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THE BEAUTY OF THE SUN !

A photograph of the sun taken during the eclipse of
December 9,1929. The narrow ring of luminosity 1is the
chromosphere. Prominences rise into the corona to
heights of as much as 150,000 kilometers at several
places on the limb. The striking feature at bottom is a
loop prominence originating in a disturbed region of
the sun containinga strong localized magnetic field.
It shape traces lines of magnetic force that curve

upward intothe corona and down again.



1 INTRODUCTION

1.1 THE SUN:

The sun formed 4.6 billlion years ago, 1ls nearly halfway
through its life, and will not change its properties appreciably
until it moves off the main sequence in five or six billlon years
to become a red glant. It 1s an ordinary body in the cosmic
hierarchy, simllar to countless other G2 stars on the main sequence
in its general characterlstics; but it has one unique feature: it
1s 300,000 times closer to earth than the next nearest star. This
closeness of the sun gives 1t a considerable astrophysical
importance. The sun also provides us with our only opportunity to

take a close look at a stellar atmosphere.

1.2 THE SUN’S INTERIOR:

Theoretlical studies of stars of one solar mass have been



carried out by many astrophysicists under a variety of assumptlons,
and agreement has been reached regarding the general conditlons
that exist in the interior of the sun. The temperature of the sun
decreases from a central value of approximately 15 million degrees
to a value of 5800 %K at the surface(Fig.1.1)and the outer regions,

the corona 1s about million degrees hot!

The density within the sun falls off very sharply with
increasing distance from the center (Fig.1.1). The central density
is about 150 gm cm—a, which is about 13 times the density of lead.
As a result of the rapid fall off in the density of the sun, most
of its mass 1Is concentrated in a relatlively small volunme,
approximately 90 percent of the sun’s mass being contained in the
inner half of 1ts radlus. The average denslty of the sun iIs 1.4 gnm

-3
cm .

1.3 THE ZONE OF CONVECTION:

In the deep interior of the sun the temperature rlses up
to many millions of degrees. ‘In thls range of temperatures, the
collisions between atoms are sufficiently violent to eject many

electrons from their orblts., Light atoms are completely ionized,
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while the heavy atoms loose their outer electrons, retaining the
tightly bound inner electrons. These cénnot be easily dislodged by
absorption of a phbton. Consequently photons pass readily through
the inner part of the sun. Close to the surface of the sun the
temperature falls, and the heavier atoms recapture their outer
electrons. Such atoms below the sun surface. tend to block the flow
of photons coming from the Interior. If photons are the only means
of carrying energy up to the surface of the sun, the blocking of
these photons will cause the temperature to drop sharply at some
depth below the surface. Thus, layer of relatively cool gas 1s

formed on the hottér interlor and a convection zone is set up.

At depths greater than 1,50,000kilometers, energy 1s
transported within the sun by radiation (i.e., by flow of photons).
At this height the outward flow of radiant energy is blocked to a
great degree by absorption of photons,and convection sets in. From
that depth out to the surface,energy 1s transported partly by
convection and partly by radiation. Above the surface,radiation

again becomes the sole means of energy transport.

1.4 THE PHOTOSPHERE:

The visible surface of the sun 1s called the photosphere.



It is the sun’'s disk as observed visually or with a telescope. It
has a uniform appearance when viewed with the eye or through a
small telescope,but through a larger telescope and under good
observation conditions it reveals a granulated texture. The
effective temperature of the photosphere is estimated to be about

6000°K.

1.5 THE SOLAR ATMOSPHERE:

The region of tenuous and essentially transparent solar
gas lying above the photosphere 1s called the solar atmosphere.
The outer boundar& of the solar atmosphere is not clearly deflned.
‘The atmosphere extends out to a distance of 5 miliion kilometers
from the sun,if its limit is considered to be a point at which the
density of the solar gas has decreased to the density of the gas in

the space between the planets.

The solar atmosphere is divided into two regions called
the ‘Chromosphere’ and the ‘Corona’. Both regions are invisible
under ordinary conditions because their faint luminosity ls masked
by photospheric light that has been scattered in the earth’s

atmosphere or 1in the telescope 1itself. From 60000K at the



photosphere the temperature, falls to a minimum of approximately
4000°K, and stays at this value approximately up to 2000 kilo-
meters. This thin reglon 1is called the ‘Chromosphere’.Above
that helght the temperature begins to rise very steeply, reaching
the milllon degree level at an altitude of about 5S000 kilometers
and remalning at that level throughout the Inner corona(Fig.1.2).
At the high temperature that prevall in the upper chromosphere all
the hydrogen and helium atoms are lonized, and the 6563A° 1ine and
other emission 1lines of neutral hydrogen and helium disappear.
Elements heavier than H and He also loose several electrons at this
temperature, although they are not completely ionized. Thus, the
lines of all these elements, which are prominent in the spectrum in
the 1lower chromosphere dlsappear gradually as the altitude

increases and are entirely missing from the spectrum of corona.

1.6 THE CORONA:

The chromosphere consists of countless gas Jets called
spicules which rise to a height of about S5S000 kilometers. This
altitude can be referred to as the wupper boundary of the
chromosphere. Surrounding the chromosphere is the corona. Under

ordinary circumstances the flow of 1light from the photosphere



1,000,000

Temperature (°K)

i
|
]
i
§
i
i
t
"
i

100,000 i rvvee o

1,000

Transition|
‘bétwe
chromos
and. co
‘ i ‘
[
: H
3 t
; ~ | I;
J | i |
! ! {
, |
?MW" i b 4
| ,, P
! % |

s e

10 100 1000 10,000 100,000 1,000,000
Altitude above the photosphere (kilometers)

Fig.1.2 Temperatures in the chromosphere.
The transition zone is highly variable and

inhomogeneous, with spicules and interspi-

cular matter.



overwhelms the very weak emlsslon from the higher layers of the
atmosphere which therefore remain hidden from the direct view. At
the time of solar ecllipse, however, the moon passes in front of the
sun and blocks out the light from the photosphere. When the disk
of the moon completely masks the solar disk a white halo
(Fig.1.3)of tenuous gas appears beyond the edge of the moon,
stretching a vast distance out into space. This 1s termed as

Corona.

As seen during an eclipse, the visible corona extends out
from the edge of the solar disk many millions of kllometers.
When viewed from the ground, the luminosity of the corona fades
into the background of scattered llght from the sky at a dlstance
of roughly 10 million Kilometers from the sun. But the photographs
taken from a balloon at high altitudes, where the sky 1ls darker,
show a visible corona out to 30 solar radil. Other measurements
made from satellites and space probes suggest that the corona has
no outer boundary. A stream of wind called the solar wind flows
out of the corona and into the solar system at all tilmes,
continuously Iimmersing the earth and the planets In the tenuous

gases of the solar atmosphere.

The morphology of the corona undergoes dramatic changes

during the course of solar cycle but simllar basic elements can be



Fig.1.3 The Solar corona 30 seconds after the
start of totality during the eclipse of March, 1970.
Features are visible at a distance of 4.5 solar

radii or 3million kilometers.



distinguished throughout. The most distinctive coronal features
are the radial plumes generally appearing in polar regions, and the
low, bright, domed structure called condensations. Above the
condensation the dome is often pulled out into a ray or into a set
of rays, which are longer lived than the polar plumes and are known

as streamers. Coronal material flows outward along the streamers

into the wind.

The magnetic field in the solar corona where the magnetic
forces greatly outweigh the thermal forces, 1s assumed to be
relatively uniform., The solar corona is highly structured. Well.
away from the active regions are formed more or less radial rays.
These occur over extended regions of the sun where the field in the
underlying photosphere is scattered and predominantly unipolar.
These reglions are called coronal holes and are found usually at the
solar poles. Over the rest of the solar surface, the baslic
structural component of the solar corona is the coronal loop. Some
loops are vast features linking different active reglons.
These typically have temperatures 2-3 x 106 K and density of
about ldqug m 2. Loops of simllar scale but somewhat lower
temperatures arch across quiet regions and presumably link the
dispersed fragments of active regions. The corona above active
regions themselves 1s characterised by coronal condensations,which

is now thought to represent the collective effect of a complex loop
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system linking areas of opposite polarity. The properties, physical
conditions existing in the loops, the morphology of the cool loops,

hot loops and flare loops are discussed in chapter 2.

Little can be said about the most important physical
quantity of the corona, the magnetic fleld. The field strength as
inferred from the observations of radio waves emitted by hot
coronal gas suggests a value of 30 mT at an height of 15000
kilometer dropping to 1mT - 0.3mt at 70000 Kilometer. However
these values are subject to a considerable wuncertainty. Thy
alignment of the fine structures of corona indicates the direction
of the fileld, l.e., loops trace the magnetic field linking regions
of opposite polarity whilst coronal rays delineate ‘open’field
lines which stretch outward from the corona and close in the
interplanetary medium. Coronal magnetic field models and model

equations for coronal plasma are discussed in Chapter 3.

1.7 PRESSURE STRUCTURE IN SOLAR CORONAL LOOPS:

The loop or arch like configurations of the solar acuive
reglons have been seen in the emissions at UV,EUV and X-ray

wavelengths (Foukal, 1978). The current carrying plasma in the loop

11



supports a helical form of magnetic fluid.

Typically, magnetohydrodynamic stability theory has
been perturbation theoretic, proceeding from linearized equations of
motion around quiescent (velocity V=0)equilibria. One either
follows the evolution of small perturbations or attempts to find
exponentially growing normal modes by varlational methods (the
energy principle). Some advantages of linear stabllity analysis
are (i) the knowledge of growth rates of instabilities and (2)
insight into the nature of whatever growing modes may exist. Some
disadvantages are (1) the difficulty of treating realistic spatial
profiles,and an almost infinite varlety of these profiles. One can
keep on calculating stability by changing the profile,and (2) the
impossibility of determining the effects of 1nstabilities‘once they

have outgrown the linear regime.

The turbulence literature emphasizes the important role of
the quadratic integral invariants of the nondissipative, ldeal
magnetohydrodynamic model: total energy,magnetic heliclity and cross
helicity. Because the value of these invariants cannot be directly
modified by nonlinear effects,their wave number spectra give
valuable information about the state and dynamics of the turbulent

magneto fluid.

12



In the statistical theory of MHD turbulence, from scalar
numbers, the average total energy, the average magnetic helicity
and the toroldal and poloidal magnetic fluxes suffice to determine
the level of excitation of every mode in the system for an
Initially quiescent system. The qulescent 1limit is one in which
all of the excltation is locked into the extremal helicity state by
the simultaneous constancy of the magnetic helicity and total
energy. It is the state of minimum energy for given magnetic
helicity. It Is a single Chandrasekhar-Kendall mode and so 1is a

force- free state, (Montgomery et. al,1978).

The steady state pressure structure of a solar
coronal loop can be studied using the theory of MHD turbulence in
cylindrical geometry. The magnetic and velocity filelds are
expanded in terms of Chndrasekhar-Kendall functions using the MHD
equations, the pressure profile 1ls then calculated as a functlon of
the veloclity and magnetic fields. The radial and axial variatlons
of the pressure in a constant density loop are calculated. These
variations are found to conform to the observed features of cool
core and hot sheath of the loops as well as to the location of the
temperature maximum at the apex of the loop. It Is found that
these features are not present uniformly all along either the
length of the loop or across the radius. The possible oscillatory

nature of these pressure varlations and the assoclated time periods

13



have been explored.

In order to study the temporal behavior of the fields and
the pressure one has to put in the dynamics, which is described by
a set of Iinfinite, coupled, nonlinear ordinary differential.
equations which are first order 1in time for the expansion
coefficients of the velocity and magnetic field. Since obtaining
the full solution of these equations 1s a formidable task, we plan
to represent the loop behavior by a superposition of the three
lowest order C-K functions. One Jjustificatlion for doling so is that
these functions represent the largest spatial scales and therefore
they may be the most sultable states for comparison with the
observed phenomena. This system reduces to a set of six equations,
three for veloclity and three for magnetlic fleld. Numerlical methods
will be needed to solve these equations. However analytical
progress can be made in two simplified cases:

(i) When the systenm 1s disturbed linearly from 1lts state of
equllibrium and
(ii) when one of the three modes has an amplitude much larger than

the other two, known as the Pump approximation.

Preliminary work indicates that the three mode system

exhibits sinusoldal oscillations when perturbed linearly. This

work is to be perused in more detail, checkling the response of the

14



system under different initial conditions. This will help us to
deternine the temperature, the velocity field and the magnetic field
in the loop plasma of constant density. The knowledge of these
parameters and their variation with space and time enables the
explanation of varying emission in other electromagnetic bands at
which the loop plasma emits. The description of small scale
variations In terms of the global invariants of the MHD system
glves a very lmportant handle on the dynamics of plasma. The
transformation of linear to nonlinearity needs to be studied. The
spatial evolution of three dimensional solar coronal loops 1is

dicussed in Chapter 4 and temporal evolution in Chapter S.

The fluld theory description of a plasma is sufficiently
accurate to describe the majority of the observed phenomena.
However, there are some phenomena for which the fluid treatment is
in adequate. For such cases we need to consider the velocity
distribution function f(v) for each species. This treatment |is
called Kinetic theory. The Vlasovy description admits the
investigation of kinetic process like heating and radiation, and
unlike a fluild description it does not require an equation of state
to determine the individual variations of temperature and density.
A Vlasov-Maxwell description of the ubiquitous solar cofonal

structures is discussed in Chapter 6.

15



Future work shall include four-mode interacting system.
One could then generalize to the casé of many modes with initial
amplitudes chosen to fit Kolmogoroff spectrum. Finally it is hoped
that it will be possible to compare the theoretical studies with
the observations on coronal loops. A knowledge of ordinary and
partial differential equations, numerical methods to solve them and
basics of magnetohydrodynamics are required to pursue these
objectives. Suitable programs have to be developed to solve the

multl mode equations.

16



2 SOLAR CORONAL LOOPS

2.1 INTRODUCTION:

Visual observations of prominences were the first to
reveal the exlstence of well defined loop structures arching
upwards from the surface of the sun hligh into the overlying corona.
Regular visual observation of prominences obtained. during total
eclipses of the sun have revealed more Iinformation about the
coronal loops. Young and Seechl have concluded from a number of
observations that prominences could be classified into two main
types, ‘qulescent’ and ‘active’. They are also called as ‘cloud’
and ‘flame’ prominences respectively. An active prominence is what
is referred to as a loop prominence. They assumed the shapes to be
parabollc, since they supposed that the material was ejected from
the surface and was then subjected to purely gravitational forces.

The true shapes of the loops have however been known only recently.

With the inventlon of spectrohellograph, spectrohelloscope

birefringent filter, observations were obtained in H and K lines of

17



the singly lonized calcium and latter in the Ha line of hydrogen.
These observations reveal structures in the chromospheric region
which are termed as ‘cool’ loops. The temperature of the loop
plasma in this region is in the range of 20,000 to 106K while
plasma loops with temperature greater than 108 are termed as ‘hot
loops’. Based on the film of the corona taken in the A 5303A° line
Dun (1971) arrived at thils general conclusion: ‘some coronal’ scenes
look "open"...and some look to be all loops and arches or “closed".
The differences are presumed to be due to the magnetic field
structure. The coronal structures are related to the magnetic
field i.e., they are said to map the magnetic field. This 1s in
contradiction with the force free calculatlions according to which
the field should uniformly permeate the entire area and not merely
lie in the loops. It is therefore apt to say that the corona
defines particular flux tubes. The arches and loops can be
considered as very basic coronal structures, slnce many scenes
appear to contaln nothing else. Satelllte observations in the
Extreme ultraviolet (EUV) and X-ray reglon of the spectrum provide
a wealth of information on the loop structure of the corna. Though
there has been substantial achievements from the ground based
observations in the visible coronal lines, there has been very
little scope for further elucidating the structure of the actlive
corona. The overwhelmlng brightness of the photosphere at these

wavelengths makes it impossible to observe the corona against the
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solar disk. It 1is reasonably assumed that the observations in the
EUV and X-ray reglons could reveal the structure of the low corona
of the disk as well at the 1limb, because in this region the
contribution of the photospheric layer virtually vanishes and the
radiation comes from the overlylng material at the chromospheric
and coronal temperatures. This region of the spectrum has a number
of strong resonance lines emitted by many of the abundant ions of
various elements in various stages of lonisation whlich are formed
in the temperature range of 104 to 107K. The soft x-ray region
below 10nm 1s dominated by emission lines of very highly lonised
stages of a number of elements superimposed over a weak continuum

of coronal origin.

2.2 COOL CORONAL LOOPS:

Coronal loops are a phenomenon of active regions and they
are believed to be dominant structures in the higher levels of
(inner corona) the sun’s atmosphere. As already mentloned, loop
plasmas which are in the range of 20,000 to 10% are referred to as
‘cool loops’. Some properties and physical conditions in cool loops
based on the observations in Ha and other vislble and near visible

lines, as well as in the EUV region are mentioned briefly for
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better understanding.

Limb observations in the Ha has established that the
individual loops were anchored to underlying sunspots, though this
aspect is brought out well in disk observations. Flgure 2.1 is an
example of an active region loop system in which most or all of the
loops are anchored to sunspots (Bumba and Kleczek;1961). Other
photographs of interest of Lhe active reglon loops are of Lategan
and Jarrett(1982,Fig2a) and Foukal (1978,Fig2). The number of
loops in a single system may range from just one up to perhaps ten
or so, an upper limit is hard to establish from limb observations.
Though various observers have given projected height to the loop,
true heights cannot be determined from the limb observations unless

the loop geometry is known.

Generally three types of motion are associated with actlive
region loops (1) flow down both legs starting at the top of the
loop (Kleczek; 1963) (2) a flow up one leg and down the other
(Martin; 1973) and (3) a mainly horizontal back and forth motion of
the whole loop (oscillations) (Vrsnak;1984). Two methods are
generally adopted to measure the velocity and acceleration of the
material observed at the limb. The first method is to determine
the Doppler shift of a sullable line llke “a which will give the

line of sight velocity and can be converted into true velocity

20
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Fig.2.1 Ha active region loop system (Bumba &
Kleczek, 1961).Most or all of the loops are anchored
to sunspots whose locations were established with

the aid of auxiliary data.

21



along the loop if a sultable geometry is assumed. The second method
is to measure the projected motion 1n the plane of the sky using
condensations or knots which are prominent features of the 1loop
photographs. The true velocity is determined from the geometry of
the loop, with the assumption that the apparent motions of the
knots represent the genuine motion of the loop material and not
changing conditions of excitation. Measurements of the veloclties
of the loops observed on the disk vary from 20 - 150 Kms-{ The
acceleration measurements both in the limb and disk observations
reveal that accelerating and decelerating forces other than the

gravity operate on the material in the loops.

2.3 MAGNETIC FIELD IN CORONAL LOOPS:

A measure of the magnetic fleld of prominences has been
most difficult. However a number of concordant results have been
obtained using Zeeman or Hanle effect. Athay et al (1983),measured
the linear polarization in two resolved components of the He I D3
line and obtained complete Stoke’'s profiles for thirteen
prominences, mostly qulescent ones. They used the Hanle effect to
interpret the results, obtaining the vector magnetic field at a

number of locations. From the observations and analysis, they found
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that one of the prominences (prominence N)had two arches extending
down from the main body to the chromosphere. In thls prominence,
the total field B in the loop ranged from 4 to 46 Gauss. Since the
polarization depends on the scattering angle, the Hanle method is
found to be sensitive to the assumed geometry of the prominence. The
Zeeman method has been more widely used than the Hanle method even
though it yields only the longitudinal component of the field B";
Vrsnak(1984) has estimated the total field B 1in Ha loop, by
measuring its bodily oscillations (mainly horizontal)in the plane
of the sky. He found the perlod to be 8 minutes. Assuming that the

motion was controlled by the magnetic field he showed that the

observed period was consistent with a Qalue of B = 45 Gauss.

2.4 DISK OBSERVATIONS OF CORONAL LOOPS:

On the disk, an active region loop appears in the‘ Ha line
as thin, curved dark feature linking a sun spot with another spot or
area of opposlite magnetic polarity. Observations of Ha active
region loops on the disk indicate that loops occur only during the
most active stages of complex groups (Ellison;1944). Though loops
and small flares tend to occur in active reglons at times of high

activity, it does not 1imply a direct association between a
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particular loop and a particular small flare. Ha loops terminate
in or near sunspots at one or both ends(Ellison; 1944,
Tandberg-Hanssen; 1974, Bray and Loughheed; 1983) Two types of flow
are observed: (1) a unidirectional flow along the axis of a loop
i.e.,ascent iIn one leg and a descent in the other;according to
Ellison, the directlion of the flow is independent of the magnetic
polarities of the spot(s)involved; this type of flow is a commonly
observed characteristic of loops in new and complex active regions:
(2) a down flow from the top towards both foot points. The
appearance of single or double loops is quite common while, the

appearence of a complex loop ls rare.

The motion along a 1loop may continue up to several
hours (Ellison,1944)which is roughly the same interval over which
loop systems are observed to persist. However, Tandberg-Hanssen
(1977) give 15 minutes as a representative figure for the 1life
time of a single loop, while Martin (1973), has shown evolutionary

changes in a 1long 1lived loop over a perlod of one hour.

The dlameter of the cross section of a loop, i.e., its
thickness, is typilcally only a few seconds of arc and may be much
smaller (Loughhead and Bray; 1984). If the cross section |is

circular, measurements of loop thickness are ‘carried out on the

(projected) image of loop recorded on a high resolution filtergram.
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The thickness varies from 930 to 2100 Km (Loughhead,Bray and wang

1985).

Measurements of velocitles and acceleration indicate
that ascending material in the loop Is subject to a force which

accelerates it to highly supersonic velocitles,while the descending

material suffers a retarding force.

2.5 OBSERVATIONS OF CORONAL LOOPS IN EUV LINES:

Below 1500A0, up to abbut 100A0, the spectral region is
called EUV. In this region, the contribution of the photospheric
layers to the solar spectrum vanishes and the radiation comes from
the overlying material at chromospheric or coronal temperatures.
The solar EUV spectrum 1is dominated by emlssion from resonance
lines of H 1, He 1,and He 11, of intermediate stages of lonization
of C,N,0,S1 and S of hlghly ionised stages of S1,Ne,Mg and Fe. It
is also characterized by the Lymann continuum and He 1 and He 11
continua. Under the conditions of formation normally assumed to.
apply, the intensity of any given line is a sensitive function of
the electron temperature Te peaklng at some particular value

Te(referred to as formation temperature) and falling of sharply on
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either side.

The observation of warmer lines than He 11 reveal the full
three dimensional structure of the active regions. An active region
is seen to consist of a complex system of bright loops arching
between areas of opposlite magnetic polarity. Photographs of active
reglons near the limb help identify these structures as loops in
the geometrical sense. The indlvlidual loops are oriented in many
different directions and frequently overlap one another.The
clarity and sharpness with which a loop is seen depend both on the

temperature of the, line used in the observation and on the spatial

resolution achieved.

Foukal(1976), after a thorough analysis of EUV emissions
over 22 large sunspots, found that the emission is often brighter
there than elsewhere 1in the actlve reglon (Brueckner and
Bartoe, 1974; Sheely et al., 1975 and Dere, 1982). However, the Inten-
sity and distribution of radiation above the spots change markedly
with time and as a consequence a large umbra can remain invisible
in the cool EUV for as long as several days. Figure 2.2 is an
illustration of the three dimensional structure of active reglions
seen in the EUV. This is a photograph of McMath region 12628 at
the west limb taken in the line O vi A 1032 A°(T_ = 3.2 10°%K).

From the photographs, it is evident that the regilon is composed
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Fig.2.2 A photograph of McMath region 12628 at the west
limb taken in the line O VI Al032.The region consists
basically of a number of separate loops lying in planes

inclined at widely differing angles to the Solar vertical.
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basically of a large number of separate loops lying in planes
inclined at widely varying angles to the solar vertical. Some loops

are nearly vertical, while others are almost horizontal.

2.6 PROPERTIES CORONAL LOOPS:

Due to an inadequate spatial resolution of the avallable
EUV observation and paucity of systematic analysis of these data,
little Iinformation 1s avallable about the morphological and
dynamical properties of individual loops, yet the following

properties can be assocliated.

