

BULLETIN No. XXXVIII.

a Preliminary note on the displacement to the violet OF SOME LINES IN TEE SOLAR SPECTRUM,

By T. Royds, D Sc

The majority of the metallic lmes in the solar spectram are sbifted to the red when compared with their positions in the electric arc. I'here arc, however, wany exceptions In the tables at the end of this paper I give the results of some comparisons of arc spectra (chiefly iron) with the spectrum of the centre of the sun's dise for the study of these exceptions

I. IRON LINES

1. Sun and Arc Comparisons.

The iron spectrum was produced by the arc between iron termınals in air at 580 mm . pressure (the normal pressure at the altitude of the Observatory) with a direct current from a battery at 110 volts. The current strength was usually between 6 and 8 amperes, and the length of the arc was varied in different experments. The polarity of the terminals was reversed at the middle of the exposure morder to equalise the intenstity of the arc lines above and below the solar spectrum. The same arrangement as was previonsly used ${ }^{l}$ for simultaneous exposure on the sun and are was employod but the duration of exposure on the are was varred in different regrons in order to produce lines easily measurable. The spectrograph has been previously described ${ }^{2}$

It was at once noticed that nearly all hees which are unsharp in the are at ordinary pressures gave negative values for the sun-arc displacement, i e., were relatively shifted towards the violet in the sun (e.g., $\lambda 3948 \cdot 246$, Table VIII), but that several lines apparently sharp (eg., $\lambda 4233 \cdot 772$, Table VIII) were also shilted to the violet. On considoring, however, the behaviour of these lines under pressure, it was found that the lmes shifted to the riolet, meluding those apparently sharp, were those which widen unsymmetrically towards the red with mereasod pressure, and which therefore are really unsymmetrical at atmospleric pressure, but not obviously so. The number of lines shifted to the violet was apparently greater on photographs taken using an extremely short arc (about 2 mms . in length), as was done in some regions between $\lambda 492 \mathrm{f}$ and $\lambda 5317 \mathrm{mmordcr}$ to obtam the enhanced lines as strong as possible. These plates were therefore considered first, and the lines sorted out according to the Mount Wilson classtication of the iron lines ". 'I'he Mount Walson workers havo divided the iron lines into groups $a, b, c, s u b-d, d$, or e according to their pressure shitts, and also into classes $1,2,3,4,5$, or 6 , lines of classes $1,2,3$, and 4 remain symmetrical under pressure, class 5 widen unsymmetrically towads the red and class 6 unsyminetrically towards the volet. When the sun-short arc displacements (Table VIII) are grouped according to the character of the arc linos, as in Table I below, it is seen that whllst symmetrical lines (groups a and b) have normal displacements to the red in the sun, unsymmetrical lines (groups $c 5, d$, sub-d, and e) behave abnormally; lines widened unsymmetrically in the arc towards the red are displaced to the violet of the arc line, and the lime 5133 , much widened towards the violet, is greatly displaced to the red ${ }^{4}$. The lines in group c which have not been classified are, judged from their negative displacements, probably widened unsymmetrically towards the red.

[^0]Table 1.-Sun--Short Arc Displacements.
A.-Synmetrical Lenes.

λ			a	Group	$\begin{gathered} \text { Sulu-Short Alc } \\ \text { in } \AA / 1010 \end{gathered}$
4876107		..	.	a 3	$+6$
$4427 \cdot 482$	a, 3	+ 0
$499+316$		a	$+5$
5028308	α	+ 3
5151020	a	$+7$
$5195 \cdot 113$	${ }^{4}$	- 1
$5216 \cdot 437$		a	$+1$
5242658	...	\ldots	...	a	$+5$
4337-216	b 3	+ 9
4352908	b 3	$+3$
$4383 \cdot 720$...	$b 1$	+9
4404927		$b 1$	+5
		dis	cem	...	$+\cdot 043 \mathrm{~A}$

B-Lines unsymmetrically widened towards the red.

λ				Group	$\begin{gathered} \text { Sun-Shont Are } \\ \text { in } \AA / 1000 \end{gathered}$
4210494				c 5	0
4890948		c 5	-
4.919174	c 5	- 12
$4.957 \cdot 4811$...			c.	-
4966270		...		c 5	-
4233772	\ldots	...	\cdots	$d 5$	-13
4982682	25	- 18
5192523	...			sub-d	- 11
5208.776	\ldots			sub.d	- 3
5215.353	\ldots			sub-d	- 14
$5263 \cdot 486$...			sub-d	- 4
$5273 \cdot 339$..		\ldots	sub-ct	- 12
5,281-971	\cdots	sub-d	-
$53 \times 2 \cdot 480$		$s u b-d$	- 8
		Mean displacement			-.0086 \AA

C.-Lines unsymmetrically wudened towards the violet.

