Fadatianal obsexuatory.

BULLETIN No. XV.

RADIAL MOVEMENT IN SUNSPOTS.

Displacements of the lines of hydrogen and oaloium in the neighbourhood of sunspots, indioating violent motions in the line of sight, is a common characteristic of spot disturbences. Such phenomena are frequently observed during periods of active change in spot development, or during the genesis of a spot. These lineshifts rarely affeot the spectra of other elements than those of the higher chromosphere. In very violent outburste, in addition to the hydrngen and oalciam lines, those of $\mathrm{He}, \mathrm{Mg}, \mathrm{Na}$, and some of the enhanced lines of Fe sre occasionally seen to be affeeted, but to a much less extent than those of H and O . The displacements may be either an increase or a decrease of wave-length, and may amount to several Ångstrom units, indicating movements of approach or recession of several hundred kilometers per second. These movements are seldom manntained for more than a fow minutes at a time, and are usually to be found in the immedıate neighbourhood of spots, rarely within the umbral area.

Recently line-shifts of quite another oharacter have been photographed bere. These are apparently permanent, affect a very large proportion of the Fraunhofer absorption lines, and are only found in the penumbre of spots.

In the course of measurement of a large namber of spot spectrum plates obtained here, it was noticed that the position of the lines of the true umbral spectrum seem usually to be almost entirely nuaffected by motion in the line of sight. It is true that very slight displacements towards the volot appear to be indicated in a series of measures of some of the best plates, but the amount of the displacement (about $0.004 \AA$) is searcely larger than the limits of error of measurement. In these plates the soale is about $1 \AA=067 \mathrm{~mm}$., and any movements of the solar gases of less than km . per second would be too small for deteotion.

In some spectra obtained this year, in the fourth and fifth orders of a $3 \cdot 2$ inch grating," in whioh the soale is $1 \AA=1.0$ to 2 mm ., the displacement of the lines in the umbree of spots is still barely measurable, bat very obvous displacemente aro found in the penumbres; and this shift turne out to be of a most interesting character, and is apperently a constant feature of all spots. That it should have esceped deteotion hithorto is most surprising, considering the high dispersion now emplored in all spot speotrum work.

The first plate showing this feature clearly was exposed on Jannary 7, 1909, using the fourth order of the grating. It covers the region $\lambda 4650$ to $\lambda 4790$, and the scale is $1 A^{\circ}=1.08 \mathrm{~mm}$. An unusual amount of detail is visible in the umbral spectrum, which is no doubt due to the olearness and steadiness of the air at the

[^0]time of exposure. The general appearance of the Fraunhofer lines crossing the spot is represented in the accompanying diagram

in whioh the displacements are somewhat exaggerated, to show their oharaoter The lines appear to be about equally displaced, but in opposite directions, on the two sides of the spot. There are, however, considerable differenoes among the different lines, the stronger lines appearing less affected than the fine narrow ones.

A preliminary measurement of ten of the best defined lines gives a mean total displacement, measured at the outer edges of the penumbra, of $0.027 \AA$, indicating a receding velocity on the north-west side of the spot of 0.86 km . per second, and an approaohing velocity of the same amount on the south-east side, the position angle of the north end of the spectrograph slit being 314°. The spot photographed was in latitude $9^{\circ} \mathrm{N}$, and was $3 l^{\circ} \mathrm{W}$ of the central meridian

The appearanee of the lines in this photograph at once suggested a rotation of the absorbing gases in the spot, not a vortex motement but a rotation of the spot as a whole about a point at its centre. The lines seem quite straight over the spot, bat inolined one or two degrees to the undisturbed lines.

The hypothesis of circular motion of any kind has proved, however, to be certainly untenable. From an examination of about 150 spectra obtained since January 7 and representing seven spots in the northern hemisphere and four in ihe southern, the following statements may be made :-
(1) All the spots examined show line-sbifts of about the same order of magnitude, when at the same distanoe from the centre of the diso
(2) The displacements disappear when the spot is within 10° of the centre
(3) The displacements are most evident when the spot is between 30° and 50° from the centre of the dise, but are difficult to photograph when quite near the limb.
(4) The displacements are of opposite sign on opposite sides of the central meridian when the slit is parallel to the solar equator.
(5) The displacements are invariably towards the violet on the preceding sade of a spot, towards the red on the following side, when the spot is east of the central meridian; the reverse when west.
(b) Southern spots show the same direction of movement as northern.
(7) No displacements are observed when the slit bisects a spot in a direction at right angles to a line joining the spot and the centre of the sun's disc.

