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ABSTRACT

The theory of time-dependent radiative transfer
is important in the studies of transient phenomena
taking place in some f the astrophysical objects,
Time-dependence of the radiation field must be
considered if the relaxation time of the radiation
field is comparable to or ionger than the characteri=-
stic changes in the properties of the medium. It
must also be considered if there is a temporal change

in the impinging radiation on the medium,

In chapter I, we discuss the importance of the
characteristic time scales which occur in the theory

of time-dependent radiative transfer.

In chapter II, a numerical solution for the
monochromatic time~dependent transfer equation is
presented for the case when the time spent by photon
in the absorbed state is significant. Two cases are
considered whose boundary conditions are respectively:
(1) The surface of a plane-parallel homogeneous medium
is illuminated by a pulsed beam, (2) the surface is
illuminated by a constant radiation input from time
t = 0. We investigated the effects of these boundary
conditions on the emergent and the reflected radiation

from the medium,



Il

In the case (1), we found that the time-dependent
reflected radiation falls more rapidly forfk= 0.2
compared to that of A = 0,7. Mere M 1is the cosine
of the angle made by a ray relative to the normal to
the surface . For the case (2), time-dependent
reflected radiation reaches steady sate faster for

’J\. = 0.2 compared to that of ILq = 0.7.

In chapter I1II, we consider a homogeneous medium
where the time spent by a photon between successive
acts of scattering is significant. The numerical
solution based on “the method 0f characteristics is
presented, For the case when the medium is illuminated
by an 1sotropic radiation, the time at which the rela-
xation of the radiation field to steady state commences
depends on the optical thickness of the medium. It
also depends on the angle at which the radiation

emerges out of the medium,

In chapter IV, we present numerical methods for
steady state as well as time-dependent transfer equations
in spherically symmetric media. These numerical methods
are based on finite-difference methods. Numerical
solutions are compared with the known analytical solu-

tions wherever it is possible to do so.



I, INTRODUCTION

1.1 Importance of the time-dependent radiative transfer

New experimental techniques which increased the
time resoclution of astronomical observations has nece-
ssitated the study of time-dependent transfer of radi-
ation. Many of the celestial objects are found to be
far from the state of equilibrium. The analysis of the
time-dependent characteristics of the observed radiation
provides additional insight into the nature of these
objects., 1In particular, time-dependent transfer effects
will be important in the study of the objects like
atmospheres of supergiant stars, active galactic nuclei,
Quasi~stellar objects, supernovae, nova like variables,
planetary nebulae, and compact objects with accretion
disks. They may also be important when the source of
energizing radiation is intrinsically occulted, or

reinstated, as in planetary atmospheres.

Two important quantities characterize the time-
dependence of the radiation field. One quantity is the
time spent by a photon in the absorbed state, el and
the other is the time spent by a photon between two
consecutive acts of scattering, tz . Usually one
of these ¢l aracteristic times is dominant and
determines the temporal characteristics of the radiation

field .



For a resonance line transition, t‘, is usually of the

8

order 10~ sec, tﬂ_ is equal to ' .where K

KncC
is the absorption coefficient per particle, T is

the number density of the particles and € is the
velocity of 1ight, In a low density medium like
planetary nebulae, for a resonance line (e.gq. Lo( Ve

-12 2

we have fng_:[, K~>10 » then t,_ ™ 10 sec.

Time-dependence of the radiation field must be
considered if there is a sudden change in the impinging
radiation field on the medium or, if tl or €1 is
long compared to the typical time scales in which the

atmospheric system is changed.

Time-dependent radiative transfer for an isotro-

pically scattering medium in a planar geometry is given

by
O (z,t)+ M _ . QIGRE
) 2= {4~ I L
ta(2t) S () ) X pzt) | Oz
t

— : —(t-¥)[t \ Lo
+ I3 )= .‘Lj e /’I(z,lwt)d)“d—é-

o]
+ (1mw) B(= t)] —l<HL] )

Where I(Z, l\-‘,‘l:) is the specific intensity at positionz
and at time £ in the direction Coglﬂ (HG [‘hl])



(_4)('2, t)is the albedo for single scattering and B(Z,l:)
represents the thermal sources. A 3 the mass
absorption coefficient and /O the density of the
medium could be functions aftime and position and
require the determination of the non-steady state

populations and dynamics of the medium.

1.2 Descriptions of the problems studied

(a) Transfer in a plane-parallel medium

If the properties of the medium are constant with
respect to time and position, the equation (1). is
amenable to analytical and semi-analytical treatment
under suitable approximations. Most of the techniques
are based on (1) first Gaussian approximation or
Eddington approximation (Code, 1970, Code & Eason, 1970)
(2) principle of invariance or theory of invariant
imbedding combined with Lapalce transform technique
(Matsumoto, 1974, Bellman et al,1964), (3) Theory of

successive scattering (Matsumoto,1976,Ganapel,1979,1981),

But most of these analytical methods deal with
homogeneous semi~-infinite or finite media. It is difficult
to extend these techniques to time-dependent line transfer
problems where the ratio of time intervals to optical
depth intervals vary with frequency in the line. Also
most of these methods are restricted only to plane
parallel media. So there is need to develop numerical

techniques which can handle easily the problems of finite

inhomogeneous media.



We used numerical techniques to study in a
systematic manner the time-dependent radiative transfer
in a medium with given properties. 1In chapter I1I, we
solved equation (1) by considering only the time spent
by a photon in the absorbed state. Under this assumption
time derivative term vanishes from the equation (1). We
developed a numerical method based on discrete space
theory of radiative transfer (Grant and Hunt, 196%9a). We
studied the intensity distributions due to the changes
in the impinging radiation on the medium for wvarious

optical depths.

In chapter III, we considered a situation where
the time spent by a photon between successive acts of
scatterings exceeds the time spent by a photon in the
absorbed state. Since we have b:'-—70 equation (1)
reduces to
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To solve the equation (2), we have used a finite diff-
erence scheme based on the method of characteristics.
We considered a homogeneous time-independent slab illu-

minated by an externally imposed radiation field which

(2)



enters slab at time t = 0. The medium is assumed to
scatter photcons isotropically. Mihalas and Klein (198 2)
showed that a finite difference method with non-constont

el

space and time intervals cannot accurately rcpresent a
propogating unscattered wave front. Hence we have

d .stinguished diffuse radiation field due to one or
more scattering processes from the directly trarsmittel
radiation. We have shown in a grsphicel form the re-
laxation to the steady state of the diffuse emergent
radiation, and reflected radiatiorn from a finite slab
with a given optical depth. Also the extension of the

method to the resonance line transfer under the assum-

ption of complete redistribution is presented.

1.3 Transfer in spherically symretric medium

The assumption that the medium is stratified in
plane parallel layers holds good only when the density
scale height in the atmosphere is small compared to
the radius of the star. But many stars, such as,
supergiants, Wolf Rayet stars have extended atmospheres.
Atmospheric extension has important physical and cbser-
vational implications., The stars with extended enwvelor«
exhibit (see Underuill, 192¢) features such as ~iluticen

effects, »nresence of large numbers of Balmer lines,

<



forbidden lines etc. We can assume that the atmos-
pheres of these stars are spherically symmetric. We
27
have an additional curvature term - 5:[ in
TH
the steady state transfer equation. In addition, if
time-dependent effects are important, we have the

additional time derivative term and an exponential

relaxation factor in the scattering integral.

In chapterlV, we presented a method to solve the
steady state equation in spherically symmetric medium.
Also a first order difference scheme is develcped
for the time-dependent eguation under the assumption

that £, &< £, " have checked our algorithm for

few test cases.



CHAPTER II

EFFECT OF THE TIME SPENT BY THE PHOTON IN THE

ABSORBED STATE ON THE TIME DEPENDENT TRANSFER

OF RADIATION

2.1 Introduction

In this chapter, we shall present a numerical
solution to the time-dependent monochromatic transfer
equation when the time spent by a photon in the
absorbed state is significant. We have considered the
cases where a slab is illuminated by a pulsed beam of
radiation and also by a constant source of radiation,
We studied the emergent and reflected intensity distri-

butions for the various optical depths of the medium,

Milne (1926) derived the transfer equation in his
investigations of the diffusion of imprisoned radiation
through a gas. He considered a slab of mercury gas which
is illuminated by light for sufficiently long time for
the gas to reach a steady state. If the source of
illumination is suddenly cut off, the radiation field
in the gas will not cease instantaneously due to the
fact that the atoms of mercury will decay with a
finite mean life time. Chandrashekar (1950)solved this
problem and obtained a solution which is expressed in a

series form.



Sobolev ( 1963 ) obtained the reflection function
by considering the time spent by a photon in the
absorbed state for semi-infinite media through the
probabilistic arguments. Using the time dependent
principle of invariance, Matsumoto (1974) studied
the reflected intensity distribution from a homogeneous
semi-infinite atmosphere when the time-~dependence of
incident radiation field is expressed by the Heaviside

unit step function,

In section 2.2, we shall present a brief description
of the Milne's derivation of the transfer equation
(cf.Chandrasekhar, 1950), and in section 2.3, we shall
present our numerical solution to the transport equation.

We shall present the result and discussion in section 2.4.

2.2 Derivation of the transfer equation

Let suffixes 1 and 2 denote respectively the normal
and the excited states of the atom, The Einstein coeffi-
cients B12 ¢ A21 and B21 can be defined in the following
WaY. Bl2 Iv is the probability, per unit time, that
an atom exposed to isotropic radiation of intensity
Iydy in the frequency interval (¥, V+ d~v )will absorb
the quantum h+y and make a transition to the state2 .

A21 is the probability per unit time, that an atom in



the state 2 will spontaneously emit a quantum hy ana
pass to the state 1, and le I, is the probability
that the same atom will be induced to undergo the

same transition. The Einstein coefficients are

related by
A‘l\ = 2h '173 3,
By SalEN 7Y
amd
Bll —_ 8! (2.1)
' 2

where 94 and g, are the statistical weights of the
states 1 and 2, c¢ i1s the velocity of light and h is
the Planck's constant. The Einstein coefficients are

properties of the atam only, and are independent of

the radiation field.

