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ABSTRACT 

The solution of the radiative transfer equation 

taking account of the polarization state of the radi-

ation field is an important problem. The light emi-

tted by any physical system is polarized only if there 

exists an intrinsic anisotropy in the medium, in which 

the radiation interacts with matter. The anisotropy 

in both microscopic as well as macroscopic scales 

produces a net polarization of the diffuse radiation 

field in the medium. The equation of radiative trans-

fer establishes a natural link between the microphysical 

quantities like absorption and scattering coefficients, 

refractive indices etc.and thermodynamic quantities such 

I 

as temperature and radiative flux gradients as well as the 

geometric structure of the medium. Hence a correct theoretical 

interpretation of the observed polarization data using the the­

ory of polarization radiative transfer offers a better chance 

to determine the physical state of the m?tter in the 

emi tting regions and the spatial, temporal and geometrical 

parameters of these regions. These parameters are the basic 

data needed in further studies of any astrophysical problem. 

In this thesis we have made an attempt to develop gene-

ral solutions of the problem of radiative transfer for 



polarized radintion field. We mainly use the Stokes 

vector representation in the polarization transfer 

equations. 

In the first Ch'·1pter we describe t.he need for 

the solutions to polarization radiative transfer pro­

blems. In the second chapter we have studied the pure 

absorption continuum polarization transfer problems 

in some detail. Here we bring out the relation bet­

ween the Stokes vector and normal wave representations. 

We apply the solution method to the problem of conti­

nuum polarization in magnetic white dwarfs. In the 

third chapter we describe a general numerical method 

of solution which can be used in both pure absorption 

and scattAring problems. After a discussion of the 

calculation of anisotropic transfer coefficients, we 

use the method of solution in the computation of polari­

zed radiation in the atmospheres of magnetic white\ dwarfs 

and neutron stars. In the fourth chapter we concentrate 

on the Zeeman line transfer problems. We also suggest 

here an approximate method of solution of the transfer 

problem. The chapter five is devoted to some new phy­

sical processes which are of importance in various astro­

physical situations. We incorporate these effects - in 

dividually into the polarization radiative transfer equa­

tion and solve it. In the sixth chapter we have attempted 

II 



to compute the linear polarization in resonance lines 

when the scattering and the frequency redistribution 

effects are taken into account. The line transfer 

problem is solved in both the plane parallel and spheri­

cally symmetric media. The effects of sphericity on 

the lines formed under the mechanisms of coherent scatter­

ing. complete redistribution and p~rtial frequency re­

distribution is indicated. 

III 



CHAPTER 1 

INTRODUCTION 

1.1 The generation of polarized radiation in astrono­

mical objects and the importance of its measurement 

The observations of electromagnetic radiation recei­

ved from astronomical objects is the major source of 

infonnation regarding these objects. Hence our emphasis 

should be on finding the connection between the micro­

scopic phenomena, like the interaction of radiation with 

ma,tter (with and without external fields) and the macro­

scopic phenomena like the transfer of radiation, the con­

duction, convection or mass motions, in order to under­

stand the physical nature of these astronomical objects. 

Unless such a link is established, a correct theoretical 

modelling of the regions emitting the radiation becomes 

difficult and ambiguous. We shall now describe some astro­

nomical objects where significant amount of polarization 

of light is observed, and mention the theoretical efforts 

made to explain the observations. 

(i) The environment: Light which we are exposed to in 

the environment is in general partially linearly polari­

zed, the degree of linear polarization being as much as 

1 

70% or more in a cloudless sunlit sky. It may reach very 

small values for a thick overcast sky. The circular polari-



zation is very small (a fraction of a percent). The 

polarization of our environment is explained in terms 

of multiple scattering of sunlight in an atmosphere 

composed of molecules, dust, aerosols etc., along with 

a reflecting ground. 

(ii) Planetary atmospheres: The sunlight reflected by 

planetary atmospheres is observed to be polarized 

(5-10%) linear polarization). The theoretical calcula­

tions of this so called planetary problem is quite 

complicated. A surface with a given law of ground 

reflection is assumed here a priori. The radiation 

transfer equation for the polarized radiation is solved 

in a molecular atmosphere where dust particles and 

aerosols are suspended. A combination of Rayleigh-

Chandrasekhar theory and Mie theory of scattering has to 

be used. A good level of understanding has been achieved 

in general, in this area. 

(iii) Stellar intrinsic polarization, This term refers 

to the polarization due to scattering in the atmospheres 

of stars. Practically all stars that show emission lines 

in their spectrum, including those of early type stars 

2 

have some intrinsic (5-10% linear) polarization. Even in 

the sun, this has been observed near the limb (pr--Jl0-~10-~) I 

with the electric vector nearly tangential to the limb. 



The circular polarization is zero in principle, because 

of the spherical symmetry of the stars. These stellar 

and solar observations are interpreted in terms of 

scattering by electrons,atoms and molecules as well as 

the scattering involving the bound levels of resonance 

lines, as the case may be. We deal with such problems in 

our present studies. Another class of important observa­

tions is the polarimetry of magnetic stars like Ap and 

Am'stars, white dwarfs etc. The theory of Zeeman and 
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Stark effects in the line are important for the former, 

whereas both continuum and line polarization are important 

for magnetic white dwarfs. The modelling has been attempted 

only in recent years. The difficulty is with magnetic 

field strengths and geometries. We shall discuss these 

type of problems in this thesis. 

(iv) Circumstellar and interstellar polarization: The 

polarization of light is produced in the circumstellar 

dust envelope around a star. The red variables, cool 

giants and shell stdrs show this type of polarization. 

The polarization (rv 5-15%) is wavelength dependent and 

show time variability. The interstellar polarization 

is produced by scattering of star light in the inter­

stellar medium, and is also wavelength dependent. The 

observations are interpreted in terms of Mie scattering 

on dust grains of various shapes, sizes dnd composition. 



The grain alignment by the interstellar magnetic field 

(nvlO-5G) happens to be crucial. The circular polari-

zation is also observed. 

(v) Polarization of light in the nebulae: The scattering 

of st6rlight by the dust grains in reflection nebulae 

produces a strong polarization (1-30%). These objects 

offer a chance of studying the scattering and optical 

properties of grains in relatively small volume of space. 

In the calculations, the major difficulty arises from 

the irregular geometry of any such nebula. 

(vi) Miscellaneous objects: It has been recently dis­

covered that the pulsed emission from any pulsar is 

highly polarized (1-15%). The time variation of the 

degree of linear polarization and the position angle of 

polarization gives an idea of the magnetic field 

strength and inclination, for an assumed model of the 

emitting region. The results on the beaming of polari­

zed radiation in strong field emitting regions presented 

in the thesis fall in this class of theoretical rnodell-

4 

ing. The light received by extragalactic objects, 

external galaxies; magellanic clouds etc., is also polari­

zed. A combination of high energy (Compton scattering) 

or low energy (Thomson scattering) processes with the 

thermal and non-thermal synchrotron radiation is used for 

the interpretation of the observations. The quasars, BL 



Lac objects and Seyfert galaxies also emit highly 

polarized radiation, and the radio observations 

offer a useful tool in understanding the structure 

of these objects. In one of our examples studied, 

we have point~d out a more complete and correct way 

of treating the radiative transfer of radio waves in 

a magnetized medium. 

Almost all aspects of polarization, with parti­

cular reference to astronomy, namely the instrumenta­

tion, observation and theory can be found in a great 

collection of papers presented in the book "Planets, 

Stars and Nebulae" studied with phQtopolarimetry, 

edited by Tom Gehrels (1974). 

1.2 The representation of polarized radiation and the 

Stokes vector of an arbitrarily polarized beam of 

light 

It is well known that, on scattering, light in 

general gets polarized. The scattering being a natural 

way of radiation-matter interaction, it is understood 

that the radiation, in general is always polarized 

5 

to a smaller or larger extent in most of the physical 

situations. The diffuse radiation field in a scattering 

medium, for example is always partially polarized. Also, 

it is well known that to describe a general radiation 



field, four parameters should be specified which will 

give the intensity, the degree of polarization, the 

plane of polarization and the ellipticity of the radi­

ationg at each pOint in the medium and in any given 

direction. Before discussing the problems of radiative 

transfer for the polarized radiation, it is useful to 

understand how a beam of arbitrarily polarized light 

is represented. This fixes our idea, about what are 

going to be repeatedly used in the forthcoming chapters 

the Stokes vector and the polarization nODnal waves -

and helps to avoid the confusion with notations. 

6 

It has been shown by Chandrasekhar (1950) that the 

formulations of the equations of radiative transfer can 

be most conveniently effected if a parametric representa­

tion of the polarized light in terms of four parameters, 

originally introduced by Stokes are employed. We give 

below certain basic definitions, which are useful in 

future discussion. A clear mathematical description 

of all aspects of polarized radiation is given in 

Chandrasekhar (1950), from which we have selected the 

required equations. 

(i) Stokes parameters: An arbitrarily polarized b'2am of 

light can be completely analyzed by the following 

procedure. Introduce a known amount of phase retardation 

in one direction relative to the direction at right angles 



to it, and then measure the intensity in all directions 

in the transverse plane. Let 

(0 ) 

S,t = ~J. Shi (wt- G..t1 Q.'YH.i 

represent instantaneous 

vibrations of the elec-

tric vector in a beam of 

light. The amplitudes 

and phases undergo irre-

gular variations in a 

partially polarized beam 

- but the ratio of ampli-

tudes and the difference 

in phases 'remain con-

stant'. At present we 

, 

are interested in phase differences only. Hence equation 

(1-1) can be written as 

(0) 

Sol ::. '!;J Si)'l Wt 

subjecting the second component to a phase retardation 

E. ' we get 

Co) 

St" -:::: ~T' Sin (wt.- 6 - 6) 
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(1-2) 

(1-3) 



Resolve the vibration (1-3) in a direction making an 

angle \)! wi th respect to the 1 direc.tion, i. e. 

~) ~) 

5;. Sil1 wt cost + Sy Sill (wt.. - [; - t:.) Sil11f 

[ 
(p) (0) = S:cosr+;r COS(ot€)Si'1ll\f] S'I"O uJt 

(P) 
- 1; SiYl C& + 6) Si 11 "f caS wi 

r 

The momentary intensity is therefore given as the sum 

of the squares of the amplitudes, 

'!l (0) ~ 2. LO) 2. '.2. + 
~ClVj C) == [SJ. ] cost + [1;'1" ] Srn'o/ 

(0) (0) 

+2.1~ SF'" (CDSS-. C05€ -Sil1d.SinE)Si"l1-rCOSi'. 

To get the apparent·intensity in the direction 1V ' 
we must take the mean of this expression keeping ljf and E 

constant. Thus 

I ('\f', £) = [·~;)J2-. Co 1'1' + [ s~»)2.. Si'l'\2."¥ 

+ { 2 [,() s~) ~()~'6 J coS € - 2. [s;)--S:) Sin &J Sir) €} Sin'o/ COS 'V 

From this equation it is clear that the intensities in 

the 1 and "t di rections are independent of E and are 

given by 

(0) 2-

It -:::. [ ~t ] . 
) 
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(1-4) 

(1-5) 

( 1-6) 



9 

Now, let 

[ 
(0) (0) ] 

U =- 2 "\ 'Sl" C056 

(p") (p) 

o.:ncL V = 2. [ ~.(. "ii.,. SincS""J 

( 1-8) 

These definitions of the Stokes parameters are consistent 

with the usual definition for an elliptically polarized 

beam of light given by 

, (1-9) 

u = 2. [ ~C.C) ~(P) ] CDS 0 .. V = 2 [I;~DJ 'f.~) ] sin8 . 
1. ..,. ) .... , ( 1-10) 

since in the latter case, the phase difference remains 

constant. From the equations (1-7),(1-8) and (1-6), we 

can write 

(1-11) 

or, defining --_ .. -
[ ~'O) J2 Co) 2. + I ::: 'IJ... + "I...,. - [~t J ..,. , 

( 1-12) 

Q, :: It -"1...,. (. 'I;:)-j "[ r;;) J2. 



we can also write 

= J. ["r 1- Q,COS21( + (UCDSE: - VSiYl e) 5iYl 2-1¥] • 
2 

From the equa ti on (1-13) we can see that an arbi trarily 

polaI'ized light is characterized by the set of four 

Stokes parameters I,Q,U and V. The vector (I Q U V )T 

is called the Stokes vector of the polarized radiation 

field. 

(ii) Equivalence: Two beams characterized by the same set 

of Stokes parameters are eql.livalent. 

(iii) Additivity: The Stokes parameters of a mixture of 

several I j,TldE!pcndent streams I of elliptically polarized 

light is given by an algebraic SUllI of the StOk0S parameters 

of the separate streams. Thus 

~ ~ ~ 
I ::' L I j I.t:-':' i: I.t :r..., == 2: I.,. 

Cos 2.'4'" 

• ("1\) ,,- I('I\)C05 2 ~ ... U=Lu ::":L r" 

tn) _ . (')\) 
V ::. '2...V -::: L I Sin 2. ~1l 

I (n)., Xn and ~'YI are the intensity, the plane of polari­

zation, and the elliptic! ty of the component streams. This 
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(1-13) 

(1-14) 



property holds dB long <.is the cumponent streams 

forming the mixture have no permanent phase rela-

tions between themselves. 

(iv) Natural light: It is represented by 

(v) Elliptically polarized light: If the orient:ation of 

the ellipse is:::t, then 

tan p = + minor a.xis 

major axis 

The ± signs of ~ correspond respectively to right and 

left handed polari za ti.ons. Also 

2. 2. 2. 2 
I=~+U+V 

(vi) Oppositely polarized streams: Two streams related 

in the manm~r ( ~)):' ) and (- ~, .x + Te}2) are said 

to be oppositely polarized. It can be shown that the 

natural light is equivalent to any two independent 

'oppositely polarized' streams of half the intensity. 

This concept of opposite polarization is useful in 

understanding the polarization normal waves introduced 

in section (2.1). 
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(1-15 ) 

( 1-16) 

(1-17) 



Notice that, for partially polarized radiation, 
'2. '2. '2. 2-

T > ~ -1- U + V The degree of linear polari-

zation (p), circular polarization (q) and the polari­

zation position angle (~) are defined as 

) 
. 
) cp ~ ! to..Yl-1 Cu / fa) 

We use this notation throughout our discussion in the 

thesis. 

1.3 A preview of the results presented in the thesis 

We review the existing Ii t.erature and recent 

developments in each individual chapter. Here we indi~ 

12 

cate only the topics discussed in the chapters to follow 

and try to make a common link between them. In Chapter 2 

we first describe the simple case of radiative transfer 

equation for the continuum polarization in two alternative 

but equivalent representations. We then calculate the 

strong field continuous dichroism for various absorption 

coefficients relevant to a realis tic stellar atmosphere. 

We also give a second order accurate formula for cal-

culating the magnetic dichroism of a general power-law 

type opacity. This may be useful in rapid computations 

of magnetic dichroism in a practical model construction, 

(1-18) 



where the transfer equation has also to be integrated 

over a visible disk of the star. Then we compare the 

solutions obtained on some test cases with standard 

methods used by other authors. Lastly we present the 

re~ults on cC?ntinuum polarization in magnetic white 

dwarfs, and discuss the interesting behaviour of 

line,ar (p) and circular (g) polarizations near the 

absorption edges of the bound-free absorption coefficient. 