Like all other solar features; cool EUV loops are always
observed in projection of the plane of the solar disk or of the sky
beyond. Limb observations indicate that most loops are essentially
planar. The inclination of the planes contalning the loop may vary
from nearly vertical to nearly horizontal. The estimates of the
heights attained by well defined loop prominence are typically of
the order of tens of thousands of kilometers. Cheng(1980),has given
a value ranglng from 57,000 Km 1n Ne viI to 67,000 Km in Mg 1x

indicating increase of loop height with temperature. The width of
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the cool EUV loops increase only slowly with height,Foukal (1976);
Cheng (1980). On the other hand,loop width increases with
teﬁperature. The foot polnts of cool EUV loops are observed to be
generally located on the peripherlies of the two areas of opposite
magnetic polarities in a bipolar actlve region as shown ln figure
2.3. (Sheely,1980). Loops observed in cool EUV lines,beyond the
1limb, show a strong contrast wlth respect to their surroundings.
The 1ntensity of the background emission is weak but increases with
temperature. Loops observed in cool lines evolve appreciably in
Just a few hours (Levine and Withbroe;1977,Cheng et al 1980). Spot
assoclated loops are found to be more stable than other cool EUV
loops (Foukal;1976 has published photographs of a large spot loop
near the limb whose basic form remailned relatively umchanged over a

period of 27 hours.) The pattern of flow 1is analogous to that

observed in the Ha active reglon loop.

2.7 SPATIAL RELATIONSHIP BETWEEN LOOPS SEEN IN DIFFERENT LINES:

Though an lnspection of the EUV spectrohellogram gives the
idea that the same corconal loops in lines of wildely dissimilar
formation. temperature are seen, Foukal (1975) has concluded that

these loops are coincident and has hypothesized that a loop
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Fig.2.3 Bipolar active region on the disk observed almost
simultaneously in the two cool EUV lines Ne VII
2465A° and Mg IX ABSBAO,as well as in in the hot
EUV line Fe XV A284A0 (Sheely, 1980). White and Dblack
patches on the kitt Peak Magnetogram delineate
areas of positive and negative polarity respectively
in the underlying photospheric magnetic field.
The elongated bright features radiating outwards
from the central areas of bright emission represent

the lower ends of coronal loops.
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conslists of a cool core surrounded by a concentric sheath each one
filled with material hotter than that in the adjacent inner sheath.
This does not describe the relation between cool and hot EUV loops.

They are not known to be coincident.

2.8 PHYSICAL CONDITIONS IN COOL LOOPS:

Loughhead, Bray and Wang (1985) have given a éomplete
description of the. physical conditions in a loop observed on the
disk in Ha. From observations, it 1is possible to determine the
electron temperature Te and electron density No, the gas mass
density p and pressure P, the Mach number M if the axial flow speed

along the loop Vo is known.

The observations reveal a striking variation in density:
there 1s distinct compression near the top of the loop and
rarefactions in both the ascending and descending legs. The
variations 1in the pressure 1s even more marked. If these
variations point to the evldence for the presence of a wave in the
loop, then, the wavelength will roughly be equal to one half of the
length of the loop. The variatlions in p, P, T° and V0 plotted

against the distance along the loop indicates the presence of node
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at the highest point of the loop. These conditions in the loop
inferred from EUV data are in very good agreement with observation

in visible and near visible regions.

Roussel-Dupre et al(1984) on the basis of their results
concluded that the EUV emission from the loop originates in very
thin sheaths of materials surrounding an(assumed) cool core. Each
sheath is isolated from the others by the magnetic field in the
loop and radiates at the temperature éivlng the maximum abundance
of the particular ion involved. The observations in the cool loops
both in the visible and EUV regions indicate that the electron
density extends over a wide range of several orders of magnitude
while the gas pressure is restricted to a much smaller range
(single order of magnitude). This indicates that the stability of
a loop, whatever its temperature depends on the malntenance of
approximate pressure equilibrium with the surrounding coronal
medium. Further it 1s evident that all cool loops appear to have
similar properties with exception of temperature and can be

regarded as manifestations of the same basic physical structure.

2.9 PHYSICAL CONDITIONS IN HOT LOOPS:

Observations made in the visible and EUV lines provide
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extensive Information on the large scale systems of loops which

dominate the structure of the lower corona above the active
reglons. These lops are assumed to trace out closed magnetic field
lines which emerge from beneath the photosphere and expand to fill
the whole coronal volume above an active region. Though the loop
system glves some insight into the three dimensional configuration
of the magnetic fleld ; the picture is not complete. Hence,

observations of hot loops which are filled with material at coronal

temperature of a mlillion degrees or more, seem to be more

pertinent,

Loops observed in phe visible region of the spectrum have
generally been observed in the Fexiv A5303A° 1ine. The following is
the summary of the properties associated with the active region
loops from the descriptions of Kleczek(1963) and Dunn(1971).These

refer to both flare and non-flare loops.

2.10 PROPERTIES OF HOT LOOPS:

Loops in A 5303Ao region occur as systems of loops in
a single active reglon, with typical heights of up to 50,000 -

100,000 Km. Larger loops may connect two active reglons and the
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system appears to be rooted in the sunspot groups or in plage
areas. The larger loops are generally more uniform in intensity
along their widths and lengths and smaller loops are less uniform.
Loops are more actlve when they are small, they tend to grow in
situ, then fade, and others grow at higher elevation. Larger loops
are very stable. Loops are found to be planar structures. The
smaller loops last for hours while larger loops last forldays. The
high temperature EUV emission from the sun 1s confined very largely
to the active reglions and the loops emanating from them. Individual
hot EUV loops are dlstinguished by their broad and irregular and
less loop ‘like appearance as compared to those vislble 1in. the cool
EUV loops. Unlike cool EUV loops the hot loops are never observed
to brighten progressively along their length but appear to brighten
and fade in situ. All hot loops appear to be basically similar Iin
their propertlies regardless of the wavelength region in which they
are observed. All loops extending outwards from an active region
necessarily return to the same vicinity. The spectrum of the core
is harder than that of the rest of the active
‘region, implyling, that, if the emission is thermal in origin, the core
is hotter. The X-ray loops associated with an active region are
similar in general appearance to those seen In hot EUV lines. Hot
loops, especlally some of those observed in the X-rays, can attaln
much greater helghts than cool ones. Both hot and cool loops

exhibit a wide range of lengths but certain classes of X-ray loops
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are much longer than cool loops observed in Ha or cool EUV lines.
Hot and cool EUV loops have the same diameter but cool Ha and La
loops appear to be much thinner than any other class. In general
hot loops last longer than cool ones. It is difficult to compare
the electron densities in hot and cool loops since, both cover a
large range, with undesirable overlap. The gas pressures have a
smaller range and the values for both hot and cool loops are of the
same order. In general hot loops tend to be thicker, longer, higher
and longer lived than cool loops. Other morphological and physical

properties except temperature are also similar.

2.11 SPATIAL RELATIONSHIP BETWEEN HOT AND COOL EUV LOOPS:

Foukal (1975) inferred that the peak emission from a cool
loop colinclides with a drop in the level of the hot EUV emission,
which then rises to a low peak on either side. Foukal interpreted
the observation as implying the existence of concentric sheaths of
increasingly hotter material around a cool core; so that what is
secen as a hot EUV loop is really a sheath of hot gas surrounding a
cool EUV loop. This 1dea was subsequently elaborated by Levine and
Withbroe (1977) by studylng the varlation in the physical

conditions in a loop as a function of distance from the axis. Hot

35



and cool EUV loops, although obviously related, are regarded as

separate physical structures (Dere; 1982, Cheng et al; 1980).

2.12 FLARE LOOPS:

Much of the knowledge of flare 1loops 1s from the
photographs obtained on the disk and beyond the 1limb in the
Haline. Disk observations throw light on their relationship with
flares,while the  1limb observations yield information on the
structure,dynamics, life time and evolution (Bruzek, 1964). Figure
2.4 shows a typlcal well developed loop system photographed
simultaneously in Ha and A5303A° at the Mees Solar Observatory,
Haleakala (McCabe, 1973). A number of loops is seen to be present,

although it 1s not possible to count thenm.

Solar flares are remarkedly diverse and complicated
phenomena involving translent heating of the locallzed reglons of
the corona and underlying chromosphere within an active region.
The sudden release of energy 1s accompanied by the emlission of
electromagnetic radlation over a very wide span of the spectrunm,
ranging in extreme cases from y-rays to kilometric radio waves. 1In

almost all cases,flares seen in the chromospheric Ha line also
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Fig.2.4. Loop prominence system photographed simultane-
ously in H_(upper) and A5303A%f Fe XIV(lower) at the
Mess Solar Observatory,Haleakala(McCabe, 1973). The loop
details appear sharper in H“ than in A5303A°.
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produce an Iincrease in the flux of soft X-rays. Both Ha and soft
X-ray emlssion pertaln to what 1is called the ‘thermal’ or
‘quasithermal’ component of the flare; 1l.e. they originate 1in
plasmas where the distribution of electron velocities 1s belleved
to be Maxwelllan. All flares pass through at least three
phases:rise,maximum and decay (Moore‘et al., 1980). These phases
are easlly recognizable in curves showing the variation of the Ha
intensity and soft X-ray flux over the life time of a flare. The

physical propertles of a flare change markedly over lts lifetime.

The morphological and dynamical propertles of Ha loops of
both flare and non-flare loops are the same or nearly the sanme.
However, compared with non-flare loops, Ha flare loop system appear
to be slightly higher and lasts longer, as do the individual flare
loops. EUV flare loops are also simlilar to those of EUV non-flare
loops. EUV flare loops appear to lle some what lower, but the
ranges of values overlap. In the microwave region,data are
Inadequate to make comparison between flare and non-flare loops.
In the soft X-ray region,both flare and non-flare loops reach very
great heights,but the non flare ones appear to reach greater
heights. Comparison of the physical conditions of the flare loops
with hot non-flare 1loops Indlcate,that independent of the

‘wavelength region,the flare loops are approximately an order of
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magnitude hotter compared with non-flare loops. Further,except in
the EUV region, the electron density of the flare loops is also an
order of magnitude greater. Thus, it 1s reasonable to arrive at
the conclusion that the gas pressures 1in flare loops 1is
approximately two orders of magnitude greater than in non-flare
loops. The value of the total magnetic fleld B in the microwave
region is bigger for flare loops than for non-flare loops. Unlike
hot flare loops the value of T° for cool flare loops in Ha and
other visible reglon lines is similaf to that of cool non-flare

loops.

Thus, hot flare loops are distinguished from hot non-flare
loops by their different physical conditions rather than by
morphological differences.On the other hand, cool flare loops can be
distinguished from non flare cool loops only by characteristics

other than their morphologlcal and physical properties.

2.13 SUMMARY:

Though, there 1s a storehouse of informatlon on the

observed properties of coronal loop structures, in different regions
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of the electromagnetic spectrum, there is no physical model which
is valid for all types of loops. One of the reasons for this
situation 1is the Iinsufficlency of data on coronal magnetlc
fields,which govern the morphological and dynamlcal properties of
all types of loops. Coronal magnetic field models are discussed in
Chapter 3. A three dimensional modeling of the spatial and
temporal evolution of coronal loops Is discussed in chapters 4 and

5 respectively.
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3 CORONAL MAGNETIC FIELD MODELS

3.1 INTRODUCTION:

In the previous chapter the observed properties of coronal
loops were described. To interpret the observed propertles and to
provide an account of the physics of coronal loops, some of the
models that have been established are discussed in this chapter.
There 1s very little empirical knowledge of the strength of the
coronal magnetic field and almost none of its topology. Hence, a
relationship Dbetween the plasma loop properties, physical
conditions in them and the coronal magnetic field is based on
theoretical models. The models governing the structure of magnetic
flelds are inferred from measurements of the magnetic field made in
the solar photosphere, the only region where such measurements are
at all rellable. This method provides a basis for comparing the
structure of the observed plasma morphology with that of the

extrapolated and inferred fields.

Despite the inability to measure the fileld in the corona
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with any precision a simple calculation establishs its Importance.
The spatially averaged magnetic flux density in the solar
photosphere ranges from about 0.4mT in the quietest regions to over

30mT in the active reglons. The minimum mean square flield strength

can be obtained by assuming the field to be uniform; hence the
magnetlc pressure Bz/uoranges upwards from about 0.1Pa in quiet
regions to well over 400Pa in active regions. In the low corona
which.are at heights of 2000Km or so, these estimates will not be
significantly different since this distance is small compared to
the radius of the sun (7x105Km). On the other hand, empirical
estimates of the gas pressure in coronal active regions lie in the
range of 0.1- 1Pa. Hence, the magnetic pressure greatly exceeds the

gas pressure,

The magnetic field in the corcna cannot be measured with
precision, however,by calculations as mentioned above it is found
that the magnetic pressure greatly exceeds the gas pressure. The
solar corona is a low B8 gas (B 1s the ratio of gas pressure to the
magnetic pressure) while the sub surface region is a high g8 gas.
In a low 3 system the fleld controls the gas, while for a high B
gas, the gas dynamics controls the fleld. In low B systenms, the
field either can simply expand in response to unbalanced magnetic
pressures or can adopt a static configuration in which magnetic

stresses balance one another- a .situation in which the field 1is
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said to be force free every where. A fleld which 1is force free
throughout a given volume must experience stresses on some bounding
surface in order to maintain it. In the case of the solar corona,
the field cannot simply expand away because it is anchored by the
gas dynamical stresses exerted on the sub surface portion of the
field. These stresses are, of course, continually varying and
produce in the corona a state of constant evolution. However, the
observed changes to the overall structure of the coronal loop
systems are generally slow, which suggests that as a flrst
approximation the variations can be ignored and a static magnetic

structure can be assumed.

3.2 FORCE FREE FIELD:

In order to focus on the geometric properties of the
magnetic field, a model in which the flileld 1is static and is
determined solely by the distribution of its own stresses, free
from any considerations of the gas that must be present 1ls adopted.
This assumptlion reduces Lhe problem to Lhat of finding solutions of
the Maxwell's equation for which the Lorentz force vanishes
everywhere with in the coronal volume. l.e.,

jxB=0 (3.1)
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subject to the appropriate conditions at the lower bounding surface
that reflect the determining influence of the sub surface field and
current distributions. Equation (3.1) to be true, requires that

either current denslty j should be parallel to the magnetic

induction or it should vanish. Hence,

uoj = o(x,t)B (3.2)

H, is the permeability of free space. Current free case
corresponds to « = 0. If the field is assumed to have attalned a
static configuratipon, the parameter « becomes a function of

position alone. Hence, using Maxwell’s equation for a stationary

system
VxB= T (3.3)
or, Vx B =ua (x)B (3.4)

In the integral form equation (3.4) can be written as

J (VxB).dS =J aB.dS (3.5)

where,s is any surface within the volume
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By Stokes theorem the surface integral can be transformed to

g (VxB).dS = § B.d1 (3.6)

where, c 1is the curve bounding the surface s and dl is a 1line
element of the curve c. If s 1s assumed to be a flat disk ¢ will
be its perimeter. The RIS of the equation (3.6) represents the
component of the field around the circle and the RHS of equation
(3.5) the component of the field normal to the disk. Thus, «
determines a measure of the degree of twist of the field. When a=0
there is no curren£ and no twist. Such a field conflguration is

known as a potential field.

Taking the divergence of equation (3.3), it is found,that in the

steady state

v.j=20 (3.7)
Equation (3.7) Iindicates that 1like a magnetic flield,a steady
current cannot end in space.

Taking the divergence of equation (3.2),

(B.V)a + « V.B = (B.V)x = 0 (3.8)
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which lmplies that the value of a does not change in the direction
of the fleld and so remains constant ‘along a field line. If the
fileld line crosses the boundary into a force free region, it
maintains the value of o set by the boundary condition throughout

the volume.

The solutlion to the equation,

(UxB)xB = 0 (3.9)

is non linear. The equation may not have a guaranteed solution and
if it has, it may not be necessarlly unique. Constructlon of general
force free models for the —coronal magnetic flelds 1is a

mathematically intractable problem.

The difficulty assoclated with general models (existence
and uniqueness of the solution) 1s overcome if, « iIs deemed to be a
constant within the volume under conslderation. Thils wlll ensure
the Invariance of a between foot points. The solution of equation
(3.4) when « is a constant are the eigenfunctions of the curl
operator. Instead of solving this equation directly, Chandrasekhar
and Kendall (1975) took curl of both sides to produce the Helmholtz

equation for each cartesian component of B

(T+ o%)B = 0 (3.10)
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This equation is linear in B for a given a« so that the solution

will describe a linear force free field.

Seehafer(1978); Alissandrakis(1981); Chen & Chen(1989)
have adopted linear force free flelds to the modeling of the
regions of the finite horizdntal extent, such as an active region.
The solutions are not however unique if normal component of the
magnetic field Bn is specified only on the iower boundary (Chiu &
Hilton,1977). Most observations furnish only the normal component
of the field at the photospheric surface. Comparison of the
structure with observations of the morphology of active regions are
arbitrary because they are based upon models in which the value of
o is adjusted to provide the best agreement between the observed
morphology and the field. Since, observations give no indication
whether this procedure 1s Jjustified, the validity of the constant «a

model for coronal field is doubtful.

Heyvaerts and Priest(1984), provide a Jjustification for an
approximately constant a force free fleld in the solar corona.
Since, it 1is assumed that the coronal magnetic field evolves
through quasl-stallic ecqullibrlum strucltures as the fleld at the
photospheric boundary changes slowly. During the time interval over
which equllibrium 1iIs achieved, the changes 1in the boundary

condition may be neglected and it may be supposed that the field
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structure changes only within the volume where the field must be
force free. Under these circumstances Woltjer(1958) has proved
that in the limit of infinite electrical conductivity (ideal MHD),
magnetic hellcity 'Is conserved for each field line as the fleld
evolves within the volume V. Magnetlc helliclity is defined as A.B
where A 1s the vector magnetic potential (B =V x A). Liké o, the
magnetic heliclty 1s also a measure of the twist pf the fleld, but
unlike a«, the helicity of a potential field does not necessarlly
vanish. If hellcity is conserved for each field line, the total

helicity In the volume

K = IA.B av (3.11)

v

will be constant throughout. The total magnetic energy

E = I(BZ/ZMO) av (3.12)

Y

will however change. The lowest possible value occurs when the
fleld adopls preclscly Lhal constant « force free conflguration
having the prescribed normal component Bn on the boundary

(Sakurai, 1979).
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Although a mlnlmﬁm cnergy state exlsts, the system has no
means of evolving to this state when there 1s no disslpation,l.e.
when electrical conductivity 1s infinite. If dissipation 1s
allowed by introducing the conductivity to be finite, heliclty will

no longer be conserved on each fleld line

3.3 MODEL EQUATIONS FOR THE CORONAL PLASMA:

3.3.1 MHD APPROXIMATION:

At the high temperatures and low densitles, characteristic
of the corona, the atoms of the coronal gas are almost all lonized.
The long range electrostatic forces between the charges govern the
small scale motlon of the particles. Any medium in which this is
the case is sald to be a plasma. It iIs the basic property of
plasma that the strength of the electrostatic interaction
precludes any permanent large scale separation of opposite charges.
The average charge density ls effeclively zero everywhere, so that
large scale dynamics of a plasma 1s controlled by the magnetic
field. Magnetohydrodynamlcs and plasma physics both deal with the

behavior of the combined system of electromagnetic flelds and a
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conducting 1liquld or gas. Conduction occurs when there are free or
quasi free electrons which can move under the action of applied
fields. Unlike a solid in the case of a fluid the field acts on
both electrons and ionized atoms to produce dynamlcal
effects, including bulk motion of the medium 1itself. This mass
motion 1in turn produces modifications 1in the electromagnetic
‘fields. The distinctlon between plasma and magnetohydrodynamics can
be established by considering the relation J = ¢E. In conducting
liquids or dense 1lonised gases the collision frequency Iis
sufficiently high even for very good conducteors that there is a
wide frequency rapge over which Ohm's law in its slmple form {s
valid. Under the actlion of applied flelds the electrons and lons
move in such a way that,apart from the high frequency jltter, there
1s no charge separation. Electric fleld arises from the motion of
the fluld which causes a current flow, or as a result of tlme
varying magnetic flelds or charge distributions external to the
fluid. The mechanical motion of the system can then be described in
terms of a single conducting fluid. At low frequencies the
displacement current 1s neglected 1in Ampere’s law. This

approximation is called magnetohydrodynamics.

In a less loniscd gas the collislon frequency ls smaller.

There may still be a low frequency domain where the magneto
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hydrodynamic equations are applicable. Astrophysical applications
fall in this category. At higher frequencies the charge separation
and the displacement current cannot be neglected. The separate
inertial effects of the electrons and lons must be included in the
description of the motion. This domain is referred to as "plasma
physics". At  higher temperatures and lower denslties,the
electrostatic restoring forces become so weak that the length scale
of charge separation becomes large compared to the slize of the
volume being considered. Under such circumstances the collective
behavior implicit in a fluid model is gone completely. A plasma is
an lonised gas in which the length that divides the small scale
individual particle behavior from the large scale collective
behavior is small compared to the characteristic lengths called the
Debye length (which is numerically equal to 7.91(T/n)1/2cm.where T
is the absolute temperature in degrees Kelvin and n is the number
of electrons per cubic centimeter). For length and time scales
larger than the charge separation scales the plasma may be treated
as a fluid and the magnetohydrodynamic description 1is used. In a
fluid, the transport processes of diffusion, viscosity, heat
conduction and electrical resistance can all be modeled in terms of
the local thermal and dynamical properties of the gas,the
temperature T, the pressure P and bulk velocity V together with the

macroscopic magnetic induction B.
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3.3.2. MHD DESCRIPTION OF LOOPS:

Consider a nonpermeable conducting fluid in
electromagnetic fleld. Let it be described by a matter denslty
p(x,t), a velocity v(x,t), a pressure p(x,t) (taken to be a sclar),
and a ' real conductlivity o¢.The hydrodynamic equations are the

continuity equation

+ V.(pv) =0 (3.13)

Q:lQ:
|

and the force equation:
= -Up + _El(J X B) + F_+ pg (3.14)

In addition to the pressure and magnetic-force terms viscous and
gravitational forces have been included. The time derivative on
the LHS is the convetive derivative which gives the total time rate

of change of a quantity moving instantaneously with the velocity wv.

+ v.V (3.15)

=
Plo

For an incompressible fluid the viscous force can be written as:
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Fv = Vv (3.16)

where m 1s the coefficlent of viscosity.

Neglecting the displacement current, the electromagnetic fields in

the fluid are described by

<l
x
1
+
L}
o

7t (3.17)

<

xB= J (3.18)

The condition V.J = 0, is equivalent to the neglect of displacement
currents. From Faraday’s law(8/8t) V.B = 0 and the requirement
V.B = 0 can be imposed as an initial condition. With the neglect
of the displacement current, it is appropriate to 1gnofe Coulomb’s
law as well. To complete the specifications of dynamical equations
the relation between the current density J and the fields E and B
are to be specified.For a one component conducting fluid, Chms law

can be uwritten as:
v
J=¢ (E + p x B) (3.19)

The equations (3.13),(3.14),(3.17),(3.18)and (3.19) together with
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an equation of state for the fluld, form the equations of

magnetohydrodynamics.

3.4 STEADY STATE STRUCTURE OF LOOPS:

The model with the coronal plasma in magneto static

configuration (V=0) 1s the simplest case for a theoretical

discussion.This implies finding a solution for the equation

~Vp +p Ve +IxB=0 (3.20)

allowing a small Lorentz force to be balanced by equally small

pressure and gravitational forces. Along with this, the following

equations

V.B = 0, VUxB = uj (3.21)

and, an energy equation are required.

In the steady state 8/8t = 0 and pressure balance condition is

V(-p+pb)+ jxB=0
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When the denslty 1ls treated as an independent scalar field, it is
possible to find fully three dimensional solutions that have the
geometry of the system of loops(Low,1982) or a large scale coronal
structures (Bogdan & Low, 1986). According to Priest(1978), the
separate requirements of force and energy balance are lncompatible,
and that a system of loops cannot be in ﬁagneto statlc equilibrium.
Staedy state structure can also be discussed without assuming the

flows V to be = 0. This will be discussed in Chapter 5.

3.5 LOOP MODELING:

The historical development of modeling outer stellar
atmosphere has followed two principal directlons:emlssion measure
(or empirical) analysis and energy-balance modeling. The former
line-of-attack focuses directly upon the observations to generate
the expected differential emission measure Q(T)= Ni(dT/ds]'1 along
the instrument line of sight in the atmosphere, and uses this
result to deduce the parameters characterising the atmosphere,as
well as the required mechanical heating to maintain energetlé
equilibrium(Withbroe, 1975; the revlew by Gabriel, 1976a;and the
detalled analysis in Craig & Brown ,1976). The second approach ls

based upon the solution of a local energy balance equation, together
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with relations specifying momentum and mass balance and an equation
of state: these together with boundary conditlons that are used as
adjustable parameters and integration over the model
atmosphere, yleld expected radiative fluxes that are compared with
cbservatlons,with parameters varied as to obtain a "best fit"(cf
Kopp & Orrall, 1976; and Rosenner and Valana, 1977 for application to
coronal hole modeling). The two analysis techniques generally
adopted are 1)Emission measure analysis and 2)Energy balances
analysis which are considered to be alternative means of modeling
the solar atmosphere(cf Gabriel,1976a; Orall & Kopp, 1976 and
‘Withbroe & Noyes,1977)}.Due to the strong coronal structuring
provided by high-spatial-resolution observations,the two methods
mentioned above become complementary,thus providing answers to
somewhat different questlions about the atmosphere. These modeling
techniques have been most fully developed in the context of

homogeneous atmospheres, particularly for the quiet sun.