If c—-(v) is the atcuic absorption coefficient

for frequency ), then

fo—-c ‘))’) d'vl = Btl-—bﬁr {(2.2)

where the integral is extended over the absorption line
corresponding to the transition 1— 2. By assuming
that the absorption throughout the width of the line

is uniform, We& can approximate the relation.
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(2.2) by

= By hd
—(»)57 = e il (2.3)

Let ), and Mg denote the mumber of atoms per unit
volume in the states 1 and 2; Also T\ and N2 vary
throughout the gas and are time dependent. Let a pencil
of radiation of specific intensity Iy traverse a path
length &S through the gas. Counting the gains and
losses of the radiation through a path length

we get

dIv :[ . +85,19) =M1 8, Iv] h?
4y 932 =M1 (Azi+85,17) Y e (2.4)

where the quantities multiplying Mg andN; represent
the number of emissions and absorptions (per unit time)
of the quantum h+< . Dividing the equation (2.4) by

P12 h'QILFIT and making use of the relations (2.1)

and (2.3 ) the above transfer equation becomes

- V .5)
c—dS q2 < % e

The excess of the number of absorptions over the number

of emissions must equal the rate of increase of the



number of atoms in the excited state. Hence

’T)IJB;:.I)?%‘-% — j(AlH-Bz; dL:;T? %ﬁi (2.6)

where the integration is extended over the whole
solid angle. We shall define the mean intensity

of the radiation by

I’:i‘ﬁflv dw

By dividing the equation (2.6) by B;, and rearranging

the terms, we get

g2 < g < 92 ot (2.7)

Assuming that 7);777 M1 and time independent, equations

3
('n, Mg )j _2hP g m, = 2hy G A
(2.5) and (2.7) can be written as,

A1y — __19-1—2\%)3 v N2
™ 4s c2 92 M (2.8)

and

__T'v: 2—")ﬁ3 3 __L_.(fnz_’_ oMz ) (2.9)
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We assume that the medium is stratified in plane
parallel layer in Z-direction, and &note the
cosine of the angle made by ray with the normal

to the surface by M

Defining
3
c* 37_ Ny
and the optical depth O\ T =— Az

2quations (2.8) and (2.9) reduce to

T %%m'” = T(ew M) ~N )
O el

and for the oppositely directed beam,

I\J dl(tﬂ ) = ICtZ ﬁ> NO:PC) (2.10)

O LML

and

J(t7)= N U/“‘)"",’ALII ”a"éué

(2.11)
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Integrating the equation with respect to the time

from 0 to t, and simplifying, we get

-A t Avk [ A € )
N(ER) = N(0T) e o Ay € & (Er) 4t

0 (2.12)
Assuming that initially all the atoms are in the

ground state, we have N (O;T):—lo. FPurther writing

ﬁ‘ = -—/]’\—2’ and substituting for N(tft') AN C2- iO)
We get L

d I — (.t *-‘)}il §
+ M (e,z,-r/u) = T(tmp) —+ (4) At

° (2.13)
..+.| k)
Also one can see that—-—E- is the probability
)

that a photon absorbed at €=0 will be emitted in
the time interval ( £, L+d t)

2.3 Method of solution

In the following section, we shall describe the
solution of radiative transfer equation in detail.
First, we shall introduce the Interaction principle
which explains the relationship between the input
and output radiation fields from a given medium. We
shall follow closely the two papers of Grant and
Hunt (1969 a,b).



L.Interaction Principle

We divide the medium into N shells.

we define upward and downward directed intensities

U‘-C"C-n)’ O-(.T‘n} Let [ Dbe the cosine of the angle
made by a ray with the normal to the surface in the
dlirection in which the optical depth increases.

select a finite set of values of f‘* . [uJ : Ié_'\ <M,

o< HI<H1"'N“‘"}nd write U-'-(-CY\) .

as vectors in m-dimensional Euclidean space

UT(™) =

B 7]
0" (tn, M)

G(Th, th)

__J »

—

U(tm) —

consider a shell bounded by layers M

as shown in Fig.1(a)

o 21

and J (TY\)

pe—

O (m,N1)

L (Tn N

At any level

We

'
ven— p—

and m+1

Lo

Un 1

> (nei)

out put inlm -

tnawswitled
amd N« Keeted + bom inlgainal

c oty budign

-gidies = o -
imbdent imler g
7 -8 Lieg runees
+ l T ‘l' =+
Unt) Umn+ 5 (m+,m)
b l T —
UT\HI ¥

Fiq 16

14

(2.14)



The intensities impinging on this layer are Lf%ﬁh)

and \I'(Tnﬁq) . The intensities emerging from
the layer U+<Zh+l) ; U—CZ'-“}, . depend

linearly on the incident intensities and on the sources

z—f (Z—h-ﬂ ) Th) J T—C Ch,‘(—n.ﬂ7 present within the

layer. Then we can write {(hereafter, we shall omit

K and retain its subscripts only)
- L+
U-tnﬂ: t(h—ﬂ, m) G AL (121) One 2 (ntym)

Um = N(ntim) Ot () Untl +5 (ner)

[ 7
k};+l ijh

= S(mam) + S5 (nne)

Un Ut
|

The pair t(n+l,n) and t(n,n+l) are the linear operators
of diffuse transmission and r{n,n+1), r(n+l,n) are of
diffuse reflection. Eﬁuations (2.15) and (2.16) are

called the Principle of Interaction.

Now that we have obtained the response function
for a layer of specified boundaries, we shall proceed
to calculate the response function for two or more

consecutive layers, a process termed as "star product”.

(see also, Redheffer 1962).‘

(2.15)

(2.16)
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II. Star product

Let there be two layers with boundaries T, Tl
and Twm4o where Ou & Tn & Ontli ST'h+1é.[3' Then

from equation (2.16), we have

— _ . -
+ +
Nti Un
= S(nn+) +3 ()
Umn Umnti
| s L —
and
-+ G’hﬂ
Un+a
- S(’)’)-tl,'r\-r?.) +z (h-fl,ﬂ'rl—)
U_'nﬂ Un+2 (2.17)
- ] | -
As  Un, Tnrn 2nd T+ are arbitrary, we can write

again using the interaction principle,

| Ut L
— g (h,mz) + z (nm“-)

Um Un+2 (2.18)
- | - .

- s
£ (n+zm) (m n+2)

n(ntm) t(mmn+a)

b
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can obtain (2.18) by eliminating U%r_,” and Un-\-l
sm (2.17). The relation between S(n,n+1),

n+l,n+2) and S(n,n+2) is called 'Star-product®

two S-matrices,
S(mn+2) =S (n.n+)* SCov,nt2)

so -

(n+z,m) = t(t n+) [I— n(nnt) N (mzmﬂﬂ t(n+,m)
=1
(T\, M+2) = t (m, n+l) [_I - (’m-z,]‘)ﬂ) TL(an)] t(nﬂmna

(ram) = nm)rE () frem)
[1— (M, ML) n(nw-,mﬂ] t(jn—lm)

l(”n, “0’)1-2) it T]_('n'rl,'fli-l) + t (Tn—z,“m—l) 71(71;'6\1-\)
-1
EI - '71(77+ 2, 'nﬂ) TL('n, Tlﬂ)] t (7,*4, rn,.;_)

(2.19)

here I 1s the identity operator.

Let us consider the source term z . The
esult of adding two layers may be written in terms

I
f two linear operators /\(’h,'}\fl,ﬂ-ki-) Ouhd/\(‘n,‘nfl, m-z)

> (‘nmn) = A (e, me) S ()
-+ /< (h, M+, 'YH'?-) ZCT\H)YH"?-)
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[ =1 _
where t(‘m—lmﬂ) L_I-n('h. n+l) Tl(m'l,’nﬂ)] O
/\(Y\:T\H,T\ﬂ.) = .

t (‘nm+s) e (m+ 2,m+1) El—h(nmﬂ) n("nn;m@ I
and — —

- T

1 t (_’h t2, 7]1".) n(_h/T)'H-) E[ -MN (Y\-f-z}h-'-‘)n(’n’nf‘,_l—l
/\'<7),7\+|.T)+2) pol _

O t (D) [I’ﬁ('\'\fzmﬂ) n(m, T\H)]

(2.20) _m

So in practical problem, we divide the medium into N
layers and calculate S for each shell and add them by

star product. We have for the whole medium,

S(LN)=S(2)*SE2% *S(hme) k-~ SN-LN)

(2.21)

A corresponding equation can be written for the source

terms. Adding layer by layer at a time one can calculate

the complete external response,

III-Calculation of the internal Diffuse radiation field

To calculste the radiation field at any point inside

the medium, one has to solve the simultaneous equations

- -
Unn = S(mme) _}-Z(—nmﬂ) (2.22)

U -
i m _Un

] (] &«m<N)
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The details of the procedure is given in Grant and

Hunt (1968) and we shall quote only the results.

Calculate the r and t operators for each shell.
Compute, sequentially, for n=1,2,.ceceee +N, the

matrices r(1l,n) and vectors V'THL ’Vh“}. from

nCLm) = n(nnw)+ t () () EJ: n(n, n)n(sm) t(‘nmf—l)

(2.23)

—+ —
\/—'tull ~ ﬁc\ (erm) \/:—'\i. + 2 <YH—1)71) —sz%_i(h’ T)ﬂ)

(2,24)
et = R e Vi + Ty, 5 (i)
‘ (2.25)
with the initial conditions r(1,1) = Q, V;= U+Ca':)
and where
_4__ (7\1“ 70 t (’Y\—t—\ 7\) [I 7\0 YD T‘-(T)‘HJY\)‘J
- (2.286)
/\CYH_' Tl) ~ )‘L(nﬂ n) ‘_‘_I‘ “'LQ,Y))T\(YHI,’YOJ
n (2.27)
" RopeL = T (orym) n(m)
nts jl
— h(ﬂf',‘n)m(l/n)
L= LI
. Tl



On this forward sweep, we need to store the quantities
r(1,n), t(n,n+l) which represent the diffuse reflection

and transmission for each shell and \ﬁ%;L ; the
@€

diffuse source vectors.