λ				Group	Sun-Short Arc in $\AA / 1000$
$4191 \cdot 84.3 *$	\ldots	.		e	0
5133870	\ldots	\ldots	.	e	+35

[^1]The relative shifts of these difterent groups are very striking. They cannot be easily explained as shifts due to a difference of pressure between the sun and arc for on thas assumption the deduced solar pressure has the impossible value of abont one atmosphere below, cacuum, moreover we shall see later that a relative displacement of theso groups can be produced by different conditions of the arc at the same pressure In fact, the abnommal shiftis secm to depend solely on the unsymmetrical alaracter of the lines. Nevertheless they are not wholiy due to errors of setting on an unsymmetrical line. It is true that in the case of a lime wadened unsymmetrically towatds the red, for example, the tendency would be to set too far on the red sid 0 of the trme maximum and the solar line would appear to be displaced too much towards the violet, but there are many lines displacod to the violet in which the error of setting must be extromely small, for they are very narrow. There are also many lines partucularly of other elements than tron, eg., the sodjum pair $\lambda \lambda 6161,6151$ and the calcuum triplet $\lambda \lambda 6162,6122,6102$, all on the same plate, where a glance at the photographs shows that the shitt is real. It is possible also that the lines unsymmetrical in the arc are unsymmetrical in the smin as well, but there is at present no evidence of such being the case. The crror introduced throngh setting on the centre of a solar line really unsymmetrical would, however, have the offect of making the true shifts still more abnormal, and therefore need not now be considered.

The above results were olftained 11 comparing the sun with a short arc. Most of my photographs usmg a long anc were taken m tho ultraviolet and blue regions and there are not many lines belonging to the unsymmetnical chasses, but the following are measurable in both sum and are -

> Table II -Siun-Long Arc Displacements

Lises unsymmetrically widened towards the Red.

Mr. Evershed ${ }^{1}$, using a long arc, has many lines of groups $d 5$, sub- d and c in his list ; 12 are shifted to the violet in the sun and 21 to the rech. It is cloar that with the long are displacements to the violet are less frequent than when the sun and short arc are compared. None of the lines known to be symmetrical are shifted to the violet of the long arc according to the measures either of Fabry and Busson ${ }^{2}$, Eivershed ${ }^{1}$ or myself.

There are in addition to the linos already discnssed many iron hes which have not been classified according to ther character and pressure displacement. Many such lines are unsharp in the arc at atmospheric pressure and when the sun is compured with the short arc none of these lines are displaced to the red. With the long arc, however, 10 are displaced to the volet and 10 to the red, 4 being undisplaced. It is not possible to say from the photoqraphs at atmospheric pressure alone whether these tusharp lines are unsymmetincal or not.

2. Comparison of the Long Arc and Sholit Arc.

The fact of negativo valnos for the sun-arc displacemont being more frequent with the short are than with the long suggested the possibilaty of certain classes of lines being displaced m the short arc. I made some comparisons of the sun and an arc 2 mms . long, and of the sun and an arc 7 mms . long, keeping the currout as nearly as possible the same, thus obtaining indirectly the rlisplacement between the short and long arcs. Also, three photographs were taken drectly confronting the contral portrons of the long and short arcs on the same plate. The results are given in Table VIII at the end It is hoped to make a more complete investigation shortly, but there is a clear indication of the different bebaviour of unsymmetrical lines. Those lines unsymmetrically wadened towards the red are shifted in the short are to the red, those widened towards the violet are shifted to tho violet, whilst symmetrical lines have smaller displicements as a rule, if they are really displaced at all.' The, average displacements, short arc-long arc, for the different groups are given in the following table. -

[^2]Table III -Short Arc-Cong Aru Displaceneents.