By regarding coronal loops as plasma volumes relatively
isolated by the magnetic field that defines them,each individual
loop structure can be characterised by two coordinates specifying
displacement along the length of the 1loop(s) and radial
displacement from the loop axis(r). In general, the equations of
motion of the plasma 1s solved within the loop subject to the

boundary conditions at the foot points and at the "surface" of the
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loop,with the additlional constraints upon the internal transport
process lmposed by the magnetic fleld. A complete treatment then
includes the effects of plasma upon the coronal magnetic
field, providing a full MHD description of the coronal structures.
Current modeling has attempted to lay the groundwork by
investigating separately longitudinal and radial temperature and
density structure of coronal 1loops. Since the magnetic field
defines the longlitudinal loop coordinate, these studies have further
segregated themselves into;longitudinal analysls wusing energy
balance arguments,while radial studies emphasises the emission

measure analysis.

3.6 RADIAL STRUCTURE OF THE LOOPS:

Extensive studies of the radial structure of coronal loops
by (Foukal, 1975, 1976, 1978) using EUV line intensity data from the
HCOS-055 spectroheliometer and emission measure analysis techniques
have reveaied that coronal loops undergoing dynamic change (such as
post f[lare loops) are characterlsed by a non statlonary,"inverted"
temperature structure, in which the core 1s cool relative to a
substantially hotter surrounding sheath. It has not been possible to

correlate these EUV observations with simultaneous soft X-ray data;
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for example the event studied by Levine and Withbroe in which case
a small soft X-ray loop was observed to flare ~ 10" sec before the
Initiation of EUV observallions at the locallon of the EUV evént,but
no temporaly overlapping data was obtalned. A question that
remains unanswered 1s whether such complex loop structures are a
norm, or they reflect the consequences of occasional, significant
departures from quiescent conditions. Foukal(1978) has studlied
long lived (= lossec) cool loops at least one of whose foot points
emerges from sunspots,and has shown thelr observed slize,low
temperature and life time taken together, to be Iinconsistent with
simple hydrostatic equilibrium. Therefore he has suggested that
these structures are in dynamic stationary équilibrium ,with
observed downward mass flow along the loop axls(and field) balanced
by mass Inflow across the field,whose energy balance ls largely

controlled by the mass flow rate.

3.7 LONGITUDINAL STRUCTURE OF LOOPS:

Longitudinal loop structure due to the anisotropies
introduced by the coronal magnetic fleld emphasizes energy balance
arguments. Landini & Monsignor!-Fossi(1975) have refined the work

of Jordan(1975) and have glven a detalled desceriptlon of the
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temperature and density structure of the individual coronal X-ray
loop. Using the temperature as the independent variable,it has
been possible to derive an analytical description of the variation
of temperature and density within the loop,and a sequence of loop
models by varying the ©base pressure and maximum coronal
temperature, based on the hypothesis of acoustic heating. Such work
based on the emission measure analysis techniques has led to the
essential result that X-ray structures could be identified in a
quantitative manner with reglions of enhanced temperature and
density and hence enhanced energy deposition. However, there is no
detalls regarding the relation of the size of the loop structure to

its other attributes in these works.

The technique of Landinl and Monsignori-Fossi has been
extended by Rosner,Tucker and Viana(1978) to show that stable
qulescent X-ray loop structures must have their temperature maximum
at thelr apex,resulting in scaling laws for the loop temperature

and heating rate.

3.8 ONE DIMENSIONAL MODELS:

One dimensional models of coronal flux loops account only
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for mass, momentum and energy balance along the field lines. Also
the geometry of the field line ls assumed, so that the dynamic and

thermal properties of the loop can be analysed without reference to

the field.

Steady state models have been classified into two classes,
one which 1ls trﬁly static i,e., without any gas flows, and the
other which allow a steady, time independent flow along the loop.
The observations of the emission measure from loops and ensembles
of loops are consistent with simple loop(static) models, though
there 1is very little consiralnt on the free parameters of the
model. However, the model allows insight to be galned into more

complicated structures.

The assumption that loops are static is invalldated by
thelr observed properties. The apparent life times of the loops
suggest that they are maintalned for times at least comparable to
the time for a sound wave or Alfven wave to propagate along lits
length. Steady flows from one foot point of a loop to the other are
inevitable if conditions of perfect symmetry on the geometry of the
magnetlc fleld are vliolaled. In hot' loops, the flows are
relatively slow and cause little change to the overall
structure. But as the maximum temperature of the loop decreases,

the flow speeds tend to increase throughout the loop and the
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asymmetry betwcen the two legs becomes much more pronounced. In
cool loops the emission characteristics models are more in line

wilth observatlons.

One dimensional loop models appear to be stable not only
to infinitesimal perturbations but also to very large finite
amplitude disturbances. However, a one dimensional analysls allows
only necessary conditions for stability. Sufficient conditions can
be found only by examining all possible perturbations, Iincluding
those that produce transverse disturbances of the loop. For this a
MID model of the caronal loop ls needed. In the one dimensional
model the thermodynamic structure and plasma motion 1in the
direction of the field lines may be analysed without regard to the
magnetic field. Since loops have transverse structure as well as
longitudinal, the properties of the loops vary over thelr cross

section and from one another.

3.9 SUMMARY:

The early view,which is still regarded as the appropriate
one, conslders the exlended atmosphere, and corona in partlcular, as

the simple,direct byproduct of convective "noise". Inspite of the
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differences about the nature of coronal heatlng mechanism, there ls
a general agreement that the turbulent fluid motions at the
photospheric level as the source of energy supply. The solar corona
appears to correlate its intensity not with the level of 1local
photospheric convective actlvity but rather with the topological
nature of the magnetic field. These circumstances ralse an
Interesting question as to whether the formation of corona as
opposed to the extended atmosphere as a whole is at all related to
the level of surface convectlve activity. The role of the magnetic

fleld is a further correlate to this question.
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4 THREE DIMENSIONAL STEADY STATE STRUCTURE OF
SOLAR CORONAL LOOPS

4.1 INTRODUCTION:

Solar active regions are found to be magnetically,
spatially as well as temporally complex, the complexity being
manifested through emlssions at optical UV, EUV and X-ray
wavelengths. The solar corona 1is highly structured. The most
common geometrical form observed in the actlve reglons looks like a
loop or an arcade of loops essentially outlining the local
magnetlc fleld}conflguration. These loops are belleved to contain
current carrying plasma and therefore have a helical form of the
magnetic field (Levine and Altschuler, 1974;Poletto et al., 1975;
Krieger et al.,1976; Priest,1978; Hood and Priest, 1979.). The MHD
equilibria of coronal loops have been investigated by Tsinganos
(1982). Inspite of the continuous pumping of magnetic and velocity
field fluctuations 1lnto the coronal plasma, the loops exhibit a
fairly stable and well configured geometry,. The steady state
pressure structure Is the resull of varlous manlfestations of the

balance of inertial and magnetic forces. High spatial resolution
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observations of lines of C 11,C 111,0 1v,Ne vii and Mg x indicate
that in the steady state, a typical loop consists of a cool central

core with temperature 1ncreasing towards the surface which merges

with the hot corona outside.

From purely statistical treatment of the magneto-
hydrodynamics of an incompressible fluid subject to the invariance
of total energy, magnetic helicity and magnetic flux, a steady
state configuration of the magnetoplasma including turbulence has
been derived by Krishan (1982). Krishan (1983a,b] have also
discussed a steady state model of active region coronal loops using
statistical theory of Incompressible magnetohydrodynamic
turbulence described by Montgo&ery et al (1978). The method adopted
follows that of Montgomery et él (1978), wherein the steady state
is described by the superposition of Chandrasekhar—Kendall(C-K)
functions which are eigenfunctlons of the curl operator. The force
free magnetic fields (V x B = «B) and the Beltrami flows (V x V =
o«V) represent the minimum energy state of a magneto-fluid. A single
C-K functlion represents these configurations of the magnetic and
velocity flelds. The magneto-fluid in the coronal loop is believed

to be in an approximate state of the force free fields with small

departures from the current free fields of the photospheric

fluld. Though a single C-K function represents a force free state,

superposition of these functions 1is not force free. By
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representing the flelds as the superposition of the C-K functions,
we can maneuver these departures In a systematic and quantitative
manner. Thus, in general the steady state may have small departures
from a force free state and it 1ls possible to account for the
discrepancies in the observed and the model force free state by the
addition of more than one such states. Thils approach differs from
the usual MHD stability theory in the sense that 1t does not
involve small perturbation expansion and therefore 1is fully
nonlinear. The main features of the theéry consists of using the
MHD equations for an incompressible fluid. The magnetic and
velocity flelds are expanded in terms of C-K functions. The
completeness of these functions has been proved by Yoshida and
Giga(1990). The pressure profile of the plasma is obtalned from a
polsson equation for the mechanical pressure as a function of

velocity and magnetic fields.

Further, following Montgomery et al (1978), the toroidal and
poloidal magnetic fluxes are introduced as additlional invariants.
This results in several states being accessible for a fixed value
of the ratio of toroidal and poloidal fluxes and for a fixed value
of the axial and azimuthal mode numbers (n,m) respectively. The
lowest mode state (m=n=0) has accounted for the radial temperature

profile of a coel core with a hot sheath loop. This has been

extended to the study of the statistical distribution of the
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velocity and magnetic fields in the state m=n=0 by Krishan
(1985). The results of this method sets the trend for studying the
nature of magnetic field and velocity field fluctuations, their
interrelationship, their correlations and the temporal behavior in
the solar coronal loops. The superposition of the two C-K
functions brings 1in the three dimensional spatlial varlations
(r,8,z) in the plasma parameters and the state does not
correspond to a force free state. The study has been restricted to
two dimensional variations (r,z) of the plasma temperature as
observational results on the azimuthal variations are not
avallable. The results indicate that the radial variation of
pressure corresponding to the larger spatial wldths of the hotter
lines does not exist all along the length of the loop. A twisted
configuration of plasma is obtained. The pressure or temperature
is maximum at the top of the loop but only near the axis. On
smaller spatlal scales,the radial pressure varlation exhibits

osclllations.

It is evident from the above discussion that there has
been no attempt made so far to study the three dimensional spatial
profile of the coronal loops. The constraints have been due to
difficulties in observation and whatever has been known is only in
a two dimensional plane. Hence, the present study,is an extension

of the earlier work of Krishan (1987). The earller work has been

66



extended to include the three dimensional variations of pressure
in coronal loops by representing the velocity and magnetic fields
as the superposition of three C-K functions. This brings in the
three dimensional spatial variation (r.e,i) in the plasma pressure.
Though the individual C-K functions represent a force free state
the super position does not. The three mode representation,
besides exhibiting a chaotic behavior admits temporal behévior of
the fields in 1its most basic form. A truncated three mode
configuration has been explored by Chen,Shan and Montgomery (1990)
and their results qualitatively agree wlth the predictions as well
as with computations obtained using the numerical code (Dahlburg et

al 1986,1987,1988 and Theobald et al 1989.).

4.2 DERIVATION OF THE PRESSURE PROFILE :

The coronal loop plasma 1s represented by a cylindrical
column of length ‘L’ and radius ‘R’. The equations describing an
incompressible 1ideal MHD turbulent plasma in terms of fluid

velocity V and the magnetic field B are

<t
o

= U XPB)XB - (v.oyv -2 (4.1)
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Vx(V x B) - 3t = 0O (4.2)

where P 1s the mechanical pressure and p is the mass density. The

force due to gravity has been neglected. Equations (4.1) and

{4.2) preserve in time the constraints

V.V=0 and (4.3)
V.B=20 (4.4)
Using the identity

(V.U) V= (U xV) x V+ 172 w2,

equation (4.1) reduces to

[ P/p + a2V’ = [@-’-—‘3 - @ | - F (4.5)

In the steady state 48V/8t = 0 and for a force free
representation of the magnetic field and for a Beltrami flow l.e.,

for VxB = B and UxV = oV, we find,
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VIP/p+1/2V3] =0 (4.6)

Equation (4.6) also holds good where there is equipartition of

energy between velocity and magnetic flelds.is 1.e.,when |V| =

|B|/p-

In cylindrical Ggeometry, with a rigid perfectly
conducting.‘ impenetrable wall at a radius r =R, the boundary
conditions on B and V at r= R are Vr(r =R)=0 and Br(r= R)=0. A
periodic boundary conditlon with period L in the z direction is
assumed. Identifying L with the major circumference of a torus
enables to 1include the case of a teroldal boundary’with curvature

neglected.. The z or the axial direction 1s referred to ds the

“toroidal” direction and the @ direction as the “poloidal"

direction.

Following the procedure adopted by Montgomery et al{1978),
the velocity fleld V and magnetic fieldlB in the loop plasma are
represented by the superposition of Chandrasekhar-Kendall
functlions. They are eigenfunctions of the curl operator. They are

the solutions™ of the eligenvalue problem ¥ x a = Aa, where A

is real. Individually they are force free fields although the sum

of two or more of them is not, in general, force free. The
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complete dynamics can be described by a set of infinite coupled
nonlinear ordinary differential equations which are of first order
in time for the expansion coefficients of veloqity and magnetid
fields and it 1s a formidable task to find solutions to these
equations. Hence, the flelds are represented by the superposition
of the three lowest order C-K functions. Another justification for
doing so 1s that these functlons represent the largest spatial

scales and therefore may be the most suitable states for comparison

with observed phenomena.

The eigen functlons of the curl operator can be written as:

-
~

- e + 7 v A
a(n,m,q) vw(n,m,q) x ez *Vx [V X ( ezw(n,m,ql))] / (n,m, q}

(4.7)
where w( , 1s a solutlon of the scalar wave equation
n,m,q
2 2 -
(v + x(n'm.q)]w(n,m.q) 0 (4..8)
= J(y r) exp(imd + ik z) (4.8a)
(n,m,q) n naq n '
where A =+ (¥ +x% )2 (4.8b)
(n,m,q) nmq n
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Here,kn = 2nn/L, where n = 0,%1,.%2,....
The integer m takes on the values m = 0, 1,12,
qu > 0 and 1ls determined as that solution which makes equation

(4.7) satlisfy the boundary conditions at r=R. J‘(wnmqr) is the

Bessel functlion. -

Written in detall equation (4.7) is

-a- = é im + ikn _g 'p
(n,m,q) r|l r A 8r (n,m,q)
(n,m,q)
. ; N mkn ’
6 dr ra (n,m,q)
(n,m,q)
N 2(n m q)— krzx
* ez[ A ] w(n,m.q) - (2.9)
(n,m,q) *

For the inequallty m2+n2>0, the conditlon Rr= 0 at r= R, requires

Rky J (7 R) + mA J(r R)=0 (4.10)
n nmq ®w nmq (n,m,q) m nmq

The eigenvalues for m=n=0 are not determined by the
radlal boundary condition, since Rr=0 for n=m=0. A(oo O s
determined uslng the fact that for each individual(0,0,q) mode the

ratio of the toroidal magnetic flux wt to the pololdal flux wp is
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R [A(0,0, !
W, |A©.0,0] I R)

(4.11)
) L Ac,0,q9 Jo(arooqR)

P
Where 'l't and wp are defined as follows:

Using the vector potential A, for which B=§xA. and it obeys 8A/38t=
Vx(ﬁx}.)+5¢. Writing the z and ® components at r=R and integrating

over one perlod(As there is no contribution from the VX (UxA

term). wt and wp have the dimensions of magnetlc fluxes.

L ' 4
wp = 1: dz f de Az = Constant, r =R,

R 2 .
wt Lol dz Io de AB = Constant, r =R

¥, = - 27R Zl:eto,o.q)700qc(o,o,q)']o(700qr)
= J r)
v, = 2nl ;E(O,O,q)A(O,o,q)c(O,O,q) 0¥o0q

Since both wt and ¥ are constants of the motion, it 1is
P

natural to determine A(0,0,q) from equation (4.11) as:
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JO(WOOqR) L A(o,o,q) wt

TG - (a 12)
Jo 3(OOqR R I;\(o,o,q)l wp
for all q =1,2,3,...... g=1 is the eigenmode corresponding to the

lowest lA(ogL0)| The choice of equation (4.12) guarantees the
orthogonality of all pairs of modes. For n2+m2>0, the modes occur
in pairs, so that if A 1is an eigen value -A 1is also one,

corresponding to the opposite sign of m or n.

Is the normalized a such that
(n,m,q) (n,m,q)
3 [ ]
Jd7x A . =3 Jd & (4.13)
(n,m,q) (n’,m’q’) nn’' mm’ qq’
8 =86, =8 =1 if,n=n,m=mn and q =q' and =0, if
nn mm qq

n,m,q are not equal to n’,m’ and ' respectively.

The normalizing constant that relates A is given

to a
(n,m,q) {n,m, q)

by A =C

a (4.14)
(n,m,q) (n,m,q) (n,m,q)

Using equation (4.13) in (4.14)
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J“cf“n a . a dx=1 (4.15)

In cylindrical coordinates,

¢ =1/fa . a rdr de dz (4.16)
nm nm nm

The limits of integration are:r = 0 toR, € =0 to 2mr and z =0 to L
Eigen values of Anmfor n = m not equal to zero are obtained

from equation (4.10). For the mode n =1, m = 1, equation (4.10)

yields:

2nR , -
A 711J1(711R) * A11J1(711R) =0, or

A11L (A11R) J1(711R)
(711R) J1(711R) =T on J1(711R) == 2n(R/L)
2,1/2
AR=1[72R2+[2"R]] (4.17)
11 11 L

where the ratlo of the radius R to the length L of the cylindrical

loop has been taken to be : R/L = 0.1
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The value of WIIR satisfying equation (4.17) is ~ 3.23

Similarly for the mode n = 1, m = 0, from equation (4.10),

2nR , o
T 710Jo(710R) =0, or

J6(710R) =0 = - Ji(yloR) (4.18)

The value of 710R satisfying the equation (4.18) is 3.85
For the mode n = 0 m = 1, from equation (4.10),
AOI J1(701R) =0 or JI(WOIR) =0 (4.19)

The value of 351R satisfying equation (4.19) 1is 3.85

The corresponding values of A’s are
R =3.29, A R =3.8 and A R= 3.85 (4.20)

11 — 10 —_— 01 e

The values of normalisatlon constants are found to be:
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2.922 L

1.0198238 L (4.21)
0.1278097 L

11

c
o1

10

The magnetic field B and velocity field V can be expanded in terms

C-K functions as:

B = E E(n,m,q) A(n'm,q) A(n'm'q) (4-22)
nmq

V=1 T,(n,m,q) A(n,m,q) A(nﬂmq) (4.23)
nmq

vhere . 7’s and §'s are the expansion coefflicients and are functlons

of time.

Since, B and V are real, by symmetry condition the expansion

coefficlents E(nlnq) and n(nm " must be such that

= h n are real
(n,m, q) E(—n,—m.-q) S0 that g(O.O,q) and n(0,0,q)

for all values of q. In the truncated triple mode representation:

<
[}

AN (B)A + A (LA + A7 (L)A (4.24)
a a a b b b cc [+

=]
LI}

AE (LA +AE (LA + A E (LA (4.25)
a a a b'b b cc c

7's and £'s are in general complex.
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The functions a satisfy Vxa = A a
nm nm

LA have been determined from the boundary conditions for a
perfectly conducting and rigid boundary since the observations do
show very well defined loop structures aligned with the magnetic

field across which there is 1little or no transport. Thus the

radial component of the velocity and the magnetic field vanish at

the surface r = R.
In this chapter the study is confined to the steady state

solution to the pressure For the steady state 8/t [n,€] =0,

and n = §. From equation (4.6),

V(P/p + 1/2V2) = 0, which implies

P/p + 1/2V° = constant (4.26)

At the orligin where r = 0 and z = 0, let the pressure be P0. Then,
_the constant of integration comes out as = F%/p +hQVO? where V0

is the velocity at the orlgin. Hence, equation 4.6 reduces to

- . Ve - ._;_.v (4.27)

77



In this conflguration the total energy E of the loop

plasma 1is given by

E=La (n°+ €2) (4.28)
i=a,b,c

Though there is some estimate of the total energy of a
typical plasma loop, there is no obvious way of fixing the relative
magnitudes of the three modes. Two considerations which are
generally wused to fix the relative strengths of the three modes
whenever such three mode interactions are involved are :
(1)Pump approximation,in which one of the three modes 1is considered
as the strongest as compared to the other two.
(2) The mode strength is assumed to vary in proportion to their

spatial scales. Equation (4.27) will be discussed in the light of

these two considerations.

4.3 PUMP APPROXIMATION:

The spatlal varlation of pressure as already mentioned
earlier ls discussed for a cylindrical column of plasma for which

the R/L ratio 1s assumed to be 0.1, and the ratio of the toroldal
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to poloidal flux wt/wp as 0.1. Two triads (a1b1ci) and (azbzcz)
are chosen such that they represent the largest possible spatial
scales, as well as salls{y the condition a = b + c¢.(as wlll
be evident in time dependent case discussed in Chapter 5). The two

triads chosen are,

o
]

(1,1), b1 (1,0) and c, = (0,1)

]
1

= (0,0), b2 (1,1) and c, = (-1,-1)

The corresponding . values of 7’s and A’s are obtalned from

equation (4.10) as explained earlier. The values are

¥R =23.23 , 7bR = 3.85 , WCR 3.85

AR=23.29, AR=3.9, AR

a b c

3.85

for the triads al,bl,c1 and,

7R=1.44 , y R

3.23 , yR=23.23

AR

1.44 , AbR 3.29 , AR

3.29

for the triads aa’bz’cz.

79



CASE 1 PRESSURE STRUCTURE P1 FOR THE TRIAD al = (1,1), b1 = (1,0),

and c1 = (0,1):

4.3.1 RADIAL VARIATION:

The mode ‘a’' 1s assumed to be the domlnant or the
strongest mode and it is called the pump. Since the conservation
condition requires a = b+c the pump is assumed to share its energy

with the other two modes. Therefore, let
A2 n2 > AZ n2 and A2 nz > A% n2 (4.29)
a a b b a a c ¢

For the triads (al,bl,cl) i.e. for modes (1,1),(1,0) and (0,1)

. A2 2 2
LAY 21 - 0.8435 and c! a1 = 0.8659
2 52 , 2 22
nal bl al cl
v 6
We chovse |n | = 107 and ln | =|n. | = 8x10 , so Lhat the
al bl cl

pump approximation 1is valid. The expression on the RHS of
equation(4.27) has been averaged over a full cycle of 0.Flgure 4.1

is a plot of pressure (P1—Po) as a function of Var for different
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values of axlal dlstance 2z’'[z'=(z/L)x10]. P0 Is the value of
pressure at the origin.The plot indicates that the pressure or
temperature at any helght lincreases along the radius towards the
surface. The radial variation of pressure is the maximum at the
foot points of the loop and‘it is minimum at the apex. This is in
conformity with the result of Levine and Withbroe(1977), who have

established that the coronal loops undergoing dynamic changes

are characterized by a temperature structure in which there is a

cool core relative to the substantlally hot surrounding sheath.

4.3.2- AXTAL VARIATION OF PRESSURE:

Figure 4.2 is a plot of pressure (P1_Po) against the axlal
distance z' for varlous values of (7ar). The plot Ilndlicates that
the axial variation,of the pressure is maximum at the axls and
minimum at the surface. The maximum value of the pressure is
attained near the apex for all values of (war).This is in agreement

with the results of Rosner et al.(1978).

4.3.3 RADIAL VARIATION OF PRESSURE AT DIFFERENT AZIMUTHAL ANGLES:

Figure 4.3 is the plot of radial variation of pressure for
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different azlmuthal angles 0 = 0,n/4,n/2,and n when the pressure is
averaged over z. The pressure is found to increase uniformly for
all values of wars 2.0. The dependence of the pressure on the

azimuthal angle is significant for v, > 2.

4.3.4 AZIMUTHAL VARIATION OF PRESSURE AT DIFFERENT RADIAL DISTANCES:

Figure 4.4 is a plot of the azimuthal variatlon of the
pressure for different values of yar > 2.0.The plot indicates that
the pressure exhibits an oscillatory behavior which is predominant

near the surface.

4..3.5 CONTOUR AND DENSITY PLOT:

Figure 4.5 is a contour plot of pressure as a function of
the radial distance ¥, T and azimuthal distance z' when the pressure

is averaged over 0..