Now we shall calculate the intensities at each

sStep by computing sequentially for n=N, N=l,N=2,.cce.,
2,1.

_ +
U+ =nHn+t) Upp VT‘*%_

N+l

Uy = @ (n ) U_;m_ "'V’-‘—*“Lz.

with the initial conditions (= U (B.).

We have seen in the previous section how to
calculate the diffuse radiation field of general
physical and geometrical properties. Also the
calculation of diffuse field requires the correct
estimation of reflection and transmission matrices
for each shell or partition of the medium., We
shall calculste the r and t matrices for the
medium where the time spent by the photon in the

absorbed state is significant.

20

(2.28)

(2.29)
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IV. Calculation of Transmission and Reflection

operators in a shell of given physical properties

We have seen in the section 2.2, the transfer
equation for a plane-parallel medium when the time

spent by the photon in the absorbed state is signi-

ficant is given by ) . i
-(t-t')[t g )
M %—I; = Ii(t,z,i;“)—-O'S fL )/ ‘ I(t,'c,p)c__%c{lu
o -1
0 < ML

Sometimes, it is convenient to distinguish between

the reduced incident radiation g(t,’L,'“ ) which
penetrates to the level T at time t without suffering
any scattering or absorption and the diffuse radiation
I( &,7T, M ) that results as a consequence of one

or more scattering processes,

Then the transfer equation is given by

tE +1

ORnd
o —1

- Jezp)

(2.30)

! \ ' |
+ M 91 — T (¢, iw)__ o5 ;U‘-—"-)/t. I(e,'z:,r)a_\_éolr

!



Though we considered only isotropic phase function,
the extension to arbitrary phase function is
straight forward. Also we assumed only conservative

scattering atmosphere without any thermal sources

Present.

For a slab atmosphere with no radiation falling

on the top, the boundary conditions for the equation
(2.30) are

T(t,z=T.-N) = T(6 M)

(t,'Z‘zOJ'!“)
C)LP<) (2.

where f(ﬁ;f*) is a given function of t and ﬁi

We shall approximate the angular integral in

equation (2,30) as
)

J
1(tz, 1) dp Z L(E, v ) <

(2.
o
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Where the coefficients Cﬂ and cosines PU are

determined by Gauss-Legendre quadrature of order J.

Integral over time is approximated as

¢ T ./
j f’tlt'l(t’, )t > €t¢$l<t€ T, M5) O

=1
o C (2.33)

for J': b, - J

Incorporating these approximations in (2.31),

We get

= L3 I (2.34)
Defining
poo 0
' o
o M2
M=1T L
0 Mg o
o - ‘ H}"
| ~ JIXTET
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T3 ..
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One can write the system of equations(2.34) as
(By meMnr +p in tha im.cnaua'-n? v dj-recb‘n)

M 20T 4 (F= 05| Te (UH0)[-6@

oT

M o8 4y =05 [T(Jr)[-0e
AT

(2.36)

we shall integrate equations (2.36) from (4 Zo Tnt)
and write their corresponding discrete equivalents

as

ML Unti = Un [+ %y Gy 0'5 Erc (G Gﬂ@
— G C(n«‘%_)

— G (—C')\'tjz_)

where

Z;wli = They— T @-37)



Ve shall use the diamond scheme to approximate

A +
the quantities U ’0“5_ as

U-:)t’l’fli = O|5[U-?!‘-]-+l+ U:J

(2.38)

Then equations (2.37) become,

M[Uhtp "Jh + 09 T“*l; (U”;H-t- J-n) = o.')_sT(_ ( *3- C)-,DTW,&

Nty
(2.39)

— M ’:U-'m-'— 07‘1] + 0.5 'Zn*_(i(gh,‘_ I+ G'n) :O'ZS T¢ (C{;H-}— 0,;)Zn+.t

+025 T¢ (Gmﬁ Gh) Tl — Gimely Tney

(2.40)

Rearranging the terms, we get



[[V] +0-5Tnty (I-0'5 TC)] Ut — 025 Tc UnTney

= 0-25 TC Uny Tmey + DV] — 05 Zney (I—O'STCﬂ(j‘n

- e
Cﬂh+& hf%

-— -+
‘:r[VY ﬂ-C)'E;7:THn%.<t[“C)'5 1255] ()73—-C)'ILE;-TC ()11+|7:n+§:

- 025 T¢C Umn Tney T D"l “O‘STN%_(T"O'STCHGW

Here I is the identity matrix of appropriate dimension.

It is now straight forward to put these .equations in the
canonical form

P

_ i - 4 -
U, t (n+1,m) n(maa) s
-+

P

I

_ +
Un - -
] ] _h(hﬂm) E (T),Y)-HL bUmj Z"mii

(2742)

Now we shall express the r and ¢t matrices in terms

of the following auxiliary matrices.
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+
@"rHJi =05 TC

+
S = M — Q05 thtd (I" @\-‘7}9
-g_ = O'S Imty @jmll

and

|
A :[M +4 Ty (T- @,;,Liﬂ
~|
7“L+‘-“- N < ,} t‘r___[ T-nt 71*]
£ (meym) = £ | ATS it AT

E(ntl) =€ (nt1,M)

(e = 2 €85t AT
n (T\mﬂ) = 9‘1_(7\‘!‘\;’“)

and
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From physical considerations, we know that
reflection and transmission operators r and t must
be non-negative. For this we need z&*}yCL

E;*.27<) and we can achieve this if

M

| O
“i_'(“TJJCJJ)

4

T &£ Tenpt = Mimy

(2.44)

So with the help of these transmission and reflection
matrices, one can obtain the radiation field as

described . previously.

Specific cases conslidereds:-—

The transfer equation is solved with different
types of boundary conditions. The various cases

considered are given below.

Case I 13 Two stream approximation with an incident

pulsed beam on the lower boundary of the atmosphere i.e.

T(¢t, T=T,-M=1) = &)

where f;({)is

Dirac~Delta function.,
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I(t,fzoz"rl\‘:l):o (2.45)

To avoid including the highly singular function

( the 8 -~ function distribution) in the equation,
we distinguish the diffuse field due to one or more
scatterings from the reduced incident field without

scatterings. The equation of transfer for the diffuse

field is
_+
+ 01 (67) + T (&7)
[ l
— Ao | =)k -ttt —(7)
— 05 - / (I‘f’_’_f)q‘—g_‘_o.Sf e
t, t,
o)
(2.46)

where + and - denote the two oppositely travelling

beams of radiation.

Case II : If we consider the full angular scattering

of the radiation, we have for the diffuse intensity
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uilly A (6T LT (M)

at l
t (t t')/i: ; el )/*4’
- - ] ' ' ! ’ . ~&f et =y
= 0'5{f f](e, z,p)e_é:é:_%f«+<l£_'5f ft Ap
o —1 °
(2.47)

with the boundary conditions

I_<t, z=T, /V) = 0
]11'<.tﬁ Z=0 fﬂ) =0 O 4:f4‘1)

Case III : Search light beam with Dirac-delta time
distribution is also considered. The incident field

is given by

TCET=TN) = () 8( o)

It zee }) =0

(2.43)

The transfer equation for diffuse intensities in thiz

case is



with
T (t,T=T,N) =0
TT(E,zzoM)=0

For checking the numerical results, we can make use

of the following relations

Denote

o0

=+ —~
_I (:éJ/WCJf“) C4t':: ]: i(:7: Fq)
®)

By integrating equations (2.48), (2.47) and (2.49;
with respect to time from 0 to o0 , we obtain the

following steady state equation for various cases.
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(2.49)

(2.50)



For the case I,

QT

:\[_’Jr(‘C:o) Lio
T~ (T=7)=0

For the case II, we have

J

T fi:osJICaw
sj ”
o)
f+<'(="0//”) =0

T (T=TN)=0

for the case III,

!

(1-T) /fo dp(

with

-+

T AT @T" + 1= o-sff(zf/‘*')d |

+ 05 %CT‘C)/“"

~r . - (17)
T 2l 417 =0 S(I*-rI )+os €

(2.51)

(2.52)

(2.53)



with

T (T=0, M) =0

j“ (7f=_T/P4) =0

The equations (2.46), (2.47), and (2.49) and the
corresponding steady state equations (2.51),(2,.52)

and (2.53) are solved. The steady state solutions

are also obtained by the method of Grant and Hunt (1969a)
The time dependent solution I(t, ”z,rJ ) is integrated

with respect to time and checked against the steady

state solution as given below,.

0

+ A ! X
1”(t,~c, ,\4‘)01 E = IYT,M
(2.54)

The maximum deviation from the’ steady state value'is 15%
which is fact that the above‘+time integration

is truncated at a finite time 1limit.



Case IV: We also considered the situation where the
incident radiation distribution with time is given

b7 Heaviside unit stap function H (t).

) —+

U+ 21(6Y) = IT (1)
QT

t
— _(_)_z_'_fg [‘é(ﬁ“‘-)/&, (iv-,.({')‘f)'*‘f’—(f'lff) aq_l_:l

o (2,55)

With _
T (t 7=7T) = H(#)
T (€ T=0) = ©
where H(4)=0
for £ L0
H (£)=] for o 70 "
z t
l‘!| > '_t_' s — N _ ! / I \ /
O xp A== (6Tp)-o SJL-“ Q/*'/I(am r*)d_t%‘.}
0 =
O .
with <‘H l

T (6 T=1, M)= B ()

6o M) = 0 a.s6
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As intensity distributions reach steady state after
sufficiently long ttme, one can check the steady

state values from the following equations

+ o1 - I:t(ﬂ“o’s(ﬂ}f
+ =
with I“(‘Z:'T):\
1" (7=0)=0
and + 1
: |
1;~«§_Li: Ii('c,r)"o‘g I(z M) 4p
T -1
with +
T (T=0,M)=0
- (T=T, M) =
I (w1 1) oL ML

Let JClcilenote the time spent by the photon in the
absorbed state and tl is the time spent by the

photon between two successive acts of scatterings.



