 6.2.46 



it is the reverse i. e. the equi valent width is reduced 

with increasing optical depth when velocity gradients 

are considered. 

Figure 6.2.47 is to show how the ratio of the 

heights of two emission peaks varies with expansion velo-

cities. We have studied this behaviour for different 

dust optical depths. In Figures 6.2.48 and 6.2.49 we 

have shown how this behaviour changes with the constant 

veloci ty of expansion of the spherical shell (V A = VB 

we observe that this ratio gets reduced as the dust 

optical depth is increased. 

In Figure 6.2.50 we have shown the relat ion bet-

ween the velocity of expansion and equivalent widths of 

lines for expanding atmospehres with velocity gradients. 

We have compared dust optical depth T d = 2 with that of 

dust free atmosphere. It may be noticed that the equiva-

lent width increases steadily with the veloci ty of ex pan-

sion. 

In Figure 6.2.51 we have considered the same re-

lation for a medium moving without velocity grdients (VA 

= V ) • 
B 

In this case we see that the equivalent width 

is decreasing with velocity of expansion upto 15 mtu and 
I 

thereafter it increses linearly with velocity. 

Figure 6.2.52 is similar to those of 6.2.50 with 

a difference that there exists a thermal emission in the 

1 in e ( € = 10 -4). Here we notice that all the lines are 

in emission and the emission reduces as the amount of 
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dust is increased. Figure 6.2.53 shows the relation bet­

ween equivalent width and expansion velocities of the 

expanding medium without velocity gradients. We observe 

similar behaviour of the plots. 

Figures 6.2.54 and 6.2.55 are to show the reltion 

between velocities of expansion and equivalent widths 

of the lines formed in medium expanding with and without 

veloci ty gradi ent s respect i vel y. In this case there is 

emission both in the line and also in the continuum. 

There is simi lari ty in behaviour between this and for 

the medium in which emission was considered only in the 

line and not in the continuum. We observe that the widths 

of the lines are different in the two cases. 
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buted uniformly having ~~= 0.5. 
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Fiqure 6.2.10 Same as i'n Figure 6.2.9 with uniform dust cSistri­

bution giving a total ~d- 0.05. 
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Figure 6.2.12 S.me •• in Figure 6.2.9 with Td- 5.0. 
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Figure 6.2.13 Line profiles formed in an expanding medium with 

velocity gradients and velocity of expansion Vb= 5 
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Figure> 6.2.14 Line protile. tormed. in an expanding medium wjth 

velocity gradients and velocity of expansion Vb~ 5 

'Cd"" 0.5. 
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Figure 6.2.15 Line profiles formed in an expanding medium \lith 

velocity of expansion Vb- 5 mtu, ~d- 2.0. 
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Figure 6.2.16 Line profiles formed in an expanding medium with 

velocity of expansion Vb- 5 mtu, ~d= 5.0. 
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Figure 6.2.17 Same as in Figure 6.2.13 but velocity of expansion 

is equal to 10 mtu. 
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Figure 6.2.19 Same as in Pigure 6.2.15 with velocity of expan-

8ion Vb- 10 IItU. 
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Fiqure 6.2.20 Same.s in Fiqure 6.2.16 with velocity of expan­

sion Vb- 10 IItU. 
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Figure 6.2.21 Line profiles formed in an expanding medium 
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expansion vb= 5 mtu, medium containing no dust 

(Ld= 0). 

€ =l.E -4 • /3=0 
Va =5.Vb=S 

1d=O.05 

O:L.L.....L..JL-L..J....l--'-.L-J--L-JL-...L-~~~~---:f 
-10 -8 -6 - 4 -2 0 2 10 

X 

141 

Figure 6.2.22 Same as in Figlll'"(" <:0. ;.'.:' 1 but dust content is 

given as optical dc.·pthlrj 0.05. 
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Figure 6.2.24 Same as in Figure 6.2.21 but ~d= 5.0. 
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Figure 6.2.25 Same as those in Figure 6.2.21 with velocity 

of expansion Vb- 10 mtu without dust contents. 
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Figure 6.2.26 Same as in Figure 6.2.25 but unifom dust distd­

buted offering an optical depth ~d= 0.05. 
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Figure 6.2.27 Same as in Figure 6.2.25 but dust is more Ld= 0.5. 
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Figure 6.2.28 Same as in Figure 6.2.25 with Ld- 5.0. 
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Figure 6.2.33 Line profiles formed in an expanding medium with 

velocity gradients and velocity ot expansion 

Vb- 5 mtu. 
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'Figure 6.2.34 Same as in Figure 6.2.33,with dur:t contained in 

the medium ~d - 0.02. 
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Figure 6.2.35 Same as in Figure 6.2.33, with dust contained in 

the medium ~d = 0.05. 
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Figure 6.2.36 Same as in Figure 6.2.33, v.'ith dust contained in 

the Dedium Td - 0.5. 
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Figure 6.2.38 Sarn~ a~ those of Figure 6.2.37 but with dust 
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Figure 6.2.41 Line profiles formed in an expanding medium 

without velocity gradients, velocity of expansion 
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Figure 6.2.42 Same as in Figure 6.2.41 but with dust ~dc 0.05. 
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F1qure 6.2.43 Same •• in Figure 6.2.41 but with dust Td- 0.5. 
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Figure 6.2.44 Same as in Figure 6.2.41 but with dust Td~ 5.0. 
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1"1.qure 6.2.45 Variation of equivalent width with dust optical 

t 

depth ('Cd) for various velocities of expansion 

(without velocity qradient.). 
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Figure 6.2.46 Same as in Figure 6.2.45 but with velocity gradients 
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CHAPTER 7 

CONCLUSIONS 

In this chapter we are stating the results of our study 

briefly. The results have been illustrated by figures and 

explained seperately in the previous. chapters. 
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We have calculated the profiles of hydrogen lyman­

Cl line in an expanding spherical atmosphere containing both 

dust and gas. We have investigated the variation of equi­

valent widths with velocities of expansion together with 

the amount of dust present in the medium. It is found that 

substantial changes in the equivalent widths are caused by 

the presence of dust in an expanding medium. It is noticed 

that dust also may increase the equivalent widths and there 

may be a possibility of overestimation of absorbing neutral 

atoms if the presence of dust is ignored. We have drawn 

curves of growth for different expansion velocities and 

dust optical depths. 
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We have also studied spectral lines in general by para-

metrising. Profiles have shown sharp dependance on the 

parameters like S· ,£ ,Td ,VA 'VB' etc. We have noticed that 

the wings in the spectral lines are prominent in dust free 

atmosphere and when dust content is increased emission in 

the wings reduces drastically. 

t iced in the absorpt ion core. 

Impact of dust is also no­

Further, velocity of expan-

sion is found to introduce asymmetry in the shape of lines 

leading to P-cygni type of profiles in many cases. By cons­

t ruct ing models taking all the parameters ment ioned above 

into .. .c.onsiderat ions it may be possible to make reliable 

investigations regaidirrg physical structure of the outer 

layers of stars. 
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