Flgure 4.6a and 4.6b are the density plots of the
pressure as a function of radial distance (AR and azlmuthal
dilstance z'when 0 ls averaged over a full cycle. In the plot the

darker shade squares correspond to minimum pressure regions, while

85



80.00 v T — T T r— T —

~
>
o
o
T
1]
)

68.00

Pressure (P;—Pg)x100
o
3
7 2

o

o

o

o
T

50‘00 L 1 A | ! | L 1
0.00 0.62 1.24 1.86 2.48 3.10

Azimuthal Angle O

Fig.4.4. Azimuthal variation of pressure P1 for

different 7_11- values.

86



Ya1 1)

Fig.4.5. Contour plot of the pressure P1 as a function of
7a1r and 2z’ when 9 is averaged. FEach unit on the axis
corresponds to ¥uF = 0.1 and 2’ = 0.3.
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the lighter shade reglons correspond to maximum pressure.
Flgure 4.6a corresponds to the case of "c1>"b1'1t is further
observed that the shades become 1lighter on nearing the apex

indicating that the region of maximum pressure exists there.

Figure 4.6b is the density plot of the pressure as a

function of 7ar and z'when nb1 > 7 As compared with the

ct’

previous case of n, > nblthe region of maximum pressure is found

1
to have moved up. The density plot indicates that the region of

maximum pressure need not necessarily be at the apex.

CASE 2 PRESSURE STRUCTURE P? FOR THE TRIADS a, = (0.0),b2 = (1,1),

and c, = (-1,-1):

Consider the pair of triads a = (0,0), b, = (1,1),

02 = (-1,-1),which represent the largest spatial scale and satlsfy

the conditlon a = b + ¢ . The values |9 | = 2x107, In | = 8x10° =
a2 b2

ln obtalned from the inequality (4.29) satisfy the condition

c2|

for pump approxlmatlon
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4.4.1 RADIAL VARIATION:

Figure 4.7a is the plot of radial variation of pressure P2
for 6 = n/4 at different axial positions. Unllke the case of P1
(Figure 4.1)where the maximum pressure was noticed at the foot
points, 1n this case the maximum pressure as well as the maximum

variatlon in pressure both are at z=L/4.

Figure 4.7b is the plot of radial variation of pressure Pz
for 8 = 3n/4and for different axial distances z= 0, L/4, L/2 and L.
The maximum pressure as well as the maximum variation in pressure
is found to be at the foot polints, in sharp contrast te the case for
6 = n/4.where 1t was found to be at one fourth the height of the

cylinder i.e.at z = L/4

4.4.2 AXIAL VARIATION:

Figure 4.8 is a plot of the axial variation of pressure
P2 for the azimuthal angle 6=n/4 and for different radial distances
yr = 0, 0.72, and 1.44 . The pressure shows an osclillatory
behavior at the axis of the loop more predominantly than near the

surface.
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Fig.4.7a. Radial variation of pressure P2 for 8=n/4
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4.4.3 AZIMUTHAL VARIATION:

Figure 4.9 s the azimuthal variation of the pressure Pa
at the apex of the loop for dlfferent radial distances from the
axils. The behavior of pressure is oscillatory and the maximum value

is attained at the boundary.

4.5 MODE STRENGTHS VARYING IN PROPORTION TO THEIR SPATIAL SCALES:

CASE 1: PRESSURE STRUCTURE PIFOR THE TRIADS a = (1,1), b1= (1,0)

and c = (0,1):

Thls is the second of the physlcal conslderations in which
the mode strengths are assumed to vary in proportion to their
spatial scales. It is assumed that the mode with the largest
spatial scale may be the strongest. For the set of triads chosen a
=(1,1),b =(1,0) the spatial scale in the z' direction is same and
is smaller than that of the mode ¢ = (0,1). In this case ‘a’ and
‘b’ are assumed to be of equal strength and less than the strength

of ‘c’. So that
Aznz - Aznz and Aznz < Aznz
a a bb a a c C
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Fig.4.9. Azimuthal variation of the pressure P2
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7 6 7
Choose ]nal = 10" , |nb[ = 8.4 x 10 and lncl =1.6 x 10,

so that the conditions prescribed in equation (4.29) are satisfied.

4.5.1 RADIAL VARIATION:

Figure 4.10 is the radial variation of pressure for
different axial positions. The pressure and hence the temperature
at any height increases along the radius towards the surface. The
radial variation of, pressure is maximum at the foot points of the
loop and is minimum at the apex, for z=0 and L. This result lis
similar to the pump approximation case for the same
triads, (Ref.Figure4.1). However, for other values of 2’, the
pressure tends to decrease initially and after a certain radial
distance, increases monotonically. This 1s contrary to the
pressure profile indicated in Figure4.1, where there 1is a

monotonic increase of pressure for all values of 2°.

4.5.2 AXIAL AND AZIMUTHAL VARIATION:

Figure 4.11 is a plot of the axial variation of pressure.

with axial distances at different radial positions,and 4.12 is the
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Fig.4.10.Radial variation of pressure for different
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radlal variation of pressure for different azimuthal angles.
The results In both the cases are more or less comparable to that

obtained In the pump approximation case (Figure 4.2 and 4.3).

CASE 2: PRESSURE STRUCTURE PZFOR THE TRIADS a, = (0,0), b2= (1,1)

and c = (-1,-1):

In this case the mode a = (0,0) corresponds to the largest
spatial scale and therefore 1f thls ls assumed to be stronger than
the other two modes. This leads to the conditions Ajn: > A:n:
and Aini > Azni which are ldentical to the pump approximatlon
case for the triads (a,b,c). The pressure profile is therefore

similar to the one in Flgures 4.7,4.8 and 4.9.

4.6 SUMMARY:

The representation of veloclity and magnetic flelds by a
three mode Chandrasekhar-Kendall functlons, brings out the three
dilmenslonal features of Lhe pressure profile. The cholce of the

trlads representing the varlations of velocity and magnhetlc flelds
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on the largest spatial sc;les permitted by the system, provides a
fairly realistic description of the loop plasma. Though the
pressure structure is a strong functlon of the relative ampllitudes
of the modes, the trends, like an increase of pressure towards the
surface and the existence of maximum somewhere along the length of
the loop emerge as the general features. The superposition of C-K
functlions has produced results which are in general agreement with
the observed cool core and hot sheath features of the coronal
loops. However the discussion 1in this chapter were purely
restricted to the spatial variation of pressure. An attempt at the
study of temporal evolution has been made and the same is dlscussed

in the next chapter.

102



5 TEMPORAL EVOLUTION OF PRESSURE IN SOLAR CORONAL LOOPS

5.1 INTRODUCTION:

As already mentioned coronal loops are dominant structures
in the higher levels of the solar atmosphere and they exhlibilt
stable and well configured geometry Iinspite of the magnetic and
velocity fleld fluctuations in plasma. Such a steady state is the
result of various manlfestatlons of the balance‘of inertlal and
magnetic forces. The structure of the velocity and magnetic flelds
plays a pivotal role in determining the heating, stabllity and
evolution of the plasma in coronal loops (Athay and Klimchuk, 1987;
Priest,1982; Krishan, 1983 and 1985). In the previous chapter the
steady state structure of the pressure of the loop plasma was
delineated using Chandrasekhar-Kendall representation of the

veloclty and magnetlic fields. This was done under the steady state

assumption and therefore no information on the temporal behavior of

the fields and of the pressure could be derived.

In thls chapter the study is extended to include time
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dependence of veloclity, magnetic fleld and pressure and thereby
study their evolution. As before, the dynamics of the velocity and
magnetic flelds are studied wusing .the MID equations and
Chandrasekhar-Kendall representation. The complete dynamics 1is
described by a set of infinite coupled and nonlinear ordinary
differential equations which are of the first order in tlime for the
expansion coefficients of the veloclty and magnetic fleld. Since
the evolution equations are coupled and nonlinear ,the dependence
of their solution on the initial conditions is expected to reveal
chaotic behavior. Towards this end, an investigation is done on
the existence of chaos in the evolution of pressure in coronal
loops by studying the power spectrum of the data generated by the
solutlon of the MID equations and by evaluating the invarlant
dimension especlally the second order correlation dimension of the

attractor D2 of the systen.

The representation of the fields by the superpositlion of
the three lowest order C-K functions reduces the system to a set of.
six equations, three for velocity and three for magnetic fleld.
Analyticﬁl solutions can be arrived at in two simplified cases:
(1)when the system 1is disturbed linearly from its state of
equilibrium, and,

(2) when one of the three modes has an amplitude much larger than

the other two, referred to as the pump approximation.
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In the first case,it is found that the disturbed fields undergo
sinusoidal oscillations with a period which 1s a function of the
equllibrium ampllitudes of the three modes. This may be one of the
ways of explaining the quasi-periodic oscillations observed in the
X-ray, microwave and EUV emissions from the coronal loops

(Aschwanden, 1987; Svestka, 1994 and references therein).

In the second case, for special values of the initial
amplitudes, the system exhibits sinusoldal oscillations. However
under general initial conditions, the velocity and magnetic fields
go through periods of growih, reversal,decay and saturation in an

apparently random manner,

In the most general case, with arbitrary initial
conditions, the set of six equations can be solved numerically.
The velocity and magnetic flelds show a rather complex temporal
structure which can be interpreted on the basis of chaotlc
phenomena. The evidence of chaos is established by evaluating the
invariant-dimension, especially the second order correlation
dimension of the attractor D2 of the system. A fractal value forD2
Indicates the exlslence of deterministic chaos. In evaluating the
invariant dimension the following informations are obtained:

(a)Is there an attractor and if there exists one, is it regular or

strange?
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(b)Is there only a single attractor or are there more than one?
(c)What is the embedding dimension so that in describing non
linear procegs characterised by the set of given equations, what
should be the dimensions of the phase .space to describe the
dynamics of the system.

The algorithm proposed by Grassberger and Proccaclia (1983) has been

adopted In this chapter.

5.2. DERIVATION OF THE PRESSURE PROFILE:

As mentioned in the previous chapter the coronal loop
plasma is represented by a cylindrical column of length ‘L’ and
radius ‘R’. The equatlons describlng én incompressible ideal MHD
turbulent plasma in terms of fluid velocity V and the magnetlc
field B are: (This section upto equation 5.21 has already been
discussed in chapter 4. However,for easy reference the same is

being repeated here).

<l
8]

(V x B)xB _
P

@
<

(v.7)v -

(5.1)

°|
QD
o+
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Vx(VxB) - & = ¢ (5.2)

where P 1s the mechanical pressure and p is the mass density. The
force due to gravity has been neglected. Equations (5.1) and

(5.2) preserve in time the constraints

V.V=0 (5.3)
V.B=20 and (5.4)
P = nKT (5.5)

n is the number density of particles , K 1is the Boltzmann’s
constant and T is the temperature. The equations (5.1) to (5.5)
form closed set of equations in B,V,p and T.

Using the identity

(V) V=(VxV) xV+1/2 W ,

equation (5.1) reduces to
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av

V [P/p + (1/2)V2] = - (sxV)xVJ - = (5.6)

(VxB)xB
P ot
In the steady state d8V/dt = 0 and for a force free representation

of the magnetic fleld and a Beltrami flow,i.e.,for VxB=aB and

UxV=aV , we find
VIP/p +1/2 V3] =0 - (5.7)

Equation (5.7) also holds good where there 1is an
equipartition of ehergy between velocity and magnetic fields,li.e.,

vl = [8}/p.

In cylindrical geometry, with a rigid perfectly
conducting, impenetrable wall at a radius r' = R, the bhoundary
conditions on B and V at r = R are Vr(r=R)=0 and Br(r=R)=0. A
periodic boundary condition with a period L in the z direction is
assumed. Identifying L with the major circumference of a torus
enables to include the case of a toroidal boundary with the
curvature neglected. The z or the axial direction will be referred
as the “toroldal" direction and the 6 direction as the "poloidal"

direction.
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Following the procedure adopted by Montgomery et al(1978),
the velocity field V and magnetic fleld B in the loop plasma are
represented by the superposition of Chandrasekhar-Kendall
functions. They are‘eigenfunctions of the curl operator. They are

the solutions of the eigenvalue problem V x a = Ad, where A
is real Individually they are force free fields although the sum
of two or more of them is not,in general,force free. The complete
dynamics can be described by a set of infinite coupled nonlinear
ordinary differential equations which are of first order in time
for the expansion coefficients of velocity and magnetic flelds and
it is a formidable task to find solutions to these equations.
Hence, the flelds are represented by the superposition of the three
lowest order C-K functions. Another Justification for doing so is

that these functions represent the largest spatial scales and

therefore may be the most sultable states for comparison with

observed phenomena.

The eigen functions of the curl operator can be written as:

-~

a(n.m,q) =V w(n,m,q)x ez+ [ Vx Ux [ey ]] /A

z (n,m,q) {n,m,q)

(5.8)

where ¢(nm " i1s a solution of the scalar wave equation
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2 2

o™ + A(h,m,q)]w(n,m,q) =0 (5-9)

=J (y r) exp(imé + ik z) (5.9a)
(n,m, q) m - nmq n
Where
=t (¥ 2 )R (5.9b)
(n,m, q) nmgq n
Here,kn = 2nn/L, where n = 0,%1.%2,....

The integer m takes on the values m = 0,t1,%2,.....
%mq > 0 and is determined as that solution which makes equation

(5.8) satisfy the boundary conditions at r=R. Jm(arnmqr) is the

Bessel function. written in detall equation (5.8) is:

im ik
a _ : + n 8 "
(n,m,q) r{ r A ar (n,m,q)
(n,m,q)
. ; _ 3 ) mkn 3\ w
<] ar ra (n,m,q)
(n,m,q) ’ ‘
- ? ) ki )
n,m,q
¥ ez[ A w(n,m.q) (5.10)
(n,m,q) J

For the lnequallty m2+n2>0, the conditlon Rr= 0 at r= R, requlres
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Rk 7 J” (¥ R) + mA J(y R) =0 (5.11)
n nnq m nmq

(n,m,q) m nmq

The elgenvalues for m = n = 0 are not determined by the

radial boundary condition, since R =0 for n = m = 0. A is
r (0,0,q)

determined using the fact that for each individual (0,0,q) mode the

ratlo of the toroidal magnetic flux wt to the poloidal flux wp is

v R |A | J, (r,, R)
- 10,0, q) 0 ’00q (5.12)

wp L A(o,o,q) J (7boqRJ

Since both wt and wp are constants of the motion, it is

natural to determine A(O()q) from the equation (5.12) as :

JotvoOqR) - - L A(o,o,q) f&_ (5.13)
JozvoOqu R |A(O,O,q)] wp

for all q = 1,2,3,...... .g=1 ls the elgenmode corresponding to

the lowest |A The choice of equatlion (5.13) guarantees the

(0,0,0)l
orthogonality of all pairs of modes For n2+m2>0, the modes occur
in palrs, so that if A is an elgen value -A is also one,

corresponding to the opposite sign of m or n.

is the normalized a such that,
(n,m,q) {n,m, q)
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3 = —

Jd™x A ,,, = (5.14)
{n,m,q) (n,m,q ) nn' mm’ qq’
d ,= & =46 =1ifn=n ,m=n and q =4q', and = 0 if
n,m and q are not equal to n’,m’ and q’'respectively.
The normalizing constant that relates A to a
(n,m,q) (n,m,q)
is given by
(n,m, q) = C:(n,m,q) a(n,m,q) (5.15)
Using equation (5.14) in (5.15)
2 a .a dx =1 ‘ (5.16)
nm nm nm
In cylindrical coordinates
2 -
C° =1/ a .a rdr de dz (5.17)
nm nm nm
The limits of integration are :r = 0 to R, 6 = 0 to 2rn and
z=0 tol.

The values of 3]1R’ QHOR and 1031 are 3.228998 ,3.85
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and 3.85. respectively.

And, that of AliR' AloR and AblR are 3.28956 3.85 and

3.85 respectively (Refer Chapter 4).

Using these values of A's and - ¥'s the normalisation

constants are found to be :

C11 = 2.922 L
= 1.0198238 L
01
= 0.1278097 L
10

The magnetic field B and the velocity field V can be expanded in

terms of the C-K function as:

= 5.18
B Z (n,m,q) A(n,m,q) A(n,m,q) ( )
nmq
= 5.19
v L n(n,m,q) h(n.m,q) A(n,m.q) ¢ )‘
nmq

where n's and £€’s arc the expanslon coefficlents and are functions

of time. Since B and V are real, by symmetry condition the

expanslon coefflclents E(nm Q) and n(nnlq) must be such that
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= so that and
(n,m,q) g(-l‘l.—'m,—q) E(o,o’q) n(o’o’q) are real

for all values of q. In the truncated triple mode system

<
]

Aana(t)Aa + Abnb(t)Ab + Acnc(t)Ac (5.20)

(=)
[t}

AE (LA +AE (LA +AE (LA (5.21)

n's and £’'s are in general complex.

The functions a satisfy V x a = Anmam{

7mm have been determined from the boundary conditions for a
perfectly conducting and rigid boundary since the observations do
show very well defined loop structures aligned with the magnetic
field across which there 1is 1little or no transport. Thus the
radial cémponent of the velocity and the magnetic field vanish at

the surface r = R.

The dynamics can be described by taking the inner products
of curl of equations of (5.1) and (5.2) with A:m and integrating
over the volume, The resulting six complex,coupled, non-linear

ordinary differential equations are:
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5.2.1.DERIVATION OF THE DYNAMICAL EQUATIONS:

Equation (5.1) 1is, g% + (V.9)V = ~VP + (UxB)xB

Taking curl on both sides and rewriting,

vx g% =-Ux (V.V)V - UxVP +Ux (VxB)xB {5.1a)
v _ a ‘
Ux T Vx 3T [}\anaAa + AbnbAb + AcncAc]
2 ana 2 aT]l:» 2 anc
= Aa H— Aa + Ab 5{:—' Ab Ac 5— AC [USlng VxA = M]

Dot multiply by A: and integrate over the volume. Taking

IA..(Ab X Ac)dar I and wusing UxA = A A,

it
>

[ J V]
i

Q!
s

T1vx —S—‘{].A: d°r (5.1b)

(VxB)xB = [Vx(AaEaAa + AbEbAb + ACECAC)]X

(AagaAa * AbEbAb * thcAc)
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Dot multiplyling by A. and Integrating over the volume

*3 2 _ 42 ¢ 3
I[(VxB)xB].Aad r =Vx [AbAcsbgc Acxbgbgc]j(Abec).Aa d’r

i}

Ux AAe€ - A€ 1 1A A o
b c¢c’b’¢c c b’bc a a

2 2 « 3
[AbAchEc AcAbEbEc] I AaIAa. Aa dr

* 3 - _
I[(VxB)xB].Aad ro=2AXrA [?«b Ac] I EbEc (5.1c)

Using, (V.V)V = =V x (VxV) + 1/20V°

Taking the curl on both the sides Vx (V.V)V = V x(-V x (VxV))

Vx (Vx (IxV)) =Ux (AnmA + AmA +2AnA)Xx
a a a bbb cec c

(Ux AanaAa + AbnbAb + AcncAc)
Dot multiplying with A: and integrating over the volume,

TIVx (Ux1.A'Er =2 aannIa - 2a) (5.1d)
a a bc b ec c b
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Combining equations (5.1b),(5.1c) and (5.1d) and using,

UxVP = 0
2 ana '
Aa Ft-:— = Aakbkc [Ab‘-xc] I EI:aEc M Aa}‘bht:.nh.nt:l(kc N Ah)

81 A A

a b.c - -
el s— A=A 11 (€, nbncl (5.1e)

Q@

Equation (5.1e) is same as (5.22). Similarly other equations

(5.23) and (5.24) can be derived.

od]

Equation (5.2) rewriten is, g T = v x (Vx B)

(s}

'V x (V x B)

#

vx [xnnaAa * AbnbAb * At:'n'.:Ac:] x

[AagaAa ¥ AbsbAb * At:.gc:Ac]

v x[[?\albnaﬁb(AaxAb) - Aakbnb&:a(AaXAb)]+
[hakcnasc(AAXAc) - AaxAc:.nt:g-‘.\ (AaXAc )]

[Ablcnbgc(AbXAC) - AbACnch(AbXAC)]]
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Dot multiply by A: and integrate over the volume. Taking

J’A'.(Ab X Ac)dar = [ and since, UxA = A A
» 3 - _
FIvx (Vx B)J.A dr =2ar[nE -ng ]Al (5.2a)

Dot multiplying the LHS by A: and integrating

B = [maea . drrmen.a d®r
at™ " a ot a’a a a b b a

TAEA A &)
¢ € C a
3
ot AE (5.2b)

combining equations (5.2a) and (5.2b)

9€

a

at Abkc[ 7'bEc - 17<:€b ]I (5. 2¢)

Equation (5.2c) is the same as equatlion (5.27). Similarly other
equations (5.28) and (5.29) can be derived.The p In the dynamical

equations can be absorbed by using £ = 4p/€’.

dna Abhc :
i =5 A, - A) Ilnn - &£ /pl (5.22)

a
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dn A A

dnc Aakb * » L]

at = Ac (Ab - Aa) I [nanb = Ebga/p] (5.24)
dEa

dt~ = Abkc I [nbgc - nch] (5.25)
dEb _ LI ] -

T AN, T g -nEg] (5.26)
& ..

=AM, g - gl (5.27)

where I = JA" .(Ax A ) d°r
a b c

and,the (n,m) values of the modes (a,b,c) satisfy the condition
n=n+nand m=m+ m Equation (5.6) with the representation
a b c a b c

of V and B as glven by equation(5.20) and (5.21) can be manipulated

to yield:
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P 1
V(4 +_5_Z ;"x"j”x"; AA)

i,J=a,b,c

£§,
o) Ay Aj][ —5 - "1";] (AxA )
i=a,b,c
J=b,c,a
6nl
- ) 36 AA (5.28)

The expanslon coefficients niand Ei can be solved
numerically from the dynamical equations (5.22) to (5.27) which
when substituted 1n equation (5.28)determines the pressure as a

function of space and time.

5.3 DYNAMICAL ASPECTS:

The temporal evolution of the pressure for a
cylindrical column of plasma of length "L" and radius "R" and for a
toroidal to poloidal magnetic flux,wt/wp ratio of 1/10 is dlscussed
In thls secltlion. As mentioned earller,lriads a,b,c are chosen to

represent the largest possible spatlal scales and also satisfy the
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condition a =b+c ; a = (1,1), b= (1,0), c = (0,1).
The values of 71 and A! found from the boundary conditions as
mentioned earlier are:

7R

3.85, and

3.23, y R = 3.85, ¥ R
b c

AR = 3.29, AbR = 3.90, ACR 3.85
The total energy of a loop plasma in a given configuration (a,b,c)

is given by :

tri
]

m’b’:f (n2+€%)

There 1s no obvious way of fixing the relative magnitudes
of the three modes even though we have some estimates of the total
energy of a typical loop. There are two physical situations under
which equations (5.22) to (5.27) can be solved analytically.

(1)The linear case, and, (2)The pump approximation.

5.4.THE LINEAR CASE:

In this case the time evolutlion of the small deviations of
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the velocity and magnetic fields from thelr equilibrium values.

i.e.,when,

=7 + = < <<
n =7, . £ £0+El,and n, < n, 51 Eo for all modes are

supposed. From the equation of state n,= EO.

Assuming both nl(t) and E1(t) to have time dependence through eSt,

we can obtain a dispersion relation whose solutlion is:

= 2 _ 2 2 2 -3 . 2 2
S=3%1 III[Rb (Ab—Ac Aa) |nb0| * Ac(Ac Aa Ab) |77°0|
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2 2 2
- A -A - ) | (5.29)

Thus, the system exhibits marginal stability since the
perturbed quantities have sinusoidal oscillations with a period

which depends upon the equilibrium values of the flelds.

5.4.1 TEMPORAL EVOLUTION OF PRESSURE:

Figure 5.1 1s a plot of the temporal evolution of pressure

[P(t)] at an axial point of the coronal loop when the initial
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values of veloclity and magnetic field coefficients m, and El are

very nearly equal. The values of n, and El chosen are :

LN

€, |

1.0, |m

3.0

!}

bl 2'0’ |ncl

1.1, |gb|

2.1, IECI 3.1

Figure 5.2 is a plot of power spectrum corresponding to
Figure 5.1. The plot is a discrete spectrum which clearly indicates
that the pressure profile has a finlte number of frequencles when
the magnitude of the velocity and magnetic fields are approximately
equal 1lnitially.This marginal stabllity exlists only for the time
scales for which the linearisation is wvalid. The skylab,UV and
microwave observatlons do indicate that the loops are in a state of

quasi periodic pulsations. (Aschwanden 1987)

5.5 PUMP APPROXIMATION:

In the pump approximation one of the three modes ls taken
to be the strongest.For example,here,since the conservation
condition requires a = b + ¢, we can take ‘a’to be the dominant
mode and call it the pump which shares 1its energy with the other

two modes.The time evolution of the two weaker modes does not
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Fig.5.1. Temporal evolution of pressure P(t) at an
axial point of the coronal loop when the initial
values of the velocity and magnetic fleld coeffi-

cinets are very nearly equal.
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Fig.5.2. The power spectrum S(w)-(constant) 11mT
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iation of pressure shown in Fig.5.1.