Van de Hulst and Irvine (1963) pointed out that

the non-stationary problem for €220 (infinite
velocity of propogation) and t]?O (time spent by
the photon in the absorbed state is significant)

is equivalent to the problem of finding the distri-

bution of photon over the number of scatterings.

2.4 Results and Discussion

The numerical results are displayed in graphical
forms for all the cases. In all the cases, we have

assumed t) = 1.0.

Figsl and 2 illustrate the reflected intensity
distributions for the two stream approximation when
the medium is illuminated by a pulsed beam, The
reflection function due to Sobolev (1963) for the semi-
infinite medium is also plotted in Fig.2. Reflected
radiation starts at time t = 0 with the value 0.25 D" éﬂ].
We see that it falls more rapidly for T = 1, Also
for the semi-infinite medium the radiation drops down
gradually compared to a medium with total optical
depth T = 2. This is because the photon spends more
time in a medium with higher optical depth. Diffuse

emergent intensities are plotted in Fig.3 and 4
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respectively. At time F = O, the intensities starts
with the value 0.5 ]'Q;r * We see that the time

at which it falls by -}é is 1.6 and 2.6 for

T =1 and T = 2 respectively. From this it is
evident that emergent intensity for the medium with
T = 1 decays faster in comparision to the medium

with T = 2. Similar interpretation can be given as

in the case of reflected intensities.

When isotropic pulsed beam of radiation falls on
the medium, the emergent and reflected radiations for
optical depth T = 1 are displayed in Figs.5 and 6
respectively. A photon reflected at the grazing
angle (M = 0.2) can be regarded as coming from the
shallow layers of the medium, Hence it éiperier
few scatterings and spends short time before it re-
appeares on the surface., On the other hand a photon
reflected at an angle nearer to the nommal ( /M = 0.7)
can be regarded as coming from the deeper layers of the
medium. Hence it experiences more number of scatterings
and spends. longtme till its reappearance. Due to this
reason, the reflected radiation ﬁor/-{_-: 0.2 falls more repidly with
time compared to that for M = 0.7. But the photons

emerging from the atmosphere along the direction M= 0,7,
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experience few scatterings which results in the slow

dropping of the emergent intensity distribution for

r&_: 0.7.

When the pulse€d beam in a specified direction angle
/4O= 0.5 is incident on the atmosphere, the correspond-
ing reflected and emergent intensities are displayed in
Figs.7 and 8. Even though the decay of the reflected
radiation for}4= 0.2 is almost identical to the pre-
vious case, we find for fc= 0.7 there is some slight

difference.

We also considered a medium illuminated by a con-
stant input of radiation. Once the radiation field re-
aches steady state, the illumination is cut off. The re-

sults are shown in Figs.9 and 10.

Now we shall discuss the cases where the medium is
illuminated by & constant radiation starting from time
t = 0.

When the medium is illuminated by a constant radia-

tion field of intensity 1 firom time t = 0, the emergent

43

intensities are plotted in Fig.ll and 13 for optical depths

T#1 and T = 2. Reflected intensities are depicted'in Fig.

12 & 14. Emergent intensities start with the value e'T
and reach steady state after few time units., At time

t = 0, the integral in the transfer equation vanishes and
the formal solution which we get is IoeTTfor the emergent

intensity, wWhere I, isthe initial condition.
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Time during which the relaxation occurs is roughtly
twice for the medium with T = 2 compared to that of

the medium with T = 1.

The angular dependence of the emergent inten-
sities for T = 0,5 and T = 2.0 are exhibited in
Figs.15 and 17, while the reflected intensities are
plotted in Figs.16 and B. If we consider the relative
reflected intensity I(t,0, H )/f(O.,U)(E’(O,N) is the
steady state value) the convergence to unity is faster
forM= 0.2 compared to that for M = 0,7. Similarly,
when we consider the relative emergent intensity, the
ratio approaces unity faster forM= 0,7 compared to the
case M = 0.2. This can be explained by the fact that
reflected photons coming in the direction =0.2 ex-
perience few scatterings and hence spends less time
in the medium. Similarly, the emergent photons coming
in the directionr = 0.7 experience few scaﬁtering and
reach steady state faster. These are in quantitative
agreement with that of Matsumoto (1974). Also one
can se2 that for T = 2.0 the emergent intensity for
M = 0.7 and reflected intensity for M = 0.2 show

steeper variation with time compared to T = 0.5 case.
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CHAPTER III

A NUMERICAL SCLUTION FOR THE TIME DEPENDENT
TRANSFER EQUATION

}el Introduction

In this chapter, we shall present the numerical
rethod for the problem of time-dependent transfer in
v finite slab in which the material density is
sufficiently low so that the time spent by the photon
>etween scatterings exceeds the time spent by the
»hoton in the absorbed state. We have studied the
wonochromatic transfer problem for a homogeneocus
ilab which is illuminated by a constant beam of
~adiation from time t = 0., We solved the problem when
L pulse of radiation (a ? - function in time) impinges
»nn the slab under the two stream approximation. Time-
lependent transfer of resonanc¢e lines under the assumption

»f complete redistribution is also investigated.

The factor ;%E , where X denotes the absorption
roefficient and c, the velocity of light, is the time
ipent by the photon between emission and reabsorption.

v1so /K connects the time derivative with other terms
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in the transfer equation., If it is long compared to
the typical time scales in which the atmospheric

system is changed, the time derivative CDIA,)tis impor-
tant: Klein et al (1976) considered thermal relaxation
time which is given by the ratio of the internal

energy per unit volume to the emission per unit

volume of a gas. They showed that the ratio of thermal
relaxation time to the photon's time of flight is less
than unity for the typical densities in planetary and
crab nebula suggesting that the time deriva tivemay

be important in these class of objects.

Bellman et al (1964)solved the time dependent
transfer problem by the theory of invariant imbedding
and Laplace transform technigue. They obtained
diffuse reflection function for a finite slab whose
surface is irradiated with a constant net flux of
radiation. With the aid of time dependent principle
of invariance and the inverse method of Bellman
(1966), Matsumoto (1974) .obtained the solution for
semi-infinite homogeneous media by taking into
account both tnﬁ:z #O( £, is the time spent by a
photon in the absorbed state; £79 is the time spent
by the photon between two successive acts of scatterings).
Later, he (1976) obtained a convergent series solution

by using Laplace transform and the theory of order of



scattering developed by Uesugi and Irvine (1970). The
series solution is seperable into a time like factor
andd an angle factor. The angular factors are identical
to those developed by Uesugi and Irvine. Ganapol (1981)
developed a time-~dependent solution directly from sta-
tionary solution. Kunasz (1983) proposed an implicit
finite difference method for time-dependent line tra-
nsfer problem.

Recently, Ganapol (1986) presented results for the
reflected photon intensity from an anisotropically scatt-
ering semi-infinite medium taking into account a mean free
time between scatterings and a mean time of temporal

capture,

Many different numerical schemes have been proposed
for solving the time-dependent transfer problems (see
Richmeyer and Morton, 1967). Keller and Wendroff (1957)
proposed characteristic Sn method to solve the transfer
equation in spherical geometry. Our method presented
is similar to their's.

In section 3.2, we outline the method of solution
for the monochromatic transfer problem and in section 3.3,
we discuss the extension of the method to time-dependent
line transfer. The results and discussion are presented

in section 3.4.

3.2 Method of Solution

The monochromatic time-dependent transfer equation
for the specific intensity I(Z,M,t) in slab geometry is

given by,



__l___ al 'Z,\ht _@_;[__(7—/ !t) th _-['ZILi;‘&
L 9L t) o+ AL Gt) L (28] (2 f0)

+ |

= & (21)| € f PCff) (2 1 8) A

|

+ (l-‘”) BCZ t)—] 0 & [l

and for the oppositely directed beam,

| 1 (ziut)+ M 2TEME) +X(zt)I(z Mt
+1

. E)[cg%szfp<-r«,y)1@,q,b> d b

-+ C{‘Q) Bcl,tﬂ” O<N<, (3-')

where o CZ, {:) is the absorption coefficient at
spatial coordinate "/ and time t &) C_Z,\‘:)is the
albedo for single scattering and C is the velocity
of light. The phase function PCH, [‘4‘) gives the

probability that a photon travelling in the direction

[‘-4 is scattered into the direction }Jl



We assume that there is no radiation incident
on the top of the atmosphere and initially at time
t = 0, there is no radiation present within the
medium, Then the initial and boundary conditions

for the equations (3.1) are given by
jI(Z:O,P,t>:~¥<rht)
T(2=T,7M¢)=0

1 (2, M £=0)=0 B
fn 04741
0 <ML (3.2)
where T is the total geometrical depth of the medium

and —Y—C‘\J, t) is a given function of It—l and t"

We shall approximate the angular integral in

equation (3.1) as
|

l J ‘
P )T (M) dp =2 P( u ) W T(Z0t)
J=1
O (3.3)

where \4j and Iqj are the weights and roots of the

Gauss-~Legendre quadraturs of order.]-.



Incorporating equation (3.3) in equation (3.1) we get

1 o1 (zaMisk) £ N; Cid%: C"z/l‘f}'t) «{-O([Z,[:) 1(2,:“}{&)
C ot

||

T
A= E) {%(Z’Q > [P G M) I 2

3=
+P(2h, ) T (2 pe) | W
+ (1-©) B(Z;t’:)ﬂ

(3.4)

In these problems, it is convenient to distinguish
between the reduced incident radiation field 3(2,{:)
at spatial position Z and time t  and the ciffuse
radiation £ield | ( Z, :f:_]\l,t) that results as a

consequence of one or more scattering processes.