	Symmetrical Lines			Lines nnsymmetical towads the red			Lines unsymmetrical towards the volet	
Gioup		b	c 4	c 5 ancl c	\checkmark ¢b-d	d	e	
Average Displarement in \AA	+ 0007	-0001	+ 004	+ 0076	+ 0067	+.0135	- 0085	
Number of Lines		7	1	5	3	2	2	
Means		$0000^{\circ} \mathrm{i}$			$+0085$		-0085 i	

The followng are some of largent diuplacements measured as yet :-
Table IV.--Lakie Talok for Short Arg-Long Arc Displacement

Now St. John and Miss Waro ${ }^{1}$ found dullerent wavelengths for the lines in one arc photograph compared with four others taken under apparently the same coudltions. Morenver the displacement betwere this photograph anit the rest varred according to the class of line They give the following means for threo groups of lines:-

$$
\begin{array}{lllccc}
\text { Group } & . & & b & d & \\
\text { Average di.pplacement } & . & . & -0006 \AA & +012 \mathrm{~A} & -007 \AA \\
\text { Number of lines } & . & . . & \ldots & 5 & 4 \\
\hline
\end{array}
$$

These displacements are exactly smilar to the displacements I have found in tho short are, and since. the are spectrum appeared stionger in the displaced photugraph than in the rest it werms hkelv that tho are was in this case shorter, or posubly had a greater current densty St Johmand Miss Ware shate that, pressure variations withon the are are not of sufficiont magnitude to account for the shiths mosured. 'rlucy also state that the displacement occurs in the region of the are near the negative pole, where the lines arr strongest and most whlened In my photographs any dissimulanity between the two poles is lost owing to the practice of reversing the pularity in the mud?le of the exposure, and I have therefore not been able ta, test this latier conclusion."

It is noteworthe that of the soven lines for which Mr Everwhed did not get consistent values for thi. sun-are dipplacement, when more than ono photograph was avalable, all oxcept two are unsymmetrical lines The different values are therefore probably due to different lengths of the arc. Also the discrepancies between Evershed's values and those of Fabry and Buisson ${ }^{1}$ can now be explaned. Therr values agree extremely well for all cymmetrical hnes, whilst for all the lines whened unsymmetrically towards tin. red in the arc Fabry and Buisson find the solar lines to be much more slufted to the violet relative th, their arc 'lhis is shown clearly by the following averages for the symmetrical and the unsymmetrical liness in Evershed's Table II :-

Lines symmetical in the are
(Groups $a, b, c 4$).
Sun-Arc dispulcucoment.
Evershed. Fabry and Busson.
$+.0082 \AA+.0088 \AA$

Lines unsymmetrically widened towards the red in the arc
(Groups $c 5, s u b-d, d)$. Sun-Arc displacement.
Evershed. Fabry and Buisson.
-. $0001 \AA$ - . 0089 A

According to my results, MM. Fabry and Buissou's larger shift to the violet of the unsymmetrical can be explained if they have had a shorter arc than Mr. Evershed, or, it may be, had a greater density of material in the arc

3. A New cause of the displacement of Lines.

There is now therefure a considerable amount of evidence of the displacements of certam classes of iron lmes due to some other cause than pressure or motion in the line of sight. The most obvious cause which suggests itself is change of density sunce this is the principal change which occurs in varying the length of the anc. The density hypothesis is strongly supported by a phenomenon obsorved by Duffield ${ }^{1}$ the significance of which has not been sufficiently appreciated, namely, that in all the reversed lines which were unsymmetrically widened towards the red under pressure, the emission lme was displaced to the red of the absorption hue. The emission line is due to the iuner portions of the are where the density is high and the line broad, and the absorption line is due to the outer portions where the deusity is low and the line narrow. This is in agreement with the displacement betwoen the short arc and the long, for the lines unsymmetrically widened towards the red are shifted to the red by shortening the arc, which corresponds to increasing the denstity. King ${ }^{2}$ has tried the effect on wavelength of varying the density of tho iron vapour in the furnace with negative results, but unfortunately all the lines tested belong to group a, which I also find to have very small displacements

Sunce the unsymmetrical lines are displaced in the short are in the opposite direction to their displacementin the sun when both are compared with the long arc, it follows that the condition of the rapour, whether it is density or not, in the long are more nearly approaches that in the reversing layer than the condition on the short are But still the long arc falls short of the conditions in the reversing layer of the sun, since many unsymmetrical hes are still abnormailly displaced. For this reason and especially because it is desirable to have the density of the vapour under control, it is intended to try the furnace spectrum for comparison with the sun.