-0
P(t)dt|2 corresponding to the time var-
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produce any significant change 1in thé pump (stronger) mode and
hence, we can neglect all time variations,in(na,ia) and they remain
constant. The system of six equatlions (5.22) to (5.27) therefore
reduces to four(Equations (5.22) and (5.25) are automatically
satisfied under the pump approximation since both sides of the
equations are vanishingly small). With the additional assumption

na=£a and takes the following simpliflied form which can be solved

analytically.
dn A A

b _ c a _ L ] * _ »
e N R UL L) (5.30)
dn AA

c _ ab _ - Lt
T - AC (?tb Aa) 1 [T)b .Eb ]T)a (5.31)
dg
2o ' - € (5.32)
dt ac c c a
= . AA I(E - m ] (5.33)
Ht_ - ab Eb nb na '

Derivative of (5.30) w.r.t t keeping n, as constant, we get

2 . »
dn° AA dn. d€
I O UL N c . _¢

2 A a c a dt dt
dt b
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Complex conjugate of equations (5.31) and (5.33) gives

dn. A .

at - Ac (Ab - Aa) I [nb - Eb ]na (5.34)
“»

% . Ar Il 10 (5.35)

aT - AN LI - .

The difference between equation (5.34) and (5.35), gives

dn.  dE. AR .
dt it A (Ab - Aa * Ac) I, ["b - gb ] (5.36)

Time derivative of equation 5.30 along with equation (5.36) can be

written as

2
dm
— =2 2 1P P -A)A -a + ) (0 - E) (5.37)
dtz a a a c b a c b b
where, I = |I|2 and 7 xn’ = | IZ

a a a
dznc 2 2 2
=A% (A, =A@ - A -2A)(n - E) (5.38)
dt2 a a b a a b c c c
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Equations (5.37) and (5.38) can be written as

d nb
=Pmn +P
dtz 1b 2
dzn
c = P!n + Pl
dtz 1 ¢ 2
where,
_ 42 _ _ 2 2 2
Pl B Aa (Aa Ab Ac) III tnzsl
_ 2 _ _ 2 2
PZ B Aahb (Aa Ab Ac) III lnal Ib
P* =P
1
PP=2a%a a2 =) 1P 1?1
a ¢ o b c a c
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- iP t 4P t Pz
n,=Ae 1" +Be 17 - (5.41)
1
1P X T "
’ﬂc =Qe 1 +Re int B p2 (5.42)

vwhere A,B,Q and R are to be determined by the initial conditions.
Equations (5.41) and (5.42) show that all the fogr field
coefflclents L £b and Ec exhibit growing and decaying modes.
This is to be expected since there is an infinite capacity pump
mode n Ea in the system at the expense of which n, €b, n_ and §c
are growlng.Thus,In the case of pump approximation analytical

solutions to the system can be found.

5.6. THE NONLINEAR CASE:

Equations (5.22) to (5.27) are a set of six ordinary first
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order differentlial equations which are highly nonlinear. Also the
veloclity fleld coefficient (nl)and magnetic fleld coefficlent (El)
components are both coupled which adds to the inherent nonlinearity
of the equations of motlon, characterlstic of MHD equatlons.These
equations 1in principle can be considered as equivalent Lo one
ordinary sixth order differential equation which will manifest all
the nonlinearities and therefore may lead to chaotic dynamics. To

investigate this aspect we first determine the power spectrum of

the system. A  broad band power spectrum (Fig 5.4) s a sure

indication of the existence of chaos in the dynamlcs. The irregular

and unpredictable time evolution of many non linear systems has

been referred to as ‘Chaos’. It occurs In mechanical oscilltors

such as a pendulum or vibrating objects in rotating or hot flulds,

in Laser cavities and in some chemical reactions. Its central

characteristic is that the system does not repeat its past behavior
(even approximately). Insplte of the lack of regularity chaotic
dynamical systems follow determlnistic equatlions such as thosge

determined from Newton’'s second law.

The unique character of chaotlc dynamics can be understood
by imagining a system to be started twice, but from slightly
different Initial condition. Thlis small inltial difference can be
thought of as resulting from ﬁeasurement error,

For non chaotic

system this uncertalinty leads only to an error in prediction that
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grows linearly with time. For chaotic systems, the error grows

exponentially in time, so that the state of the system 1is

essentially unknown after a very short time. This phenomenon,

which occurs only when the governing equations are nonlinear, 1is
known as sensitivity to initial conditions. According to Henri
Poincare,"it may happen that small differences in the initial
conditlons produce very great ones in the final phenomena. A small
error in the former will produce an enormous error in the latter;
predictlion becomes lmpossible. If prediction becomes impossible, it
is evident that a chaotic system can resemble a stochastic system
(a system subject to random external forces). However, the source
of irregularity 1s quite different. For chaos, the irregularity is
part of the intrinsic dynamics of the system, not unpredictable

outside influences.

Chaotic motion 1is not a rare phenomena. Consider a
dynamical syslem described by a set of first order differentlal
equations. The conditions necessary for chaotic motion are that
(1) the system has at least three independent dynamical variables;
and (2) the equations of motion contain a nonlinear term, that
couples several of the varlables. The phase space ls sufficlent to -
allow for (a) divergence of the trajectorles (b) confinement of the
motion to a finlte region of the phase space of the dynamical

variables, and {c) uniqueness of the trajectory. The nonlinearity
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condition 1is valid because solutions to 1linear differential
equations can always be expressed as a linear superposition of
perlodic functions, once initlal transients have decayed. The
effect of a nonlinear term is often to render a periodic solution
unstable for certain parameter cholces. These conditions though do

not guarantee chaos, they make lts existence possible.

The addition of a damping term to the equation for an
undamped pendulum resulls in an attractor at the origin where siné
% 0. Further attractors are added at @ = * nr, w = 0. This is
evident by settling the phase velocity equal to zero and solving for
the stationary values of 0 and w . These attractors are points
where phase veloclty goes to zero. The critical point will reveal
whether these trajectories tend to go back to these critical polints
if slightly perturbed, and will their stability depend upon the

direction of the perturbation?

An insight 1into chaotic system can be obtalned by
determining the lnvariant parameters such as correlation dimenslons
Dl,Kolmogorov entropies Kl,Lyapunov exponents etc which are all
infinite in number. However it has been shown that of the infinite
number of the correlation dimensions and Kolmogorov information
entropies, the second order quantities are the most significant ones

and hence the need to determine D? in the present analysis. The
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algorithm followed in this chapter is that proposed by Grassberger
and Proccacia (1983) and later developed by Atmanspacher and

Schinegraber (1986) and Abraham et al(1986).

Let {Xo(t)} be the original time series with the data
being taken at constant interval. These data set can be rearranged

so as to get (d-1) additional data sets as

xo(tl) ................... xo(t)
xo(tl+AL) ................ Xo(tN+AL)
X (t+dat). ..o, X (t +dAt)
o 1 0O N

The transpose of the above malrix can be consldered as conslsting
of N vectors having d components in a d dimensional space. The

general vector can be written as
X=X (b )i, X (t +dAt))

where,1 = 1...N and 21 is a point in the constructed d dimensional

space. With thls the correlation function can be evaluated.
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Cd(r) = Lt e(r - |xl-xj‘)
N->0 N 1,J=1,N

where 6 is the Heavislide function defined as 8(x) = 0 for x < 0 and
uniiy for x >0. This implies that 1f the absolute value of the
vector differenée le—le is less than r,it is counted as unity and
is zero if it 1s greater than r. Small boxes of side r are
constructed in the phase space and the vector tips that lie in this
box are counted. This is referred to as box counting. It 1s seen

that as r becomes smaller Cd(r) ~ Y ,S0 that
log Cd(r) ~vlogr

As r —>0 and d —>», v takes a definite value which is called the

second order correlatlon dimension. i.e.

log C ()
D = lim d
2 s 0 log (r)
d->x

The correlation integral C(r) 1is calculated for secveral

values of r with respect to each particular dimension d of the

constructed phase space. For each dimenslion d a curve of log Cd(r)

Vs. log (r) is drawn. The slope v of the linear part of the curve
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1s obtained using least square fit. The finite value to which v
converges for hlgher valucs of d lIs denoted by D2 An integer value
for Dz indicates that the system is regular and a fractal value

that the system is chaotlc.

The equations (5.22) to (5.27) have been numerically
solved for arbitrary initial values of the field coefficients. The
time evolution of pressure at an axial point of the 1loop for

initial values

|n_| = 4.0, |n| =70 [n]|=10.0,
and,
€| = 8.0, |g] =110 €| =14.0

is shown in Figure 5.3. The time variation is found to be highly
complex. The corresponding power spectrum is shown in Figure 5.4.
The power spectrum 1s found to be fluctuating and has a broad band
indicating the presence of chaos. A set of 500 data points
corresponding to this chaotic evolution of pressure was used to
evaluate the information dimension D2 by the box counting method

described above.

Figure 5.5 illustrates the converging and from whlch the

value of D2 is found to be 1.732. For the same initial conditions
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'Fig.5.3.. The variation of pressure at an axial
point of the loop when the initial values of the
fieldcoefficients n_,m,n are much different from

those of Ea.ﬁb and f;'c respectively.
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Fig.5.4. Power spectrum S(w) corresponding to the

time varlation of pressure shown in Fig.5.3.
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Fig.5.5. The slope (v) of the linear part of the
long(r) vs log(r) curves, obtained using
least-squares fits are plotted agalnst the dimension
d of the constructed phase space.The two asymptotic
values of the slopes are 1.39 and 1.73.This lis
corresponding to the chaotic evolution of pressure

at an axial point of the loop,
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when D2 is evaluated at a surface point, the slope does not seem to

converge to a limiting value (FigureS5.6). The fractal value of

D2 is clear evidence for the existence of deterministic chaos.

In a chaotic regime the system can elither dissipate to an
attractor stage or can follow a stochastic(random) flow. As the
dimension d of the constructed phase space increases thg slope v
may converge to a limlting value.In this case the flow will be
confined to a geometrical object called attractor. The converging
value of the slope 1s the dimension D2 of the attractor.The
dimension of the attractor measures the minimum number of
independent parameters needed to describe the system dynamics. In
other words Iif D2 exlsts, there ls a properly deflned dynamical
system. The steady increase of slope v with d (Figure 5.6)evidently
shows that 1t cannot converge and consequently the number of
degrees of freedom of the system is increaslng.Then the complexity
of the system increases and it tends to a more disordered state

indicating that system behavior is stochastic.

5.7 SUMMARY:

In the equilibrium state n = £ ,m= &€, = £c. When the
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Fig.5.6. Corresponding to the chaotic time evolution
of pressure at a surface polnt of the loop,the
slopes(v)of the linear part of the longvs log(r)
curves are plotted against the dimension d.The

slopes do not converge to any limiting value.
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system is slightly disturbed from the equlilibrium state, the time
evolution for small departure from equilibrium condition reveals
that the system exhibits sinusoldal oscillation with a period which
depends upon the initial values of the flield coefficlents. In other
words, when the system is perturbed from a state where the magnetic
energy B°/4n and the kinetic energy (1/2)mv2 are nearly equal,ip
exhibits marginal stability. The microwave and: X-ray observatlons
of coronal loops show quasi perlodic oscillations with time scales
ranging from a fraction of a second to tens of minutes. (Aschwanden
1987,Svestka 1994 and references therein). These oscillatlions are
usually interpreted in terms of magnetohydrodynamic waves in loop
plasma.(Roberts,Edwip and Benz 1984). The observed power spectrum
of pulsations actually exhibits a more complex behavior(e.g.fig.1d
of Svestka 1994) which appears quasl periodic only if we ignore
finer variations. Thus, quasi periodic behavior 1is expected only
near equilibrium as is shown iIn the above study and the linear wave
analysis studles. Under large departures from the equilibrium,a
loop shows a complex temporal structure which can only be described
in terms of objects with fractal dimensions in the phase space of
the velocity and magnetic field. Coronal loops being continuously
subjected to external forcing through their foot points and through
their interaction with neighboring regions are most likely to be in
a chaotlc state of pressure fluctuations. Therefore ,when there are

large deviations from equilibrium 1i.e., for initial values of
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LR much different from those of Ea,ﬁb,Ec respectlively, the
system 1is nonlinear and so is the corresponding time evolution of
the pressure. In this case each Iindividual mode becomes
distinct, stronger and mode—modg interaction can take place. In the
pump approxlimation case since the varjation of the strongest mode
is negligible when compared with other modes, the Iinteraction is
between less number of modes of osclllatlons and the system showed
‘oscillatory behavior,whereas the chaotic behavior is caused by the
superposition of more than two modes of osclllation and due to
strong nonlinear coupling between them as is 1indicated in the
nonlinear case above. Thls fact 1s evident in the evaluation of Dz
Figure 5.5 shows the determination of D2 at an axial point. It 1is
interesting to note that there are two asymptotic values, one at
1.39 and the other at 1.73. This could be Iinterpreted as the
existence of two strange attractors with embedding space of
dimension 7 and 18 and the¢ trajectory can land up on elther of
these attractors. The fact that these are strange attractors
(because of fractal dimension) the trajectories could jump from one
to the other. This clearly shows the complexity of the situation.
The curve of slope v vs dimension d at r=R does not show any
saturation and that the curve 1s more or less centered on the 45°
line showing the presence of randomness or white noise as shown in
Figure 5.6. Thus, as we proceed from the axis towards the surface

the dynamics show the development of strange attractors ending up
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in complete randomness.

In figure 5.5 and 5.6 even though the 1initlal wvalues
of £'s and 7’'s are the same, those of pressure P at (r=0, t=0) and at
(r=R, t=0) are not same. This difference in Figure 5.5 and 5.6 is
due to the different initial vaiues of pressure at axial and
surface points. The transition from a strange attractor state to
randomness requires a much finer analysis. In conclusion the time
scale over which the system is stable or otherwlise can be inferred
only by evaluating the Lyapunov constants which are sensitive to
the initial conditions. Inverting the problem by specifying the
lyapunov constants,one can possibly evaluate the class of initial

states which can give the observed life time of the loops.
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6 VLASOV MAXWELL-EQUILIBRIA OF SOLAR CORONAL LOGPS

6.1 INTRODUCTION:

The fluid theory that has been used so far in the previous
chapters is the simplest description of a plasma. This approximat-
tion 1s sufficiently accurate to describe the majority of observed
phenomena. However, Lhere are some phenomena for whlich a fluld
treatment ls inadequate. For such cases we need to conslder the
velocity distribution functlon f(v) for -each specles. This
treatment is called Kinetic theory. In fluid theory, the dependent
variables are functions of only four independent wvariables:
X,¥,2- and t. This is possible because velocity distribution of
specles is assumed to be Maxwellian everywhere and can therefore be
uniquely specified by only one number, the temperature T. Since
collisions can be rare in high temperature plasmas, deviatlons from

thermal equilibrium can be maintained for relatively long times.

Exact nonlinear solutions to coupled field theories are

generally rare. For the Vlasov-Maxwell system describing a
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collision less plasma the list of reported exact solutions are: (1)
the electrostatic solutions of the Bernstein-Green-Kruskal (BGK)
type (2)the magnetic solutions of the type obtained by
Pfirsch,Laval,Pellat and Vuillemin, Marx and Harrls. The magnetlc
solutions were constructed to model the behavior of laboratory
plasma containment devices. It was assumed that only the plasma
density was a function of space while plaéma temperature and
current are taken to be spatially uniform. The process leads to
the well known Bennet pinch density: profiles in the cylindrical
geometry, and to the strongly locallsed sechzx/s (where 8 is some
appropriate length) profiles in the slab model. A more realistic
description of the current laboratory plasmas, however, would
require the inclusion of the temperature as well as the current
gradients (i.e., gradients In current which are in additlon to the
automatic gradients resulting from the density dependence of
current). It is with this 1idea that 1in this chapter a
vlasov-Maxwell description of the wubiquitous solar coronal
structures is discussed. It is found that an equilibrium plasma
configuration can live with spatial gradients 1in density,
temperature, current and drift speeds of the charged particles.
The stability study 1s carried over this inhomogeneous equilibrium
state. The Vlasov description admits the investigation of klnetic
processes like heating and radiation and unlike a fluid

description, it does not require an equation of state to determine
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the individual variations of temperature and density.

6.2 DERIVATION OF THE VLASOV EQUATION:

A kinetic equatlon iIs any equation of the form

Q@ Q@
| T
]

=M [F1] (6.1)

where M is a known functional that maps F1 onto functlions of

(p,x,t;Fl).The generic form for all klnetic equations is,

Tk kR
at m Jx ap
1 1

<i=

J d2G12 F2(1.2) (6.2)

in dimensional form. To obtain a kinetic equation from this
equation some approximate form must be inserted for Fz’ or
equivalently, Fz must be expressed as some known functional of Ff

Fz = F2(1,2;F1) (6.3)

Inserting equation (6.3) into (6.2) gives the kinetic equation
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oF, p, OF

1 d
5F+m5::—1

dp

<~

) J d2G12 F2(1.2;F1) (6.4)

The equation that emerges for F1 in an expansion about vanishing
correlation is (dimensional notation).
oF P, aF

14

1 8
at m ax1

1 =
s —551 J dZG12 F1(1)F1(2) =0 (6.5)

This equation is known as Vlasov equation. The vlasov equation may

be put in a more conventlional form using the fact that the number

density n(x,t) can Be expressed in terms of F1 as
.
n(x,t) = —v- .,r F1 dp (6.6)

If the mean force G(x) at the point x is defined as

G(xl) = [ n(xz) G12(x1’x2)dxz (6.7)

then, the integral in equation (6.5) may be written in terms of G

and F :
1
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2 5k dhe (x x)F(l)Fl(Z)-—a-F(l) Jd® 6. n(x)
ap 2 @ Pt X)) Fy v 8p, 1 X' 12t X

1

_ 9
= 53; F (1).G(x ) (6.8)

Equation (6.5) 1s equlvalent to

6t + mn 5)—( -a—p .G=0 (6.9)
- 3

G(x1) = [ G12(x1'x2) n(xz) d X, (6.10)
_ 3

vn(xz) = [ F1(2) d P, (6.11)

Vlasov equation represents the dynamlcs of a single
particle influenced by a smeared out or average force field. This
average force fleld 1s the average of the two particle interaction
over the density of remalning particles. The G in the vlasov
equation is a functional of F through the equations (6.10) and

(6.11).
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6.3 THE MEANING OF f(v):

In kinetic description the density is a function of four
scalar variables n = n(r,t). When velocity distribution Iis
considered there are seven independent variables: f = f(r,v,t).
This lmplles the number of particles per m’at the position r and at
time t with velocity components between vx and vx + dvx, v and vy

y

+dv, and v and v + dv . is
y z z z

fix,y,z,v ,v ,v ,t)dv dv dv.
x y z x y z

Theintegral of this can be written in any one of the ways as

shown below.

® o0 ® 00

nir,t) =fdv fdv fdv f(r,v,t) = [ f(r,v,t)dav
% 0 Y -0 * =00
[+ ]
= [ f(r,v,t)dv (6.12)
~00

dv Is not a vector; but it represents a three dimensional volume

element in velocity space. If f is normallzed so that
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w0

I ;(r,v,t)dv = 1 (6.13)

-0

f is called the probability distribution function.

So that f(r,v,t) = n(r,t)%(r.v.t) (6.14)

f 1Is stlll a functlon of seven varlables, since the shape of the

distribution, as well as the density, can change with space and

time.
A particuiarly important distribution function 1is the
maxwelllan:
f = (n/2n Kr)a’zexp(—v?‘/vfh ) (6.15)
m
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where v= (vi + vj v 2 )1/2 and Vin = (2KT/m)

. ¢ (6.16)

For an isotropic distribution like a maxwelllan, another function

g(v) which is a function of the scalar magnitude of v such that

(]

00
I glv) dv = J £(v)dv (6.17)

[0} ~00

can be deflined.
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For a maxwelllian the function g(v) will be of the form.

glv) = dnn(m/2nKT) Y2 2 exp(—vz/vih) (6.18)

6.4 EQUATIONS OF KINETIC THEORY:

The fundamental equation which f(r,v,t) has to satisfy is

the Boltzmann equation:

of =. F Of _(of
5-{ + v.Vf + l'-l'-l . —a—v —['E'E]c (6-19)

F is the force acting on the particles, and (8f/at)c is the time
rate of change of f due to collislons. V represents the gradient in

(x,y,z) space. The symbol 3/3v or Vv stands for the gradient in

veloclity space:

9 _~a _~ 3 ~ 3

X y z

In a sufficiently hot plasma, colllslons can be neglected. Further

the force F 1is entirely electromagnetic and hence, the equation
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(6.19) takes the form and if E and B are self consistent flelds,

af q af  _
3t + v, Vf + ~ {E +v x B) . T - 0 (6.21)

This is Vlasov equation.

6.5 VLASOV-MAXWELL EQUILIBRIA:

The coronal  loop plasma will be represented by a
cylindrical column with current density Jz along the axls of the
cylinder and with no gravity. The actual geometry of a coronal
loop consists of the two ends (the foét points) of a cylindrical
plasma embedded in a sub phoiospherlc reglon. A small twisting
motlon of the foot polnts may Introduce a small amount of azimuthal
current J0 which 1s neglected for the present.The subphotospheric
reglon contains a high-g plasma, where 8 1ls the ratlo of gas
kinetic pressure to magnetic pressure. As a result the magnetic
field lines move on a time scale much longer than the coronal
time-scales. This line tying reduces the region of unstable
excitations, especially those of long wavelength. The neglect of

gravlity reduces the coronal loop to an essentlally horizontal
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cylinder. While studying the stability of an equilibrium, the end

effects, gravity and curvature are to be properly taken into

account.

The particle density n, the temperature T and the particle
drift speeds u are in general, spatially varylng quantities. All
spatial varlatlons are allowed only 1in the radial direction as
there is observational evidence in support of it. The plasma lis
assumed to be embedded }n a uniform magnetic fleld Bo' The relevant
equation for an equilibrium system (with‘a/at = 0), i.e., Boltzman

equation for electron and 1ions describing the conservation of

particles in phase space of position and momenta are:

of e v - 3fe
e -
e T B X (BreB) g =0 (6.22)
afl e v - afx
Vr ar + T [E + E x (B + ezBo). ‘é'v—' = 0 (6.23)

Equations (6.22) and (6.23) are Vlasov equations which are valld at

high temperatures when Coulomb collisions are neglected.

In addition,the fully 1ionized plasma 1is assumed to

experience only electromagnetic forces. All non electromagnetic
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forces such as gravity are neglected. For loops of smaller length
than the density scale height, axial dependence of partlicle density

1s also neglected.

Ampere’s law is:

VxB=

[0 Lol
|
+

Qf Q@
| 7
olg

J (6.24)

and for the case (38/4t

]

0)

VxB=—1J (6.25)

Writing in cylindrical co-ordinates:

dB JB
1 z (0 _ Aan
(V x B)r = T iz = =2 Jr (6.26)
aBr aBz 4n
(V x B)e = 32 - -—ar = '—6 Je (6.27)
dB
138 1 r _ 4n
(V x B)z = [ 3 (rBe)— o Jz (6.28)
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(Vv x B)r = 0 and (V x B)e= 0 impllies that the self consistent
magnetic fleld has only 6 component. For this to be true B should
r

be zero, Bz = constant. Hence, the axial component of Ampere’s law

will be:

d
EF rBe = ——C~ Jz (6.29)

Poisson’s equation is:
V.E = 4np ' (6.30)

In equilibrium study the charge separation occurs aover
extremely short time scales. Hence, it is justifiable to assume
zero charge separation. Under such a condition

V.E=0 (6.31)

Faraday’s law is:

VxE-=- (6.32)

ol
QJIQJ
| o

For steady state fields the equation reduces to
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VXE=0 (6.33)

The plasma current density Jz In terms of the particle distribution

function for the electron and ion is
Jz=-e JdVv (f~-1f) (6.34)
z L i

Let a displaced Maxwellian of the form

n

= o . (v - L 1y2, 2
fe.x = a3 Exp [ (V u ) /Ve,l] g(r) (6.35)

e, l

be the distribution functlion for the particles providing a self
consistent solutions for the equations (6.22),(6.23),(6.29),(6.31)
(6.33) and (6.34). Where,

no is the ambient density,

_ 1/2
ve' = [2Te’ /m ]

is the thermal speed,

and u:" is the drift speed,

Tel is the temperature,

mel is the mass and

g(r) is the density profile factor, which 1s the same for electrons

and lons under conditlons of no charge separatlon.
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6.5.1 DETERMINATION OF DENSITY AND MAGNETIC FIELD PROFILES:

Let g(r) describe the entire spatial variation of density.
The density profile can be found assuming fo to be a functlon of
g(r).