In chapter 3 we treat the more complicated problem 

of magneto-scattering plus magneto-absroption, in the 

continuurn. Here we describe in detail th(;> numerical 

method of solution of the radiative transfer equation, 

for true absorption ana coherent scattering taken to­

gether. Next, we calcul<'.J.te the magnetic dichorism of 

the continuum absorption and scattering coefficients 

exactl y, using recent developments in the calculation 

of these cross sections. Since the theory of these cross 

sections was originally given for the polarization 

normal modes of a ·plasma, we have preferred to solve the 

transfer equation in the normal mode representation it­

self, though a transformation to the Stokes representation 

is ctraight forward. Then we describe the polarization 

of radiation in the realistic atmosphere of a hot magnetic 

white dwarf. The strong field magneto-scattering and 

absorption are included in the computation of the 

13 



emergent lntensitles. A Siffil1nr calcum tion hd~ also 

been done for the condi tions typical of polar cap 

reglons of the accreting mdgn.,;tized neutron stars. 

We discuss the interestlng behavlour of the polarizatlon 

and spectra when both these types o[ atmobpheres are 

externally i rrad~c1t( d. ~Lhe role of change In the source 

function gradlcnLb aaused by such an irradiatlon and 

hea~ing, 1S also shown. It &hou10 be noted ~hat the 

computation of magnotic dichroism is more exact here 

than the second chapter and the scattering has also been 

included. 

In Chapter 4 we compute the Zeeman line profiles 

formed in strong magnetic f1elds of white dwarfs. First 

we describe the line transler equation in both the Stokes 

veC'lor as weJl as normal wave representations. f~rhen we 

study t.he line format1.on under general phY"3ical condi­

tlons. The magnetic field who6e magnitude and direction 

changes with depth, the velociLy fields in the atmosphere 

or the combination or those (actors taken together are 

included in studying the Zeeman line formation. We also 

inuicate a simpllfication of our earlier method of solut~on 

descrl.bed in chapter 3 1 In treatlng the true absorption 

problems. We show the practical utility of this simpli­

[~CQtLon by applyinq It to some cumpuLdtionally time 

consuming problems, l~ke disk integrated continuum pomri-



zatiori and cyclotron resonance absorption problems. 

The pure Zeeman line transfer equati~ns described 

in this section are useful for our future discussion 

in chapter 5, where we solve the line transfer equation 

including many new physical effects. 

The chapter 5 mainly deals with the Zeeman line 

form2tion in much more realistic conditions than 

considerl~d earlier. First we briefly discuss the 

15 

very recent development of combined Stark-Zeeman effect. 

Stark effect has not been consistently included in any 

of the Zeemd.n linE~ formation problems till now, to 

our knowledge. We present this somewhat difficult but 

essential computation briefly. We show the impact of 

combined Stark-Zeeman effect on the hydrogen line forma­

tion in a main sequence star model atmosphf.:!re, represen­

tative of a maqn(2!tic Ap star. The plasma polarization 

shift of hydr.ogen-like ionic lines has been studied in 

laboratory plasmas for qui te some time. Here we have 

di scussed the impact of this effect on some ~€:eman sub­

components of He II 11nes as a function of mt1<:,;J:"I( tj c 

field and the t.empera ture. This mechanism, is shown 

to affect the line formation strongly. The influence 

of the orientation of atomic magn~tic moment in a strong 

magnetic field is found to contribute to the broadband 

polarization, in strong field white dwarfs. 'l'he effect 

of o~ganized velocity fields or the atmospheric structure 



are shown to affect the Zeeman lines strongly. Lastly 

in this chapter we write the normal wave transfer 

equation for correctly treating the transfer of long 

wavelength radiation in a magnetoplasma. We demonstrate 

that one has to include the ray refraction effects in 

treating the transfer of microwaves and radiowaves etc., 

to get reliable flux and polarization spectra of the 

extended radio-emitting regions. 

In chapter 6 we develop a solution of the equation 

of transfer for the resonance line polarization. First 

we describe the relc~vant qeneral equations o:E the problem. 

Then we describe a general numerical method of solution 

of the problem, including the frequency redistribution 

in the line source function, and the sphericity of the 

atmosphere. After making a comparitive study of the 

solutions, using some standard results available in the 

literature, we proceed to calculate the line profiles 
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and polarizations in a spherically symmetric medium taking 

account of various line scattering mechanisms such as 

coherent scattering, complete frequency redistribution 

and partial frequency redistribution. 



CHAPTER 2 

THE SOLUTION OF THE EQUATIONS OF CONTINUUM RADIATIVE 

TRANSFER IN ANISOTROPIC ABSORBING MEDIA 

The equation of transfer for Zeeman split lines 

was formulated by Unno (1956) in the Stokes vector 

formalism. Those general equations can be used for 

the polarization transfer in the continuum also as we 

do now in this chapter. Unno equations hold in 

general to any anisotropic media under pure absorption 

approximation. Kemp (1970a) showed that the light 

emitted from any thermal source in a magnetic field 

is characterized by diffuse circular polarization in 

the continuum. He has proven his prediction 1n the 

laboratory_and has found the effect in a white dwarf 

Kem~ (1970b). This was the starting point of really 

serious attempts to detect and then interpret conti­

nuum circular polarization in stellar objects, which, 

for obvious reasons was believed to be extremely small 

as to go undetected. After unsuccessful attempts to 

explain the 'wavelength dependent' continuum polari­

zation of maqnetic white dwarfs,using the 'magneto­

emission' theory it was realised that a radiative 

transfer calculation is essential to get the correct 

wavelength dependence (see Shipman,1971). Later 

Angel and Landstreet (1974) extended his approach. 

Lamb and Sutherland (1974) gave a general treatment 



of the magnetic dichroism of bound-free and free-

free absorption coefficients and gave analytical 

solution to the transfer equation, written as a density 

matrix equation. The same problem was approached in 

the so called 'normal wave representation', by Gnedin 

and Pavlov (1974). After wards many refinements have 

been made, in terms of using realistic atmospheres, 

including new dichroic opacities and using various 

field geometries (see Martin and Wickramasinghe,1984 
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and references there in). In this section we shall 

present a numerical solution for this problem of conti­

nuum radiative transfer in a magnetoactive medium. We 

shall use LTE (local thermodynamic equilibrium) model 

atmospheres in plane parallel approximation in all our 

studies. We shall use both uniform and dipole field con­

figurations and compute the emergent spectrum and pola­

rization. 

2.1 The continuum transfer eguation in Stokes vector 

formalism and its relation to the polarization 

normal wave transfer eguations 

(i) Stokes vector transfer equation a Unno derived the 

Stokes vector transfer equation for magneto-absroption 

only. Beckers (1969) introduced the magneto-optical 

effects (also called magnetic birefringence) into the 



Unno equation. Further on we shall always use the 

Unno-Beckers equation when we work in Stokes vector 

tormalism. The equation is written as 

, 

, 

where I = (I Q U V )T is the Stokes vector with the four 

Stokes parameters as components. p. = cos e ,e::: angle 

between the ray direction and the axis along which the 

optical depth is rneasun:d (Z-ax.is). B.y j s the local 

source function which :i s just the Planck func.:tion j n 

LTE approximation. The absorption coefficients for 

the Stokes parameters are given by 

1 I 1 I I '20 
KI == 2. I<p Si'Y\ -qr + ~ (K.t+ 1<.1') (t + C05 1V) ) 
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( 2-1) 

( 2-2) 

( 2-3) 

( 2-4) 

( 2-5) 



• 
) 

where -qr is the angle between the direction of the ray 
t I I 

and the direction of the magnetic field. kp ' kl and kr 

are the Zeeman-shifted continuous absorption coefficients •. 

The solution (I Q U V ) T to Equatt.ons (2-1) to (2-4) 

is to be multiplied by 

to obtain the actual solution for an arbitrary orienta-

tion of the magnetic field in a coordinate system in 

which ~ is the fi~ld azim~th with respect to an arbi­

trary x-axis at right angles to the line of sight. 
j I 

The p,lrameters IR and Pw represent the magneto-optical 
I 

effects due to free electrons. fR produces a rotation 
I 

of the electric vector of linearly polarized light. ~w 

leads to a phase retardation between the linear polari-

20 

( 2-6) 

(2-7) 
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zations parallel and perpendicular to the field direction. 

These parameters, for W»wc are given by 

, 
( 2-9) 

I 
F. --. Y\I -- -

. 
) 

( 2-10) 

'1. 1. I where Wp::::: (4-rrNe Ime.) is the plasma frequency and w,- -: e [:5 'rYle C 

I I _ j 

is t.he cyclotron friO!quency. kp , kl and kr are ti'le 

continuous absorption coefficients at the Zeeman 

shifted frequencies when it is assumed that all the 
I I I 

sources of opacities are dichroic Ck.p -;":"k o ) R..t :=.1<._ ,hy .,' f~IJ • 

We can also select only those opacities as dichroic for 

which Lamb-Sutherland shifts are known to be a.pplicable 

(Landstreet and Angel,1975). With this choice equations 

(2-5) to (2-7) become 

) 

• 
) 

c 
where ~ = (-h ---k. p ) is the 'residual opactity'. 

( 2-11) 

( 2-12) 

( 2-13) 



the 'selective' continuous opacity for p electrons in 

our' choice (see Unno#1956: p.113). Defining an optical 

depth scale d~ = _kcf dZ using the non-magnetic opacity 

k C I we can write equations (2-1) to (2-4) as 

t).. ~ = 'Y) (1: - Boy) -\- 11 Go. + 'Y), \] ) 
I d. 1:: l.r G.. V 

with 

and ~ 

'Yle. -= (kG. J kC) , 'Ylv =": (K\j )-}/) , "1 p,,L,),, -= ( ht>.J.'r J r~ ) 

f ::.: ( f I I f -t/ ) o:n d. E -:: ( ~ / f t/ ) 
R'IN RW 

) I 

Note that E < <. 1. • Equations (2-14) to (2-17) represent 

outgoing rays (0 <:: JL ~ 1 ). The same set of equations 

represents the inward going rays by replacing J.L by (- ~ ) I 

(2-14) 

(2-15) 

( 2-16) 

(2-17) 

( 2-18) 

(2-19) 



(0 <. p-:s 1). The method of solution which is based 

on the 'discrete space theory of radiative transfe~', 

Grant and Hunt (1968a, 1969a,b) and Peraiah and Grant 

(1973), suitably modified for the case of magnetized 

media will be presented in section 3.3 along with a 

detail/"d comparison with some standard methods of 

solution. The Unno solution for equations (2-14) to 

( 2-1 7) at 't' = 't' 'lno.x. can be employed as a sui table 

boundary condition for the problem (see section 4.1). 

(ii) Normal wave transfer equationsa The formalism 

describ(~d above is very general. There is a formalism 

which is considerably simpler, and faster on a computer. 

However, it is far from being always applicable. This 
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is called the 'normal wave representation' of the pola­

rization transfer equations. This is based on the concept 

of two nonnal (natural) waves - the ordinary and extra­

ordinary which propagate in an anisotropic medium inde­

pendently of each other. See also the definition of 

'oppositely polarized streams' given in section 1.1. It 

conSists of a sys·t.em of two I uncoupled I transfer equ.:\tions 

for the intensities of the normal waves. This formalism 

of the polarization radiative transfer equation is appli­

cable in an optically thick medium if at distances corres­

ponding to unit optical th~ckness the phase shift of one 

normal wave compared to the other is large, that is 

w \ "'fI.-Y"l';I.1 !c »("}<1-+'R2,) J'2. where ().l is the angular fre-



quency of the radiation, ')11 and "Y\k are the refractive 

indices of the normal waves, and ~1 and ~2 their 

absorption coefficients. The reduction from the 

general density matrix equations (which are fully equi­

valent to the Stokes vector fonnalism), to the normal 

wave transfer equations is explained in Gnedin and 

Pavlov (1974). We shall simply write down the equa-

tions which we have used in our computations. We shall 

also discuss briefly the conditions of their validity. 

The transfer equation for the intensities of elliptically 

polarized normal waves is given by 

1,lnder the usual LTE approximation. i<.a 131 /2. is the 

thermal emission coefficient with 'Bi the Planck 

function. The absorption coefficients of the normal 

waves are given by 

~t 'k., +. · . . .. III • 

~ 

where bf = bound-free and ff = free-free, representing 

the type of absorption. The relation with Stokes para­

meters is represented by 

I rI. 
. j 
a 

~ 
; Q, = L p. r· j . e.. d 

~ 

3 
U = L P. I. . u a 

~ 

J 
~ V= L P 1· 

. V ~ 
J 

) 

( 2-20) 

(2-21 ) 

( 2-22) 



j = 1,2. For the transfer equation in the restricted 

coordinate system (~ ~ the azimuth of the magnetic 
~ 

field = 0), . Pv _ 0 and U .:::. O. The coefficients 

.-J and ..-4 are given by Y G-t J:-' V 

~ ~ J i 2-

P.:;; (-i) I '\t \ • ~ = (-1) )!,~n (,\-) . q,= 1- 'Ii We 
) . -

J1.+ ~2. 
) 

\f .JT+ f 2~ w a, 

It is important to note that, we can also write 

. 
) 

, 
where ~. = 0.1 J b~ 

a 
is the ratio of the major to the 

minor axes of the polarization ellipses of the normal 

waves and ~. the orientation of their major axes with 
~ 

respect to a fixed axis in space, in the plane trans-

verse to the direction of propagation. It is also 

important to remember that the equ;. tion (2-20) can be 
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used when the normal waves are orthogonal to each other 

that is, when the major axes of their polarization ellipses 

are perpendicular to each other (1~1-%').1 = rr/z) 
and the ellipses themselves are similar. In a magneto-

active plasma, the requirement of orthogonality is satis-

fied for 'any angle of propagation' and for 'any magni­

tude' of the magnetic field if the radiation frequency 

( 2-23) 

( 2-24) 
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W » "Ve ' the electron ion collision frequency. Thus 

we can define a non-orthogonality parameter lxi, 0 ~ \x.\ 6 1 

as a measure of applicability of the normal wave transfer 

equations. This parameter is defined as 

r 
) 

0. -== 1<e (7) 

b -= ":em ('O) 

where rr is a dimepsionless complex parameter whose 

value depends on the particular situation under consider-

(2-25) 

J47rN e'"4 ation. For example, for a cold tenuous (w >'> UJp ' W'p= m e 
e 

being the plasma frequency) magnetoactive plasma, for 

which \'Yl~ - 1 L.. "'- .1.) the T and y parameters 

are given by 

where We.-=: eB/lt'Iec is the cyclotron frequency. From 

this equation, we see that total orthogonality occurs 

in a cold magnetoactive plasma only for longitudinal 

and transverse propagations of waves C "0/=0, '\V-::::l1'I~) 

or unde r condi tions that 1)e = o. When W»"Ve ) \:>( I <. < 1 ) 

so that the normal waves are almost orthogonal. If the 

two condi tions We. I Sin 1J' to..l1 tV I = '2...ye. and 

W --7 0 (or actually W --> w~) are fulfilled at the 

, 

same time, then we have total non-orthogonality (1:: ± i; 

X~1... -= 7T + 71/4-
I 

for 
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that is, instead of two normal waves, we obtain one 

linearly polarized in a direction inclined at an angle 

of rr)lt to the direction of the magnetic field. 

The absorption coefficients have been derived in 

the cold plasma approximation by many authors (see eg. 

Gnedin and Sunyaev,1974a and Meszaros, 1982 for details 

of earlier work). We employ the expressions in the form 

given by Kaminker et al.(1982). These coefficients 

will be described in section 2.2. Our discussion till 

now shows that the two formalisms are closely related 

and the transformation is simple, though quite often 

it is not necessary to do so. The real connection 

is needed mainly because we can utilize the important 

work in plasma physics literature where the transfer 

coefficients (absorption coefficients, refractive indices, 

anomalous dispersion coefficients etc) are derived usually 

for the normal waves. We can easily transform them to 

the absorption coefficients for p,l and r electrons etc. 

such explicit connections are made again in section 4.1 

where the line formation problem is treated in both 

these representations. 