A hypothesis which seems in harmony with all the facts here stated, is one which attributes the displacements to a radial movement outwards from the spot-centre. The motion mast be essentially horizontal, or parallel to the sun's surface. This is shown by the total disappearanoe of the line-shufts when the spot is near the centre of the disc. The hypothesis of a vortex, or rotation of any kind, about an axis perpendioular to the son's surface, is negatived by the fact stated in paragraph 7, for it is evident that for a circular movement a nodal point should be found when the slit bisects the spot in a direction passing through the centre of the son's diso, the maximom displacement occurring in a direction at nght angles to this. This direction of the node, however, differs from that aotually found by about 90°.

To obtain evidence on this crucial point, advantage is taken of the rotation of the solar image due to the action of the heliostat. Thus, in the interval between 8 A.m. and 5 r,m, the position angle of the slit, which is fixed truly vertioal, ohanges through about 100°; the north end of the slit passing from P.A. 300° to 40° and being at 360° at soler noon. Different sections through a spot can therefore be obtained by simply taking a suocession of photographs at intervals throughout the day. Now it has invariably been found that the displacements diminish in amount from 8^{h} up to about 11^{h} when they generally disappear entirely, reappearing with opposite signs in the afternoon; but the time of no displacement does not ocour exactly at solar noon, and the evidence so far obtained indicates that the line of nodes coincides with the direction at right angles to the line joining the spot and the centre of the dise, as it ahould do if the motion is radial.

The whole of the evidence obtained up to the time of writing, is presented in the acoompanying table. In this all the photographs obtained are entered in the order in whioh they were taken, with the exoeption of a few duplicate exposures made on the same spot at the same time, whoh are omitted to save space. The third oolumn gives the calculated position angle of the north end of the spectrograph slit; the fourth oolumn gives the reference number of the spot; the succeeding oolumns give the approximate latitudes, and the longitudes reokoned east or west of the central meridian. These co-ordinates were read off from the daily spot-oharts prepared at this observatory. The column headed "Shift at north side of apot" indioates by the letters V and R the direction of the displacement, whether to violet or red, and the small letters following give a rough idea of the amount of displagement, viz, $l=$ large, $m=$ medium, $s=$ small, and $\operatorname{tr}=a$ just appreciable trace.

The following points are evident from the table --
When the position angle of the north end of the slit is between 297° and 330°, eastern spots always give a violet shift on the north side, western spots a red shift.

Between 330° and 360°, the shift is either absent, or very minute in either direction.
From P A 20° to 70°, the alifts are, with one doubtful care, to the red for an eastern spot, and to the violet for a western.

Finally, spots near the centre show no shift at all.
Since the position angle of the slit when no displacements are observed is of fundamental importance in determining the character of the movement, it may be well to refer in detail to the photographs bearing on this point Take first the eastern spot, No. 1595, on January 27: sux photographs of a central section of the spot were obtained at intervals during the day. The exposure times, position angle of the slit, and observed durection of shift are here repeated as follows:-

The change from a violet to a red shift oocurs between $8^{h} 57^{m}$ and $11^{\mathrm{l}} 27^{\mathrm{m}}$, when the north end of the slit was between position angles 312° and 346°. Assuming the mean angle, the ohange would have occarred at P.A. 329°, or 31° to the west of north. The position angle of the spot, meusured from the centre of the dise, was $60^{\circ}, i e ., 60^{\circ}$ to the east of north; therefore, the angle between the line of nodes and the direction of the oentre of the diso would be $60^{\circ}+31^{\circ}=91^{\circ}$.

Again, take the western spot No. 1591 on January 26. This was photographed four times, and the ohange from a red to a violet shift occurred between $12^{\mathrm{h}} 2^{\mathrm{m}}$ and $14^{\mathrm{h}} 27^{\mathrm{m}}$, or between P.A. 353° and 25° : the mean angle between these is 9° to the east of north, and the position angle of the spot was 88° west of north,
so that the angle between the line of nodes and the centre of the diso is 97°. I summarize below all the instances where the shift was observed on both sides of the line of nodes:-

The estimate of the time when there is no shift must neoessarily be extremely uncertain oonsidering the small amount of the displacements, even when at their maximom, and the accordanee in the above table is really remarkable, and testifies to the sensitiveness of the eye to very minute deviations from straightness in the speotrum lines.