Equation (6.35) can be written as:

f =k g(r) and £ = k g(r) (6.36)
e e i 1
n0 e, 1,2, 2
where ke.i = 5 eXP [-(v - u ) /ve'i]
v
e, !l
Hence,
of 2k g(r) .
[} -]
G- = P v - uz] (6.37)
v
e
v R of 2k g(r)
—x (B+eB). — = 2 [uwv B ] (6.38)
c z 0 2 z r 0
av vV ¢C
of 2k _g(r) :
= - .39
E . 5V 2 [Er vr] (6 )
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afc ag(r)
ar - Koar (6.40)

Substituting equation (6.38),(6.39) and (6.40) in equation (6.22)

1 dg [-u® B_]
2 e z 0

g ar + 5 < = 0 (6.41)
me ve

1 dg e .
or E -d—r- = Te p Uz BB = b (6.42)
eu® BO
where b = —— (6.43)
cT

e

where,e is the charge on the electron and ¢ is the speed of light.

From equation (6.29)
1 8 _ _  _ A4n e _ L
= 3F rBe = — J, = - eno[geuz gluz] (6.44)

Making use of equation (6.43), this reduces to

(6.45)

rbcT] 4ne n0 u

é e

ar e
eu

z z

Rl
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using g =g =g, M =—— and, T =(1/2)mv° in equation (6.45)
1 Te ue e T e e
z
1 d (rb) _ 2
T I = —-6—2 g (6.46)

where 6° is the characteristic length scale in the solutions of the
Vlasov-Maxwell system which wlll be estimated using the parameters

chosen from Hollweg(1981), and

2 -1

2 v (1-u)
2= 2 = (6.47)
° w? 2(u®)?

pc z

and , the electron plasma frequency

W = (6.48)

The self consistent solutions for equatlons (6.22),(6.23),
(6.29),(6.31),(6.33) and (6.35) when g(r) describes the entire

spatial variation are found to be

159



-2
2
g(r) = [ 1+ rz] (6.49)

Figure 6.1 1s a plot of density profile function g(r)
versus X = r/6° .The graph shows that the density profile is peaked
at the axls with a characteristic length scale aeand a sharp fall
in density away from the axis is obtained. This is reminiscent of
the condensations often observed at the axis of the loop.

Using equation (6.49) in (6.42), we obtain

- L2 (6.50)
S [1 + e ]
° 4

2 -1
or, bs = - (r/ae)[l e T ] (6.51)

Figure 6.2 is a plot of the variation of the magnetic
field profile function (b6°) verses x = r/6e corresponding to the
above equation. This graph also indicates the magnetic fleld
profile peaking at the axis similar to the density profile case.

Thus, from these two graphs it is found that the current density is

maximum on the axis.
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6.5.2 ESTIMATION OF CHARACTERISTIC LENGTH 3 :
-}

Coronal loops, a bipolar structure is characterized by an
electron density n, ~ 10'°- 1012cm-3; a temperature range varying
from a few tens of thousands to a couple of million K, a radius of
103—‘ 109, and a length of 10°to 10*%cm wlth an axlal magnetic

fleld of a few gauss. The current flows essentially along the
axls of the cylindrical plasma column and produces an azimuthal
component B6 of the magnetic fleld. Observatlions in the EUV
Eegion shows that the loops of different temperatures are coaxlal
and -thls has led to the ldentification of cool core and hot sheath
type 1loops (Foukal 1978; Krishan 1983, 1985). The X-ray
observations has further reinforced the inhomogeneous nature of the
underlying heatling mechanisms. According to Hollweg (1981), the
resonance absorption of surface MHD waves, as well as the jJoule
dissipation of high denslty current sheets 1In additlon to the
ubiqultous mini magnetic reconnections are some of the factors

responsible for the heating of the solar corona in general,and

coronal loops 1In particular. Assuming typlcal parameters from

Hollweg Be is estimated as follows:

Electron density in the sheath n, = 10%cm *;

Electron temperature in the sheath T = 2.5 x 107K;
(-]
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Electron thermal speed Ve = 2.7 x 109 cm s—l;
Electron drift veloclty u_ > sound speed = 4.5 x 107cm s*l;
The magnetic-field Be produced by the current density Jz is 10 G,

and the thickness (AR) of the current sheet turns out to be ~ 10°

cm.

The characteristic length scale which is

v
5 = = ® (1 + VT /T)
] wpc 'l.le 1 ]

worka out to be = 1.04 % 103cm for T’ » Tt' and,

= 0.9 x 103 cm for T° = 9TF

Thus, we find that current profile of small wildths are the outcome

of exact solutions of the Vlasov-Maxwell system.

6.5.3 VARTATION OF MAGNETIC FIELD PROFILE WHEN TEMPERATURE

VARIATION IS ALLOWED IN ADDITION TO DENSITY VARIATION:

In this case in addlitlon to the denslty gradlent; spatial
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variation of temperature is also allowed. The drift speeds u:'!
are still homogeneous. Mahajan(1§89) has shown that a serles
representation for the distributlion function gives a valid solution
of the Inhomogeneous Vlasov-Maxwell system. The expansion parameter
for the serles being (u/v), the ratlo of drift and thermal speeds.
This 1s very much appropriate for the consideration in the coronal

loop. Using the smallness of (u/v), the distribution function is

written in the form

nog(r) — V2 —
fe - 3/2 e,! 3 Exp| - 1 2 x
+ 14 e;

" (VO lpe,‘ l) —_ (VO we, l) —

J— e, | -—

2uz 0 o ( Vz )n ( v )Zm

1+ ———%Y )} ¢ (6.52)

V:’l nrime01 vor! ver! W

— 0 o e, -~

where we describes the spatial variation of electron temperature
and V; the thermal speed on the axls (r=0). Since the equilibrium

solutions are of interest it 1s assumed that we = w! = ¢ and Be =

Bl, i1.e., the electrons and 1lons have 1identical temperature

profilles. Since the density variation 1s generally steeper than

temperature variation 8 = 8 = -3, where c¢ = 1 and c = -B.
e 1 10 11

This equation converts Vlasov equations into ordinary differentlial

equations in g and ¥, In additlon to providing relations that

165



determine all C in terms of the plasma parameters. c

n
(uo/vo) .

Using uo/vo« 1 which 1is true for high temperature
laboratory fusion plasma, the series 1is truncated keeping terms

only to order uo/vo. Thus a simplified distribution functlon 1is

obtalned.
n g u 2
fa B 3/2o 3 3 [ 1+2 OZ Vz {1 * Ba( \ )} ]
T (Voa) ' wa Voa voa wa
. 2
e Y,
x Exp {————————} + 0 { } (6.53)

2 2 2
A v v
o 'a 0

Since plasma has current only In the Z direction the self magnetic

field has only the B9 component. The equilibrium Vlasov equation
is :

Q
e
g3t .0

B
~ By a
[V X ee '—c— ] . W =0 (6-54)

All variations are allowed only in the radial direction. For f as

defined in equation (6.52).
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of _ ~
5 =V +eF (6.55)

Using this in equation (6.54)

af q ~ B9 ~
Vra: +——(Vxee——6).[VF1+ ezF]=0 (6.56)
or
q
af
Vo VB F=0 (6.57)

Using equation (6.52) , 8f/9r and F are calculated as follows:

» 2 V in , V \2m
Y zcm[ z] ( ]2 23 3‘: (6.58)
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[s4] «©

g 2uo V' n-1 v 2m
F=K —5—2——2 ZC n[z] [ ] (6-59)
> ve o= v vV
n=1 m=0 . Q 0

Substituting for 8f/8r and F in equation(6.57), for n =1 and m = 0

— 2 RN
d g g Vz 2 dy
JURS S
v v ovioow dr
—  2u v 2u g V¢ 2 dy v
o d g z 0 g z
1+ — & 5 % 3 2 3 10 *
B v, v v, voowt Vv ar vg_
—q g 2 —_
—_— —— C =0 (6.60)
mc e 3 ,,2 10
vy v
—— 0 Sm—
Equating the terms independent of Vz
3 —— —
ooy 8 q g 2u,
*—a“['—] "l B 52 % |0 (6.61)
g r e v v
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()L E PRI L B v
dr{ .3 3l V y mc 8 ,3,.2 11| Vy

B Y '/ o dr _ 5 0 T
“2u g v N2
' el )
— = ¢ = 0 (6.62)
V0 dr VI3 11 V0 Voz,b
v )2
Equaling the coclflclents of (“VWT']
o
g 2dy q 8 2u
S tme s Pefa T (6.63)
¥y Y dr Y V0
3
Y g u d
From(6.61) — a | =-.2%% 3
g dr 3 T ¢ 8
(] o0
o
where T = 1/2mv2 and ¢, =1
o0 0 10

The above equatlion on simplification ylelds

B (6.64)
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Using equation (6.63) and ¢, = -B

2 dwa uoocqa

7 Tar T T T _c P fa (6.65)
a0

comblning equation (6.64) and (6.65)

-2/, + 3]

g =Y (6.66)

using the value of g from (6.49) the profile function ¢ and g are

—(ZEa)/(SBa— 2)

2
w=[1+ _ (6.67)

- 2(3Ba— 2)/(SBa— 2)

2
g = [ 1 + r2 :| (6.68)

-1 r/é
bs = {-5-3— —1} (*734cc) | | (6.69)
eff 2 [
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where 8 = (28 /5B - 2)
The temperature

-4B8/58 - 2

2 _ 2,,.2
Tay = [1 +r /46e"] (6.70)
The current density

2 2 -2
Jz « gy’ = [1 +r /46e"] (6.71)
The pressure

2 2 -2
pagy = [1 +r /460”] (6.72)

The plot of varlation of density profile g(r), magnetic
field profile function bﬁe and temperature profile function wz
Versus x = r/ae for # = 0.5,0.8 and 0.2 are shown in Figures
6.3,6.4,6.5;6.6,6.7,6.8 and 6.9,6.10 and 6.11 respectively. The
graphs indicate that depending on the B value the radial varliation
can be positive or negative. Thus for B > 2/3, both density and

temperature fall away from the axis as in Flgure 6.9 and 6.11.
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Whereas for 2/73 > 3 > 2/5 the density increases and temperature
decreases away from the axis as in Figure 6.6 and 6.8. For B < 2/5
the temperature increases towards the surface as in Figure 6.11.
This 1s very much reminiscent of the cool core and hot sheath type
loops observed by Foukal (1978) and Krieger, de Feiter & Valana
(1976) and modelled through variational principle in MHD by Krishan
(1983, 1985). The parameter aewhlch‘ characterises the spatial
varlations 1is related to the skin depth, The measure of 6°
determlnes the steepness and the extent of the current density
profile. This satisfies the requirements laid down by the Joule

heating of the loop plasma.

6.5.4 VARIATION OF CURRENT DENSITY IN THE PRESENCE OF DENSITY AND

DRIFT SPEED GRADIENTS:

In thils case gradients in density and drift speeds are
also allowed in additlon to g. The drift speeds of the particles
become a function of the radius r, 1.e.,qu uzo¢°(r),where ¢°(r)
Is the profile of the electron,and uzols the drift speed at the
center. The temperature Teis kept 1independent of r. The
Maxwellian of the form given by equatlon (6.35S) with ue’ldependent

on r will not allow a solution in the velocity space because

Vr(af/ar) has additional terms, which are quadratic in the velocity
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variables, which cannot be compensated by the force term.The
compensating term 1is generated by Jintroducing a temperature
anisotropy: the particles have different temperatures in the
direction along the current(Tz).and perpendicular to the current
(T not equal to Tz). This allows the distribution function to be

assumed as:

nog(r) v? + vz‘ (v - u:l¢(r))2
f = —% gy |-t Y - Z z_°© (6.73)
o 372 2 e, 2 ‘ e, 1,2
vt v v (v'")
e,i z e

Equation (6.73) represents a neutral plasma (ge= g~ g) carrying
a current in the z direction. Here it has been assumed that ¢°= ¢1=
¢ with ¢(r=0)=1, and g(r=0)=1. Substituting equation (6.73) in the
equilibrium Vlasov equation (3/8t=0), and carrying out the usual

algebra, the following set of coupled nonlinear ordinary

differentlial equations In the variables g and ¢ are obtalned.

u 2
1 3 ¢ - _2_2\_ Oz 2 _
T ar [r ?5?] B [ [VQ ] (¢ 1)] (6.74)
e z
u; 2 > :
glr) = exp [ [ ez] (¢~ - ”] (6.75)
v
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where,

) , T =T AT v2
A= (v -v)2) = S = =z : (6.76)
) z Oz e 2 e 2
m(u ) 2T (u_ )
Oz e 0z

The numerical solutioﬁ of the equation (6.74) yields a
rich variety of profiles as A is varied. Since the spatial behavior
of the density, the magnetic flield and the current density are
essentially a function of the dimensionless parameter A, there

is need only to provide appropriate normalization. For coronal

loops, the anisotropy parameter

AT v AT
© % =1.8x 10° —2 ,
2T (u° )° T
e Cz L]
AT _
For A = 5 2 =2.7x10 3 which is reasonably small.
T ‘

A plot of the varlation of the density (Ref.Mahajan, 1989)
profile functlon g(r) versus x = r/ae,indlcates that indicates that
g decreases monotonically with x,starting from zero, raises to
a maximum at x=2 and then slowly goes to zero. For larger values of

A, g becomes oscillat.ry with the wavelength of the osclllatlons
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decreasing with A, The fact that density becomes less and less
peaked indicates loss of confinement, a direct consequence of the

fact that the confining magnetic fleld {oscillatory) becomes

conslderably smaller than its A = 0O value.

A plot of the variation of the current profile function
(gue) versus x = r/ae. The profiles indicate that the current
density appears in the form multisheaths for large values of the
anisotropy parameter (for }=5) while the corresponding density

profile is almost flat. (Ref Mahajan,1989).

SUMMARY:

A Vlasov-Maxwell description of coronal loop plasma admits
a variety of equilibrium spatial profiles of mass dengity, current
density, the temperatﬁre,and the magnetic fleld depending upon the
type of inhomogeneities allowed. The profiles vary from belng flat
to splky and resemble the ones derived.from EUV and X-ray coronal
observatlons. The‘current frofile of small widths are the outcome
of thé exact soluflons of Vlasov-Maxwell system.The multisheath
current profiles derived in this chapter complement the

nagnetohydrodynamic study of current sheet formation well. Further
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from the above discussion it 1is found that the Vlasov description
allows the determination of density and temperature profiles
individually wunlike in the fluid description where equation of
state is required to study the separate varlations of density and

temperature from the pressure profile.
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7 SUMMARY OF THE RESEARCH

7.1.STEADY STATE STRUCTURE:

The loop or arch like configurations of the solar active
regions have been seen in the emissions at UV,EUV and X-ray
wavelengths, (Foukal, 1978). The current carrying plasma in the loop
supports a helical form c<f the magnetic fluid. The steady state
pressure structurc of a solar coronal loop was studlied using the
theory of MHD turbulence in cylindrical geometry. The magnetic and
velocity fields were expanded in terms of C-K functlons using the
MHD equations assuming the plasma as a incompressible fluid. In
chapter 4, the study.was confined to the steady state solutions to
the pressure i.e., 8/8t(n,§) = 0 and n =£, where n and £ are the
expansion coeffiecients. The pressure profile was dliscussed under
two considerations:
1)Pump approximation; where one of the three modes was consldered
as the strongest, as compared to the other two, and
2)The mode strength varying in proportion to their spatial scales.

The plasma was assumed to be a cylindrical column of length L and
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radius R.

The analysis of the results indicate that the radial
varlation of pressure is found to be maximum at the foot points of
the loop and is minimum at the apex (See fig.4.1). This result is
in conformity with the results of Levine and Withbroe(1977),
wherein they have 1indicated that the coronal loops undergolng
dynamic changes are characterised by a temperature structure in

which there 1s a cool core relative to the substantially hot

surrounding sheath.

The axial wvariation of pressure 1indlcates, that the
maximum values of pressure is attained near the apex for all radial
positions(see fig.4.2). This 1s in agreement with the results of
Rosner et al (1978). The pressure is found to increase uniformly
for all values of the radial dlstance at different azimuthal
angles(see fig.4.3). The azimuthal varlation of pressure for
different radlal distances indlicate oscillatory behavior, which lis

predominant near the surface.

The density plots fig 4.6a and 4.6b indicate that the
region of maximum pressure is not necessarily at the apex. Further
it is also an indication of the observed cool core and hot sheath

features of Lhe coronal loops.
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Even when the mode strengths 1is assumed to vary 1in
proportion to thelr spatial scales, the results like an increase of
pressure towards the surface and the existence of maximum somewhere
along the length of the loop emerge as the general features of the
loop. In all cases it was found that the representation of the
velocity and magnetic fields by a three mode C-K functlons bring
out the three dimenslional features of the pressure profile. The
cholce of the trlads representing the varlation of veloclity and
magnetic flelds on the largest spatial scales permitted by the

system, provides a falrly realistlic descriptlion of the loop plasma.

7.2. TEMPORAL EVOLUTION OF PRESSURE:

In chapter S, the velocity and magnetic flelds were
allowed time dependence to facilitate the study of their evolution.
The complete dynamics was described by a set of infinite coupled
and non linear ordinary differential equations which are of the
first order 1n time for the expanslion cocfflclents of veloclty and
magnetic fields. Since the evolution equations are coupled and
nonlinear, the dependence of thelr solution on the 1initlal
condition was expected to reveal chaotic behavior. An important

tool in the Investigation of this was the study of power spectrum
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of the data generated by the solution of the MHD equations and to
evaluate the Iinvariant dimensions especlally the second order

correlation dimension of the attractor D2 of the system.

The analysls of the results Indicate that when the values
of velocity and magnetic field coefficients 7’s and £’'s are very
nearly equal, the spectrum ls discrete indicating that the pressure
profile has a finite number of frequencles. The marginal stabllity
exists only for the time scales for which the linearisation 1is
valid. Though microwave and X-ray reglons observation show a
quasl perlodic osc¢lllations, the observed power spectrum of
pulsations actually exhibits a more complex behavior 1if fliner
variations are lgnored. The quasi periodic behavior 1s expected

only near equilibrium.

Under large departures {rom the equillbrium ,a loop shows
a complex temporal structure which can only be described in terms
of obJjects with fractal dimensions in the phase space of the
velocity and magnetic field. Coronal 1loops beling continuously
subjected to external forcing through thelr foot points and through
interaction with neighboring regions are likely to be in a chaotic
state of pressure fluctuations. Hence, when there are large
deviations from equilibrium the system and the time evolution of

the pressure is non llnear.
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In the pump approximation case, since the variations of the
strongest mode is negligible when compared with other modes the
Interaction 1s between less number of modes of oscillations and the
system shows oscillatory behavior, unlike the non linear case
where chaotic behavior was exhlbited by the superposition of more
than two modes of oscillations and due to strong nonlinear coupling
between them. This fact 1is evident in the evaluation of Dz(see
fig.5.5). As one proceeds from the axls towards the surface, the
dynamics shows the development of strange attractors ending up in
complete randomness(see fig.5.6). .This requires a finer analysis.
Thus the time scale over which the system is stable or otherwise
can be inferred only by evaluating the Lyapunov constants which are
sensitive to the 1initial conditions. Inverting the problen,by
specifying the Lyapunov constants, it may be possible to evaluate
the class of initial states which can give the observed life time

of the loops.

7.3.VLASOV-MAXWELL EQUILIBRIA:

Vlasov-Maxwell equlilibria of solar coronal loops was
discussed in Chapter 6. The results of the study indicate a

complex type of radial variation profile of density, magnetic field
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and temperature. Temperature profiles are found to Increase

towards the surface reminiscent of the cool core and hot sheath
features in the coronal loops. The current profile of small widths
are the outcome of the exact solutions of the Vlasov-Maxwell system
as 1s evident from the discussion 1n chapter 6. Further,it is found
that a Vlasov-Maxwell description of coronal loop plasma admits a
varilety of equllibrium spatial profiles of mass density, current
denslity, temperature and magnelic fleld depending (on the
inhomogeneities allowed. Also thlis description allows the
determination  of the density and temperature profiles
individually, 1in contrast to the fluid deécription vhere the
equations of state Is required to extract the separate varliations

of density and temperature from the pressure profile.
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SUMMARY

A Vlasov-Maxwell description of the ubiquitous solar coronal structures is
presented. It is found that an equilibrium plasma configuration can live with spatial
gradients in density, temperature, current and drift speeds of the charged particles.
Any stability study must be carried over this inhomogeneous equilibrium state. In
addition, the Vlasov description admits the investigation of kinctic processes like
heating and radiation and unlike a fluid description, it does not require an equation of
state 1o determine the individual variations of temperature and density.

1 INTRODUCTION

Solar coronal foops have been studied conventionally
through magnetohydrodynamic processes, since their shapes
betray the underlying magnetic fields. Coronal loops are
especially favoured for their ability to pick up energy from
the convection zone and deposit it in the corona. The foot
points of the loops suffer continuous turning and twisting,
producing complex magnetic geometry in which current
sheets have been shown 1o form. One believes that ochmic
dissipation of current in these sheets can maintain a ~ 10K
corona. Attempts to show the formation of extremely small-
scale current sheets have been carried out by Parker (1983,
T9RT7 L Low (1987 Low & Wolt~ - 11Y88). Van Ballegooijen
(1985, 198604, Karpen, Antiochos & De Vove 11990) and
many more. The MEID equilibria of coronal loops have been
investigated by Priest (198 1), Hood & Pricst { 1979), Vaiana
& Rosner (19781 Tsinganos (1982), Krishan (1983, 1985)
and Krishan, Berger & Priest (1988), In this paper, we
explore a Viasov=Maxwell treatment of o current-carrying
cylindrical plasma. In this deseription, it is possible to derive
the spatial profiles of cquilibrium plasma parameters and the
exact particle  velocity  distributions  without  invoking
equatons of state and the exact particle velocity distribution
functions. It is found that the system develops strongly-
peaked current density profiles under very commonly
occurring conditions. It is perhaps the disturbance of these
current density configurations that leads to the heating and
acceleration of particles in coronal loops.

2 VLASOV-MAXWELL EQUILIBRIA

We will closely follow the recent work of Mahajan (1989)
on Vlasov-Maxwell equilibria for several systems, the

exemplary cases being Z pinches and Tokamaks. A coronal
loop will be represented by a cylindrical column of plasma
with current density J; along the axis of the cylinder and with
no gravity. The actual geometry of a coronal loop consists of
the two ends (the foot prints) of the cylindrical plasma
embedded in a sub-photospheric region. A small twisting
motion of the foot points may introduce a small amount of
azimuthal current J, which we neglect at present. The sub-
photospherie region contains a high-§ plasma where f is the
rat. of gas kinetic pressure to magnetic pressure. As a result
the. magnetic ficld lines move on a time-scale much longer
than the coronal time-seales, This line tving reduces the
region of unstable excitations, especially those of long wave-
length. The neglect of gravity reduces the coronal loop to an
essentially horizontal eylinder. Of course. while studving the
stability of an equilibrium, the end effecis. gravity and curva-
ure must be properly taken into account. The particle den-
sity a1, the temperature 7', and the particle drift speeds ware
in general, spatially varying quantitics. Here we allow alf
spatial variations only in the radial direction since there is
observational evidence for such variations, ‘The plasma is
embedded in a uniform axial magnetic ficld, 53,,. The relevant
equations for an equiltibrium system (with 8/dr== () are

o el v I,
vy, L 2 - ; JYe
"o m, [E+ cx(B-H:B”)} FIa )
I, pr¥xpren| 2
v, ar+mi[1~:+cx(3+eza(,)} =0 (2)
10
_;_(,Bo)=££_]: {3)
rar



Vox E=0 (5)

T ey d Ve (6)

where /. are the single particle distribution functions, (£, B) .

are the self consistent fields. Lguations (1) and (2) are col-
lisionless Boltzman equations for clectrons and ions deserib-
ing the conservation of particks in phase space of positions
and momenti These are also known as VIasov equations
which are valid at high temperatures when Coulomb colli-

. stons can be neglected. In addition the fully ionized plasma

_considered here experivnces only electromagnctic forees, All
non-clectromagnetic forees, such as gravity, are neglected.
Further, the axial dependence of particle density is neglected.
"This is valid Tor loops of length smaller than the density scale
height. Equation (3} is the axial component of Ampere’s law
deseribing steady state ficlds. Equation (4) is Poisson’s equa-
tion under the condition of zeto charge scparation which is
justified for an equilibrium study since charge separation
occurs over extremely short time-scales such as those of
clectron plasma oscillation, Equation (5) is Faraday’s Law
for steady fields. Equation (6) defines current in terms of the
particle distribution function for clectrons and ions, Let a
displaced Maxwellian of the form

. n e 2 .
,IL-,.=;YG‘;E'3"‘ expl=(V=u) fos, lglr)

(7
¢ (R}

provide i sell-consistent solution for equations { 1)=(6), Here
n, is the ambient density, 07,=27T,/m,; and u¥ are,
respectively, the thermal speed and the drift speed, 7,; and
m,, are the temperatute and mass and g(r) is the density pro-
file facior which is same for clectrons and ions under the
assumption of no charge separation.