2.2 The calculation of anisotropic continuum transfer 

coefficients in a magnetiC field 

(i) Anisotropic transfer coefficients for the Stokes 



para.meters (':x: ) "1.Q. ~ 'Ylv and ~ ). we 

have already given expressions for 'Y} and 
t:,~,v 

in section 2.1. Notice that" "" V' are functions 
:t.,~. 

of which have to be primarily calculated 

for any given set of physical parameters, like magnetic 

field (B), temperature (T) electron density ( Ne ) and 

the particular atomic species involved. We shall apply 

these calculations in a cool magnetic white dwarf atmos-

phere, where almost all important sources of continuous 

opacities are operative. Initially all these non-mag-

netic opacities are calculated using the polynomial 

approximations given in Kurucz (1970). The correspond­

ing -magnetic dichroism is calculated as described below. 

Bound-free dichroisml Following Lamb and Sutherland 

(1974), we write the field fr-ee opacity of hydrogen like 

atoms in a general form 

COY'\.&b. 'V -? ('1) , 

where f(V) is a continuous function of frequency .y • 

Further, under the rigid wave function approximation 

introduced by the same authors, the opacities in the 

presence of a strong magnetic field for the right cir­

cularly polarized light (corresponding to a AM = +1 

transition) and left circularly polarized light (corres-

( 2-27) 



ponding to a ~M = -1 transition) are given by 

COYl.H. i f ( -V - ~M. i\ .. ) , 

where M.t and 1"1.;, are the final and initial state 

magnetic quantum number:s respectively, and it, is the 

Larmor frequency. Equations (2-28) are accurate to 

fi rs t orde r in ( "Vt.." i ) • From Equation (2-27) 

and (2-28) the magnetic dichroism is calculated by 

Expanding the functions f( -V - -VI.. ) and f( i + i>1,. ) 

in a Taylor series about i , one obtains correctly to 

o (~L l-v) 

-li I.. 

If the unshifted compoment 

a power law, say 

L -0(. 

Ro ( i) :: CO'Yl.St. il 

1 
1tiS 

-ko (-0) can be expressed as 

where ~ = spectral index of opacity, then from equations 

(2-27) and (2-31) we get 

l) OJ' f;" 

( 2-28) 

( 2-29) 

( 2-30) 

(2-31) 

(2-32) 



Equation (2-32) is very useful for an approximate cal-

culation of circular dichcoism. The coefficients 

and R_ (~) can be caiculated separately in the follow-

ing manner. From equation (2-27) we get under the 

rigid wave function approximation of Lamb and Sutherland 

~ (1 + "VL ) =- -L.. .. c.Y,.+.. -Y!l 
CO'Mt. C i + -VI..) 

t (J») ko(j;,) 
CoMt. "Y 

, 

, 

and substituting equations (2-34) and .(2.-35) in equation 

(2-28), we find that 

It can be verified that this approximation gives the 

same result a$ expressed in equation (2-31). Sub-

( 2-33) 

( 2-34)' 

( 2-35) 

(2-36) 

(2-37) 

( 2-38) 



-sti tuting equations (2-34) to (2-36) into equation (2-30) 

and after simple algebra one ge~s for an opacity varying 

like (2-32)# the general expression 

(-¥-)~ = ~ [ 
For 'VL. ,,". j) which is satisfied for weaker fields# equation 

(2-39) reduces to equ~tion (2-31) as 

Notice however that equation (2-39) is more accurate 

formula than equation (2-33). But in the actual compu-

tations of dichroism we have used the exact formulae 

(2-37) and (2-38). 

Free-free dichroism, Free~free dichroism for H and He 
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were predicted by Kemp (1977a, b). The coefficient Ol..':::!. 3.0 

for both these atoms. As a first approximation, we have 

used the Lamb-Sutherland frequency shifts for the cal-

culation of free-free dichroism also, though they were 

originally derived only for bound-free mechanism. We 

make this identification because both the grey body 

emission formula Of Kemp and the rigid wave function 

(2-39) 

~ 2-40) 



approximation, give same values for the bound-free 

dichroism. In fact we have calculated the dichroism 

of all the opacity sources using the equations (2-37) 

and (2-38). 

(ii) Anisotropic transfer coefficients for the normal 

waves ( k~ and R2,. ) I we give below some accura te 

formulae derived in recent years. 

Bound-free absorption coe'fficients 1- For weaker magnetic 

fields ( We < < LV ) an expression given by Pavlov 

(1973) in the hydrogenic approximation, can be used 

where 
LOb? 
~ is the zero field linear absorption coeffi_ 

cient. 

~- &-.}... - W -
C. 

where N - lnteger (D). Therefore 0 ~ ~ ~ 1. 

, 
M = mass of the emitting atom. The profile function 

f(x,a) which is a periodic function with period unity, 

is given by 

, 
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( 2-41) 

( 2-42) 

( 2-43) 



In the dipole approximation, the absorption amplitudes 

are given by 

• 
) 

th 2 The energy of the n level En = I H(l-l/n ),where 

IH~ 21.36 10-12 ergs. n is the principal quantum 

number of the bound state. In ·the optical range (the 

Paschen continuum), the vdlue of n is 3. Pavlov has 

calculated the normal wave absorption coefficien'ts for 

the H- opacities also. It is interesting to note that 

R~ of both these opacities undergo resonances at 

s wc (s=1,2,3 ••••••• ) which is the general characteristic 

expected of a free-free absorption coefficient. 

Free-free absorption coefficients:- The free-free absor­

ption coefficient for an ion of charge (Ze) is .given by 

~here is the true linear absorption coeffi-
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(2-44) 

( 2-45) 

( 2-46) 



tk 
cient for the ~ component, of the cyclic projection 

, 

( ) e1 ('"C-) of of the medium polarizability tensor ~ oe. 
see Kaminker et al.(1982) 

(+~) 

-S 

(0) 

') c;l/ - ill I i 

where the longitudinal and transverse effective colli-

sian frequencies are given by (see Pavlov and Panov , 

1976; Ventura,1973; Nagel and Ventura,1983) 

The radiative width is 

The magnetic Gaunt factors 9 I\J..L exhibi t resonances 

at "'&wc,. (s=l, 2, 3#t ..... ). In the present computations we 

have employed ~ 'I).L =- 9 ) the non-magnetic Gaunt 

factor, which is a good approximation for We,. ~ <. (;j. In 

the equation (2-46) the quanti ties tc( which are the 

dimensionless components of the polarizability tensor 

of an electron in cyclic coordinates, are given by 
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(2-47) 

(2-48) 

(2-49) 

(2-50) 
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-1 
tr;<. ::. (1 + ex JU) ; 

~ 
T~e arnpli tudes a. (~) are 

~ ~ 0(,. 

a.. ( '() ::: ~ -. E (~+ P~) · 
o ~ 2 ~) 

. 
'l. ~ 

t[1+s±'lPy S 
satisfying the completeness and transversality condi­

tions (Ventura, 1979) 

The factors 

""l 
1 -t- C; --"2 .. 

and 

, 
. 

P~ are defined in equation (2-23). 

After having given the formulae required for calculating the 

magnetic dichroism we shall study the wavelength depend-

ence of these dichroisms. The reason for this particular 

interest is that the main application of the theory bas 

been in the calculation of the wavelength dependent 

polarization of the magnetic whi te dwarfs. rrhe wavelength 

dependence of the dichroic 'opacities of H bound-free 

transitions is shown in Figure la. The opacities are 

calculated for the physical conditions at an optical 

depthrt I"'-J O. 75 of the model a tmosphere of a whi te dwarf. 
5000 

The local temperature is Trv90S0°I<. The dichroisln at 

the absorption edges predicted by Lamb and Sutherland 

(1974) for optically thin conditions, is found to be 

(2-51) 

( 2-52) 

( 2-53) 
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3400 5000 6600 8200 9800 111.00 13400 14600 

• )'(A)--+ 

Fig.l. Wavelength dependence of the dichroic 
7 

opac-ities ko,k+, and k for B = 10 G. The 

symbol k represents the mass absorption coeffi­

cient (in the units g-lcm2). The values corres-
Q 

pond to an optical depth ~ (A = 5000 A)f""\.J 0.75, 
o 

where T = 9040 K. (a) Hydrogen bound-free dich-

roism. (b) Negative hydrogen ion (H-) bound-free 

dichroism. 
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present even for a realistic model also. The strong 

polarization changes that occur at these edges can 

manifest themselves in the continuous spectrum even 

after integrating over the stellar disk. The H bound­

free opacity is shown in Figure lb. This opacity dominates 

in the optical wavelengths and reaches its maxima in 

the infrared. This source of opacity and dichroism plays 

a key role in producing the continuum polarizati,on and 

the spectra in the present mOdel. We note that we have 

included the He bound-free dichroism also in the cal-

culation using the same hydrogenic prescription of 

Lamb-Sutherland shifts. Its spectral index.~ is nearly 

equal to 3. Itp wavelength dependence is also almost 

similar to that of hydrogen. 

In the Figure 2a we have shown the H free-free 

dichroism. It can be seen from the figure that the 

contribution to dichroism is significant in the far 

infrared (A. > 13000 A) though the opaci ty is still small , 

-
in comparison with the Hand H bound-free opacities. 

This opacity is important mainly in deeper layers of the 

stellar atmosphere. The contribution to total dichroism 

from He free-free-transitions is again very small for 

the temperatures that we have considered. In the model 

-employed by us, H free-free (o<..~ 1) is an importdnt 

source of dichroism and opacity particularly in the 

infrared, see Figure 2b. This was first introduced into 

magnetic white dwarf continuum polarization modelling by 
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Fig.2. Same as Figure 1 but for free-free dichroic opa­

cities. (a) Hydrogen free-free dichroism. (b) Negative 

hydrogen ion dichroism. (c) Negative helium ion (He-) 

dichroism. 



Liebert et al.(1975). The He free-free dichroism 

(ex. ~ 1.85) is shown in Figure 2c. An extension of 

the rigid wavefunction approximation to this important 

source of opacity in cooler He-rich stars was made by 

Landstreet and Angel (1975). Figures 1 and 2 also 

show explicitely the relativeecontribution to total 

opacity and dichroism,by different absorbers, in a 

cool hydrogen-rich white dwarf atmosphere. The main 

emphasis is to approximately indicate the regions of 

the spectrum where flux and polarization can be expected 

to undergo noticeable changes. 

We like to potnt out that the dichroism calculated 

using the more exact formulae (that of normal waves) also 

give a similar wavelength dependence except for the fact 

they undergo resonanc~s at the cyclotron harmonics, with 

a strong resonance near the fundamental. The Lamb­

Sutherland formulae, on the other hand are basically 

sui table only for ~ L <:. <..)) where ~l is the Larmour 

frequency. The cold plasma normal wave absorption 

coefficients also have a rather similar restriction. 

They can be generalized by relaxing the 'cold-plasma' 

and 'collisionless' plasma approximations. Such cal­

culations have been recently attempted by many authors. 

See Pavlov et al.(1980) for detailed calculations and 

references to earlier work. The review article by 



Meszaros (1982) is also useful in this regard. 

2 .. 3 The so~~ion of th~_j:.£apmr pf"~blem and its compari­

son with some e~sting methods 

The solution of the polarization radiative transfer 

equation (for continuum or the lines), in the true absor-

ption limit is relatively simple compared to the solution 

of the general true absorption plus scattering problem, 

which is explained in full detail in the next chapter 

(chapter 3) .. The true absorptiGn problem is a special 

case of that more general treatment, and all those 

equations of the solution method go over to the true ab-

sorption problem by simply substi tuting w s 0, where "'w 

is the 'albedo· for single scattering (=probability of 

scattering). The method of solution is based on -the 

discrete space theory of radiative transfer' developed 

by Grant and Hunt (1968a,1969a,b), suitably extended 

here for the case of magnetized media. We just mention 

heref for the sake of clarity, that the same algorithm 

of continuum transfer can be used even for true absor-
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ption lines, the difference being only in the construction 

of the transfer matrix ~ .. Since for true absorption --
mechanism there is no coupling of any two frequency points 

in a line or continuum, the transfer problem can be 

solved for individual frequency points separa·tely.. Because 

of the absence of coupling between any two angles, the 
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the true absorption problem can be solved ray by ray, 

in otherwords, for individual values of~, instead of 

simultaneously solving the tr,ansfer equation for a 

grid of ~'A. Thus the dimensions of the matrices 

appearing in the algorithm is now just (4 x 4) or (2 x 2). 

depending on whether one is working in Stokes vector 

representation or normal wave representation. The normal 

wave transfer equdtion further can be decoupled from the 

matrix form of trdnsfer equation to a set of scalar 

transfer equation~ for ordinary and extraordinary waves, 

because the transfer matrix is diagonal. It is not 

possible on the other hand to 'diagonalize' the transfer 

matrix ~ of the Stokes vector representation for any 
~ 

given set of angles 'V and X ' though it can be done 

under restrictive conditions onl and t (see Stenflo,197j 

for details). The asymptotic boundary conditions (using 

the Unno solution at'L ) in both representations are 
rna:k 

given in section 4.1. 

With these comments, we shall proceed further to study 

the usefulness of the method of solution, in some detail. 

This we do, by comparing the solutions obtained by three 

methodstviz. Runge-Kutta method (RK) Martin-Wickramasinghe 

method (MW) and our method of solution, which we call 

discrete-space method (DSM). The tables (1) to (5) are 
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trab 1 t: 1. Unnu atmo!:lphere with u linear source function li)l ;::: 
1+0.2 T for the given values of con~tant opacities nand n ~ 

r P n l= 1. 
1 

Runge- Martin & Stokes t{ormal 
Kutta Wickramasinghe vector ' wave 

represen- represen-
tat·ton tat ion 

p = o· R t Pw = Q. , U::o 

n :;:: 
r 1 I 1.16000 1.16000 1_16000 1.10000 

nr - 1.1 I 1.15427 1.15445 1.15445 1.154~4 

Q .001UO .00190 .00190 .00190 

V -.O05~] -.00521 ..... 00521 -.00521 

nr ;:: 2 I 1.125U6 1.12585 1.12585 1.12585 

Q .OlltH:l .01169 .01169 .O116~ 

V -.03209 -.03209 -.03209 -.03209 

n '= r 100001 I 1.08000 1.08000 1.08:d51 

Q .02738 .02738 .02825 

V -,,07517 -.07517 -.07757 

PH ;:: 1.5; Pw ;: 0.75 

nr ::. 2 I 1.12256 1.12276 1.12276 

Q .00855 .• 00855 .00655 

U -.OO8aa -,,00836 -.00S36 

V -.02 lH)2 -.02482 -.02482 

Table 2. A gray atmo~phere tempurature structure T = Te (0.75'{tO.5)* 
for different constant opacities nr and np = 111 ~ 1. 