Then the equation (3.4) becomes,

s < ICzAMLE)
A1 (= xt) + fi =L )

1
¢ Bt

{(z,6) 1(z  pirt)



a4

T t
=d(zt) | @8 ZiPCiP*J/‘“J")ICZ’ Firt)

J'=
P Capr ) T2k )Y W]
(oG] BEY |+ 3= ) -

j:l, l/”"«]-

with initial and boundary conditions given by

1(2"0/FJ/t) =0

I(2=T:')“J'/J°):O J=v2, T

T (=, ]‘—tj/{::o)lo [T 042z<4T

(3.6)
The equations (3,.5)form a hyperbolic system of
first order linear partial differential equations.
The characteristics are the straight lines in the Z,€
planes defined by
4z - 4 M
d/Sf' Dj
(3,7)

At _ |

— SS—

al/SJ'T Dy

[)J = \J rﬁlf__t; *5311' T



Where ‘gsj represents the arc-kength along the jCH
characteristic with positive slope and é% represent
the arc-length along the J characteristic Nith
negative slope. Denoting (Z ‘f'r",)/ LT)_

the equations (3.5)can be written as

D, OilfJ +K T = % ST
J

where

Si e 3 [Pl aCer)
n—p gt Wi () B@,t)j

J=u-J
and _
:I)J C*'Lg_ -+ C(:I-— = A SJ—
d 4 ] /
where

cn
A

t3(>

(3.8)

TSP P S, [T

(l-w) B(sz)} + 3(2¢) =07

coheste o = (2, E) ond L= W(%t)
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i

We shall divide the medium into N layers of equal
depth A7 . Also the time domain is divided into
equal intervals of time duration A t. « With this,
we can construct a two dimensional mesh in space

and time as shown in Fig.1({O)

£i+| 8.
ti
=+ 7 poon
P Pj PJ P
b N
Z’h 2-11-“ 2
F16t{ov)

At and oz are chosen such that y
lNJlCAté"A-Z" for all j:l,i,"“T
We identify () with an arbitrary point @E Cz'm-t)tl’fa‘

Through @draw a characteristic line whose slope is

1 '

N,C . The first intersection of the Jm back
J
characteristic with the horizontal mesh line is given

by the point PJ (211..-] —r{, CAL, tt)



Similarly, if we draw through @_ a characteristic

| .
PJC . 1t intersects the mesh

line at the point le(z‘_r\+.x+ MiCAE, ti.)

integrating equation {3,8)along the J s chara-

cterisitc from Pj to Ek we get

whose slope is -

& &,

— + +

EI+(€~) '“IJ—F(PJ')J“"J;( I+?l_/g_J: :50( S; dAs
. DJ D

Pi PJ’

-t

(3.10)

Using the modified trapezoidal rule to approximate

the integral we can write equation (3.10) as

—

[1’} (8) -2/ (1)) + £ [1; (6) +1]Chi) J L

+ 1
— g_ {Sj’-@i)—” SJ' (&’) é‘é"
1 J

(3.11)

where ;Z,: O«(‘&) +O<<PJ)
2




Similarly integrating equation (3,9) along the J

characteristic from PJ, to & , we get

| I;(8)- l:,-_(Pr')] + g [1}(&)+I_(PJ’)]”%
J

_. < Qv O"SJ
_ %«[s Cpy) + S5 (&) 1

;Z\, - (&/) +°<CPJ’) (3.12)

where 2.

since IJ Cé_ 1 we have dés‘ "Cét
AL DJ

We can use a formula for linear interpolation

to approximate the quantities I_+ (Pj)aﬁd > I]‘ ( PJl)

1 7(h) = I] (Zmimpicot, &)

+
Mc a b:—,; I T (zm ki) + (=] C%tz)IJ(Zmu*‘)
J

——

——

(3.13)

I; <PJI) =T (zm!—ﬂqJCAf’t;)

et T (znats) + (- 08 ) {00

J



Similarly, 5+< PJ) Y, § < PJ') ’O<CPJ‘)/L’/<PJ)’O((PJI)

and (;\)( p i ) can be approximated,

i
Denoting T\H, (L ) _j (2_,.,+,J(:Fnd

incorporating the relations (3.13) and (3.14) in

equations (3.11) and (3.12) respectively, we obtain

[, gt = [(pr e ) 18 (8) + (- b eeg, ) T, (o)

X - : ts
o’%’.[I CEH)_FJ\{ C%l Imfjcl:: (I " CA/AZ\)Imug ﬂ

"ty J 3 < At

“r - 7
:d[%{-iw‘j(lu:’/ IHJ’)WJ’I 'rl;J *")Jr/\," Atl <t)
J=

+(-peat) 1 (8 } + P( M- ) Wi i“*’(’é'ﬂ)

D2 T\HJJ

] CLE T e + (7 I C“]%,Jﬁ.")ﬁ

1 (1 ‘*’){Bm,(m) b c oy B (t:) 7
KI'NJY CD——t_L)Bm-HQt*')} T 05 {j (6 +l>

cal
| CAE a (E)""( (’,Df'>3'mlu r)ﬂ
—H\U (3-15)
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cot)T u)ﬂ

( & “ 5 (PJ C5 ) I—'n-rz,(_"ti) -+ (,—‘FJ. AZ

[I'n‘”l.i
% (= e bE T () +(1picog (&)
P (T Gt SRR (el
> < AL
CAt:I (t)
DZ'T\H-J

_d[a{ U(mmJWAMM@ﬁﬂW
‘\‘F( ["J/ FJ)WJ (,n,{,tU“)dr

(1 €55 T, 80)
cm: T (t)ﬂcat}

MpCAt T(Y) 4 (1- M =68
'n-n_,
+ (1] @5*.;) Bm,@;)}

bz )Hl_,
(1- ) iBmi(tﬂ)T}\’J "A'[)‘

)+ CoL MCHRIENE Cbt) ,,,%

CAt -‘—0{ amﬂlj(t.l-ﬂ
C[)t:] (é-lé)
Defining the following matrices
B -
, Ok
M XA
2 Ot
3 = M b2
Mot |
B2 TXJ
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-
- Ak
|- Rres
A =
|- My 4k
) 1Y 13
I:t (t.}-i»l—)
-+ _ i, |
U’Y)H('tiﬂ) -
=+
Citl
L_I'h‘t'l,,.)'( +>__JTX'
—PCI“uH') P, ) = Pt )
+t
Prs p(Ma i) PLpe o) P (Ma4fs)
p (M1 1) Pu«mﬂ s
(- 1) p( -~ 1)
p = | PCfu p (-t Fa)
P(—PJ/HI) IPL‘FJJ pi)J or




£2

W
W =
W7
i | I x3T
%‘Y)-ﬂ (.t'u)“
C)'\'n.g.,(_ti_): '
%(""H)a',;)
- R ES
Basy (t0 1
B, ()=
B““ Lt‘t) (3,17)
N 1 T x}

We can write equations (3.15) and (3,16) a8

[ U ()~ {Aumf,cmeumu)]] %&
t <t40-+ﬁ\Uw,Li)—fBu:Cb)}CAt —_

U'nﬂ
%{“ W (U (b)) A Oh Lt )+BU—T,<t))
4 PW (Um CHR Uw(t ’:ium (& )ﬂcﬁt
+ -8 w {B (t +.)+Agmtt')1tf/5,,(t‘jgut

D.Scatg C’\‘nﬂ U:HH) + B G (ed) +A&ﬂﬂ(b )'S @ |§)



‘ QYHI (6“!) - (A Gmﬂ Ctd) —+ BQT)-H.(I:Z) -f; {O—.n.”(ti-&l)"f
f 2
L

j
A ey (£5) 4 Bamw)x cht= i[%{pfw(%,(m)
VA Ulee, (ED) Buﬁm(bi)) + P W (
+ A Onr) (ti))gcat + (-8 w) Z Bn+,<k;+;)+A 8 (k)
4B B (E;)} CDE]"(‘ 0-5 cbt {G,m, (Eir) 486G, (8

+ A CGne (k")} é"lﬂ)

Rearranging the terms we have

[1+L cot1- 8 p**wcat] e (i)

:Ll—icat1+°?-‘§ P’”’wcoi] A U (40)
2

£

a ~ ~ t -
4{1_%@4@ R AL B U (E:)
- ~ v =+ - T ()
T (tsw)H W cot fHAGE
'

LI)'E{ Bl ( Eaot .)+Aﬂ3w.(")

4 B%{f(ti)} (ot 0§ Cot iG\mU:m)JcBGm(t)*

A G Cts)} G )



(3.21)

where I is the identity matrix.

By setting ‘

Tt pey o W W Cat
g = [.:[ Oé.C.A‘tI'f‘ x F ]
_- =~ 35 P Necat
2 - [I_%mtl—r g p ]



=X BestPh - &= Zbeat
and “ 4
+ —+ —+ - -
AN S = T A 6 = R
AS =T A& ¥
~ % ~ ~
Z+ (|- U-))gé B (Cin) + A Bm;u‘) + B, Uﬂ)} cot
N+4 —

+ O-SCAtZ§ GMHU'-HI) + B Gy (.in) +A G+l (6‘)}

=8 BY P (& 3 (E)icot
> E(-8)s B (kini) +A B ()18 }

n+2 2
1 - . & i
—+ O'SCAEA!‘iG’!nf:('e'*’)"'BG'“*ZC )+AGM+’ Ct)} (3.22)
we get
U:ﬂ (’cH,) = —FA U?\—:; (‘:5)"'"? B U;: <t0
+ R Une Ctin) + RA Unn()
(3.23)

_'1—
+ RBOn (t)t ZmL( E;)



o (6e) = TA Uy (80 1T B U (8)
+
—+ ﬁ— U;\‘—H ('t]-H) ¥ R A Uh—:) OZ,)

+ R Bunﬂ.(‘:) +Z<t)

N+,

(3.24)

—T
Eliminating UT\H (h-ﬂ) from the equation (3.24)"
ausing equation (3.23) we get

Gnnlti) = [I- FR] |(RTF+ E)A L)

+ (B R+ T) AUmm (8)+ R 7 BUS (8)
7@ FBRUGNE) TR Z (‘?i)—\-TBU;H_l(e;)

+Q BUY\H_(JC)—‘—Z (bﬂ (3.25)

M+ /1

From the inttial values, one can calculate the

UY\H(-QZ) for = N-l,- - -~ O, And then
L{'L) for N=1,- - N-t-

these values are used to obtain U?\ﬂ
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This procedure 1is repeated for t3) E‘.4_)- <. ; etc.