Cuse !

The self-consistent sodutions of equations { 1)=(7) for the case
when g(r), describing the entire spatial variation are found
1 he

giry= oA (8)
and’
r Yol
b =~ 1+ Jd4d) {9)
0,
where
N L 2 VI (=)
) = l'“.‘,l‘,‘”i T=Th l i-g .lA...‘:.f.‘.,),-_ ( 1())
. W 2005)
and
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Here ¢is the charge. ¢ is the speed of light and o, =(45ne?/
m V2 iy the electron plasma frequency. Thus one obtains a
density profile peaked at the axis with a characteristic length
scate &, which will be estimated in a later section.

Cuse 1]
Here, in addition 10 density gradient, the spatial variation of
temperature is also allowed. The drift speeds 8" are still
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homogencous. It has been shown (Mahagjan 19891 that 4
series representation for the distribution functions gives a
valid solution of the inhomogencous Viasov-Maxwell
system, the expansion parameter for the series being {1/,
the ratio of drift and thermal speeds. This is appropriate for
the considerations in coronal loops as discussed later. Using
the smallness of {1/}, we write for the distribution function
8 n312

a8
.'Uz
exp| - ——=3
. (U?f‘%.i)l P[ (l’(cfl'l’e.i)*}

2ue.i w m_‘ v " v 2m
X [1 + e,li Z )- Chm __:—n A "
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where y, describes the spatial variation of clectron tempera-
ture and 2§ is the thermal speed on the axis (r==0). Since
we are interested in equilibrium solutions, we assume
Y= ¥;=yand B,= B, i.c. the clectrons and ions have iden-
tical temperature profiles. With the assumption that density
variation is generally steeper than temperature variation, one
cantake B = fB,= — 3, where Cy=Land €}, = .

Using equation (11), and retaining terms only up o (1/e),
one finds the profile functions as

£ n,g(7)

(tny

W1+ r2[a53) -2 (12)

gm=(1+rifadd,)- UM -2sp-2 (13)
5 -l r/d, 4

’"%"‘"(“zg '1) (Eriry )

where

b= (20,/58—2).

The temperature

Tocye=(1+r2/48 %) 38582 (15)

The current density

J:xg¢2=(1+r'~'/45::"‘)“2 (16)

The pressure

pxgyt=(1+r}/4d})"* (17)

Onc observes that, depending upon the value of 3, 1he
radial variation can be positive or negative, Thus for 27,
both density and temperature fall away from the axis,
whereas for $> 8>, the dénsity increases and temperature
decreases away from the axis. For <3 the temperature
increases towards the surface and this is very much remi-
niscent of the cool-core- and hot-sheath-type loops abserved
by Foukal (1978) and Krieger, de Feiter & Vaiana (1976), and
modelled through variational principle in MHD by Krishan
{1983, 1985). The other parameter, é,, which characterizes
the spatial variations, is related to the skin depth. We shall
sce ina later section that the measure of 8, which determines
the steepness and extent of the current density profile is com-

mensurate with the requirements laid down by the joule
heating of the loop plasma.

Cuse 11
Here, ;we allow gradicats in density and drift speed. Tt is
found that the presence of temperature anisotropy permits a
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. . . . i .
displaced Maxwellian solution of the system where the dis-
tribution functions are given by

. HugU) . . l_';‘j lii) . l’,j ‘“fj¢\:.l(’.)]:1
'{ AN L

Here, we have taken ¢c=¢i=¢ with ¢(r=0)=1; and

glr=0)=1.The cquations relating the density profile. g(r)
and the drift speed profile, ¢, are found to be

1ol a 21 w2
ol el (] 1) 0o

and
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Equation (19) has been solved numerically and here we will
reproduce some of the figures from Mahajan {(1989), since
the spatial behaviour of the density, the magnetic field and

the current density are cssentially a function of the dimen-
sionless parameter 4.

Coronal loops

Coronal loop, a bipolar structure is characterized by an elec-
tron density a,~ 10'9-10'2 cm™% a temperature varying
from a few tens of thousands to a couple of million K, a
fengah of 107-10" em and a radius of 10¥-10% ecm with an
axial magnetie belds of a few Gauss, T'he current flows essen-
tisdly along the axis of the eylindrical plasma column and
produces an azimuthal component By, of the magnetic ficld.
Observations in /2017 has shown that loops of different tem-
peratures are coaxial and this has led to the identification of
cool-core and hot-sheath-type loops, (Foukal 1978; Krishan
1983, 1985). 'The X-ray observations further reinforce the
inhomogencous nature of the underlying heating mechan-
isms. Resonance absorption of surface MHD waves, as well
as the joule dissipation of high-density current sheets (in
addition to the ubiquitous mini magnetic reconnections) are
some of the favoured candidates for heating of the solar
corona in general, and coronal loops in particular (Hollweg
1981). Here we find that the exact solution of a Viasov-
Maxwell system naturally admits the peaked spatial profiles
of current density and magnetic field, and we believe it is this
cquilibrium configuration, which when disturbed, gives rise
1o sporadic flaring phenomena, acceleration and heating,. It
has been shown by Rosner et al. (1978) and Hollweg (1981)
that for the joule dissipation to provide enough heating to
halancee the radiation losses for the typical conditions of elec-
tron density, magnetic field and temperature, the current
sheath must have a thickness of a few hundred to a thousand
cm, and anomalous instead of the collisional resistivity must
be operative. The latter gives us a clue to the relative elec-
tron-ion drift velocity that must exist to excite ion-acoustic
turbulence which may be responsible for anomalous resis-

tivity. The typical parameters in this scenario are chosen
from Hollweg (1981):

clectron density in the sboath-p, = 10" em
clectron temperature in the sheath-7,=25% 10" K;
clectron thermal speed=V, =27 x [ em s s

clectron drift velocity 1, > sound speed-=4.5% [()7em s b

The magnetic fickd B, produced by the current density J, is
10 G, and the thickness (A R) of the current sheet turns out to
be ~ 107 cm, We recall from the previous section thut o, is
the characteristic length-scale in the solutions of the
Vlasov-Maxwell system. Let us estimate it:

b= == L 1+ JTTTY
, :

‘upc ¢

=104x 10 cmfor T,» T,
=09x10'cmfor 7,=9 T,.
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Figure 1. Variation ol density profile function giri versus 1 =r/d,
for case 1 {equation 8).
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o 620.8 Thus we find that current profile of small widths are the
1.00 == : ‘ T — outcome of the exact solutions of the Viasov-Maxwell
\ system. Here we present a few examples of spatial variations
of plasma paramcters. The variations of density and
0.84 : magnetic-ficld profile factors (g and b, respectively) for case
] I, where only the density is space dependent, are given by
equations (8) and (9) and shown in Figs (1) and (2). A sharp
0.68 1 fall in density away from the axis is obtained. This is remi-
o . " niscent of the condensations often observed at the axis of a
052l | loop. The current depsity is thercfore found to be maximum
: AN on the axis. The spatial profiles for case [ allowing tempera-
) ture variation are given by equations (12), {13) and (14), and
0.36 ) are shown in Figs (3), (4) and (5) for three values of the
- parameter A. In this case the temperature increase (equation
’ 15) away from the axi’ for f<2/5. Case III gives very inter-
0.20 A ; — N esting profiles where the current density appears in the form
0.00 3.00 6.00 9.00 12.00 15.00 of multisheaths (Fig. 6) for large valucs of the anisotropy
' X paramcter; the corresponding density profile (Fig, 7) is
Figure 4 - continued almost flat. These profiles are reproduced from Mahajan
{1989). Since all functions, as well as the variables, are
{a) 6-0'2 (b} 6—0.2
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Figure 5. Variation of lemperature profile function y? versus x =r/8, for #=0.2. (b} Variation of magnetic-ficld profile function (hd,) versus
a=r/d, for §=10.2.{c) Variation of density profile function g{r) versus x = r/d for §=0.2.



Viasov-Maxwell equilibria 601
. T T T T T 1.00 T T T T T
N e e, .l . x5
‘. \ - Teaa" Wrwaee - MR N
R
W 3
VoA
. \\ 0.75} \J -
[ \\\
ostk '\ - X .
. \ \ -~ .~ P bt \~- LS
HERRNNE Y N T
u*g b O\ \
: Y \ \' * g 0.50F \\ .
“I x.l\\ N :"' .'. /"’-‘ ~ 4=05 ——
. N =~ ; e R
(0] 2 . N ™~ . A
. PR . ~ sv; ,’ “ P
\ '; \\ ;.‘ ."'/ /* ~ _;‘.".- - 0.25F -
kY 3%)] \\__';:" 2208 - A=0\
|
-0.5 1 I e 1 1 [o] 1 Y 1 g
0 l 3 4 5 6 0 2 3 4 5
x X
Figure 6. Variation of current profile function (gue) versus x=rfé,
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parameter
T, V! T.
A=é;~{i == 8% 10 —A*;“j“
T. 2u;

LS

Thus for 4+ 5 one Hinds (AT,/7)-2.7%x 10 Y, which is
reasonably small.

CONCLUSIONS

A Viasov-Maxwell deseription of coronal loop plasma
admits a variety of equilibrium spatial profiles of mass
density, current density, the temperature. and the magnetic
ficld depending upon the type of inhomogeneities allowed,
The profiles vary from being flat to spiky and resemble the

ones derived from EUV and X-ray coronal observations.
‘The multisheath current profiles derived here complement
the magnetohydrodynamic study of current sheet formation
especially well. In addition, the Viasov description allows the
determination of density and temperature profiles indi-
vidually, in contrast to the fluid description where equation
of state is required to extract the separate variations of

density and temperature from the pressure profile,

expressed in dimensionless forms, we only need to provide
appropriate normalization. For coronal loops, the anisotropy

Mahajan 1989).

117,

393,

Figure 7. Variation of density profile function g{r) versus x=r/é,
for several values of the temperature anisotropy parameter 4 {from
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Abstract. The theory of ideal magnetohydrodynamic turbulence in cylindrical geometry is used to study the
steady-state structure of a coromal loop. The pressure profile is derived from MHD equations by represent-
ing the velocity and magnetic ticlds as the superposition of Chandrasekhar~Kendall functions. Such a
representation brings out the three-dimensional structure of the pressure in the coronal loop. The radial,
azimuthal. and axial variations of the pressure for a constant density loop are discussed in detail. The
pressure has an oscillatory behavior for different azimuthal angles at some radial positions. This study
predicts more features in pressure than can be compared with the presently available observations.

1. Introduction

It is well known that the solar corona is highly structured. The basic structural com-
ponent of the solar corona is the coronyl loop. These loops or arch-like structures of
the active regions of the Sun have been observed in the emission at the UV, FUY, and
X-ray wavelengths (Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner,
1978) The theory of radio pulsations in coronal loops has been discussed by
Aschwanden (1987). '

Coronal loop plasma is believed to carry currents which result in a helical form of
the magnetie field (Levine and Altschuler, 1974 Poletto e al., 1975; Krieger, de Feiter,
and Vaiana, 19765 Priest, 1978, Hood and Priest, 1979). The MHD equilibria of coronal
loops have been investipated by Priest (1981) and Tsinganos (1982).

1n spite of the continuous pumping of magnetic and velocity field fluctuations into
the coronal plasma, the loops exhibit a fuirly stable and well configured geometry, The
steady-state pressure structure is the result of the various manifestations of the balance
of the inertial and magoetic forees. Krishan (19834, b) discussed a steady-state model
of active region coronal loops using the statistical theory of incompressible magneto-
hydrodynamic turbulence described by Montgomery, Turner, and Vahala (1978). The
main features of the theory consists of using the MHD equations for an incompressible
fluid. The magnetic and velocity ficlds are expanded in terms of Chandrasekhar—Kendall
(hereatter referred (o as C-K) functions for which, the completeness has been proved
by Yoshida und Giga (1990). The pressure profile is derived as a function of the velocity
and magnetic fields in the form of Poisson equation. The spatial profiles of lines in active
region loops were also studied. The statistical mechanics of velocity and magnetic fields
in solar active regions was discussed by Krishan (1985). Krishan, Berger, and Priest

* Permanent address: Department of Physies, Mount Carmel College Bangalore, 560 052, India.

Solur Physics 142: 249--264, 1992,
© 192 Kluwer Academic Publishers. Printed in Belgivm.
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(1988) discussed the dynamics of velocity and magnetic fields in coronal loops. Recently
Krishan, Sreedharan, and Mahajan (1991) have also presented. a Viasov-Maxwell
description of coronal loops which is a preparation for the study of kinetic proécsscs
rclated to heating and acceleration of plasma particles.

The force-free magnetic fields (V x B = «B) and the Beltrami flows (V x ¥ = aV)
represent the minimum energy state of a magnetofluid, A single C-K function represents
these configurations of the magnetic and velocity fields. The magnetofluid in the coronal
loop is belicved to be in an approximate state of the foree-free ficlds with small
departures from the current-free fields of the photospheric fluid. Now, it is 'quite
reasonable to expect the coronal loop fields and flows w have departures from the
strictly force-free configuration. By representing the fields by the superposition of the
C-K functions we can manocuvre these departures in a systematic and quantitative
maunner,

We extend the carlier work on the steady-state structure of the pressure in coronal
loops, by representing the velocity and magnetic ficlds as the superposition of three
Chandrasckar—Kendall functions. This brings in the three-dimensional spatial variation
(r, 0, =) in the plasma pressure and the state is not foree-free, although individually the
C-K functions represent a foree-free state. The motivation behind the choice of three
{C-K) functions for velocity and magnetic ficlds is to extend this study o include the
time-dependence of pressure in coronal loops. The three-mode representiation admits
the temporal behavioral of the fields in its most basic form. Besides a three-mode
representation also in principle exhibits chaotic behavior. The evolution of the resistive
magnetohydrodynamic equillibria is being studied in order to understand the emergence
of preferred structures, if any, by Shan, Montgomery, and Chen (1991). A truncated
three-mode configuration has been explored by Chen, Shan, and Montgomery (1990)
and their results qualitatively agree with the predictions of the minimum dissipation
theory (Montgomery, Phillips, and Theobald, 1989) as well as with the computations
obtained using the numerical code (Dahlburg er of., 1986, 1987, 1988 and Theobald
er al., 1989). We however plan to study the three-mode ideal system in order to qualify
the variations of the velocity and magnetic fields m the solar atmosphere, in terms of
nonlinear or stochastic fluctuations. In this paper we discuss only the three-dinensional
spatial pressure structure of coronal loops. '

In the next section, we present the MHD equations for an incompressible fluid and

outline the pressure profile. Sceetion 3 deals with a discussion of the results obtained in
this study.

2. Derivation of the Pressure Profile

The coronal Joop plasma is represented by a cylindrical column of length ‘L’ and radius
*R’. The mechanical pressure P is expressed as a function of velocity ¥ and magnetic
ficld B using thc MHD equations '
v VxB)xB - - &V
YE:L__@.X_B_(V.V)V_ i . (la)
p p . 2]
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- B \ . ,
Vx (Fx By - =0, S 0Rge D (ML”%’ (1b)
&t
where pis the mass density and the foree due 1o gravity has been neglected.
Ising the identity (37 V)F = (V x §7) x ¥ + (1/2)T¥?2, Equation (1a) becomes

. R VxB)YxB . . | &F
ViPp+ (D)1= = [( § ) -V xV)yx V:l - (-q . (2)

. n at

Following Montgomery, Turner. und Vahala (1978), the velocity ficld ¥ and
magnetic field B in the loop plasma are represented by the superposition of Chandra-
sekhar=Kendall functions. The complete dynamics can be described by a1 set of infinite
voupled nonlinear ordinary dilferential cquations which are of first order in time for the
cxpansion voctlicients of veloeity and magnetic ficlds and it is a formidable task to find
solutions 1o these equations. Tenee, here we chowse to represent the fickds by the
supetposition of the three lowest order C=K functions. Another justification for doing
s0 s that these functions represent the largest spatial scales and thercfore may be the
most suituble states for comparison with observed phenomena.
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In the triple-mode system,
-17 = j'unu(l)zu + ll:’?h(l)zh + ’1;-’7:'(,)2:' '
E = /]'rlén(t)zn + lhéh(’):ih + }'(“:('(I):Zi(' +
] k, O ¢ k
Eum(r) = ér [i’ﬂ + ‘I_’i’l' “":l llbmn + ‘;{Il: - _" - ”] "] l1z’mn +
r .

wnt (1’ ‘7" rill"l

1'2’" - k;?'
+ e‘: [~.’]“— - wnm N

nan

~

where
‘p’l}’l = JI"(‘)’”"I’) cxp (i”' () + I. k":)7
- 2 2 2 L
Anm =+ ()’mn + kn)l/ ) I\,, = 271'”/[4,
/1""1 = (’H“lﬁlll'l(’.) ;

s and &'s are in general complex.

n=(),-T-1,T|-‘2,...,'
m=0,F1,F2,...,

(3)
G
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Fig. 2. Axial variation of the pressure £, for different radial distances, r.
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The f'unclinns‘u,,,,, SAUSIY W % dy,,,, = At Sam C40 be determined from the
boundary conditions for a perfectly conducting and rigid boundary since the observa-
tons do show very well-defined loop structures aligned with the magnetic field across
which there is litde o no transport. Thus the radial component of the velocity and the
magnetie fiekd vanish at the surface 1= R, ie.,

R kn‘l'anr'n(./‘mnR) b "’)"mn'ltu(.l'lun[{) = () *

(6)
mymode, Voo B, - 0, and the vy, is determined (rom the

canstancey of the ratio of the toroidal and poloidal magnetic fluxes as

However, for the (¢ 0

U JaueRIR Fun

: (7
'nb/. ’ JorooR) 1. ']*(m

3.6
30

25

10

. . 23.0 41.0
(0] S ———— 1 1
0 5 10 15 20

(YQ1 r)

Fig. 5. Comour plot of the pressure Py as a function of +

. and Z7 when (s averaged. Fach unit of the
axes corresponds to pr = O and Z° = 0.3, respectively.
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¢, is the noemalizing constant which relates A, W0 a,,, by

= (" i . % 3, = 3
Atuu =( oty and J"'u'm' Anm d’r = 5""’ bmm'
Phe dynamics can be described by taking the inner products of the curl of Equations
(1a) and (1b) with A%, and integrating over the volume. The resulting six comptex,
coupled nonlinear ordinary differential equations are

My Ak,

- ()‘- - }‘h)][ i - :hi(-/p] L] (N)
o A,
G o A, ¢
G = A, - &80, )
cr A
& A4,
2, ) ‘,{ T = A~ SR, (10)
¢ .
j
i3 kA

2 mremaie g

w103 s U
T e e e e S &
» 1] (] " » %

(Gurr)

b emmiarm e —p—_

Fig. 6a. Deusity plot of the pressure P, as a function of Yai! and Z’,



I~
>

where [ -

I DL SREEDIARAN BT AL

t
»
32 I
Q 0N g
i ;
1 =t
p B o My ks ol 6 s R S
™ ¢
e sl ey e
-
»
. .
- 14 4, v T
T
ri . . .
o o,
elamian
138 .
N
10 -
i .
OO i 7S by - ot g
R 2 T
2
S N SO
1] Wil
mEED
ot D
e " Y
My
| - RN
E . I.‘ ]
N ey & SR RN
\ N e gy oneeson S 12 28 .
10 ) L ou © P e

(rar)

Fig. 6b.  Sumec as in Figure 6(u) for n,, > Met»

o= 'lh'lx‘[ [ﬂhf‘- - r’nﬁh] ’

‘].‘.’
('EIJ z

S AR, - 0, e,
ot

¥4

(& .

o A I - s,
[4

(11)

(12)

(13)

[AX (A, x 4.) d* and the (a, m) values of the modes (a, 5, ¢) satisfy the
conditions n, = m, + n,and m, = m, + m,.
It can be shown that

(V x B)x B ¥
ted, b, ¢
roheu

AAEE, AN, x A,

{14)
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(Vx Y x b= Y dannld, - A) A, x 4, (15)
oa b
;oho oo

so that

Poah, e (&)
t bocou

. EE Ik
N{Plp+ (120173 = > AALA; - L_,)(—"’J' - )],.1],),4,. xd4, - _ . (1)
. P

In this paper we confine our study to the steady-state solution to the pressure. For the
steady-state &6 P F - 00 and henee, we find from LEquations (8) to (13)

e = Calp™c s ST and = Ept?
Fquation (10) reduces 1o

ViPip 0 (12077 -0,

Len Pt F21T constant,

I the value of 2 at the origin (r - 0, 2 = () is Py, then
P Pyipa (LG - (1/2)172 (17)

where by, is the velocity at the origin (¢ - 0, 2 = 0),

3. Discussion

Fhe spatial variation of pressure is presented for a eylindrical column of plasma for
which the ratio of the radius R o length L has been taken to be R/L = ) and the
ratio of the toroidal to poloidal lux /1, = 0.1. _

We huve chosen two triads «, b, ¢ such that they represent the largest possible spatial
scales, as well as satisfy the condition ¢ = & + ¢, These are:

ay = (L1, A =(1,0) and ¢, = (0, 1);
ay = (0,0) by = (1, 1), and ¢, =(~1, =1).

The corresponding values of s and A’s are found to be (from Equations (6) and (7))

aaR =323 R =385, R =355,
SR X290 U, R O390, )R =3.85,

feel

and

SR Ldd LR 323 y,R =323,
iR =T JaR =329 AR =329,

The total energy F of the loop plasma in a given configuration («. b, ¢) is given by
E2E A Though we have some estimate of the total energy of a typical loop
there is no obvious way of fixing the relative magnitudes of the three modes. However,
there are two physical considerations we can use to fix the relative strengths of the three
modes, as is usually done whenever three mode interactions are involved.
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3.1 Casel

The first is the pump approximation under which one of the three modes is taken to be
the strongest. For example, here since the conservation conditions give a = b 4 ¢, wo
can take ' to be the dominant mode and call it the pump which shares its enerpy with
the other two modes. This will become evident in the time-dependent description.
T refore, et

i 2w oand A2pi> ARl (%)

ML Pressure (P)) Structure in the Configuration (ay, by, ¢))

For the tind {ay, by, )

Walta < Aald, 08435 and  n.,/n, < A,4/4. = 0.8658.

We choose
[,] = 107, Dyl = 8 x 10 = {n.,1,

so that the pump approximation is valid. The expression on the right-hand side of
Fyuation (17) has been averaged over a full eycle of 0 and pressure (P, - Py) is plotted
as a function of 3, for different vatues of =/ (2" = (z/L) x 10) in Figure 1. It can be seen
that the pressure (or temperature) at any height increases along the radius lowards the
surfaee. The radial variation of pressure is the maximum at the foot points of the loop
and it is minimum at the apex. This is in confirmation with the result of Levine and
Withbroe (1977) who showed that the coronal Joops undergoing dynumic changes arce

60'00 T T Ri T T T I ] T
33-00f-
7/
o .
S s-oo/\
>
Zo
o™ 21-00}
-48-00f
~75:00 i
0-00 2:00 400 , 6-00 8:00 10-00

P 8. Axial variation of the pressure P, for 0= n/4 and different rodial distances.



260 1. D, SRIBFIMIARAN 1 1 Al

characterized by a temperature structure in which there is a cool core relative to the |
substantially hot surrounding sheath.

In Figure 2, (P, - P,) is plotted against z’ for various values of (7,,r). The axial
varintion of the pressure is maximum at the axis and minimum at the surface. The
maximum value of the pressure is attained near the apex for all values of (y,,,r). This
is in agreement with the results of Rosner, Tucker, and Vaiana (1978).

Figure 3 presents the radial variation of the pressure for 0 = 0, n/4, n/2, and 7 when
the pressure is averaged over z. The pressure increases uniformly for all values of -
Yuir < 2.0. However, for y,,r > 2 the dependence of the pressure on the azimuthal angle
is significant.

Figure 4 shows the azimuthal variation of the pressure for different values of
7.7 > 2.0. The pressure exhibits an oscillatory behavior predominantly near the surface.

Figurc S depicts the contour plot of pressure as functions of y,,r and &' when the
pressure is averaged over 0.

Figure 6{a) is the density plot of the pressure. The darkest region corresponds to the
minimum pressure. As we proceed towards the apex, the shades become lighter and the
region of maximum pressure is reached. Figure 6(b) is the density plot of the pressure
when 7, > 5. It is scen that the region of the maximum pressure has moved up.
However, when ., > #,,. the region of the maximum pressure has shified down. Thus
the region of maximum pressure need not necessarily be at the apex.