Ru\\g~- M~\rtin &. Stokes Normal 
Kutta Wickrwlasinghe vector wave 

represen- represen-
tation tation 

P = o· R ~ Pw c: O· , U=O 

llr 
10::: 1 I 1.66270 1.66320 1.66378 1.6632~ 

n~ = 1.1 I 1 .. (j .. 1 ~12 ti 1.644ll1 1.64535 1.o44b7 

Q .00030 .00629 .00631 .00630 

V -. O17~10 -.017:dB -.01732 -,.01730 

n = 2 I 1.5':1 135 r 
1 .. 5 il196 1.5422B 1 .5tllB9 

Q .0'-1153 .04150 .0415ij .0-1150 

V - ~ 11 -:101 -.11391 -.11415 -.11406 

I1r :; 100001. I 1.3~161 1.33160 1.33tib~ 

Q .11350 .11359 .11499 

V -.31157 -.31160 -.31714 

PR ;: 1.5; '\V ::: 0.75 

nr ;: 2 I 1.5J306 1.53375 1.53405 

Q .03466 .03464 .034Gb 

U -.02,r;177 -.02476 -. U2 t!80 

V -.09218 -.09212 -.09226 
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'l'ab 18 ~. !\ L"UaJ l~t ie IIluucl t\ t",o~lJh(lro froUl WickramuBing-htt 
(1!:J72), T :;:: 12,OUO K for constant opacities nr and 11 = e p 
))1 = 1. 

i{ Ull r.H - Martin &. Stokes Normal 
l\uLtCl W i c 1u' U HI U ~ i n g h (j vector wave 

represen- represen-
tation tation 

PH :;:: 0; Pw ;;; Q. U::o • 
'nr :;:: 1 1 4.o t1584 2.64677 2.65103 2.64:l75 

nr == 1.1 I 2.ul067 2.01165 2 .. 01400 2.01457 

Q .01204 .01202 .01205 .O1~O6 

V - .. 03305 -.O3~99 -.03309 -.0:1300 

nr .:;:: 4) I 2.4.0250 2.40S77 2.40658 2.40639 ... 
q .Ot)327 .08317 .08317 .08340 

V -.22H59 -.22B32 -.22900 -.22ti75 

°r = lOOOCll I 1. 8~3"lSt 1.B2571 1.b2~52 

Q .28179 .28238 .2tilH7 

V -.77:';54 -.77527 -.77377 

Pn :::: 1.5; Pw :::: 0.75 

nr :::: 2 I 2. Jt:)~.:l~ 2.3DOH:1 2.89 t160 

Q .07'15'<1 .0'"1448 .07468 

U -.04114 -.04111 -.0 .. 1129 

V -.1806~ -.19042 -.19090 

Ir~ble LI. A renlj~1t\e lIlodel atlllospht:H'U f}'om Wi(,!krumu~ingh(j 
(1972), Te = 12000 K fOft-dependunt opucitieB np = nl = n 
with n := 0.2 + 1.' 

HUllP:O -
KU'Lta 

== 0; U=O 

I 2.9806H 

l) r ;:.; 1. 1 n I 2 • U 511 00 

Q .00879 

V -. O~L112 

I 2.79155 

Q .06473 

V -_17770 

Or ;; XlOOOl n I 
Q 

V 

PR : 1.5; Pw = 0.75 
nr = 20 I 2.7H459 

Q •• 05787 

U -.06809 

V 1 'H' r.l - ..... hl .. ). 

Mt~l't.i 11 & 
Wi ClCl'UlllUS i nghu 

~.97477 

2.~4~20 

.00875 

-.02403 

2.78625 

.06453 

-.17713 

1.11879'1 

.33778 

-.92722 

2.77945 
.05809 

-.06537 

- . 1 J5'11 

Stok~s 
vector 

represen­
tation 

2.98229 

~.9565l) 

.008tlO 

-~02415 

2.79293 

.06481 

-.17792 

1" 9815£1 

.33911 

-.9~090 

2.78600 

.0582H 

-.0659H 

-.lJ5tj6 

Normal 
wave 

l'epresen­
tution 

2.9'"{047 

2. ~.:1"17.l1 

.OO~70 

-" 02~117 

2.7t:s140 

.06 i!71 

-.1776 tl 

1.9021:15 

" 3':1051 

-.9::J t!60 
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arranged in the order of increasing complexitYJ for 

example table 1 represents the case of a depth independent 

transfer matrix, called the Unno atmosphere, which is 

actually a Milne-Eddington mode with a source function, 

linear in optical depth. The values given for the 

coefficients 1~t~nearly represent various postions 

in a hypothetical p,l,r Zeeman triplet, say far in the 

continuum or almost near one of the v - components of 

the triplet,etc.(see the first column in the tables). 

The tables are self explanatory. The column with the 

title Runge-Kutta represents the solutions obtained in 

one of the most accurate methods of solving the linear 

differential equations. Beckers (1969) used a fourth 

order RK for solving the transfer problem (which is 

currently a matrix differential equation), and since 

then many authors have been using this method. We have 

progrdrnmed one such HK scheme for computing the results 

presented in the column Runge-Kutta. Just as in Beckers 

method it is a constant step size matrix RK method, the 

step size h being fixed arbitrarily (RK fourth order 
r 

schemes are f"\.) h accurate) • It turns out that a con-

stant and small step size h is not really needed at all 

positions in a line. This is dictated by the magnitudes 

of the numbers occuring in the transfer matrix ~ -- • 

But there is no consistent way of exploiting this advantage, 



Table 5. A realistic model atmosphere from Wickramasinghe 
(1972). Te • 12000 K for l' - dependent opacities °1 ". 1. 
n := 1 + t. 

P 
Runge- Martin & Stokes Normal 
Kutta Wickramasinghe vector wave 

represen- represen ... 
tation ta:tion 

p = O· R ' Pw = o· ) U=O 

nl' = 1 I 2.55208 2.55216 2.55378 2.bflt)19 

Q -.09376 -.094'01 ..... 09452 -.08150 

V 0 a 0 0 

n =- 1 1 
r • 

I 2.52056 2.52012 2.52123 ~.52605 

Q -.0778::: -.07868 -.07856 -.07568 

V -.u~u~2 -.02684 -.02694 -.027b4 

fl l , - I) I 2. 327~'1 2.32773 2.33065 2.311bo - .... 

Q .017"'E> .01701 .01734 .Ult:»92 

V -.1930(j -.19254 -.19324 -.17455 

n1, 
:: :100001 I 1.75273 1.75506 1.74403 

Q ,25757 .~5840 .25736 
V -.70706 -.70934 -.70650 

PR :::z 1.5; Pw &:: 0.75 
n :a 

r 2 1. 2.32646 2.32713 2.33013 

Q .03671 .03618 .03644 

U -,0238i:i -.02393 -.02392 

V -.18553 -.18522 -.lU5&3 -
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Table 6. Accuracy and specific times t (in Sees) on laM 370/155, required for 

obtaining a solution (IQUV) T. lib):' all the cases \1. 0.8 t t • o. 7. Cos 2 X • 0.6 • . 

Positions Unno/ Beckers/ Va'(iable DSM-
exact RK step RK Strokes 

Inside the line: Unno I 1.12276 1.12276 1.12268 L 12276 
atn~sphere B-l+O.2 1, Q .00855 .00855 .00852 .00855 
r1p==n1-1, "r-Z, PR-l,s. 

U -.00836 .... 00636 -.00837 -.00836 
p,t · 75 

V -.02482 -.02482 -.02476 -.02482 

t 0.05 40 10 0.9 

Jn~ide the line: Real I 2. 78~59 2,78657 2.18606 
UllllosPhere.np·n1- n, Q .05787 .05768 f05828 
'\ = 2 n f 11= 0 • 2+t • P R" L 5 f U -.06609 -.06585 -.06598 
p\t • 75 V -.13551 -.13535 -'.13586 

t 40 10 0.9 

C~mtinulllI\: UnllO ntmo- I ].lb076 L 16076 1. )6041 1.16076 
sphere B-ItO.2T. " =1, 

P Q .... 0000-4 -. OOOOL • -.00004 -.00004 
111'"'·95,nr • 1,04.Pa· .... •75 , U -tOOO16 -.00016 -.00016 -.00016 
f\,::1 -.01 

" V -.00508 -.OOSOl! -.00505 -.00507 

t 0.05 40 7 0.7 

Cuncinuum: Real atmo- I 2 .. 60191 2.60171 2.60125 
sphere np·l+.1! ,1)111_95+ Q -.00036 -.00036 -.OOO3b 
.106r,n ·1,04+.0952t~ 

t U -,00092 -~OOO91 -.00091 
PRm -.75. PW- -.01 V -.02641 -.02634 -.02630 

t 40 7 O. 7 



in constant step RK methods. Exactly this inability 

makes the constant step RK a slower method. Landi 

Degl'Innocenti (1976) improved the RK solutions by 

deriving a step size criterion. This criterion is 

based on the properties of the eigenvalues of the 

transfer matrix ~ 
V'JY 

• So thi s cri terion consi te·ntly 

and automatically fixes the step sizes for different 

positions in the line. By using the variable hi we 

41-1 

i 

find that RK scheme becomes nearly 4 to 5 times faster 

than the constant step size RK method lsee table 6), 

retaining almost same accuracy. The third column in 

the tables (1-6) represents the MW solutions. Since 

we have repeated the test case of Martin and Wickra­

masinghe (1979b), we have simply taken these numbers 

from their work. The fourth column 'Stokes vector re-

presentation' are the solutions obtained by our method. 

Here, also, th~ step size is automatically determined by 

certain criterion called the positivity of the trans-

mission matrix. It is straight forward to see that this 

cri terion leads to a step size,. calculated using't :E: 1:'Cl'lt= 

-1 ~ 
M~'Y\ (~!:1 b.. ) • We discuss more about this l,.Cylt" in 

section 4.2. But we mention here that, this so called 

critical optical depth 'lcru;. criterion ( rc" ~ rr:Cl'it" ) 

is not a strict requirement for the 'true absorption 

problems' at least in the stellar atmospheres where the 



source function is nearly linear function of ~ and, 

its gradient is smoothly varying. The last column 

-normal wave representation- are the solutions obtained 

in the discrete space method itself, but employing the 

normal wave transfer equation. The transfer coefficients 

R~ can be optained by algebraic transformations, using 

the parametric values of ~hl~ given in the first column# 
"I I 

and the analytic expressions for • 

The method of solu·tion is second order accurclte 

because of the half-implicit differencing (diamond scheme). 

It can be used in arbitrary situations, with ease and 

no extra precaution is needed. From the tables it can 

be noticed that the solutions obtained using normal wave 

representation are quite accurate when compared to the 

Stokes vector formalism, keeping in view of the approxi-

mations involved in the nODmal wave representation at 

the formulation stage itself, the correctness of which 

depends also on the 'wavelength position in the line'. 

The accuracy of the later depends on the position in the 

line. Actually, near the line centre, the normal waves 

are non-orthogonal and the basic trea~ent itself becomes 

inapplicable. Excepting such situations, it can be used 

as a convenient al terna t,ive to Stokes vector formalism 

for rapid computations, in realistic situations. The 

Stokes vector representation however, is the most general, 
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accurate and complete. The average times in seconds, 

on IBM 370/155 computer l required to obtain a solution 

(I Q U V )T in the tables 1 through 5 are: Beckers/RK 

(36), variable step RK (9), MW(O.35), DSM-Stokes <O.S) 

DSM-normal wave (0.5). A further comparison of accuracy 

and computing time is made in the table 6 for both the 

continuum and line problems in ideal or realistic atmos­

pheres. We conclude that DSM solutions are sufficiently 

accurate, economical and the method is easily generali­

zable to true absorption plus scattering problems. 

2.4 An astrophysical aEplication: the continuum polari­

zation in magnetic white dwarfs 

As already described in section 2.2, it turns out 

that onehas to solve the vector transfer equation for 

polarized radiation taking into account properly of the 

magnetically anisotropic absorption coefficients (or 

magnetic dichroism) in order to get the correct wave­

length dependent polarization observed in the magnetic 

white dwarfs. The review article by Angel (1977) gives 

an account of various aspects, observational and theore­

tical,. of the problem of polarization in magnetic whi te 

dwarfs. It is now possible to make good modelling of 

these interesting class of objects, by including various 

dichroisms, strong field Zeeman effect, realistic atmos-
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pheric structure and magnetic field distributions on 

the surface etc., in 'the radiative transfer equation, 

and then by surface integrating the specific inten­

sities obtained for a two dimensional grid of lati­

tudes and longitudes over the stellar disk. See 

Wickramasinghe and Martin (1979), Martin and Wickrama-

singhe (1984) and Angel et al.(1981) for the develop 

ments and a detailed list of investigations carried out 

by many authors. Still, some problems are left open, 

namely the correct wavelength dependence of flux and 
"1-

polarization in strong field ( B > 5·10 ~ ) white 

dwarfs, and the wavelength dependence of all the polari­

zation parameters (p( A ), q( A) and ~( A) in the entire 

range of wavelengths A ~ 3000 A to 14,000 A. The large 

degrees of circular and linear polarization and, in 

particular an increase in these polarizations in in­

frared wavelengths (contrary to what one expects in a 

thermal model)#in some of the suspected strong field 

white dwarfs are still not fully understood~ However, 

the inclusion of non-thermal sources of opacities such 

as cyclotron resonance absorpti0n etc., and a carefully 

chosen field strength and its distribution over the 

disk are found to explain the observations fairly well 

(see Martin and Wickramasinghe, 1984). 

We shall now see some details of the rad~tive trans-



fer solution in a magnetized media. We have used the 

Stokes vector representation throughout. The model 

atmosphere employed was provided by Dr.Wehrse (private 

comm~nication). A grid of atmospheric models for 

DA (H-rich) and DB (He-rich) white dwarfs have been 

published by Wehrse (1976) and Wickramasinghe (1972). 
o 

The model parameters now used are Teff = 9000 K, log 
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9 = 8.0, log A (He,C,N,O) = solar value and log A 

(metals) - solar value -2.0 (A = elemental (abundance). 

This model has also been published in Wehrse (1976). 

We have computed all the non-magnetic opacities using 

the polynomial approximations of Kurucz (1970). We 

have compared total opaci ties calcula ted in this manner 

with the opacity data which was also provided by 

Dr.Wehrse for this particular model, and found the cal­

culation to be aCCUl:.ite. While calculating the mag-

netic dichroism, one needs the opacity values at two 

shifted wavelengths also, along with the original wave-

length. If one is working in the continuum wavelengths 

away from the absorption edges, these opacities at the 

shifted wavelength can be obtained by an accurate inter-

polation in the non-magnetic opacity table. But such 

a procedure is not possible when we are close to the 

edges. Hence we have directly computed the dichroic 

opacities for all the required wavelength points. First 



we have compared the non-mdgnetic flux FA computed by 

us with the published flux values in Wehrse (1976). 

This is to check the accurate integration of the trans-

fer equa tion so that the' calcul ated resul ts genuinely 

represent the model· The fluxes can be calculated 

using the definition F" = F-r, 

From the Figure 3 it can be seen th~t our calculation 

of continuUlu non-magnetic fluxes is acourate and coin-

cides with the original model (the comparison of 

numbers also is made actually). For ,the convenience 

of the flux calculation we have solved the transfer 

equdtion for the roots (~~ I j=l,4) of a Gaussian quadra­

ture. 

For the calculation of results presented in Figures 

(4) to (6) a unifonl\ magneti~ field directed along the 

Z-axis (the symmetry axis of the plane parallel atnlos­

phere) is employed. In Figure 4a, the optical depth 
+1 

dependence of the net flux F( '1:") = F I ( '1:;')::: 2 ~J I~) 1') p., d~ 
is shown, for A - 5000~. The net flux increases sharply 

from 1;' =8 to 't' =0.1 and then rernains almost constant. 