It may be well to mention here that tests of the reality of these minute line-shifts have been applied in two ways First, by photographing the spot spectrum in the red, in the region including the well-known group of solar and tellurio lines used by Doner and Halm in their determinations of the solar rotation. In this group, the telluric oxygen lines are very narrow and well-defined, whilst the solar iron lines are comparatively broad, and are indeed muoh widened in spots." Since the displacements are muoh more conspicuous in the finer lines of the spectrum, the oxygen lines should show the effect strongly, if it is spurious. In the photographs, however, they are found to be absolutely straight, whilst the iron hnes beside them are bent.

The second test was applied at a time when the slit was approximately in the position angle of the line of nodes for a spot which was east of the central meridian, and photographs of a central section of the spot showed no shift. Photographs were then obtained of the preceding and of the following edges of the penumbra Here the line-shift should be at a maxmum, and, as expeoted, the lines were found to be evenly bulged, to the violet on the preceding edge and to the red on the following edge.

It is somewhat disappointing, perhaps, that the hypothesis of a radial movement in spots, whioh is so strongly supported by these observations, seems entirely out of harmony with the splendid discovery of the Zeeman effect in sunspots made by Professor Hale. This seems to demand a vortex, or at any rate a circular movement in sunspots; and it was only after a considerable amount of evidence had accumulated, that the preconceived conviction that the motion must be circular was abandoned. A consoling feature of this new theorv of spot movement is that it seems to explain the radial struotase of the filaments in the penumbree of spots, and the radual disposition of the oalcium flocouli mmedataly surrounding a well-developed symmetrical spot. It also harmonizes with the well-known tendency of the principal spots in a group to separate, the leader advanoing, and the follower receding.

A diffoulty should also be mentioned. When the slit centrally bisects a symmetrical spot, in a direction approximating to that giving the greatest shift, the dısplaced lines appear quite straight, as before mentioned, and inclined to the undisturbed lines, the greatest shift ocourring at the outer limits of the penumbra. This seems to imply accelerating movement, from the centre of the spot outwards, yet at the limits of the penumbra the motion apparently ceases abruptly. It is hoped that further research will throw light on this and other nbsoure points.

[^1]
Kodatkánal,

3rd February 1909.
J. EVERSHED.

LINE SHIFTS IN SPOT SPEOTRA.

In the fourth column a and b refer to the preceding and following members of a group.

Addendom-February 23.

Since these observations were made a device has been added to the speotrograph by means of which the sun's image oan be rotated on the slit through 90°. The results obtained in this way leave no doubt whatever as to the position of the line of nodes, for wherever a spot may happen to be situated on the diso, outside the limit of 10° from the contre, where the shift becomes inappreciable the motion is always found to be greatest when the slit bisects a spot in the direction of the centre of the diso, and to disappear altogether when the slit is at right angles to this direction.

The greatest shift observed with the slit in the direction of the centre of the dise was on a plate exposed on February 4, representing a spot in longitude 41° west, and latitude 7° north The spectrum includes 100 units between $\lambda \lambda 4782$ and 4885 , and all the lines in this region show the motion shitt, with the probable exoeption of H_{β}, which is as usual narrowed in the spot, but seems otherwise unaffeeted. All the lines are not equally affected, but a large proportion are inchned over the spot a little more than one degree compared with the normal direction of the undisturbed lines. This corresponds to a maximum displacement at the outer edges of the penumbra, on each side, of $0.017 \AA$, indioating a velocity of approach on the following side and reoession on the preceding side of the spot of 1.05 km . per second. But this is the component of velocity in the direotion of the earth. The aotual velocity parallel to the sun's surface is found by dividing the observed velocity by the sine of the angular distanoe of the spot from the centre of the diss, whioh was $4 \approx^{\circ}$. Thus, $105 / 0 \cdot 67=1.57 \mathrm{~km}$. per second. This represents for the majority of the lines the maximum speed attained by the projected matter on reaching the outer limits of the penumbra. Some of the lines, however, indicate a speed of over 2 km ., and others under 1 km per seoond, whilst it is possible, from the behaviour of H_{β} that the elements in the higher ohromosphere do not share in the movemont.

[^0]: * A Bowland gratiog of 3,2 inohes ruled sorface and 14,458 hnes to the inch.

[^1]: - The Fe line at 6802.709 is seen to be beantifully doubled in the thurd order spectrum of all spots examined by me.