45-00
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- 3-00

-27.00

(F’z- PO)XIUO

-51-00

-75-00 I 1 1 L L L
0-00 0-62 1-24 1-86 2-48 3:10
v

Fip. 9. Azimuthal variation of the pressure £, for Z - 42 and dilferent radial distances.
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3.1.2. Pressure (Py) Structwre in the Configuration (o, by, ¢5)

For the triad v, = (0, 0), b, = (1, 1), ¢, = (-1, ~ 1), using the inequality (18) and the
values {y,a0 = 2 x 107, 1,20 = 8 % 10 = | .., we arrive at the following results:

Figure 7(a) presents the radial variation of the pressure for 0 = w/4 and for different
axial positions. In this case the maximum pressure as well as the maximum variation
in pressure is found at'z = L/4. ‘

Figure 7(b) shows the radial variation of pressure for 0 = 3n/4 and forz = 0, L/4, L/2,
and L, Here, the maximum pressure as well as the maximum variation in pressure is
at the foot points, in contrast 1o the case for 0 = n/4.

The axial variation of pressure for ¢ = 1/4 and p,,r = 0, 0.72, and 1.44 is given in
Figure (8). The pressure shows an ascillutory behavior at the axis of the loop more
predominantly thian towards the surface.

Figure 9 depicts the azimuthal vartation of the pressure at the apex of the loop for
dilferent radial distanee from the axis, In this case also the oscillatory nature of pressure
t~ evident, The muximum value is attained at the boundary.

"~
2

. Case 1l

3200 Pressure (P)) Structure in the Configuration (ay, by, ¢,)

The second physical consideration that can guide us is that the mode strengths vary in
proportion to their spatial scales. The mode with the largest spatial scale may be the
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Fig. 10. Same as in Figure 1 for 5., > n,,,.
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strongest. Here since o, = (1, 1) and b, = (1,0) have the same spatial scale in the

=’ -direction and this spatial scale is smaller than that of the mode ¢, = (0, 1), we can
assume ‘g7 and A to be of equal strength and less than the strength of ‘¢, f.e.,

T S B EINTEINP DI
A T Al AT S AT

wechose by, o= 107, 1,1 = 8.4 x 109 and |y, ] = 1.6 x 107 so that the above condi-
tions are satisfied. The radial pressure variation is presented in Figure 10 for different
axial positions. The maximum variation of the pressure is at the foot points as in
Figure 1. However, for other values of Z', the pressure tends (o decrcase initially and
then incrcases monotonically after a certain radial distance, contrary to the pressure
profile given in Figure 1, where one sees a monotonically increasing pressure for all
values of 77,

The axial and azimuthal variations of the pressure are given in Figures 11 and 12,
respectively. The trend is very similar to that presented in Figures 2 and 3.

3220 Presyure (Py) Structure in the Configuration (ag, by, ¢3)

In this case the mode u, = (0, 0) corresponds to the largest spatial scale and thercfore
if this is stronger than the other two we arrive at the conditions A2,n2, > A7.17, and
Azanis > A25n2, which are identical to the pump case for the triad (s, b5, ¢3) and the

pressure profiles have already been discussed.
3.3 CONCLUSION

In conclusion, the representation of velocity and magnetic ficlds by a three-mode
Chandrasckhar-Kendall functions brings out the three-dimensional features of the
pressure profile. We believe that the choice of the triads representing the variations of
velorey and magnetic ficlds on the largest spatial scales permitted by the system,
provides a fuirly realistic description of the loop plasma. Though the pressure structure
is a strong function of the relative amplitudes of the modes, the trends, like an increase
of pressure towards the surluce and the existence of maximum somewhere along the
length ol the loop, emerge as the genceral features. The temporal evolution of the pressure
is buing considered and will be reported shortly.
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Abstract. The temporal evolution of pressure in solar coronal loops is studied using the ideal theory
of magnetohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields are
expanded in terms of the Chandrasekhar—Kendall (C~K) functions. The three mode representation
of the velocily and the magnetic fields submits to the investigation of chaos. When the initial
values of the velocity and the magnetic field coefficients are very nearly equal ,the system shows
periodicities. For randomly chosen initial valueof these parameters the evolution of the velocity and
the magnetic fields is nonlinear and chaotic. The consequent plasma pressure is determined in the
lincar and nonlinear regimes. The evidence for the existence of chaos is established by evaluating the

invariant correlation dimension of the attractor- D, a fractal value of which indicates the existence
of deterministic chaos.

1. Introduction

It is well known that loops are the dominant structures in the higher levels of
the solar atmosphere. Even though our knowledge of loops has greatly enhanced
in recent years as a result of observations in UV, EUV, and X-ray wavelengths
(Foukal, 1978; Levine and Withbroe, 1977; Vaiana and Rosner, 1978), we have
little empirical knowledge of the nature of the coronal magnetic field. Therefore a
discussion of the relationship between coronal loops and coronal magnetic fields
depend heavily on theoretical models.

Coronal loops exhibit a fairly stable and well-configured geometry in spite of
the magnetic and velocity field fluctuations in the plasma.Such a steady state is the
result of various manifestations of the balance of inertial and magnetic forces. Using
statistical theory of incompressible magnetohydrodynamic turbulence discussed
by Montgomery, Tumer, and Vahala (1978), a steady-state model of active region
coronal loops was discussed by Krishan (1983a, b), Krishan (1985), Krishan,
Sreedharan, and Mahajan (1988) discussed the dynamics of velocity and magnetic
fields in coronal loops. A Vlasov-Maxwell description of coronal loops deriving
particle velocity distribution functions in an inhomogeneous plasma has been given
by Krishan, Shreedharan, and Mahajan (1991).

Recently Sreedharan er al. (1992) have studied the steady state structure of
the pressure in coronal loops, by representing the velocity and magnetic fields as
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2 K. SASIDHARAN ET AL.
the superposition of three (C—K) functions. They discussed in detail the threc-
dimensional spatial variation (r, €, z) of the plasma pressure in coronal loops.

Inthis paper we extend the results obtained by Sreedharan et al. (1992) toinclude
the time dependence of velocity, magnetic field and pressure and study their evo-
lution. Since the evolution equations are coupied and nonlinear, the dependence
of their solutions on the initial conditions is expected to reveal chaotic behavior.
Towards this end,we investigate in this paper the existence of chaos in the evo-
lution of pressure in coronal loops by studying the power spectrum of the data
gencrated by the solution of the MHD equations and by evaluating the invariant-
dimension, especially the second order correlation dimension of the attractor 1),
of the systen .

In the next section we derive the pressure profile for an incompressible fluid
using MHD equations. In Section 3 we give a discussion of the various aspects
of dynamics of the system by taking (i) the linear case, (il) the pump approxi-
mation, and (iii) the full set of nonlinear coupled equations and the existence of
deterministic chaos by evaluating the second-order correlation dimension which
i« an invariant paramcter of the chaotic system. In this evaluation, we obtain the
following informations: (a) Is there an attractor and if there exists one,is it regular
or strange? (b) Is there only a single aftractor or are there more than one? (¢) What
is the embedding dimension so that in describing nonlinear processes characterized
by the set of given equations, what should be the dimensions of the phase space
to describe the dynamics of the system. We follow the algorithm that has been
proposed by Grassberger and Proccacia (1983). Section 4 deals with the discussion
of results of the temporal variations and chaotic behavior of the pressure profile.

2. The Pressure Profile

The pressure profile for an incompressible fluid can be expressed as a function of
velocity V' and magnetic field B using MHD equations

VP (VxB)xB ,— = 6V .
—p = > - (V-T)V - 5 (1a)
= = = OB

VX(‘ XB)—-E;_ ' (Tb)

(1c)

where P is the mechanical pressure, n is the number density of particles, k is
Bolzmann’s constant, and T is the temperature. The loop plasma is represented
by a cylindrical column of length L and radius R. p is the mass density and the

force due to gravity is neglected. The set of Eequations (1a), (1b), and (Ic) forma
closed set of equations in the variables (V, B, p, and T)).
Equation (1a) can be manipulated to yield

so0la6491.tex; 26/12/1994; 9:34; v.4; p.2
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(D 1 ., FxBYxB <= — | oV
T -1 = | 7Y x V| = = | 2
’\‘(p+2k> ‘ P (V x V) x ] 5 (2)

The velocity field ¥ and magnetic field B can be represented as a superposition of
the Chandrasekhar—Kendall functions following Montgomery, Tumer, and Vahala

(1978). In this study we consider a triple-mode system for the velocity V and
magnetic field B written as

Vo= Z Af’);(oji . (3)
" 1=ab.c,

B= Y N&G(A, #)
i=a,be,

znrn = chmanm.r) s (4a)

Cam is the normalizing constant [ A, - Anmy d37 = nn, 6mm, Where

o, [im | ik, & [ mk,
a-nm(r) = é€ér { - + Mo ar] Ynm = €p [61_ | T)\nm] Ynm=+

2 2
+é. [M] "/)nm ) (4b)

Yam = Jm(YnmT) exp(imb + ikg2) ,
)‘nm = i(’yirn + ]\.‘%)1/2 ) ]\‘.n = 27T11/L )
n=0,F1, ¥2,..., m =0, Fl, F2, ... .

The functions @nm satisty ¥ X @ = Apm@nm * Yam can be determined from the
boundary conditions (Sreedharan er al., 1992). ; and §; are in general complex.

The dynamics can be described by taking the inner products of curl of Equations
(1a)and 1(b) with Z‘,’,m and integrating over the volume. The resulting six complex,
coupled, nonlinear ordinary differential equations are

d77a )\b)\c

3t = oo e = Mol - Guke/pl ©

dT]b )\ /\ w[ __* »

el “cfbﬁ(ka — A" — €€a/p) ©

dTI )\ )\ » lv'l * * |

= S0 = M) g~ 66/ o) 7
. )
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0 A = A€ - 10&s) ()
dt R

‘Eb — A A In - * 9
E-{- = Ac— Ag ['ﬂcfa - na'gc] 1 ©
d c LR s ] *
"dé? = Ao — MI" 0260 — np&a] (10

where I = [ AL (A, x A)d%r and the (n, m) values of the modes (a, b, ¢)
satisfy the condition n, = np + n, and m, = my; + m.. Equation (2) with the

representation of V and B given in Equations (3) and (4) can be manipulated to
yield :

iv) (% +,-1§ Z z Aiz\jnm,-Z,- XJ) = Z ()‘— - ’\j>x

i=a,bcji=a,b,c ;:2.’1;.;
£ —_ - on; . — .
X (E—lgl - T],"r)j> (A; x Aj) -+ Z -51—),’.4,' . (1
n iza,ble

The expansion coefticients 7; and &; can be solved numerically from the dynamical

equations (S)—-(10) which when substituted in Equation (11) determine pressure as
a function of space and time. '

3. Dynamical Aspects

The temporal evolution of the pressure is presented for a cylindrical plasma column
of length ‘L’ and radius ‘R’. The ratio of the toroidal to poloidal magnetic flux,
w(t)/¢(p) is taken as Tlﬁ. ‘We have chosen the triads a, b, c to represent the largest
possible spatial scales and also satisfy the condition a = b+c, as a = (1, 1),
b= (1, 0), ¢ = (0, 1). Corresponding values of ~; and ); are found to be v, R =
3.23, R = 3.85, 7R = 3.85, v, R = 3.29, \pR = 3.90, AR = 3.85 for rigid
boundary as described in Sreedharan er al. (1992). The total energy E of the loop
plasma in a given configuration (a, b, ¢) is given by

E=2 5 MNm+€&).

i=a,b,c

There is no obvious way of fixing the relative magnitudes of the three modes even
though we have some estimates of the total energy of a typical loop.

There are two physical situations under which Equations (5)—(10) can be solved
analytically. (i) The linear case, (ii) the pump approximation.

solab491.tex; 26/12/1994; 9:34; v.4; p.4
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Fig. 1. Temporal evolution of pressure [P(¢)] at an axial point of the coronal loop when the initial
values of the velocity and magnetic field coefficients are very nearly equal.

(1) THE LINEAR CASE

Here we study the time evolution of the small deviations of the velocity and
magnetic fields from thejr equilibrium valges, i.e., we assume /AR I ST
So b & and thin Mo - S and g e, oy &1 ~x & for all modes, Assuming both mil)

and £y(2) have time dependence through e*, we can obtain a dispersion rel

ation
whose solution is

s =FiT| [Ny = A, ~ Aa) Imsal? + X200, — Aa =~ A Ine 2=
=20 = 2 = A2 faol2]1/2 .

Thus the system exhibits marginal stability since the perturbed quantities have

sinusoidal oscillations with a period which depends upon the equilibrium val
of the fields.

Figure 1 shows time variation of pressure for the initial values of N;

ues

as follows

e =10, Im] = 2.0, Ine| =3.0,

Ka’ = 1.1 ' ]&" = 2] s lfcf = 3.1 )

sola6491.tex; 26/12/1994; 9:34; v.4; p-5
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Fig.2. The power spectrum [S({w) — (constant) limz—e T} | fnT et P(t) dt)*) corresponding to
the time variation of pressure shown in Figure 1.

The corres mding power spectrumis shown in Figure 2. This discrete spectrum
clearly indicates that the pressure profile has a finite number of frequencies when
the magnitude of the velocity and magnetic fields are approximately equal initially.
This marginal stability exists only for the time scales for which the linearisation is
valid. The Skylab, UV and microwave observations do indicate that the loops are
_in a state of quasi periodic pulsations (Aschwanden, 1987).

(ii) TH‘E PUMP APPROXIMATION

In the pump approximation one of the three modes is taken to be the strongest. For
example here since the conservation condition gives a = b + ¢, we can take ‘a’ to
be the dominant mode and call it the pump which shares its energy with the other
two modes. The time evolution of the two modes does not produce any significant
change in the pump mode and hence we can neglect all time variations in (7,4, £g).
The system of six equations ((5)—(10)) therefore reduces to four (Equations (5)
and (8) are automatically satisfied under the pump approximation since both sides
of the equations are vanishingly smali) with the additional assumption 7, = &, and
takes the following simplified form which can be solved analytically

dnb — ACAO. *® » *
3= Ve = 2 Il ~ €l (12)

50126491 .tex; 26/12/1994; 9:34; v.4; p.6
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dn AaAp *[n y
T - 5 o = A [0 - &ma

)
dt

dé. s s
- = /\G/Xfl 8 — 1517 -

= AadeI™ e = €Z1Ma

Complex conjugélcs of Equation (13) and (15) gives

d']r‘l AaAb -
e _ Ao — Ag )y — ,
5 " o e = &o)ng
dé;

3 = Aad] (& — me]m
and the difference of Equations (16) and (17) gives

9_77; _ _dic'_ _ Aa/\b “ _' _
dt — dt A Ina[Ae = Aa + Ac] (M6 = &b) -

A time derivation of Equation (12) can be written as

d?.
0 30026

(13)

(14)

(15)

(16)

a7

(18)

(19)

We have used Equation (18) in writing (19). In a similar manner we can write the

equation for d%7./dt2.
One can therefore write these equations as
d*ns
3z = b+ Fa,
d2
—% = Pin.+ P1,
where
Ab (Pa = Ae)
£ = — O 4 I — — _____C_
=5 )‘c(nb b) b = Mo S LE

()‘b - ’\a)

Ac
Ec—m(nc"-[c)a I =1c + VLR

Pr= 2200 = A = A2 TP a2,

Py = X xw(ha = Xy = A) W |1 I

(20)

1))
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Pl =P,
Py =220 ha = Ay = A) ) 1alPIe

Integrating Equations (20) and (21) we get

nb=_4e\/ﬁ+B€\/§ﬁ_E’ -Jot
25! C -
. — " '“-JJ’P‘E
ne = QeYPit 4 RevPI B 2
‘ ™M

where 4, B, @Q, R are to be determined by the initial conditions. This shows that
all the four field coefficients, ny, £, N¢, €., exhibit growing and decaying modes.
This is understandable since there is an infinite capacity pump mode 74, £q in the

system at the expense of which 7, &y, 7., §c are growing. Thus in the case of pump
approximation analytical solutions to the system can be found.

(111)CHAOS IN THE SYSTEM

Equations (5)—(10) are a set-of six ordinary first-order differential equations which
are highly nonlinear. It may further be realized that the velocity (7;) and magnetic
field (&;) components are both coupled which adds to the inherent nonlinearity
of the equations of motion ~ characteristic of MHD equations. These equations
in principle can be seen as equivalent to one ordinary sixth order differential
equation which will manifest all the nonlinearities and therefore may lead to chaotic
dynamics. To investigate this aspect we first determine the power spectrum of the
system.A broad band power spectrum is a sure indication of the existence of chaos
in the dynamics. An insight into chaotic system can be obtained by determining
the invariant parameters such as correlation dimensions D;, Kolmogorov entropies
K;, Lyapunov exponents etc which are all infinite in number. However it has been
shown that of the infinite number of the correlation dimensions and Kolmogorov
information entropies, the second-order quantities are the most significant ones
and hence we shall determine D5 in the present analysis. We shall postpone the
determination of K; and Lyapunov exponents for a later occasion. We follow in
this the algorithm which was first proposed by Grassberger and Proccacia (1983)
and later developed by Atmanspacher and Schinegraber (1986) and Abraham er al.
(1986).

Let {Xg(1)} be the original time series with the data being taken at constant
interval, These data set can be rearranged so as to get (d -- 1) additional data sets
as

Xo(t)s -, Xoltn),

Xolts + At), ..., Xo(tw + At),

sola6491.tex; 26/12/1994; 9:34; v.4; p.8
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Xolty + dAt), ... . nXo(ty + dAL),

we can consider the transpose of the above matrix asconsisting of /V vectors having
d components in a d dimensional space. The general vector can be written as

-.T,' = (,\'Q(t]), ey .Y()(t,‘ + dAt)) .

wherei =1, ..., N and X is a point in the constructed d-dimensional space. We
now evaluate the correlation function

. 1 -
Colr) = Jim =5 3 60— [Xi~X;
1.7=1,N

)5

where @ is the Heaviside function defined as 8(z) = O for x < 0 and unity for
:x > 0. This implies that if the absolute value of the vector difference |X; — ;| is
less than r, we count it as unity and is zero if it is greater than r. We then construct
the small boxes of side 7 in the phase space and count the vector tips that lie in this
box. This counting. It is shown that as r becomes smaller Cy(r) ~ 7 so that

log Cy(r) ~ rlogr.

Asr — 0 and d — oo, v takes a definite value which is called the second-order
correlation dimension and we get

D, = lim lﬁe‘é_c_d(il .
—~0  log(r)

d—oo

The correlation integral C(r) has to be calculated for several values of r with
respect to cach particular dimension d of the constructed phase space. For cach
dimension d onc wbtains log Cy(r) vs log(r) curve and the slope 1 of the lincar
part of the curve can be obtained using least-ssquare fit. If the slope i converges
towards a finite value for higher values of d, this value is denoted by D2. When Ds
is an integer, the system is regular and when it is a fractal the system is chaotic.
We have numerically solved Equations (5)-(10) for arbitrary initial values of
the field coefficients. The time evolution of pressure at an axial point of the loop
for initial values (|nq| = 4.0, |ny] = 7.0, |n| = 10.0, |, = 8.0|, |&| = 11.0,
|¢c| = 14.0) is shown in Figure 3. The time variation is highly complex. The
corresponding power spectrum is shown in Figure 4. The spectrum is fluctuating and
broad band indjcating the presence of chaos.A data set of 500 points corresponding
to this chaotic evolution of pressure is used to evaluate the information dimension-
D»-by the method described above. In Figure 5, we illustrate the converging slope
and the value of D, is found to be 1.732. With the same initial conditions D, was
evaluated at a surface point and the slope does not seem to converge to a limiting
value. This is shown in Figure 6. The fractal value of D5 evidences the existence

s50la6491.tex; 26/12/1994; 9:34; v.4; p.9
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Fig. 3. Time variation of pressure at an axial point of the loop when the initial values of the field
coefficients 7a, m, 7. are much different from those of &, &, &.. respectively.
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Fig. 4, Power spectrum [S(w)) corresponding to the lime variation of pressure shown in Figure 3.
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of deterministic chaos. In a chaotic regime the system can either dissipate to an
attractor stage or can follow a stochastic (random) flow, As the dimension d of the
constructed phase space increases the slope v may converge to a limiting value.
In this case the flow will be confined to a geometrical object called attractor. The
converging value of the slope is the dimension D; of the attractor. The dimension of
the attractor measures the minimum number of independent parameters needed to
describe the system dynamics. In other words if D, exists, there is a properly defined
dynamical system. The steady increase of slope v with d (Figure 6) evidently shows
that it cannot converge and consequently the number of degrees of freedom of the
system is increasing. Then the complexity of the system increases and it tends to a
more disordered state indicating that system behavior is stochastic.

4. Conclusion

In the equilibrium state 74 = £q, Ny = &b, e = £c. We disturb the system slightly
from the equilibrium state and study the time evolution for small departure from
equilibrium. In this case the system is shown to exhibit sinusoidal oscillation with
a period which depends upon the initial values of the field coefficients. In oth-
er words, when the system js perturbed from a state where the magnetic energy
B?/4m and the kinetic energy (})muv? are nearly equal, it exhibits marginal stabil-
ity. The microwave and X-ray observations of coronal loops show quasi-periodic
oscillations with time scales ranging from a fraction of a second to tens of minutes
{Aschwanden, 1987, §vestka, 1994, and references therein). These oscillations
are usually interpreted in terms of magnetohydrodynamic waves in loop plasma
(Roberts, Edwin, and Benz, 1984). The observed power spectrum of pulsations
actually exhibits a more complex behaviour (e.g., Figure 1(d) of Svestka, 1994)
which appears quasi-periodic only if we ignore finer variations. Thus quasi-periodic
behaviour is expected only near equilibrium as is shown in our studies and the lin-
ear wave analysis studies, Under large departures from the equilibrium, a loop will
show a complex temporal structure which can only be described in terms of objects
with fractal dimensions in the phase space of the velocity and magnctic field.
Coronal loops being continuously subjected to external forcing through their foot
points and through their interaction with neighbouring regions are most likely to
be in a chaotic state of pressure fluctuations. Therefore, when there are large devi-
ations from equilibrium, i.e., for initial values of 7., 75, 7., much different from
those of £q4, £, &, respectively, the system is nonlinear and so is corresponding
time evolution of the pressure. In this case each individual mode becomes distinct,
stronger and mode-mode interaction can take place. In the pump approximation
case since the variation of the strongest mode is negligible when compared with
other modes, the interaction is between less number of modes of oscillations and
the system showed oscillatory behavior,whereas the chaotic behaviour is caused
by the superposition of more than two modes of oscillation and due to strong

501la6491.tex; 26/12/1994; 9:34; v.4; p.11
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Fig. 5. The slopes () of the linear part of the log Ca(r) vs log(r) curves,obtained using least-squares
fits are plotted against the dimension d of the constructed phase space. The two asymptotic values

of the slopes are 1.39 and 1.73. This is corresponding to the chaotic evolution of pressure at an axial
point of the loop.

nonlinear coupling between them as is indicated in the nonlinear case above. This
fact is evident in the evaluation of Dj. Figure 5 shows the determination of )2
at an axial point. It is interesting to note that we get two asymptotic values one at
1.39 and the other at 1.73. It could be interpreted as the existence of two strange
attractors with embedding space of dimension 7 and 18 and the trajectory can land
up on either of these attractors. The fact that these are strange attractors (because
of fractal dimension) the trajectories could jump from one to the other. This clearly
shows the complexity of the situation. The curve of slope v vs dimension d at
T == It does not show any saturation and that the curve is more or less centered
on the 45° line showing the presence of randomness or white noise as shown in
Figure 6. Thus as we proceed from the axis towards the surface the dynamics show
the development of strange attractors ending up in complete randomness.

In Figures 5 and 6 even though the initial values of £, and », are the same,those
of pressure P at (r = 0,{ = O) and at (r = R, t = Q) are not same. This difference
in Figures 5 and 6 is due to the different initial values of pressure at axial and
surface points. The transition from a strange attractor state to randomness requires
a much finer analysis which will be investigated on a future occasion. In conclusion
the time scale over which the system is stable or otherwise can be inferred only
by evaluating the Lyapunov constants which are sensitive o the initial conditions.
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Fig. 6. Corresponding 10 the chaotic time evolution of pressure at a surface point of the loop,the

slopes (1) of the linear part of the log C(r) vs log(r) curves are plotted against the dimension ¢,
The slopes do not converge to any limiting values,

Inverting the problem, by specifying the Lyapunov constants, one can possibly

evaluate the class of initial states which can give the observed life time of the
loops. ‘
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