The magnetic fluxes are slightly smaller than the non-

magnetic fluxes. The degree of circular pol,3rization 

assuming the entire opacity as dichroic (G =0) is shown 

in Figure 4b. The polarization of light behaves in an 
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Fig.4. Optical depth dependence of flux and 

circular polQrization. (a) Net flux as a func­

tion of optical depth 1::' (A == 5000 A) I • in uni ts 

f -2 -1 -1 (). 1 i · o erg em s Hz • b C1rcular po ar zatlon' 

(percentage) as a function of optical depth for 

B == lo7G•tis the angle between line-of-sight 

and magnetic 'field. (c) Wavelength dependence 

of circular polarization for different values of·~. 
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analogous manner to the net flux F ( 1:' ). q( rt;J I '0/ ) 

is larger for smaller v·-,lues ot 1.jI. This behdviour is 

as expected of an absorbing layer ot Zeeman active gas. 

The waveleng~h dependence of q( ~) shown in Figure 4c 

reflects the wavelength dependence of the flux unless 

there is a source function gradient reversal which 

for instance can arise as a result of discontinuity in 

the opacity. Notice that the wavelength dependence is 

angle dependen"t. The wavelength dependence is very 
o 

weak forLV = 86.02. This is because of the increased 

coupling to linear polarization which has a weak wave-

length dependence, unlike circular polarization. The 

effect of an absorption ledge' on the linear polarization 

p and circular polarization q is shown in Figure 5a,b 

for E =/= o. The hydrogen bound-free absorption co-

eff-icient which undergoes drastic changes at the absor­

ption edges (see Figure la) gives rise to a large change 

in the magnitudes of p and q as well as their signs, the 

effect which was predicted by Lamb and Sutherland, for the 

optically thin case. The Figures 6 and 7 show the same 

quantities for other two intermediate values of angles lV 
where, both p ·and q are quite large. In all these compu­

tations (Figures 4 to 7), we have neglected magnetic 

birefingence ( fR -= ILI\I -=- 0 ). In Figure B we have 

plotted the circular poL~rization spectrum ~(j..)::=. r,/AJ Jfr,o.) 
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computed assuming a centred dipole of field strength 

Hp = 107G. The angl~ i between the dipole axis and the 

line of sight is taken as zero. We hnve used 8 lati-

59 

tudes and 8 longitudes. The field strengths and orienta­

tions are calculated at all the grid points. The polari-

zation radiative transfer equations 'are solved at all 

these grid points, and then rotated properly using the 

rotation matrix to ref(:; c the solution to a fixed frame 

of reference. The solution is then integrated over the 
-

disk. The disk integrated linear polrization P ~ 0 

because of the symmetry (i=O). The magneto-optical 

effects are included ( PR * 0 • 
) Pw ==f 0 ) I but they 

do not have significant eff(~ct on the values of q because, 

in the cold a tmos ph('?' ri c model we have employed, the electron 

densities are quite small. We feel that q is probably 

Qverestimdted because of the lower order angular quadra-

ture used for averaging over the disk. It can be 

clearly seen from Figure 8 that the thermal magneto­

absorption model gives the expected wavelength dependence 

-of q in the atmosphere of a magnetic white dwarf, though 

the treatment of magnetic dichroism is quite approximate. 

Useful solutions can be obtained only by an accurate disk 

integration of the transfer equation, assuming a real~stic 

field distribution. Such calculations are necessary for 

any realistic modelling of the continuum polQrization 

and the spectrum of magnetic white dwarfs. 



CHAPTER 3 

THE SOLUTION OF THE EQUATIONS OF CONTINUUM RADIATIVE 

TRANSFER IN ANISOTROPIC ABSORBING-SCATTERING 

MEDIA 

In the previous section, we confined ourselves to 

uo 

the true absorption approximation in treating the polari­

zation radiative transfer. For the transfer of radiation 

in the atmospheres of cold magnetic white dwarfs, where it 

is a reasonably good approximation. Often in astrophysi-

cal applications we come across situations, when scatter~ 

itig of radiation is extremely important. Whenever the 

albedo U)defined as the ratio of the scattering coeffi­

cient to the extinction (scattering + absorption) coeffi-

-cient, (0 ~ uJ ~ 1) is large, the correct and the 

natural way of obtaining the radiation field in a medium, 

is to solve the transfer equation where scattering is in­

cluded. The transfer equation for the polarized radi­

atio~, taking scattering into account was formulated by 

Chandrasekhar (1950), in the Stokes vector representa~ 

tion. He used this equation to solve the problem of 

polarization of the sunlit sky. These equations being 

very general in nature can be extended to treat the 
, 

transfer problem whenever the scattering mechanism,can 

be approximated as dipole scattering. For this reason, 

the scattering by molecules or electrons can be treated 



using the same Rayleigh scattering equations, with the 

only difference that the 'scattering phase matrix' and 
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the scattering cross section are ~ifferent in each context. 

Chandrasekhar's equations have also been generalized to 

treat more difficult problems such as polarization by 

the Hanle effect or the resonance line polarization with 

frequency redistribution. We shall, in this oh~pter 

address ourselves to solving the polarization (absorption 

+ scattering) transfer equations in a different context, 

different in the sense that the absorption process is also 

anisotropic, along with scattering. This situation arises 

when there is a strong magnetic field in the medium. The 

calculation of absOrption and scattering coefficients in 

a strong magnetic field by itself is a difficult problem, 

and the cross sections have been calculated only recently. 

In this section, we use the Stokes vector as well as normal 

wave representation depending on the convenience. 

3.1 The con'tinuum radiative transfer equation in ani­

~otropic absorbing - scattering media 

The radiation polarization density matrix transfer 

equation have been discussed in Dolginov et al.(1970) for 

an arbitrary anisotropic medium. For the general argu­

ments leading from th~se equations to the normal wave 

equatio~s see Gnedin and Pavlov (1974) and section 2.1. 



At present we shall confine ourselves to coherent 

scattering in the continuum. The transfer equation 

for the intensities of elliptically polarized normal 

waves (j = 1 extraordinary and j = 2 ordinary wave) is 

given by 

+ L i dVhd..(1. . .JL., st.) I~ ('t;,n)t ~J ('l,JL) B~~ 
Rd ..fL 

The following approximations are made in deriving the 

equation (3-1) from the general density matrix equation 

(which is fully equivalent to Chandrasekhar equation), 
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(1) The plasma is tenuous and cold that is, thermal and 

recoil effects are negligible, with the refractive 

indices "a (j=1,2) not differing much from unity. 

(ii) The polarization ellipses of the intensity components 

Ii and 12 are similar and orthogonal. (iii) The relative 

phase shi ft to 1111 -112..' > > (~i -t' ~'l.) / '2. where kl and 

k2 are the absorption coefficients. It is this last 

assumption (that of strong Faraday depolarization), 

which diagonalizes the density matrix and allows to define 

the normal wave 'intensities'. In a 'magnetized plasma 

the approximations made above are justified if ('V cOl1/~ ) 

< < 1, ( We. J w )« 1 and the medium is optically thick. 

( 3-1) 



'v coll iu t.htt <:!lectron ion collision frequency. 

Th~ equf,,ttion (3-1) 1s a full range (-l~ ~ =cos e ~+1) 
equd t Lon f or the dzimuthally symmetric radiation field 

in pl(lnr~ Pdrallt;~l tlUumotry" 9 is the angle between the 

rdY dnu lhe Z-dxis dlong which the optical depth rt is 

mf'~dsured. Since all the quantities are dependent on "Z 

~nd r\" Wf~ do not wr1 te 'thera explici tely in what follows, 

tlxc;:ept when~ informative. <Xi~": (o-~ + !<~) is the mass 

.~xt;,inctt(jn t<~o'~fficient which is the au," of the integral 

ficdtt~erlnq coeft 1cif~nt 'l and the total absorption co-

t:~ 1: f:l c1ent: Kd of the mode j. R~ B~ /2.. is the thermal 

emission coefticient with Bi the Planck function. In 

;;l rnol'.~ ',~xp11ctt- dod simplified form we can write equation 

s '" C08"¥ where "If i8 the angle between the ray and the 
maqn4;:t1c field and ;i 1s the field azimuth in an ortho­

gonal syntem# with the rd.Y going along the z,..,axix. f is 

is now, the azi-

muthally symmetric differential mode conversion scattering 

coefficient. 

( 3-2) 



For a detailed discussion and references to works based 

on the mUltiple scattering 'Stokes vector transfer 

equations' and various methods of solution, see van de 

Hulst (1980) and, for applications, Gehrels (1974). 

The other approach, which is useful for most of the 

astrophysical plasmas but less geQeral, is the 'polari-

zation nonnal wave representation' transfer equation 

which is a special case of the general density matrix 

formulation of the transfer equation (see Ginzburg, 

1964;Dolginov,Gnedin and Silant ' ev, 197,O; Zheleznyakov, 
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1970; Lamb and ter Haar,1971). A slightly different 

approach is taken in Pacholczyk (1977) and Melrose (1980). 

For recent 11 terature on' the applica ti~~s of this method 

see Meszaros (1984). 

3.2 Calculation of the continuum scattering and absorption 

coefficients in strong magnetic fields 

The cross sections for the normal waves in the 'cold 

plasmal limit haye been calculated by a number of authors 

(see e.g.Canuto et al.,19711 Gnedin and Sunyaev,1974a; 

.Ventura,1979 etc). We employ the expression in the form 

given by Kaminker et ale (1982) 

-.. 

(3-3) 



j,k = 1,2, ct., P :: O,i 1. The cyclic projections of , 

the cold plasma 'medium polarizability tensor' 

~ -LJu 0 

n:: 1 iJU 
1-U 

1 0 • JU. = We. We =. eB 
) w 

, 
me 

D ,-Jif e 
, 

o 

onto the orthogonal coordinate system ( :x: 0 l "a 0 J '2. 0 ) I 

with Zo axis along B and the (~o ~ ) plane being 

parallel to ( ~ X ) plane, are given by 
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which fonn circular polarization basis vectors. (exeyez ) 

are the electric field components in the (x y z) ortho­

gonal system, with the ray going along the z-direction. 

They form a linear polarization basis system. The Stokes 

parameters are actually defined in this frame. The major 

axes of the extraordinary and ordinary wave are per-

(3-4) 

( 3-5) 

( 3-6) 



pendicular and parallel respectively to the (zx) plane. 

S ::::. Cos V where V is the angle between the ray 

and the magnetic field. ~ is the aZimuthal angle 

measured anticlockwise from the ( Bxo ) plane. The 

scattering amplitudes are given by 

The dimensionless constants are the 

eigenvalues of the complex polarizability tensor (3-4) in 

,... rt, 

bo 

~ ~ 
cyclic coordinates. p~ ) Po = ttL/") 2. ~i together represent 

~ 
the degree of linear polarization. Pu = 0 because, for 

the normal waVes 1 P1.. - P1 I ::=. rrJ'l) p~ being the inclination 

of the major axes of the normal waves in the (xy) plane 

with respect to x. In other words, normal waves are ortho­
D~' 

gonal. LV is the degree of circular polarization. With-

out any loss of generality, we can take ~= O.which means 

that the radiation field is azimuthally symmetric. This 

choice makes the opacity calculations simple and leads 

to (Z K) II (Zo Xl») J J (z X) • The corresponding 

azimuth angle averaged form of the equation (3-3) can 

be obtained by equating ~ = 0 and then integrating 

the resulting expression over ~I • Thus, the azimathally 

symmetric (azimuth angle independent) form of the transfer 

(3-7) 



equation is given by equation (3-2). The differential 

scattering cross sections are given by 

+1 
d. G1 k (-(. f!1) :3 ( NeG":) I '2. ~ ~ I 

d ~ ~. ':> == __ T t Ov (t:) D.. (~) 
d.~ y- f ex. ex «. , 

ex::: -1 
since 

The scattering amplitudes are now given by 

• '2.. 

d. c;) == 1- 'f; 
o 2 

~ 
( 1 + P~) , 

satisfying the completeness and transversality condi­

tions (Ventura, 1979) 

which assert that the normal modes span the two dimensional 

plane transverse to the direction of propagation. 

(3-8) 

(3-9) 

( 3-10) 

(3-11) 



1 · E = (-1 ~ II) I . 
G,. J~ +'t~ , 

1- -;"2-
.. -

2~ ) ~ = , 
w 

-e 1.. 1/2.. ® ?:::COS'o/ = P..CoSge + (1-~) SiY) B 

I I' l ~l'l.. S :: Cos1V :: ~ CDS ODe . f (1- pI) Sin We 

where ® is the angle between the Z-axis and the field 

direction measured in the (XZ) plane. The integrated 

'partial' scattering coefficients are given by integrating . 
over the outgoing angles, 

satisfying the 'normalization conditions' 

f' 

) 

With the help of equations (3-15)1 we can obtain the 

'full' integrated scattering coefficients by summing 

over the final polarization states, 

+1 . 

bj en:: IGTK (~)::::631 L~)+~2C~)= (N~u,:) I t: J~ l~) · 
R -:::.1( l ~ ;:: -1 
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(3-13) 

(3-14) 

(3-15) 

( 3-16) 

(3-17) 
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b? ff 
The absorption coefficients ~~ = Rj + Rj + . - .. -. for the 

normal waves can be calculated as the sum of contributions 

from individual atomic processes. We have described the 

calculation of important absorption coefficients in the 

previous chapter (see equations (2-41) to (2-50)}. 

3.3 A general numerical solution of the anisotropic 

transfer eguation in an absorbing-scattering medium 

Now we present the method of solution. Since the 

basic theoretical development of the discrete space 

theory of radiative transfer and its methodology are well 

described in detail in the early pionee~ing papers by 

Grant and Hunt (1968a,and 1969a,b), Peraiah and Grant 

(1973) and recently reviewed by Peraiah (1984)# we do 

not go into the details of the discrete space theory. 

Instead we present the extensions to be made, to calculate 

the radiation field in an anisotropically absorbing and 

scattering medium. The problem of non-magnetic# pure ani­

sotropic scattering (the standard aayleigh scattering 

polarization transfer problem) bas been solved by Grant 

and Hunt (1968b). Basically, in discrete space theory, 

the 'finite difference equations' are derived by a dis­

crete ordinate approximation to the equations of radiative 

transfer. The discrete ordinate for.m of equation (3-2) 

can be written in a matrix form as 



;--1 

p.{~(I") = b. WU (~) - {W-J f (t~J P.') I U~')d.~' + (l-UJ) ~o.W) ~ (f)} 

-~/pTJ 
- W f* (fA} J-lo) I~ (~D) e 

J +1 -r ::}A)::: Ac-p) ft-~)- t W-f f H.t,P') I(fJ)JP.' + (i-i]) ~o.Jf!-) ~ (-fA)} 

- w f* (-tt) ~o) !* (/-10) e-
t
/
pc , 

where f e: (O)1)and ~ CIA) is taken as generally anisotropic. 

The last terms on the right hand side in equations (3-18) 

and (3-19) represent the contribution to the source function 

due to the directly transmi tted beam l,..w ( JJ1) in the 

direction }to incident on the free surface ('L=o) of the 

medium. Equations (3-18) and (3-19) represent the rays 

in the upper and lower half space of angles respectively, 

with respect to optical depth scale, increasing into the 

atmosphere. In the continuous analytic form each one 

of the equations above is a matrix equation with 1:., and ..£ 

being (2x2) matrices and Land! the (2xl) vectors. The 
~ 

optical depth scale rL '[;' ~ - (l< + crT) r d,1.. is defined wi th 

respect to the zero field extinction coefficient. The 

A matrices are defined as ........, 

( 3-18) 

(3-19 ) 

( 3-20) 



:t k~ 
A = ......... 0. 0 

·s' and 'al denote the scattering and true absorption. 

W is the albedo for single scattering (0 ~ W ~ 1). 