The existence of a donsity effect on wavelength may modify some of the conclusions which have been drawn from the displacement between solar and terrestrial sources. For instance, if the pressure in the reversmg layer is dednced by comparing the displacements of the lines most shifted to the red by pressure with those least shifted, we must now boar in mind that the former consist chielly of lines which are displaced by densily whilst the latter are not. The relative displacement of the former to the violet would lead to the conolusion that the pressure in the sum is less than atmosphers, but it now appenrs that it is due, to some extent at least, to the different condations in the sun and arc, probably difference of density. For the present, therelore, we are compelled to confine our attention to the symmetrical lines since, so far as we know, they are affected least, if at all, by the peculiar conditions in the arc. Firstly we can compare the shifts of the lines of groups $a, b, c 2$ and $c 4$, all symmetrical, in the same spectral region, and secondly, since there happen to be lines of group a, both in the ultraviolet and in the yellow-groen regions, we can compare the shifts in these two regrons knowing the law according to which the pressure shift varies with wavelength. Makmg use also of Evershod's values I obtain the following average sun-long are displacements for each group of mron lines.

Table V.

	Meanl wavelength, λ 4400.			Mean wavelength, λ 3800,		Mean wavelength, $\lambda 5250$.
	Group a	Group b.	Groups $c 2$ and c L.	Group a.	Group b.	Group a.
$\begin{gathered} \text { Pressure shift } \\ \text { atmosylheres } \end{gathered} \text { at } 9$	+ 0158 Å.	+ $023 \AA$ A.	+.0547 ¢ ${ }^{\circ}$.	+ 0105 \&	+ $0164 \AA$ 成.	+ $029 \AA$
Mean sun-long are displacement.	+ $0072 \AA$.	+ 0090 ¢	+ 0060 ¢ ${ }^{\text {¢ }}$.	$+\cdot 0076$ £.	$+.0075 \AA^{\circ}$.	+.0088 Å.
Mean mitensity ...	4	7	6.5	13	13	5
Number of lines ...	4	15	6	14	13	19

${ }^{1}$ Duffield. Phll. Trans. Roy. Soc A., 208, 111, $1908 . \quad{ }^{2}$ King. Astrophysical Journal, 35, 183, 191 .

It is seen that the displacements of groups a_{3}, b and c, at mean $\lambda 4400$ are practically equal if we allow for the lower level (as judged by the smaller intensity) of group a; similarly in the region $\lambda 3.100$ groups a and b have sensibly equal displacements. This equality of displacement of lines differently shifted by pressure indicates that the pressure in the reversing layer is about the same as that of the air at the Olservatory i.e., about three-quarters of an atmosphere. It is difficult to compare the reatative shifts of lines of group a in the regioa $\lambda 3800$ with those in the region $\lambda 5250$ since the effective levels of the lines in the two regions are very diferent. Tn order to compare lines of the same effective level we should require, according: to St. John's invurikations, lines of about intensity 3 at $\lambda 3800$ to compare with those of intensity 5 at $\lambda 5250$. Such lines are not available, but considering that the motion displacement decreases as the intensity diminishes ${ }^{1}$, and that the pressure displacement increases as the square or the cube of the wavelength, the relative shifts of group a in the two regions may not be inconsistent with the first conclusion tiat the pressare in the sun is about the same as that of the air at the altitude of the observatory.

Mr. Evershed has already demonstrated ${ }^{l}$ that the displacement at the centre of the sun is chiefly due to a velocity of descent decreasing with depth, and this conclusion is not seriously affected by the abnormal behaviour of unsymmetrical lines, for they are fairly evenly distributed in intensity it we except the largest intensities of which there are vo unsymmetrical liues. If we exclude lines known to be umsymmetrical or unsharp in arc, the average displacement at the centre of the sun of lines grouped according to their intensities are given in the following table which shows clearly the smaller displacement of fainter lines corresponding to lower depths in the sun :-

TABLE VI.-Siun-Long arc displacements of symmetrical and sharp lines.

Moreover, the existence of the motion displacement can be demunstrated by the displacement of the cyanogen lines, which are not shifted by either pressure or density. ${ }^{3}$

II. LINES OF OTHER ELEMENTS THAN IRON.

Using a carbon are into which a small quantity of salt or metal had been introduced, the displacements in the sun of lines of a few other elements have been measured and are given in Table IX at the end. The lines chosen were generally series lines, partly because their pressure shifts are mostly known and partly because each line in a pair or triplet might be expected to behave similarly. The photographs were mostly taken using a very long arc, since only with a long are could the very diffuse arc lines be made measureable at all.