3.3. Extension of the method to calculate the time-

dependent line profiles.

The time-dependent transfer equation for a two
level atom under the assumption of complete re-

distribution is given by

_@_;_. z,x St _'t _C’)_I Z, 1 ,}(,t
Lol (zapxe)tpel (apnt)

KL (2. 8) @09 I(Z,iﬁ/):;t)
+0 1
=k, (2.8) $x) [‘—‘f & (<) I(2, trxr )
gy B(x,z,t)] oc ML

(3.26)

(o)t

We have neglected continuous absorption in writing the
equation (3.26). X is the frequency measured in Doppler
units and is defined by X = @‘ vo)/AS; AS being some
standard frequency interval. KL(ZJ t) is the line
centre absorption coefficient and @ Cx> is the absor-

ption profile function.
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Coy
Co+Az, (\- é;%;ﬁjﬂ

-

(3.27)
is the probability per scatter that a photon will be

destroyed by collisional de-excitation. (:zlis the
rate coefficient for collisional de-excitation of the
atom and A2} is the Einstein coefficient for spont-
aneous emission. h and k are the Planck and

Boltzman constants and _R: is the electron temperature

of the gas.,

Other symbols in equation (3.26) have the usual
meaning. The assumption of complete redistribution
supposes that there is no correlation between the
frequencies of the absorbed and the emitted photons.
We have assumed that the profile function is the Voigt
function f4 (Cl},)&)given by

(3.28)

where a is the damping constant for the upper level of the

transition. We have considered isotropic scattering.
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We discretized the angular integral by Gauss-quadrature
of order :Y « We discretized the frequency integral

also by Gauss-~quadrature of order K.

- K
J@(?@ T(z. 2 Mj.X) = %’ C@(XQI@D—‘PJ,M QUK

J:\) 2}“)
(3.29)
Since the problem has symmetric solution with respect
to the line centre, we have considered only positive

frequency grid. Using (3.29) in (3.26), we get

e ——

1 oI (2, THIXe t) + PJ ol (2,1’\“,)(«,1—.)
c 9 o2

+ Kz £) §Ow) T(2, % Miv Xk, &)
K ir,
= Kk (zt) Cp(xk) Q—E) > CP(XQ)Z T (@AM X,

&(‘.__, '_:): |
s —

+1(2 M k) G o (rER( E)

———

3.30
k=12, - ¥§ ( )
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As these egquations form hyperbolic system of linear
partial differential equations, we use the same

computational procedure as described in section 3.2.

3.} Results and discussion

We have set o<= C=11in eqn.:’&;ﬁ__&qceu(_'a—l, the total
optical depth ¢f the medium is same as the geometrical

depth T.

Case I To check the numerical algorithm, we considered

a pure absorption case. The transfer equation solved is
2t OZ

with

T(z=0/Mt) =0 £7/0
I(Z’ r-i,t:o)':_O') O(ZéT
and B:\ for t7/o

OLZLT

(3.31)

The analytical solution when o and B are constant

with respect to the time and position 4 is given by
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The numerical solution agrees with the above solution.

The results for ﬁro' 2) and 6-7]8 are plotted in fig.l.

Caze II A slab is constantly illuminated by a bear

of radiation in a specified direction juo'—o'sfrom time

t = 0., The transfer equation for diffuse intensity is

3 7 . I 't_'Z_ .2/}\40
1 Ha_;+1(2,‘\.4,{:)= 05 I(Z,]\l,t)dl‘*‘fO'SH( /‘Go)f

dt oz =

(3.33)
where H (‘{:) is a Heavisideunit step function.
The initial and boundary conditions for egquation (3.32)
are
I(z:o, M ’C) =0
t72/0
I(Z:T,—'Plt)‘ O
(3.34)

I(z/i/q,o):o FLodz4Td
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As the intensity distributions reach steady state

after sufficiently long time, the steady state solutions

2/}qo

are checked by solving the equation

+ | _
L+T =10 L) Ap 105 T
if"%%"‘I(Z,-t_rl,t) OS:—{I(Z/{“'QU‘P-r

with

IN(Z:O, [\-{) -0

OLH<]
I (2= -M)=0

(3.35)

Emergent intensity distributions for total optical
depths 1 and 2 are plotted in Figs 2 and 3 respectively.
Van de Hulst and Irvine (1962) pointed out that the
non-stationary problem for 't;= 0 is equivalent to the
problem of finding the distribution of photons over

the pathlengths in a homogeneous medium.

We know that in a medium with optical depth™] ,
the photon path length is at least few multiples of | -
For 11=2_one can see that the time at which the relaxation

to steady state commences is nearly twice that of T = 1.

Reflected radiation distributions are plotted in

figs4 and 5 respectively., The reflected radiation
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reach steady state faster than the emergent radiatiocn,
This can be explained by the fact that most of the
reflected photons emerge from the shallow layers of

the medium and hence travel less pathlength.

Also if we examine the steady state values
for the emergent radiation, the wvalue for 0.21 is
slightly larger compared to that of pl:07 for the
medium with 7?:LO. This is in qualitative agreement

with Chandrasekhar'sresult (See, Chandrasekar 1950).

Case III A slab is constantly illuminated by an
isotropic radiation field. We set 1(zZ=0 M {:): H (£)
at one boundary of the medium and zero incidence

at the other boundary. Transfer equation for the

diffuse intensity is

DI (2, +p b)) LM AT (Z1p t +I(z2pt)
21 ( 2 ) 2L (2 ) f*/’

2\ I
= Los[1(z ) dpd o5 | HEETR) <l

e 0

(3.36)

The steady state values are checked by solving the

equation



|
+)

~ l 5[ 2%
:Pé£+'f<z,ir): 65 I:('%;*MH*OS <

5z 3

o

Hith

f(Z:O, ]\-{) = 0
T (z=7,—p)=0

The reflected intensity distributions are plotted in

Figs 6,7 and 8 for T = 1,2 and 5. The corresponding

emergent intensity distributions are plotted in Figs.
9,10,and 11.

The behavior of the reflected radiation is almost
identical in all the cases except for the fact that
the time at which the relaxation commences is more for
the medium with higher optical thickness. Same quali-

tative reasons hold good as in the case I L- -

»

(3.38)
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Case IV A slab is illuminated by a pulsed beam,

The transfer equation under the two stream appro-

ximation is

e NRCE @T + T =05(1+1)

with
I+<O/ {:): &5(t)

I“ (T,{-_) =0 ond f‘: \/}"3

(3.39)

Here I* and T refer to two oppositely directed

streams of radiation. By setting "1: 4_3/22 A 'l:/l.

we can transform the equations (3.39) to

31-1-51"—'-_'[ I

(3,40)
oM o %
- - - -+
QI - oI +71T =1 (3.41)
oY DX
with 1.1- (XO,V) -~ 5()’)
where I ch y) - O (3.42)



Code (1970) solves the above set of equations (3,40)

(3.41) and (3.42) using a technique developed by

Chandrasekhar (1950). Also note that

T (8)=L 17(v)

To check the numerical results, we can derive some

relations which connect the time-dependent solutions

to the steady state solution.

(i) The characteristic of the equation (3.40) is
given by

(10'\:’0) *X
Integrating equation (3,40) from (’Io,'\s—-l-t-’ﬁo)to (‘X,tj_)
along the characteristic, ( see Fig 2 (a) ), we obtain

80

(3.43)

(3.44)
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3

|
+ —+ \1‘) —h 'a - |
I(-l’j> = I (1013‘11-10 [l A 4 J € I <\(S‘—\d‘l‘1/\<}>d\(]
-1y
(3.45)
Boundary condition (3.42),is
-+
T (Mo, 4-xt10) = & (Y- %Mo)
Integrating the relation (3.45) from T(x) to <0
where T (1) is the travel time for the pulse to
reach the depth point W of the medium, we obtain
o0 1 i '
—T() (1‘— )\) ~/ 1 \ c‘
\ - ]
jf@;‘a‘)d\ﬁ:f -Jf L () atry )4
o Ko T(%) (3.46)
If we set
0
+ | l V+
JI (1,9)dy= T (»)
(3.47)
T
and

3.48)
T
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we Obtain

2L
M —TC7L> — '*,.._ l ~__ 1
T(N= <= + ( ST ) d

y A }10

////////,(X,u—x+y)

)

(3.49)

\\'4

><

FIG: 3 (o)

(ii) The characteristic of the equation (3.41) is

given by, (see fig 3@))

d'y = —|
AY

~
’ 3
Integrating the equation (3.41) trom(')\/'j)to (7(, '1~X+7j' s

we get

X

\

|

T(wY)= <" I+<1', A- {*-‘J) A

N

(3.50)
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Since the reflected radiation at any point X of
the medium starts only after the arrival of the

pulse, we integrate (3.50) from 7 to A

where 777)L
0 X o
! -+ ! ' ‘
1(03) 4y lei (i ady) dyd
?3 ™ ,j (3.51)
If we Set J I+(l’/ 7{_}. \JIJ 01 UI = .f’-t-(}‘)
and EOO

T (7‘/ \dl)dkdl = I—CX) (3.52)

we obtain

X

EE;(}K> - ‘Q;)L :fji(jzi> C4 Xf
P,

The equations (3.49) and (3.53) are the integral

(3,53,

solutions of the steady state equations

~

. ~_
oI, 17 =1
R

- <5-Ii—_+ i?.f: tI *

QXL



with

| + X
The relations (3.47) and (3.49) i.e.
o0
T | AL
JI (Ld)dy=1"()
T
oQ

and

jf(m‘)o\a‘: T

are useful in checking the time-dependent solutlon

at each depth point of the aimospheree.

g4

(3.54)
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Since the Dirac-delta distribution is difficult
to treat numerically, for the reflected radiation
we imposed the conditions JT)'H (ém,) =05 éthﬂ
and added a source term .G é’t*\ﬂ- to the equation

(3.25) to obtain  (Jms (Em.z,) .