The scattering phase matrix defined as 

-
0,.. 

clG1l~ (;,1f') 

cis 

Gi, l;J t') u'z C~j 'SI) 

<S1 (~J '5') G;~ (~~ ~') 

satisfies the normalization 

+1 i ff(fJpl)Jp' =1 • 
) 

-1 ~ f-A. ) • 

-1 

The scattering integral source term gives rise to a 

diffuse radiation field. The second .term in the 

flower brackets is the 'internal thermal emission' 

source term. The intensity and the anisotropic thermal 

source vector are written respectively as 

1 (±p) -..,.....,. • 
) 

13 (±p) /2-
:B (± p..4) J '-

( 3-22) 

(3-23) 

(3-24 ) 



Now, the 'discrete ordinate- fODms of equations (3-18) 

and (3-19) are written, in matrix form, as 

where the signs in the superscript indicate the signs 

attached to tP} in the respective physical quantities. 

and 

-++ 

~I= [MJI1J = ~t dik 

c. ::; [G i R,J == Cj 6dk. 

--

~l-1'Z··"J d)R- J J , 

+t 
+t +-t- ~~ ::=.~~(Pdj~l<) :=: Rp ci)P:: 1¥ 2-
~I ~'l. p= • 

+f -r+ , +- -+ 
P1.~ ~~ == ~~(fj)-P~) = POL~ }J-j J JAR> 0 

~ 

Pl1 

-- +­with similar expressions for P, P - ,-.-... 

"T+ 
and P - • 

) 

J is the 

order of the quadrature formula which is used for angular 

discretization. Hence all the matrices are now of 

dimension (2J x 2J) and the vectors. are of dimension 
+- -- +-

(2J x 1). The matrices P and P and ,~~ are -* -* ~~ 

(3-25) 

(3-26) 

(3-27) 

(3-28 ) 
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t l' t t T to 

t-t I" 1,.')\'1. ~~II /" £~tl X" (I .. ~, Pc> Dill):':: PC{ ¥;I<- d) ~=-t 2 f ,~, 1l*' 
....... ' 

it' pt t l;l t 't 

.1' tJf ~ 11. w: 

t 

I 
-,;t 

" ) • 
'I ; + ~: 1) H.l) \-I" tlk,)"" p--
,X ~ ~ q: \~ ;<- Jex: ~ * 

T 

fit (~q) Jk1 ] 

f· d 
>0 

t.t r 'r 
wi th IY'J \, 1 ! ("t~"n) j ! Y\~ '\ ;:1: 1 (*'t'flT1), "Yl = 1., '2...1 ... - ... .. N:; 

where N m numbf,~r ()i' shells lnt.o which the atmosphere 

is divide". The ~uttable cell averages based on the 

diamond scherne ~ t;ee Grant and Hun t 1968a) are expli-

, 

(3- 29) 

(3-30) 

( 3-31) 

( 3-32) 



citely used in writing equations (3-31) and (3-32). 

The subscript n+~ denotes such averages, for example 

W'h~1. == (w -r Lv'(\) }2.. and so on. The last term is wri tten 
., 'AI 11+1 

by cell averaging the dilution coefficient exp(- tt / ~o ) 

-t 
0f the direct beam .I11+~ over the given cell. We 

~ ~ 

take I1 r'[; ;::=. ( l:t + \)T )11-+~ • f111-~ r...~Y1- Ln +,,) = '1:'1'1;-1 -'L Yl • 

Making use of the expressions 

, 

we can re-arrange equations (3-31) and (3-32) in a 

canonical form as 

1. 
-)'I 

-
I 
-'Yl+i 

+ 
This straightforward, but tedious elimination can be 

cast in. the form of a computing algorithm which we have 

given below. The operators £ and ~ appearing in the 

canonical form (3-34) have the physical interpretation 

as matrix operators for diffuse reflection and trans­

mission respectively, of the radiation incident on the 

shell between the planes ~l'\ and '(:IY'+1. Similarly the 

"""-ctor operators ~ L represent the radiation which !: ')1+2: 

( 3-33) 

(3-34) 
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emerges from the surfaces of the shell due to internal 

emission sources plus the contribution from directly 

transmitted beam. 

A computational note: The procedure is based on the com-

putation of £/1 and 6 operators of all the N shells, into 

which we have divided the medium. We have explicitely 

assumed in deriving the equations (3-31) and (3-32) that 

the stability and non-negativity of the cell operators, 

and hence of the specific intensity vectors is assured, 

for the value of the shell thickness 61:: ~ ~'6t. -TC-tit. is 

the 'local critical optical depth' which is actually cal­

culated by requiring that ~-~o> i+~v and l~o. For 

a large class of scattering problems one can use the ex-

pression 

to compute this value. If Arc:: > ~l'tt;.the shell is fur­

ther sub-divided, and the r,t and r operators of the 
-.I' 'V'J"II -

composite thick shell can be generated by a fast doubling 

algorithm (Grant and Hunt 196~b). A convenient test of 

the accuracy of the solution is offered by the requirement 

of 'global flux conservation l - the outgoing flux should 

equal the incident flux for a 'conservative- scattering 

atmosphere ( W ~ 1 ). It is shown in Grant and Hunt 

(1969b) and Peraiah and Grant (1973) that this criterion 

(3-35 ) 



is always satisfied provided care is taken to ensure 

that the scattering phase matrix is normalized to a 

high degree of accuracy_ Consequently, it is pre-

ferable that a finer angular discretization is employed, 

particularly for the strong field scattering phase 

matrices which are highly anisotropic. A complete 

discussion of these aspects viz. the spatial and 

angular discretization and fiux conservation in the 

finite difference schemes, can be found in Wiscombe 

(1976a,b). Since the recursive algorithm used for 

computing the internal and emergent radiation fields 

is the same as that given in Grant and Hunt (1968b) 

and Peraiah (1994); we do not discuss them here. But, 

the r,t and Z operators should now be computed from the ..,.,....;...., ~ 

algorithm given below along with the relevant boundary 

conditions which are specified based on the problem. 

Algorithm. Computation of transmission and reflection 

matrices and source veotors. 

Define that 
+t 

G.- ~ 
-"n+.i. 

'2.. 

--s 

• 
) 

i 

) 

7G 

(Al) 

(A2) 



and 

Write 

+- + +-
Y :: ~ S 
.,.,.,.. ......... -- ) 

(A4) .. 

and 

+ +_ _+ -1 
t :: [~-! r ] ~ [ -+ +-J-1 

t := I--r Y - ........ ~ ..,..., 
(AS) 

...,...,.. 

Then, the transmission and reflection matrices are given 

by 

t + ++ +- _+ - -+ + ilYl -r1) Y\)="f[~ § + X r ] ~ rCY1+1.J1'1):= 2:s! ~ t:1 ; 
(A6) 

I 

and, the source vectors have the form 

+ + + + +- - -
I ("(\'\""1) ill = (1- W \)'t"" A t [Ii. ~ + y ~ t ] I 

')1+ f I +* y.,.; rwoI £::. 1 ..,..,.,..,..".., ~ on +.L 
~ .... r1+2:. l-

(A7) 

(AS) 



We shall now give some simple forms of the normal wave 

transfer equation which provide a simple way to under­

st~nd the propagation of normal waves in an optically 

thick magnetoplasma. Further, we can use the limiting 

case (B~ 0) of the normal waves to check the correctness 

of the program. It is also useful in understanding the 

degree of excess anisotropy caused by the magnetic field. 

We give the required equations below. 

Zero feild limit of the cold pla~ma normal wave 

transfer equations: The govern,ing equation can be 

obtained by substituting the magnetic field strength . , 
~ ~ 

B=O ( u=O; q=O; PG.., =0; P'\( = ':f 11 i ol. =, 1, ex. = 0, ± 1; 

j = 1,2). Since there is no preferred direction in the 

medium which is isotropic, we can take ~:::::).L. The nor­

mal waves I1 2 == (:r: + V) ) 2. are now ci rcularly polarized 
J 

with the Z-axis, the normal to the atmosphere, being the 

physically distinguished direction. 

From the normal wave equation (3-2) we finally get 

d I(~) I (~) 

f Jt- VCr) - V (p) 

Notice that these equations can also be obtained from the 

Stokes vector equations of Chandrasekhar by taking ~t,~~ri~ 

in the azimuth-independent part of the phase matrix. The 



first equation is simply the transfer for Rayleigh 

phase function (see Chandrasekhar, 1960 p.17). So, 

this case can be used as a check on the correct pro-

gramming of the algorithm, since the tabulatedsolutions 

for this standard problem are available, e.g.van de 

Hulst (1980). There is one more interesting case of the 

normal wave transfer equations; that of superstrong mag­

netic fields, found near magnetized neutron stars. This 

helps in calculating the so called directional diagrams, 

or the angular dependence of polarized radiation in a 

strongly magnetized plasma. 

Limiting case of superstrong magnetic fields: If we have 
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a 5i tua tion where l.U -<'. <. we. for example the optical range 

~ and the magnetic field B» 10 ti the norm,al waves are cha-

racterized by a large linear polarization over a wide . 
8 

range of angles S . For this case ('U» 1j ~» 1; 'Pa~ +~ j 
~.L • • 

'fv~o; 1,;:t1':Oj"to=1 jJ::.1~4-) we get the following transfer equatl.ons 

or I~ C::!. constant, 

I t 
~=s(f)) S = ; (pi). It is intersting to note that the 

ordinary wave equation (3-38) is independent of the 

(3-37 ) 

(3-38 ) 



n~ bU 

field strength but becomes highly angle dependent. 

Particularly, for quasi-transverse propagation, the 

electric vector vibrates in the dire~tions almost parallel 

to the field lines, which is responsible for the little 

influence of the field on the electron oscillations. 

The absorption and scattering coefficients are nearly 

equal to their field free values. As far as the extra-

ordinary wave is concerned, these coefficients become 

extremely small compared to the ordinary wave. There­

fore the radiative transfer hardly alters the value of 

Ii' which remains constant according to equation (3-37). 

3.4 Two astrophysical applicationsa transfer of polari­

zed radiation in the atmospheres of magnetic white 

dwarfs and neutron stars 

The method of solution given here can be used for 

computing pol(lrization of radiation under true absorp­

tion mechanism, by ~etting the albedo W ~ O. We apply 

the theory pr~sented in the previous sections to cal-

culate angle dependence of the polarization in the at-

mospheres of hot magnetized white dwarfs and a plasma 

slab immersed in a superstrong magnetic field. This kind 

of plasma emission regions are found to be responsible 

for'the polarized pulse emission from the pulsars. We 

show the cQanges in the polarization and spectrum caused 
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by external illumination and heating of the outer 

layers of a white dwarf atmo~here. In the strong field 

case we have clearly demonstrated the large changes 

(such as the beaming of the radilition) caused by the 

magnetic field. A comparison is made with the non-

magnetic Thomson scattering model. The optical depth 

effects are also discussed. 

Recently two hot magnetic white dwarfs have been 

discovered by Liebert et al.(1983). In the atmospheres 

of such stars, scattering plays a significant role at 

lower optical depths. In weaker magnetic fields(Wc.~< W; 

B (\.J 10'+ q and optical wavelengths) # the transfer co­

efficients do not differ much from the non-magnetic 

values. So the polarization is in general very small, 

and 
2.-

p~ ~ as in the case of magneto absorption models 

of chapter 2. 

In Figure 1 the angular distribution of the emergent 

-lip and q are shown when isotropic radiation is incident 

at 't'l\'I().l( g1 ven by T; ('t'mo.,,) = 13 C~nI»J and no radiation 

is incident on the top of the atmosphere; these are 

the conventional boundary conditions. The computations 

have been carried out for a model of White dwarf with 

Te#f =50,000 K,log 9 = 8, taken from Wesemael et ale 

(1980). The field strength is set at B = 5 l06G• An 

eight point Gauss quadrature is used in the angular dis-
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crulizdtjon. 'l'he transfer equdtlons are integrated 

up tu 1'1.: ~,.J~ 22. Ful J 11 nas cor respond to Olh = 0 

wlH'lre ®f,. is thCJ cHlqle be tweon the field di rectlon 
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Ii I..lnd U1() norrndl :l LO the plane parallel atmospheric 

ldY(~l"'H. J)OL-lh.1Sh 1 incs and dashed lj nes correspond to 

®B . n Jll~ (lnd n l?- respecLively. The dotted lines 

I~t\ln f InE\llt lho upeci al case of the magneto-absroption 
~ 

( W ... : 0). 'rlln 1n tGns! ty di stributions [or ®e =a 0 

ltnd ®o" rt)t} 4ire nOl resolved in the tldopted scale. 

-'I'he anQul1(\r dist ri~)utions of J ore almost similar for all 

t..he Crl8 (~S, ndmc!ly ®l}"!' 0 J rr ) If- ) if I").. I wi th the erne rgen t 

inlonsily In general lncroClsinq by a very small amount 

( "l 1 pe~ cen t) wi th Lhe increaaj ng values of ®!3 • 

aut P dnc) ~ dLe morw aone!tivo with respect to the angle 
.. _ t-'IIt 

.. 

W (ftJ) do noL dj tiar very much because the 'partial' 

tHI~Jnld.t dependeuce has already enter(ld through R~ in the 

lonncr Cl;UH3 (Lruu ell)SOrpLion) olso. Notice that the 

~lngtlltlr depondenc{J 1 s no L only de termined oy the magnetic 

fiold ef(~'cta, but:. dlao by the limb darkeing phenomena 

which has modIfied the formar effect. The effect of 
-r 

external illumination (l ('l: =0) ""F 0 ) on the free 

surface, along with the inner boundary condition is shown 

in lhfi Fig\lre 2. For all the cases shown, ®o =0. 

Full linea, an jaotropic low~temperature irradiance given 
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by I j (~) ::::= 3 1 (To))'2- I j =1, 2. Dashed lines s an 

external illumination distributed as cos e, i.e. 

• Dot-dashed 

lines I a high-temperature external irradiance ~ Cl-l) = 
:::'LB~ (T;::75 f OOO K)/2] fA ' an arbitrary change in the 

temperature gradient obtained by enhancing the local 

temperature continuously, from 1% at ~ = 10-4 

to 11% at ~ ~ 0, thus changing the source function 

gradient. For isotropic illumination, p is enhanced 

by a large amount, particularly for transverse direct~ons 

e -;::: rrl1-), while q is only slightly reduced. 

Notice that the original angular dependence of p itself 

is changed. Thus, the isotropically illuminated stellar 

atmospheres are better suited for polarization observa-

tions near the limb. For an anisotropic unpolarized 

diffuse external irradiance <not the direct beam), the 

value of p increases, but its relative importance near 

the limb is suppressed because of the angular dependence 

of the incident radiation, which dominates that of the 

emergent radiation field. q increases near the limb 

for the same reason. The effect of altering the normal 

·source fUnction gradient ' # by irradiating a high 

temperature ambient radiation at ~ =0, is again larger 

on the p values than on ql particularly in transverse 

directions. In general, the circular polarization q is 

proportional to the 'temperature gradient' in a high 



88 

temperature atmosphere, unlike the case of a cooler 

medium where it is proportional to the radiative flux 

gradient (see Gnedin and Sunyaev 1974bl Kaminker et al. 

1982). Notice also that an increase in p ~s always 

associated with a decrease in the values of q. 