The sodium pair $\lambda \lambda 5682,5688$ and the calaium triplet $\lambda \lambda 4092,4095,4098$, both vary diffase, are enormously displaced in the sun relative to the arc ; the displacement may partly be due to errors of setting on the much widened lines but there is undoubtedly a large real shift. In the cases of the sodium pair $\lambda \lambda$ 6154, 6160, the calcium triplets $\lambda \lambda 4578,4581,4586$, and $6102,6122,6162$, and the magnesium line $\lambda 4708$, the reality of the large displacement is obvious on the photographs.

Many of the lines in Table IX bave a high effective level in the sun but their displacements are not in as good agreement as they sho uld be were they due to motion in the line of sight alone. Only the strontium pair 4077, 4215 have displacements of the order to be expected from the velocity indicated by the high level iron lines. The displacement and the height to which each line extends in the chromesphere according to Mitchell ${ }^{3}$ are given in Table VII below :-

[^3]Table VII.

From the enormous shifts of many of the lines in Table IX it is clear that some cause of displacement of these lines, other than pressure or motion in the line of sight, is at work. Whether this cause is difference of density between the arc and san or not we have no information, but the narrowness of the solar lines is an indication of low density in the sun. It is perhaps significant that the wavelengths of the calcinm triplet $\lambda \lambda 4092,4095,4098$ in the sun approach more nearly those of the are in vacuo as determined by Crew and McCauley ${ }^{1}$ than of the are in air. Whether the large change of wavelength of these lines passing from the are in vacuo to the arc in air is purely a pressure effect appears to me doubtful; it seems probable that here also some cause such as differences of density of material is active in producing displacements. In the following Table I give the wavelengths in the sun according to Rowland and those of the arc in vacuo accordiug to Crew and McCanley reduced to Rowland ${ }^{2}$ s scale.

Wavelength in sun.	Wavelength in are in ∇ acuo.		
4092.821	\ldots	\ldots	.80
95.094	\ldots	\ldots	.09
98.689	\ldots	\ldots	.70

SUMMARY.

1. The iron lines which are unsymmetrically widened to the red in the are (Mt. Wiison groups co, do and sub-d5) are displaced to the violetin the sum relative to a short iron arc, and those unsymmetrically widened to the violet (M. Wilson group e) are displaced to the red. Symmetrical lines give normal displacements to the red. The reiative displacements are too large to be explained as pressure effects.
2. When the sun is compared with a long are there is still the same tendency.
3. There are many clear cases which show that the dispiacement is not wholly due to errors of settiug on the maximum of an unsymmetrical line. The same phenomenon is also to be seen in other experimenters' results.
4. A new cause of changing the wavelength of certain classes of iron lines, other than pressure or motion in the line of sight, has been found. The unsymmetrical iron lines are displaced in the short arc compared with the long arc. Those widened towards the red are displaced to the red in the short are and those widened towards the violet to the violet, whilst symmetrical lines have mostly small displacements. The results of St. John and Miss Ware and a comparison of Evershed's and Fabry and Buisson's sun-arc displacements also indicate the pecnliar behaviour of unsymmetrical lines.
5. Differences in the density of vapour may be the cause of the displacement between the different kinds of arc, but the matter requires investigation.
6. The longer the iron arc the more nearly do the conditions approach those in the reversing layer of the sun. On the density hypothesis, the density of the iron vapour in the sun is lower than in a long arc between iron poles in air at atmospheric pressure.
7. The unsymmetrical mron lines are therefore, owing to their behaviour in the arc, unsuitable for estimating the pressure in the reversing layer. Using symmetrical lines only, the deduced pressure in the sun is about equal to that of the air at the altntude of the Observatory, i.e, about three-quarters of an atmosphere.
8. The displacoments of the symmetrical ron lines to the red in the sun are due to descending motion on the sun as discovered by Civershed.
9. Lines of other elements than iron also have sun-arc displacements which cannot be explamed as due to pressure or to motion in the line of sight.

I have much pleasure in acknowledging my indebtedness to Messrs. G. Nagaraja Ayyar and A. A. Narayma Ayyar, BA., for the careful and painstaking manner in which they have measured the photographs for this Bulletin.

Explanation of Table VIII.

Table VIII contans all the iron lines ou the displacements of which the conclusions arrived at m this Bulletin are based. The photographs were taken with the same spectrographic arrangements as those used by inr Evershed, but the values here given are, apart from this fact, mependent of those m Bullotin XXXVI.