Two cases which are identical to Code's (1970)
are considered to check our numerical results. The
emergent intensities are plotted in Fig. 12. for

X = 0.433 and X = 0.866 respectively.

—

A pulse of radiation with a value <€ emerges
out of the medium at time y: X . PFollowing this
pulse, the multiple scattered radiation falls off
approximately as -Ey)( . Reflected intensity
distributions are plotted in Fig 13. Reflected
radiation commences at Y/ =0 and initially decays
as (S <€’ . Its behavior is identical for all
values of X until = 2% which corresponds to
twice the transit time. Then the radiation falls

off to a low value.

Also the results for IU“— "S"g )T:3'O are plotted
in Figs 14 and 15. We see that the sudden drop of the
reflected radiation at twice the transit time reduces
gradually and smoothen out at higher optical depths.
One can note that Code's methods works only for

T<L£1.8138 but . our method does not have any such

restriction.
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Case V A slab is subject to an isotropic white radiation
field. The boundary conditions imposed are
I(__Z:"T/""ﬂ) l)t) =0 t7/O

T(z=0, M )= H(E), EZO

1&2111\‘/]’0):0

The transfer equation for diffuse intensity is

<31 = AR @T L OIS qS(X)[os @scx‘)r(z,q,xe)
| T AW
) @(x‘) H(t—Z—f:) %2//“ Cp(x)dlu‘dx'

with zero incidence at the boundaries,

Since the computational algorithm is . time
consuming, we have calculated the line profiles only

for two cases, After adding the contribution of the

-_T 1
directly transmitted light < “%j to the

diffuse intensity, we have plotted the emergent line
profiles for | = 5.0 and" T = 25,0 in Figs 16 and 17.
At earlier timss, we see deeper absorption profiles,

Since the optical depth in the wing is very small

(of order ™ 10"4), one can see the immediate

convergence to the steady state in the wing. region
cf the line profile,
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CHAPTER IV

TIME DEPENDENT TRANSFER IN SPHERICALLY
SYMMETRIC MEDIA

4,1 Introduction

In this chapter, we shall present the numerical
methods for the steady state and time-dependent
transfer equations in spherically symmetric media,
Reflected intensity distributions with respect to
time are illustrated for the various ratios B/A
where B is the outer and A is the inner radius of

the atmosphere.

The assumption of plane-parallel stratification
of the atmosphere holds good only when the actual
thickness of the atmosphere is very small, i.e. ﬁﬁrﬁzo
where 4% is the thickness of the atmosphere and h
is the radius of the star., However, many stars,
such as the supergiant stars and Wolf-Rayet stars,
have extended atmospheres whose thicknesses are an
appreciable, fraction of a stellar radius. As a
first approximation, one can assume that these

atmospheres are spherically symmetric,

Hummer and Rybicki (1971) used the variable
Eddington factor method to solve the-sbeady state

transfer equation in spherical symmetry. Peraiash
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and Grant (1973) have proposed a numerical method
based on discrete space theory of Grant and Hunt
(1968,1969a,1969 b). Peraiah and Grant derived
simple conditions for their method to be stable
and give non-negative solutions. In section 4.2,
we present our numerical method to solve the

steady state transfer equation.

There are several numerical methods proposed
to solve the time-dependent transfer equation in
spherically symmetric media. Carlson (1953) proposed
G;T\ method for neutron transport calculations.
Keller and Wendroff ( 1957 ) suggested the variant
of G, method and they also discussed the stability
and the convergence of the method. Grant (1968) has
solved the time-dependent transfer equation in
purely absorbing media using a method developed by
Lathrop and Carlson (1967). He has written difference
equations in a matrix form and studied the stabllity

and the non-negativity of the solutions.

The method to solve the time-dependent transfer
equation is given in section 4.3. Results are dis-

cussed in section 4.4,

4.2 A numerical method for solving steady state

transfer equation in spherical geometry

Transfer equation is given by



J1
M %i(mﬁul—w 1 (, r«>+o—(n)1(‘>» M)

mw oM
= () H wm% B(n)+1 w(h)JI(‘h,p)(ilf
O(H(I
for the outward going ray, and

M ALV - AT () Fo (1) L(np)
AN o oM +1
z:v{h)[@_wwq B[%}+%ﬂi>fl@w dfﬁ42

o< MLl

for the inward going rays, where we restricted /.:.

to lie in the interval [O,l] . We have assumed
isotropic scattering in writing the equations
(4.1) and (4.2). The integral over N is
approximated by Radau-quadrature formula based on

the zeros of polynomial of degree 2J over C-lof]

+]
jI( b W) A ZI (3 o)Wy —rz (M)W
=) (4.3)

=+
We shall denote I(?L,if\(d) = IJ . We replace

the /U derivation in the equation (4,1) and

(4.2) by CI}‘_‘,, —IJ)/AF centered at ﬁh&':m-hﬁﬂﬁl



By approximating the other terms centered at the

same point, we obtain

V| C)IJH +\ CU éIJ -{-LDJ (I
om0 Tm

J -
_—-_T'Z—‘-‘Ji ib‘b(ﬁ + IJ)‘T‘Q @) BOL)} J(‘ -
J=1 4.4)

L_ o )_* U_(I -tI“

(4.5)
The quantities NJj, WNJj and \DJ are determined in

such a way that the approximations;

- M ari) g-(t ':ﬁ./w
= 24T -1 (4.6)
< h alu Iu:[ujr-g_ 71 J"t”' N



ave a minimum truncation error. Keller and
lendroff (1957) listed some possible choice of
‘he coefficients (N ,O\)} and \bJ . The co-
:fficients (Uj, Q)] are listed in Table 1 and

‘or the EJ Table 2.

Table 1

'i#oﬁ A 3 C

U %(HJTM*\)%CZ}JMW HJ) M+

Q)] %(HHH&O %(Hmum) My

Table 2

1ol A 2 c

L Tho( 0 bt 12 _NEE
Zi*& (H—rh}é’ Hr -ZLW[\ NJ'!'?{-‘L:I

Keellexr and Wendroff (1957) have chosen the coefficients
A in the tables which reduce the equations (4.6) and
(4.7) to the normal form. The entries in the column B

Jf the tables 1 and 2 are used by Carlson (1955) and



are determined by assuming that intensities vary
linearly with f" over the sub-intervals and inte-
grating across each interval. The coefficients
C in the tables can be determined by integrating

equations (4.1) and (4.2) over HJ to f‘fJ-tl and appro-

ximating
Mi+) ~ 4 E
Jit‘ 31% Yu = 05| 2fi 0L+ pin OLjaan
O oM M
N
M+ _
_t 2
( I-Hz A7 dp=_L)I- (M}) }\]Li'-lﬁ
|8 AN 2 Z
My _

and M‘”

+. , +_ =+
I dp ~os T+

(4.7)
MNJ
At P = + 1, the curvature terms vanish from the equa-

tions (4.4) and (4.5)

Writing
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We have for the outward going rays,

M Ul + L AU g~ T )
_(T_{Os{oﬁq\u(045)+o~w>5§

(4.9)
and for the inward going rays,

Moo — L AU+ S TU
In L

= io- s W ((J+0)* () 8}4_10)

We shall divide the medium into N spherical
shells. To perform discretization with respect to

the radial coordinate, we integrate equations (4.9)

and (4.10) from JU, to /’fn”giving
-+ —+
M [U'T\-t—]_ U’TTJ T Ztnﬂi—r OTH-%_

= Zn*«%_ [( - CO“”J F[);IWL_‘— (’Jimﬂ"%.w - /i—/-\- )U:*li
50\ Trel
+ (%_ COYH%_W) Un:gi]

27 (4.11)



Q
and
M [ Un~ U_;\ﬂ] T ?“*%_T U;-Az_
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2 tTH"\i
-l.
+ (Ji @h-rli\/\1> Uney
(4.12)

+ T +
tere Un = U (") while Unel ) Trey ,Woneg

+
and R4l are the suitable averages over the cell.

2

W#e shall define A‘)Lmji—_-_%m,—ﬁl-n, Th*iz nad A“MJE_
and L= Oy where is mean radius |

/D 7y hh*.k ?Lh"lk_.)_ — (%7\.”1717\') .
We shall use the conventional "Diamond" scheme to

approximate the gquantities U:}tH.L as

T . + =X
Um% - J_i [ Um+;+ U'“:]

(4.13)

Now we can arrange these equatior: (4.11) and (4.12)

in the canonical form

ey —

[~ ] ) <+
Um-r tGrym) N (0 m) WU:;, | rzm (4.14)
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whereh and t are the reflection and transmission

operators defined below:

writing +
e, = LW- A
M+4 2
2 -CTH-.L
A - W
Bony = QW
§ = m "'-% _(m%_ (T"‘ &"nt.!.>
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w(noe) = 2 &0 4P

and

5 = TGy (1- ) t|Sar T A8
Mt

(4.16)

We have solved the set of eguations (4.14) using the
method outlined in chapter 2. We tested the method
for a pure absorbing medium with constant thermal
source where we know the analytic expression for the
radiation field. For a pure scattering medium, we
checked the solutions with that of Peraiah and Grant

(1973). Our method does not seem to impose any res-
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trictions on the optical thickness ¢ of an
elementary shell, and on the " aspect ratio *

f: A?L}‘)'L . Also we found that the choice

of the coefficients ¢ in the tables 1 and 2
give better results compared to the coefficients
A and B., This may be due to the Radau gquadrature

points which we have employed.