In Figure 3( a) we hdve .shown the realtive inten-

sities of the extraordinary (ext) and ordinary (ord) modes, 

for a ·self emitting· plasma slab whose parameters are 

representative of a polar cap emitting reg~on of a 

magnetized neutron 

~ iJ(., 

of the 

::I 0.2, Ne 
3 slab == 10 • 

start T '" l08K, (\~) = 1/ 

::= 1023 cm- 3 , the total optical depth 

The ext-mode dominates because of 

its larger mean free path (smaller 0<.. ) over the ord­

mode. But more important is the effect of ·mode con­

version scattering' by which the ordinary photons enter 

the ext-channel and escape easily. This process is 

effective because the medium is optically very thick 

resulting in large mean number of scatterings. For this 

reason, p and q (Figure 3(b)) depend strongly on the 

thermal structure of the medi~ and the details of trans-

fer, than on the cross-sections of the normal waves them­

selves (see Meszaros and Bonazzola,1981). Figure 4(a) 

corresponds to a physically identical but relatively thin 

contrary to the 

optically thick case. The scale on the left refers to 

normal waves. The dotted and dot-dashed curves, which 

correspond to an identi~al non~magnetic slab are refered 
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to the 6cale on the right. The ord-wave ~ntensity domi-

nates because large absorption ensures large emission, 

and particularly because the number of scatterings is 

smallGr in this caSe. Clearly, the radiation field now 

'depicts' the strong angular anisotropy of the cross­

sections, rather than the transfer effects. To obtain 

maximum polarization, we have taken W == 1, in the 

non-magnetic case. The input given at the lower boundary 
I 

is !'J. "t :::. B.q • The linear polarization Pr for this 
I 

case, see Figure 4b, reaches a maximum of around 10% 

for }A ~ O. When this slab is irradiated normally on 

the free surface by :r~,'Y" (r "'1) ""'" B~ we again get large 

polarizations. p and q nearly follow the same behaviour 

as intensity, but the strongly linearly polarized 

ord-wave dominates their general behaviour. A steep 

reduction in the cross sections for photons travelling 

parallel to the field (Canuto et al.,1971) is responsi-

ble for the sharp intensity maximum, the 'pencil beam' 

(of half width ~20o) ~n Figure 3(a), as well as the 

'hollow pencil beamt, an intensity minimum in Figure 

4(a), for very small angles of propagation. Unlike the 

case of magnetic white dwarfs p is very strong in these 

objects (see also Kaminker et a1.,1982). For an irradi­

ated magnetized slab, the results are quantitatively 

different. This polarized beaming (directionality) of 

radiation is useful in constructing the pulse shapes 
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of X-ray pulsars, explo~ting the strong dependence of 

the directional diagram on I.e) I We. an d (see Nagel 

1981, Meszaros,1982 and Silant'ev,1982). 

The (conservative) scattering in a non-magnetic 

slab of the same thickness gives rise to a smooth 

angular dependence for the emergent intensities IllY 

and the linear polarization p (see Figure 4).. When 

this slab is illuminated on the top surface (~ =0) 

by a normally incident ( ~ ~ 1) diffuse radiation 

field, a large amount of linear polarization can be 

obtained with a steep increase near the limb. A 

grazing incidence for example produces a negat~ve p. 

However, the detailed structure of the azimuthally 

dependent radiation field is qualitatively different 

from the azimuth~independent easel since in the fanner 

casel the coupling of p and q is stronger. For 

computing these later results, we have used Chandra­

sekhar's equations '1950,~.43) of Rayleigh scattering 

polarization .. 

From the results presented above we see that 

for weaker magnetic fields, the spectra and polarization 

of hot white dwarf atmospheres do not differ much from 

the results of simple magneto-absorption theory presented 

in chapter 2, This is essentially because of the large 

densities and relatively low temperatures of the atmos-
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pheres of cool white dwarfs. But we have shown that 

the external irradiation of even such atmospheres can 

have dramatic effects on the polarized radiation 

emitted by these atmospheres. This has far reaching 

consequences on the modelling of the polarization of 

magnetic white dwarfs because, the thumb rule of large 

integrated linear polarization means large mdgnetic 

field in a magnetized plasma, can be mislead~ng. And 

linear polarization seems to lncrease by large amounts 

in irradiated and heated atmospheres. We feel that 

such possibilities have to be explored in modell~ng the 

recent observations of large linear and circular polari­

zation in even 'hot' white dwarfs (where we have the 

difficulty that we can not take strong fields to model 

them using magneto-absorption theory since their line 

data indicate low field strengths), The method of 

solution presented is quite simple and easily generali­

zable for a wide range of situations~ some of which 

have been demonstrated above. It is computationally 

economical also, since we work in normal wave representa­

tion. We have calculated the radiation beaming in 

superstrong magnetic fields by using a small angular 

grid, and the results compare well with those calculated 

using much larger grid of angles. This useful property 



arising due to the conservative nature of our differ­

encing the transfer equation helps us In getting 

accurate solutions to problems where high opLical depths 

are encountered with relatively less computing efforts, 

even when the hlghly peaked magneto-scattering cross 

sectlons are involved. 



CHAPTER 4 

THE SOLUTION OF THE EQUATIONS OF RADIATIVE TRANSFER 

FOR SPECTRAL LINES IN ANISOTROPIC ABSORBING 

MEDIA 
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In this chapter we shall attempt to solve the line 

transfer equation in a magnetized medium. First we shall 

clearly write down the basic line fo~ation theory for 

true absorption Zeeman lines in the two parallel repre­

sentations we have been using-the more general Stokes 

vector formulation and somewhat restrictive, normal wave 

formulation. A comparitiv~ study of solutions obtained 

by these two formulations is already made in section 2.3. 

We shall first establish a link wi th the normal wave 

transfer equations written earlier for the continuum 

problems. Then we shall give a simple but very useful 

computing scheme for the practical computations quantita~ 

tive in naturel where somewhat approximate but quick 

methods of solution are preferred. We shall demonstrate 

this simple procedure by applying it in Borne test cases. 

We shall also study the Zeeman line formation under 

general physical conditions. Finally we apply the solu­

tion scheme to quite a time consuming astrophysical com­

putation and show that even here, with the approximations 

made, the accuracy is reasonably good. Also we shall 

show some interesting behaviour of continuum polarization 

in a very strong field magnetic white dwarf where cyclotron 



resonance absorption phenomena is operative. 

4.1 Jhe.Z~eman line.tf~D~~~£ deg~~tions ~n Stokes 

vector and normal wave representation including 

the continuum polarization 
i 

(i) Stokes vector transfer equationsl The LTE Zeeman 

line transfer equations are described in detail for 

the Zeeman multiplet line fOl:mation, in Stenflo (1971) 

and Landi Degl 1lnnocenti (1976), For our purpose we 

have chosen to work wi th Zeeman triplets (the normal 

Zeeman effect and the Paschen Back limit), since the 

conclusions drawn here are essentially independent of 

this choice. Hence the relevant LTE transfer equation 

is the Unno-Beckers equationl and is given by 

where 

'1:r '10..- '1 v 
}A 0 

'1'\. ~I .. ~ 
1'1-= ~ • A=- 0 

\.l. ) B-
,nn .... 

~ 

-~ ~ 0 0 'YJr 
(J rw Ylx 

and 

T T 
I =, (r ~ u v) • B :=. (B 0 0 0) > B::: 13i trJ · 

J w- y;.v 

( 4-1) 

( 4-2) 

( 4-3) 



which is an lordinclry tnd Lrix di fferential equation I 

in plane pfl rdllel st.rati fication wi th Z, the symmetry 

axis or the ml:!dlum bej ng the independent variable. As 

usudl, P- is the anqle between the Z-axis and the 

direction of propagaLion. I, A and B are functions 
........... -.- ....." 

of the optical depth 't"' and the angle variable 1-L. 
For simplici ty or notation, we shall not wri te this 

dependence explicitely. The coefficients of the ab­

sorpt.ion matrix .A (also called the transfer matrix) 

are g1 ven (wi th .1' :..-E. 0) by 

1') :: 0; 
U 

I 

) 

t 

) 

\, :.:.1- (~lr - 1,\ ) Cos 1)f , 
where '\.V AI angle between the ray and the magnetic field. 

I f the aolu Lion for dn arb! Lrary azimuth ;r is required, 

it can be obtained by rotating the solution vector using 

the trnnaformation m~trix for (Q U)T, namely 

- Girt IJ.X 
coS ~ 1.. 

• 

For the purpose of discussion, retaining the picture of 

a triplet we have, 
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(4-4) 

( 4-5) 



1 = -h! Y' ., I; J 

where 

) 

A ... ') _ -)to 
/....:l. V.n - C 

• 
) 

"q _ ill - --Yo 
Vt -. D. i 

p 

• 

a is the damping constant. 11 (i~P/l,r) are the central 

frequencies of D.M ==O,±l transitions respectively. 'Y'Jo is 

the line centre absorption ooefficient for zero damping 

(a = 0). 

- --

(Jo-::.J4-TfNel/m; is the plasma frequency and We. == e B !me C 

the cyclotron frequency. The Voigt and the plasma 

dispersion function are given by 

with H(a,u) = H(a,-u);F(a,u) = -F(a,-u). We can use 

the following useful relations (Heinzel,197S) 

8G 

( 4-6) 

(4-7) 

(4-9 ) 

(4-10) 



or 

Therefore, 

+\10 
"l. 

F (o.:u)::: ..1.)<. (a. '\A) :;: ..L ~ 11 exp[- (y- -u) J ~IJ • 
2 ~ 2 7f_oo y'l..-t- o.~ d 

The Hand K functions can be computed by fast algorithms 

given by Matta and Reichel (1971). 

The stokes parameters profiles arising due to linear 

Zeeman effect and anomalous dispersion in the line, pre­

serve symmetry (for 1,0 and U) or antisymmetry (for V) 

about the line centre. Many authors have computed such 

profiles - Beckers (1969),Stenflo (1971), Landi Degl l 

Innocenti (1979) and Wittman (1974) to mention only few 

as ex~ples, In strong magnetic fields, higher order 

magnetic perturbations (Stark effects which can cause 

large asymmetries) affect the Zeeman line profiles (Nage-

ndra and Peraiah,1986). Apart from this, the macroscopic 

mass motions, stellar rotation and gravitational redshift 

can also produce asymmetric Stokes profiles. All such 

effects mentioned apove can easily be included in a uni-

( 4-13) 



fied way for the computations of pure absorption lines. 

If the macroscopic veloci ty vector '\lm (~) makes an angle 

ct l~) with respect to the line of sight, the Doppler 

shift of the line centre frequency in the rest frame of 

the star is given by 

, 

from which we can get, for any frequency :y in the line, 

) 

where 

.. 
; 

Expressing the velooity ~ (~) in terms of some stand­

ard mean thermal units (mtu) U, I we have 

where VTfI~)::: 'Um l:t1) J 'UT is a dimensionless parameter. 

When the continuum is taken to be polarized and magneto­

optic, the Stokes profiles are basically asymmetric since 

both the absorption and dispersion coefficients do not 

preserve symmetry about the line centre. The most general 
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(4-14) 



and exact boundary conditions are found to be, the asym­

ptotic boundary conditions, for both the line and conti-

nuum transfer problems. The solution calculated in the 

first Eddington approximation-the generalized Unno solu-

tion - is found to be a very good choice as an asymp­

totic boundary condition qnd is used by many workers in 

the field. However, the solutions obtained with higher 

order Eddington approximation also can be used as given 

in Landi Degl l Innocenti (1976). We use the generalised 

Un no sol ution (equations (4-18) to (4- 23 ) at 't'mo.:x as 

the boundary condition. These equations are useful for 

both the continuum transfer problems of chapter 2 and 

the line transfer problems solved here. They are defined 

by the following equational 

• , 

V= • 
) 

(4-18) 

(4-19) 

( 4-20) 

( 4-21) 



where 

and 
'l. 

~ =-:cW 'Y}r. + fw J ~ 
- fRfW I (' '1IW) -

'l. 2.. 

l1:rR ~1: + fR J l)1 -- ) ~.t:1t-I --

"1lll,p:: 'Y)~ + f "'Iv 
(ii) Normal wave transfer equationsl The nonnal wave 

transfer equations for the general case of Zeeman rnulti-

plets are given, for example in Dolginov and Pavlov 

(1974). We shall give below the equations for a Zeeman 

triplet. We note that these equations are also useful 

in chapter 5. 
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First we shall show the possibility of modifying the conti­

n~um transfer equations given in chapter 2 to get the line 

transfer equations, Notice that the ~ faotor given in 

the equation (2-26) is the cold tenuous plasma (l"YJi -1j <<. j ) 

limit of a more general expression 

'l to -- 1:.1 - t - 1 

2. (i~ - i_i) 
, 

(4-22) 

(4-23) 



where Tc( (w) are proportional to the diagonal com­

ponents of the complex polarizability tensor in cyolio 

coordinates, and for the cold magneto-plasma they are 

gJ.ven by 

?.. 

T (W):: ' _ w~ 
oL C [ ~e - t (w - ex we.) 

i 
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in the usual notation. Now, for the absorption of rad~­

ation by an atomic gas in a magnetio field, with a 

Lorentzian profile function, these factors are given by 

't 

l~ tw):=. :~. N"J"I (2""J + D -r; 4-1T L -\) .. - i.( W - w. - ol w'-/ 'l- ) ] , 

where NJI is the number density of atoms in the lower 

state 'J 1 • -r:r is the upper level radiative width. Wo 

is the line centre frequency. ""Vj -= '111' (~+ ~CelJl) is the 

total width of the level J. iCOH is the effective 

collision frequency in the plasma. Since the fonmula 

(4-25) can be obtained from (4-26) by making the sub-

stitutions 

all the relevant formulae of the cold plasma are still 

applicable to the Zeeman line formation theory after 

appropriate sUbstitutions mentioned above. It is impor­

tant to note that the orthogonali ty cond! tion l~} ~ 0 

is fulfilled only in the line wingsf which forms the major 

(4-25) 

( 4- 26) 



restriction on the usefulness of this approach. At 

the line centre, 

102 

]xl ~ 1 represents total non-orthogonali ty and in that case 

the normal wave transfer equations cannot be used. In­

stead of the crude procedure mentioned above, we have 

used the correct formulation developed by the authors 

mentioned above. Accordingly, the transfer equation is 

given by 

-1a... (x -~) -- c a 7-
~ 

) 

where, as usual 

C 
and h is the continuous absorption coefficient ~n 

(cm 2/gm) units. The other quantities appearing in equa­

tion (4-29) are given in section 2.2. As an alternative 

to Tot. f....w) given in equation (4-26), these authors 

give a more accurate representation of these line absor-

ption coefficients (in em-1 ) as 

( 4-27) 

(4 .. 28) 

( 4-29) 
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').. 

t (w) ~:~ NJ' (1J+1) "P'J ~ (W- Wa - 0<. ~ We 12 ) • 
.J 

g being the Lande g-factor. The profile funct~on G( W ) 

is given by 

~ 

Ei (w) '=- ~ (1:) exp ttwt) d.t j 5 ~ (w) cLw =. 1 , 
o o 

where the time ordering function g(t) is in general 

steeper than exp(- 1':r t ) I specific forms of which are 

given in Dolginov and Pavlov (1974). However, it is 

always assumed that the collision width is much greater 

than the natural width. It is shown by Pavlov (1975) 

that the general expression for the transfer coefficients 

(which are useful even in the Stokes vector formalism) 

are given by 

The line centre absorption coeffici~Dt is defined as 
L 0 

~::::. ~ GJ (0), and 11" = ~L / k~ ) at the line 

centre Wo • The real part '¥} (ol '; OJ ± 1) represent the 
ri 

(4-30) 

( 4 ... 31) 

( 4-32) 

(4 .. 33) 
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absorption coefficients and the imaginary part e Cw) 
0(. 

represent the anomalous dispersion coeffioients for the 

Piland 'Y Zeeman components respectively. The function 

D( W ) is given by 

A comparison of equation (4.33) with the following equa­

tions 

wi th \9t = AM We. }it-IT A 'Vv brings out clearly the conneotion 

between the two fonno.lisms. Note that rL are simply 

the terms appearing in the expressions for ~R and ~1f'l 

the usual anomalous dispersion parameters in the Stokes 

vector fomalism (see equations (4-8) and (4-9)). 