The wavelengths and intensities in columns 1 and 2 are taken from Rowland's tables; a lotter u in the second column denotes that the line appears unsharp in the arc at atmospheric pressure. The third column gives the Mount Wilson classification of the cron lines. The romainng columns contan the measured displacements, sun-long are, sun-short are and short arc-long are. respectively, and the number of photographs measured.

Table VIII.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline λ \& Intensity. \& Group. \& Number of plates. \& Sun-long are
in $\AA / 1000$. \& Number of plates. \& $$
\left|\begin{array}{c}
\text { Sun-short are } \\
\text { in } A / 1000 .
\end{array}\right|
$$ \& Number of platos. \& Short arelong are m $\AA / 1000$ \& λ

\hline 3650.178 \& $5 n$ \& \& 2 \& + 6 \& \ldots \& . \& . \& \cdots \& 3650.178

\hline 80.069 \& 9 \& ${ }^{4} 1$ \& 2 \& +10 \& ... \& : \& ... \& \& 80069

\hline 97.567 \& $5 n$ \& ... \& ${ }_{2}^{2}$ \& -16 \& \& \& \& . \& ${ }^{97.567}$

\hline ${ }^{3701.234}$ \& $8{ }^{8}$ \& \& $\stackrel{2}{2}$ \& + 5 \& \& . \& \& ... \& 3701.234

\hline 05.708
07.186 \& $\stackrel{9}{5 n}$ \& ${ }^{a 1}$ \& $\stackrel{2}{2}$ \& $\begin{array}{r}1 \\ -\quad 1 \\ \hline\end{array}$ \& \& .. \& ... \& ... \& (05.708

\hline 07186
09.389 \& ${ }_{8}^{5 n}$ \& ${ }_{61}$ \& 2 \& - ${ }_{2}$ \& \& \& \& \& 07186
09.389

\hline 16'591 \& 7 \& \& 2 \& - 5 \& ... \& \cdots \& \& \ldots \& ${ }_{10} 0.591$

\hline 20.084 \& 40 \& ${ }^{1}$ \& 2 \& + 10 \& \& ... \& \& \& 20084

\hline 24526 \& 6 \& .. \& 2 \& +3
+8 \& \& \ldots \& \& \& 24.526

\hline 27.244 \& 3 \& \& $\stackrel{2}{2}$ \& - 2 \& \& .. \& \& \& 27244

\hline 35014 \& ${ }_{30}^{40}$ \& ${ }_{c i}^{b 1}$ \& \% \& +9 \& \& ... \& \& \& ${ }^{35 \cdot 114}$

\hline 37281
48.408 \& 30
10 \& ${ }_{11}^{n 1}$ \& 2 \& +1
$+\quad 2$ \& \cdots \& . \& \ldots \& \& 37.281

48.108

\hline 49631 \& 20 \& 31 \& 2 \& + 2 \& \ldots \& ... \& ..' \& . \& ${ }_{49}^{4.8 .081}$

\hline (00-196 \& 5 \& \& 2 \& -1 \& \ldots \& \& \& \& 60196

\hline 60679 \& 4 \& \& 2 \& - \& ... \& ... \& \& \& $60 \cdot 679$

\hline 63.945 \& 10 \& ${ }^{41}$ \& $\stackrel{2}{2}$ \& + 7 \& . \& ... \& \& \& $63 \cdot 9.5$

\hline ${ }_{687}^{67341}$ \& \& ${ }_{61}^{61}$ \& $\stackrel{2}{2}$ \& + \& \& ... \& ... \& \cdots \& 67.341

\hline $\begin{array}{r}3815 \\ 26.027 \\ \hline 8 .\end{array}$ \& ${ }_{20}^{15}$ \& ${ }_{61}^{61}$ \& ${ }_{2}^{2}$ \& +18
$+\quad 6$ \& ... \& \& \& \ldots \& 3815.987

\hline $27 \cdot 980$ \& 8 \& 61 \& 2 \& + 6 \& \& ... \& \& . \& ${ }_{27}^{26880}$

\hline 43.404 \& 4 \& \& 2 \& + 4 \& \& \ldots \& \& \& 4.464

\hline $46 \cdot 943$ \& 5 \& .. \& 2 \& + 2 \& ... \& \& ... \& \& 46.943

\hline 50.118 \& 10
4 \& .. \& 2 \& - ${ }^{2}$ \& \& \cdots \& ... \& \cdots \& 50118