4.3 Numerical Solution of the time-dependent

transfer equation in spherically symmetric

media

Time-dependent transfer equation is given by

| OL(ne) o M AL (Supt) 4 1= 10w pit)
L Lok aE o) + I8 &

+o(n ) T(nMe)=c(h §)
=+ !

SO (1, eyl + (-00)B0)
—

___|<l‘4<l

(4.17)
Again we use the coefficients ¢ in tableg 1 and 2

discussed in section 4.2 to discretize the }{
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variable.. Using the same notation which we employed

in section 4.21 we can write equations (4.17) as

LT ou e 4 MOU(nt) o A Jont)
C St In T

he ()T U (Ot) = o-(%t)[@_@;_i) \Al(uuﬁ)

—+ ( - w (O, t)) P?(%; tﬂ (4.18)

and
1T o0(® —p 200,¢ A O0ut)
C Dk AM n

+o—(‘h,t)T0_("/+—) = o= (M) w(m,l{:) \,\)(Jﬂ;)
+ C"‘wb‘/f)) @,(?\,Jc)] (4.19)

We divide the medium into N layers. We use forward

time differences to represent O ot . PFor N7O)
d¢t .
we use backward space differences and for pc.ac we

use forward one. Then we shall obta:l:n

£ gy = Guti) 41 g0
At AT

Nimg)

Oy"s-'[.\__. [U;Hl ("E"‘”) + U+’hﬂ(h)] —+ O‘S—C}‘V U;,Ui) “"U-:‘,, é'.*'-)i]
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+ \/\J;(Q%*,Ocm) + U‘hﬂ(ti)} + 0-5(\—&3)
| &L, (4) + &, (e;ﬂ)]}

for n = 1'...'N—1 (4.20)

and

A { Q_TH“)U:”|> — Gﬂﬂcéi)} ‘— m {(jﬂn(h*') "Gm«&e")}
C I

At An

YA [ :)HU:;_H) + U:)+)<,C‘)] 405 o~ T

T+

{U—-nﬂ (“-3)‘)’ GTH-\ (‘Eiﬂ)] = = {O-Z_S G[W CUTYH’({_;L. U:EF*?
+ W ( U_wm Uf) + 6m+1 (fm))] 4+ 095 (\« (D')
[B—;ﬂ <J°i>+ B_T%H( t;*')]j

for n = N-1,....,0. (4.21)

where 0:: O S {G;<317H’|; {:i+}) +G‘_<7Lh+'1 E!)}

(;)\I': 0SS &w(%hﬂ)‘:i+j)‘{'w(hﬂfllt()}
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Since we have used only first order differences in
space and time, the truncation error of the scheme
(9 (At) + (Q (A?L) . As the method follows
the characteristics in a certain sense, there is a
cancellation of the errors coming from the deri-
vative terms. To make other terms accurate up tO

second order, we replaced the un-differentiated terms

U—-;H,, CJCL-H) etc. by the averages
-+ *t .
05 [ Une) (Ei+')+ Una U:‘)‘J
Denoting

A E]_+ 0-5 /\CAt-t'O S& TckAtE—0:25 wWCAt“}

Y\‘H

i MeAt — 0-SAAt _ -5 Teat+025OHeat
S - AR Min+

D = Meat

AN
A, =025 WeAE
5 (1= o50-8) A8, ()« B (b5 ear
ml}_

|
AN =[T-05ABE 405 S —cht—o-szjwcai}

T+
S—: T — McAt —t-Oi{‘\_E/:_A_t_o.so“—'TcAt
AN Nm +

4+ 0TS LOWceat
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we have

Y . N 3 Lan
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——

-+ ~ —f' . + (tf‘ﬂ)

+ - . +O-SA (I"w) {B_n_ﬂ(t‘)—t—B'YH'l 3
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S O+ (t;) + A_& U-”'.Y\'H(*\:)

and _ . o

U—'Y\-H(£i+|) = A D Unta (bJ + A

(-G BZ, (L)+B (&

+A4 & J’nHCt““‘)-r 05 A O—C")CD{:[““ ] ]
(4,24)

Eliminating U-;HG:J-,afrom equation (4.24) using

equation (4.23), we get

—1 _ _ \
Unay (Gisy) = [*_r_zg& Af&] [A D Unm, (£5)
-+ A*Q/ U'Yl_t[ Ct") + A— S— Uﬁ'n-f, (En) + O 5(‘"‘&;)
cot o { B (£) G“N,Cb—ed} + 08 {A*s*u::ﬂ(’@

- : o |- &) CHE
— A~+ DU:({:Z) -+ AT& Uvn+i GC') + 05 L,l )

Ay { Rt (ki) B%;“**OB] (4.25)
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From the initial values at tq one can use the
equation (4.25) to obtain the values (};+|(tk)

for n = N=1,4c00...,0. Using these values in
(4.23), we get LI;+,(t¢) for 71:\:2/""q-J'
We repeat the procedure to obtain the radiation
field at the time points ta2, €3 - - - ete;

Since the matrices [V1 and |. are not normal matri-
ces, it is difficult to perform Von-neumann

stability analysis,

4.4 Results and Discussion

We have considered the following cases. In

all the cases, we have set C: = 1,

Case I We have considered a purely absorbing
medium with constant thermal source. The ratio
of outer to inner radius is chosen as 2 and the

absorption coefficient X as 1.

The source function B is given by
Bt)=1 Vv €20

The analytical solution is given by

T(h-pt)=[ -5 | B84k

]

— — &7
L_\'- = %4W )g'7711
0L &wél

(]
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(4.26)
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where

Bz np ] R (o)

The numerical solutions for P‘: 0.59,0.87 and 1.0
agree quite well with the analytical solutions and

they are plotted in Fig 1. Solutions forri = 0,2

show slight instability.

Case 11 We considered a homogeneous atmosphere
with conservative scattering. The boundary condi-

tions chosen are

T(h=ha, M t)= H(E)
T (hene-pt) =0

where

H(t)

1 for {:'7/C)
0 for /£ 0

We distinguish the diffuse field due to one or
more scatterings from the reduced incident field
without scatterings. Since the directly trans-

mitted intensity at position T and at time E
in the direction P& is

Ht - (np ) = [(rp-Traoreo)|




108

0.8

0.6

I (K t)
0.4

0.2

0.0 L

Figo,1

1.Intensity distribution for a homogeneous
purely absorbing medium with constant

thermal source,

Fig.



0.8}
0.4
I(Lt)
0.2 B/A:2.5
A=4.0

0.0

0.9 1.8 27 36
FIG,2 t

Fig.2. Reflected intensity
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=
p=
{ Where P4 ;?‘-‘ ?ziL

the diffuse intensity is

), the transfer equation for

o1t ﬂ\«aI + FN AT Tyt

St no oM 1
+1

O'SZ{S IOW, )atr« + 05 [t Q\/u W

—{ (MM = N (0
N Of(r r;;

(4.27)

Since we are solving for the diffuse field, the

boundary conditions are

I (hsna, Mot)

( n=Tp M t) =0

Reflected intensity distribution is plotted in
Fig 2 for B/A = 2.5 and o = 4,0. For .ok = 5.0,

Figs 3 and 4 give the corresponding results for

B/A = 2,0 and B/A = 5,0, The ratios of the time-

dependent reflected intensity at a particular time

to the steady wvalues for various ratios are given in

Tables 3,4 and 5. Steady state values are calculated

from the algorithm described in section 4.2.



Table 3
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Table 4
[U‘ 17 (AN B/p=20
| t=a20 | t:=¢0
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Table 5
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In all the cases, convergence to unity increases
for the photons reflected at the grazing angle
(i.e. PJ': 0.2). From tables 4 and 5, we see that
at time t = 2.0, the ratio is less at ﬁkr 1 for
B/A = 5,0 compared to that of B/A = 2.0, This is
due to the increase in the path length for the
photons reflected in the normal direction in a

medium with larger sphericity.

We have plotted the diffuse emergent intensity
distributions at PJ = 1.0 for B/A = 2,0 and & = 5.0 "

in Fig 5 up to the time point t = 6.0.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this chapter, we shall briefly summarise our

results.

We found that the time-dependent problem for

6l;>'t2 ( f,is the time spent by the photon in
the absorbed state, tz is the time spent by the
photon between two consecutive acts of scatterings),
is equivalent to the problem of finding distribution
of photons over the number of scatterings. When a
pulsed beam of radiation falls on the medium, the
reflected intensity distribution falls gradually
with time as the reflected ray approaches the normal
direction. If the medium is subjected to an isotropic
radliation of constant intensity, the reflected intensity
distribution reaches the steady state faster as the
angle of reflection approaches the grazing angle,
The emergent intensity distribution reaches steady
state faster when the emergent ray approaches the

normal direction.

The method of characteristics which we proposed is
stable and solves the problem when té 2>t] . The
time dependent problem for t, =0, tZ;éO is

equivalent to the problem of finding the distribution
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of photons over the path lengths in a homogeneous medium.
For té§7t1, when a slab is illuminated by an isotropic
radiation, the behaviour of the reflected radiation is
nearly the same, except for the fact that the time at
which the relaxation to f£eady state commences is more
for the medium with high optical depth. When the slab
is subjected to a pulsed beam of radiation, under the
two stream approximation, we found that the sudden drop
of the radiation at twice the transit time reduces gra-
dually and smootheness out at higher optical depths.
The method, which we presented to solve the steady
state equation in spherical media is stable and gives
non-negative solutions. The results agree well with

that of Peraiah and Grant (1973).

For t2§7tl. the reflected radiation in the normal
direction reaches steady state slowly in a medium with

a larger sphericity.

FUTURE WORK

Using the numerical methods presented in the pre-
vious chapter, we can consider the situations where the
properties of medium vary with time and position. Be-
haviour of the radiation field in line as well as con-
tinuum in planar and spherical media when both tl and
t2 are important has to be studied. Also one has to con-

sider the realistic atmospheric models to campare the

theoretical results with the observations.
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