\hline 50.962 \& ${ }_{4}^{4}$ \& \ldots \& $\stackrel{2}{2}$ \& +1
± 1 \& \ldots \& . \& ... \& \& ${ }_{50}^{50.762}$

\hline 56.524 \& 8 \& ... \& $\underline{2}$ \& + 7 \& \& \& \& \& 56524

\hline 59355 \& 3 \& . \& 2 \& +11 \& \& \& \& \& 59355

\hline 80.055 \& 20 \& . \& 2 \& +11 \& ... \& \& \& \& $60 \cdot 055$

\hline 85.657 \& 4 \& \& 4 \& +5 \& \& \& \& \& $85^{6} 657$

\hline $86 \cdot 484$ \& 15 \& ${ }^{\text {a }}$ \& 4 \& + 4 \& ... \& .. \& \& \& $86 \cdot 434$

\hline $87 \cdot 196$
90950 \& ${ }_{3}^{7}$ \& 61 \& 4 \& +88 \& \& \& \& ... \& 87.196

\hline $92 \cdot 069$ \& 4 \& \& 2 \& + \& ... \& \& \& \ldots \& $90 \cdot 980$
92069

\hline 94.057 \& 2 \& .. \& 2 \& -1 \& \& ...' \& \& .. \& 920.057

\hline 97598 \& ${ }^{2}$ \& \because \& 2 \& + 4 \& \& ... \& ... \& \ldots \& ${ }_{97} \cdot 596$

\hline ${ }^{39005}$ \& ${ }^{10} 5$ \& $a!$ \& \& \& \cdots \& ... \& ... \& ... \& 3906628

\hline 08.077
13.775 \& ${ }_{4}^{5}$ \& \& ${ }_{2}^{2}$ \& +2
$+\quad 1$
+1 \& ... \& ... \& \& ... \& ${ }^{08.077}$

\hline 16879 \& 5 \& \& ${ }_{2}^{2}$ \& + 1 \& \cdots \& \cdots \& .. \& . \& 18775
16879

\hline 20410 \& 10 \& $\stackrel{\square}{1}$ \& 2 \& +11 \& \ldots \& \ldots \& \& ... \& 20410

\hline 23054 \& 12d? \& ${ }^{1}$ \& 2 \& + 5 \& ... \& ... \& \& \cdots \& 23054

\hline
\end{tabular}

'l'able VIII-cont

Table IX.
[The pressure shil't is taken from Humphreys' tables. Those lines ansymmetically widened to the red are marked ur.]

λ	Intensity.	Pressure shift in \AA per atmos. phere	Number of plates	$\begin{aligned} & \text { Sun-atc } \\ & \text { in } \AA / 1000 . \end{aligned}$	λ	Intensity	Pressure shift, in \AA per atmosphere	Number of plates	$\begin{gathered} \text { Sun-are } \\ \text { in } \AA / 1000 \end{gathered}$
$39+4 \cdot 039$	(a) 1 ur		2	- 10	(56882869	Na 5 ur	$\cdot 0532$	1	-127
40950944	Ca 4 ur	..	2	- 86	¢ 5688436	Na 6 ur	- 575	1	-144
$\{4098689$	Ca i ur		2	-78	\{5890 186	Na 30	0127	2	18 $+\quad 8$
4226901	Ca 20	-0051	1	- 2	\{ 5896150	Na 20	-0122	2	+ 7
\{ 42831169	Oa ${ }^{ \pm}$	$\cdot 0031$	3	+ 6	[61.54 .438	Na 2 ar		2	-81
\{ 4302692	Ca 4	-0031	3	+10	16160956	Na 3 ur		2	-79
$\{4289525$	$\mathrm{Or}_{4} \mathrm{l}$	-0035	3	+10	- 4077885	Sr 8	-0026	3	+14
\{ 4299149	Ca 3	0035	3	+ 6	- 4215703	Er 5 d?	-003 4	4	$+15$
(4425 608	Ca 4	0084	3	+ 2	4607510	$\mathrm{Si}_{1} 1$	-0053	3	+11
¢ 4135129	Ca 5	0081	3	+3 $+\quad 3$	$\{455+211$		0036	2	- 5
¢ 44388851	Ca^{4}		3	+ 2	[493424	$\begin{array}{ll}\mathrm{Ba} & 7 \\ \\ \mathrm{Mg} & \\ \end{array}$	-0038	2	-- 12
(4456794	Ca 2	-0079	3	+ 7	4703177	Mg 10 ur		1	- 37
4527101	Ca 3 ur		1	1 -44 $-\quad 25$	$\left\{\begin{array}{l}5167 \cdot 4.97 \\ 5172856 \\ 5182\end{array}\right.$	Mg 15 ur Mg 20 ur	-0083	3 3 3	$-10 *$
$\left\{\begin{array}{l}4578732 \\ 4581575\end{array}\right.$			2	[$-\quad 25$ -24	$\left\{\begin{array}{l}5172856 \\ 5183791\end{array}\right.$	Mg 20 ur Hg 30 ur	.0078	3 3	- ${ }^{\text {\% }}$
$\left\{\begin{array}{l}4586047 \\ 458\end{array}\right.$	Ca 4 ur	-	2	- 20	$\{4680 \cdot 317$	$\mathrm{Zn}^{\text {\% }}$	-0059	3 3	- ${ }^{9 *}$
5262419	Ca 3		1	0	$\{4.722 \cdot 342$	\%n 3	-0673	3	- 9
(5264 415	Ca 3	...		+ 1	(1810.724	Z11 3	- 0065	2	- 14
(5270.438	Ca 3	\cdots	1	-3	$\{3944160$	A1 15	0052	2	+ 3
-5265729	Ca 3	.	1	- 2	\{ 3961674	Al 20	- 0058		$+\quad 2$ $+\quad 1$
5582'198	Ca 4	.		+ 2	$4709 \cdot 896$	$\cdots \mathrm{Mn} 2$...	2	+ 3
5588985	Ca 6		2	+ 2	4739291	Mn 3	...	2	- 1
¢ 3590348	Oa 3		2	+ 1	S $4754 \cdot 225$	Mn Mn ur		4	- 6
\{ 5591.691	O.	0072	2	+ 1	$\{4783 \cdot 613$	Mn 6 nr		4	- 6
(5601 505	$\mathrm{Ca}^{\mathrm{Ca}}$		2	+1	(4823.697	$\operatorname{Mn} 5$ ar			- 6
5698711	Ca 4		2	+ 1	$4761 \cdot 718$	Mn 3		3	- 2
¢ 6102937	$\mathrm{Ca}^{\text {a }} 9$	$\cdot 0255$	2	-27	$1762 \cdot 587$	Mn 5 M 5		3	- 2
$\left\{\begin{array}{l}6122 ; 344 \\ 6162 ; 390\end{array}\right.$	O. O. O. 15	.0226	2 2	- 24 -28	47660150 4766621	$\begin{array}{ll}\text { Mn } & 3 \\ M n & 4\end{array}$...	3 3	0 $-\quad 3$

* Oalenlated from limb displacements relative to centre of sun and to arc

The ()bsbrvatory, Kodaikanal,
18th April 1914
T. ROYDS, Assistant Director.

[^0]: ${ }^{1}$ Evershed and Royds, Roy. Asur. Soc., MF N , 73, 554, 1913. ${ }^{2}$ Evershed, Kodarkanal Observatory Balletin No XXXVI \{ Gale and Adams, Astrophysical Journal, 35, J0, 1912.
 ; $\left\{\begin{array}{l}\text { Gale and Adamis, Astrophysical Journal, 35, J0, 1912, } \\ \text { St. John and M1ss Ware, Astrophysical Journal, 36, 14, } 1912 \text { and 39, 5, } 1913 .\end{array}\right.$
 ${ }^{4}$ The line 5424 measured by Evershed and by Fabry and Buisson to have a displacement in the sun of $+\cdot 030 \AA$ is also winened to the violet.

[^1]: * The 41.918 line is not nearly so unsymmetrical as the 51.33 line.

[^2]: ${ }^{1}$ Evershed, Kodarkanal Observatory Bullotin, No XXXVI. $\quad{ }^{2}$ Fabry and Buisson, Astrophysical Journal, 31, $109,1910$.
 [Note added May 5th --Photographs recoutly oblaned of other unsymmetrical lines not only confirm these conclusions but also, by having the lones equally wide in both the long and short arcs, show that the shifts are not due to errors of setting on the mixima of unsymmetrical lines].

[^3]: ${ }^{1}$ Bvershed, Kodaikazal Observatory Bualletin No. XXXVI.
 SThe displacement of the cyanogen lines will be given in a later BaIletin
 Mitchell, Astrophysical Jonral, 38, 407, 1913.