The ~~ for the continuum processes can be calcula­

ted according to the equations (2-41) through (2-53) of 

chapter 2, and Vee tori ally added to the line transfer co­

efficients calculated above. Thus the line plus conti­

nuum polarization transfer equation can be easily solved 

similar to the Stokes vector formalism. The boundary con-

ditions to be used now are 

(4-35) 
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, 

which is a first Eddington approximation or Unno type 

solution of the normal wave transfer equation, at large 

optical depths. Notice that the same b~undary conditions 

can be used even for pure continuum problems of chapters 

2 and 3. 

4.2 A simplified method of solution to the polarization , 

transfer problem - its usefulness and limitations 

A simplification of the general method of solution 

given earlier in section 3.3, is described for problems 

which involve only absorption. This allows us to attempt 

to solve under realistic conditions and with reduoed com-

puting efforts, the important problem of polarization of 

light emerging from magnetized stars. For true absorption 

the matrix differential equation (4-1) admits an analytical 

solution. The simplest is the Dnno solution which is deri­

ved analytically using a Milne - Eddington approximation. 

This solution is restricted and can not be used in compu­

tations involving realistic model atmospheres. Instead, 

the formal solution itself can be used in realistio atmos-

pheres also. For arbitrary source function gradients, 

(4-36 ) 
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and line formalion problems the depth integrating which 

occurs in the formal solution however, requires a large 

number of grid points. Among the numerical solutions, 

the most accurate and widely used is the Beckers' method, 

which is a Runge-Kutta scheme for the vector transfer 

equation. For a detailed discussion on accuracy and com­

puting times of some of the numerical solut~ons, see 

Martin and Wickramaslnghe ~1979b) and Nagendra and Peraiah 

(1985a) which also have been described in section 2.3. 

In the computations of spectra and polarizations of mag­

netic stars (Ap slars, white dwarfs etc. ), we are re­

quired to solve the transfer equation over a large number 

of points on the visible disk and finally integrate these 

local solutions, along the line of sight. This 1s a highly 

time consuming but unavoidable process, particularly so 

in line computations where large number of frequency points 

are also involved. In view of this difficultYI one is 

forced to go for faster methods though less accurate, We 

have previously described a procedure based on the dis­

crete space theory (hereinafter called DSM) of radiative 

transfer (see Nagendra and Peraiah (1985a) and section 

3.3), Now we describe a simplification of the same, which 

turns out to be faster oomputationally. To solve the 

equation (4-1), the following boundary conditions are 

given at the bottom and the top of the stellar atmosphere, 



• 
) -

The transfer matrix ~ has the following characteristics 

( i) It is symmetric Hermetian when fR ~ fw iii. 0 but 

not so otherwise, (ii) diagonal elements are always posi-

tive, and in the special case of very weak anisotropy, ~ 

is diagonally dominant also, (iii) by a proper choice of 

coordinate system, ~ can be diagonalized, (iv) it is irre-

ducible becduse, by any set of transformations, it is not 

possible to reduce it to the upper triangular form. The 

equation (4-1) can be written in ~he half space of angles 

~G(O,l) as 

d.~- - - ---M = A CI .... B J ........- d1"' ~ ....... -

t 
wi th "[ = L ('1;') - fJ- ) and 1. = L (rt".. JA) representing the 

rays emerging towards the surface of a star and entering 

into the atmosphere respectively. In the integration of 

the transfer equation over an elementary • cell ~ ,1> ~8", and 

A can be taken as constant; being some sort of average 

of these quantities at the boundaries of the cell, bounded 

(4-37) 

(4-39 ) 



by the planes 1:''Y\ and 1:"'I1t1 (n=l, 2, 3 ••••• ) (see 

Peraiah and Varghese, 1985, Nagendra and Peraiah 

1985a). The formal solutions of the equations (4-38) 

and (4~39) can be written as 

~'r1+1 

i ;; 1- e:c~C-Ll't' ri1A-] + ex.h[-(t ... rtIoJ M-A-]Jvf11 A-B] cit) 
-.." _ Y) \-1 ( ................ r ~I J.,...!. - __ ,, __ 

rtn 

for the outgoing ray, and 

fo r the incoming ray. Atf: ~ ~11.r1 -1:'y\? n = 1,2 •• " ••• N; 
± 

where N = number Qf layers. t !:w ~ 1 is the source 

lOfl 

function. For the present discussion, we shall concen­

trate on only the outgolng ray (4-40). now, assuming 
t 

that t..& J2.} is independent o.E optical depth - that 

is, it remains constant in the range 't'" to ~"n+i' we 
-

get an expression for .!Yl by performing the lntegra ..... 

tioro in equation (4-40), as 

which is the usual formal soluti~n and, again demands 

no restriction on 6.'C' I as long as the phys~cal pro­

perties remain constant in the range of integration. 

( 4-40) 

(4-41 ) 



Now, we discretize the matrix transfer equation 

(4-1) by directly integratIng it Over an elementaty 

cell as before. We then obtain 

ion 

where the subscript (n+~) refers to the average of the 

values of physlcal variables at 'tn and 1"n+1. For the 

d~amond difference scheme, we have 

+ ~r + - ..... 
....... 

;£11 .. 1 + I. n 
:L 

which assumes that the intensity is linear in optical 

depth within the cell. For fUrther detalls on the 

method of solution, see Peraiah (1984) and section 3.3. 

Restrlcting ourselves to the outgoing ray, we hdve from 

DSM, the following expressions for the outward directed 

ray 

- - -

where 

(4-44) 

(4-45) 

( 4-46) 

(4-47) 



--. 
Now expanding the ~ rna trix (equ ation (4-47) in a 

............. 

matr~x power ser~es, then substituting in equation 

l4-45) and tr~ncating the resulting expans~on to the 

quadratic terms, we get 

, 

Now imposing an asymptotic boundary condition, like the 

Unno solu ti on 
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at the lower boundary (N+l) of the stellar stmosphere, we 

can get the emergent intensity recursively (n=N, N-l; •••• 1) 

using the equation (4-49). It is more useful when the 

source function is a linear or a nearly linear function 

of rr and the linear perturbation vector i. is weak.. 

In that case, we can substitute a Unno solution at each 

grid point n and, assuming a constancy of opacity and 

source function in each cell, we get a relation of the 

form 

(4-4S) 

(4-49) 

( 4-50) 
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- - J -1 - "l-

In C:! (±"r1)u - l t"y1~ + i M l1n+-'L l1:n -t-t - · " 

When t1« 'tn 1- i I this equation 16 stable and gives L ~ 'l-

an accurate and convergent solution even for step sizes 

• In practice, we can use the nodal 

points, of the tabulated stellar atmospheric model, them-

selves as the grid pOlnts for constructing the cells, be­

cause In the deeper • thicker I layers of the model the ,_~, 
¥ 

parameter will be very small, and in the upper layers, 

where JE could be larger, the nodal pOint spacing itself 

would be very small (i .e. rt'r1 t~z. L.( 1). making the solu­

tion (4-51) still correct. Notice however, that the ori­

ginal DSM equation (4-45) 1s simply the implicit Crank­

N1.cholson rna trix approximation for exp L:)1 Lt Jvi"1 A - t ] 
~ 2- - -.;'t1+~ 

which occurs when solving the inhomogeneous parabolic 

matrix differential equation (4-1). It is well known that 

the Crank-Nicolson scheme is second order accurate, un-

conditionally stable, and a consistent approximation for 

all step sizes, since 1<e1L>O (see Varga/1963,p.270)1 

where A, ~ (l I /L (, ~ 1 .. 2J '3 .. ~) are the eigenvalues of 
-1 - \lYl1 t 

M A .l.. • at are the eigenvalues of the transfer 
- -Yl r · 'l--matrix!! ,wi th two of them being complex in general, 

It can be clearly seen from equations (4-45)-(4-48) 

(4-51) 
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that the central difference approximation to the trans-
-

mission matrix ~ is a matrix power ser~es approximation 

[ -1 -for the rna trlx exponential exp -~YlI.1.. M A 11 .... .1... ] 
2..........-........ .2-

through quadratic terms, Simildrly 6,..-1 is a backward 

difference apprOXImatlon to the same matrix exponentIal 

through linear terms, again being unconditionally stable. 

Thus, we can write the equatlon (4-45) to the lowest 

order approximation as 

and we See thdt the right-hand side of this equation is 

convergent even for '"t'l1t~ ~ 1 • This is a conse-

quence of the approximation of linear variation of the 

source function with optical depth (implied in the use 

of diamond scheme). This has the important property of 

causing the calculated intensities to be correct in the 

'diffusion limit'. Grant (1963) has shown in this regard 

that the difference equatjons of DSM naturally reduce to 

the difference analogue of the diffusion equation (e,g. 

equation (4-51)),1n the limit of large This 

property is lost if one assumes a constant source function 

throughout the atmosphere (see Wiscombe,1976a) or if the 

source (unction js a highly non-linear function of opti-

cal depth .. Obviously, this property of DSM equations 
""\ 



provides large practical advantages, particularly in 

the work with stellar atmospheres like those of white 

dwarfs. In the following section, we show the results 
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obtained using this criterion for the problems of conti­

nuum and line polalization l using realistic model atmos­

pheres. Since our primary interest in such computatlons 
-is only the emergent (at ~ =0) values of I , the fo110-

--' 

wing simplified form, of the convent~onal DSM equations; 

namely 

and 

....... 
~ (1, N) :: f (1) +f(1) ~ ~ Ll) -t 18). iLl.) ~b-c:v+f(1);i~)I£(3) ~t(lt)-I-

- - --0 --. 

'" , ~. t c lD· t {j.) , " 
....... v.;o,J 

, i LN-1) • X (N) ) 

can be used. Nt here is the total number of atmos-

pheric layers considered from the model atmosphere. 

Thougn diffusion approximation places no restriction 

on the step size, one can use rt"r} r 1. ~ '2. as a safe 
... -choice in computing the ~ and ~ matrices of the res--

pective layers (see Kalkofen and Wehrse,1982 a,b). 

These authors have made an extensive analysis of the 

(4-53) 

{4-54) 



flnite difference techniques in general. Our equation 

(4-45) is, for example, the polarized analogue of the 

equatIon (25) in their (1982a) paper with a half-impli­

cit differencing weight. The thick layer operators can 

be generated by the usual doubl1ng algorithm (Grant and 

Hunt,1969b; Peraiah,1984). We have repeated some of the 

test cases-the tables (1) - (5) of sectlon 2.3, now 

using the diffusion approximation described in the pre­

vious section (equations (4-45),{4-50),(4-53) and (4-54)). 

Since the agreement is good upto the third or fourth 

digits, we do not repeat them here. In addltion, the follo-

wing two tests, namely '\.f! tt') = Lo, TT) wi th l'lP)=OI '0/ Cq;'~)'::'7f 

for X ~'O should give Q(o),= U(o) ;::J 0 and ;t'Ct) -=. La" ~J,..TI) 

with %(0)=0 j ~ L'th\Q.;)() ::.' "2.7T for 1V::: IrJ'2-- should give 

V (D) ::;:! \j (0) == 0 ; WhlCh are the checks based on symmetry 

requirements are satisfied exactly, confirming that no 

spurious sources or sinks are introduced by the diffusion 

approximation, even in a realistic atmosphere. We feel 

that, such an approach should be reasonably good in the 

quantitative work where accurate solutions are not needed 

in the initial stages of the modelling. We have got 

nearly 30% savings in the computing time Over the earlier 

procedure described in section 3.3. 



4 .3 Zeeman line,. f,grma tlon unqer general phys,ic,a.-h 

condltlons: a discussion of results 
, 'ppppp 

l1G 

In the computatlon of Zeeman line profiles prese­

nted in th~s section, we have always used the Stokes 

vector representation and the equcttions (4-1) to (4-23). 

The lines have been computed in realistic atmospheres. 

But, the following assumptions are made (i) the Doppler 

width ~ ~p t damping cons tan t "land the ra tio ~ are 

depth independent. All these are good approximations. 

EVen though both the line centre absorption coefficient 

and the continuum absorption coefficient vary by large 

amounts from deep in the aumosphere to the Quter layers, 

their ratio almost remains constant. (i1) the continuous 

dichroism and anomalous dispersion are depth independent 

and treated as constants with their typical values through­

out the l~ne profile. This is also a good approximdtion. 

We shall nOw proceed to discuss the results. In the 

Zeeman line computations, it is generally assumed that the 

field strength 8, its incli na tion lJf with the line of 

sight and its azimuth 1 measured with respect to an arbi­

trary x-axix in the plane transverse to the l~ne of sight 

are always independent of the optical depth ~ • In ab-

sence of any direct observational means of measuring the 

depth dependence, which is definitely there, this has been 
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accepted as a reasonably good approximat~on~ But it 

is lmportant to know, to what extent can such depth 

dependence really affect the Zeeman line formation, 

either in a steady state atmosphere or an atmosphere 

having ordered velcoity fields. This will provide a 

basic understanding, and helps in the fine analysis of 

lines formed in such complicated, but realistic situ­

at~ons. The general conclusions remain valid for the 

lines formed in any magnetic atmosphere say the solar 

atmosphere or the white dwarf atmosphere etc. 

In Figures 1 to 4 we show the changes produced by 

taking some of the parameters as depth dependent. A 

hypothetical Zeeman triplet with a line centre wave­

length l\o('19~O) = 5000 A is used in these computations. 

\9 = A~ /6 ~D and \9p =- 0 I ~.t::; 16) 1J't::= -Ib correspond to 

the centres of the Zeeman componen ts. 19".A,'I'= t..MI~~i I )<1:11'1 ·"d~.l1 
for p, 1 .. r respectively. ct=-r /4-lT Do ~J) ~s the damping 

-1 
parameter,'" being the total damping constant (in 5 ) 

of the line. We have fixed a = 0.1. The cont~nuous d~-

chroism is introduced by selecting ~~ = 1.001 Y)~ :: 0.94, 
C ~ 2 

l')y = 1.11 fJ{ = -10 cos~ and r~ = -0.25 sin y 
~ is always taken as 0.8. ~o is taken as 10 4 • All 

the parameters mentioned above are typical of a weak line 

formed in a cool, high-gravity white-dwarf atmosphere. 
o 

A hydrogen rich convective equilibrium model with let# =9000 K 

log 9 = 8, from Wehrse (1976) is adopted. Figure 1 shows 



I 1.6-

20 

o 
q 

-20 

-

(0) 

10 
~- 0 p 

(b I -10 

(c) 

(d) -40 ~--.. ________ _-_. ___ -=-1 0,8 
1 .... , f\ ......... , 
I " II 1/ I 

\ r......... I 
I \ /.-.... " -/,.. - .... \ ' 
I ' .,.. II ... / I 
I I 1 
'I 1 
l, · i ." ", • • , \ I ~ 0 i 0 ~ 
I 1 I 
I I I 
I I I 
I \ \ 

. , 

-0.4 
I I 

~ ............... ~-' L ...... / -0 8 

-30 ... 20 -10 o 10 20 30 

V 
Fig.i. Intenslty (a),percentage linear (b)and 

circular (c) polarization,and polarization posi~ 

tion angle (d) for a hypothetical ~eeman tr~plet. 

Full curves (case x) 'l= Tr/4 I X = IT/4.Dot-dashed 

curves ''0/ == IT/4, It' = X< 't' ) .Dotted curve ltV: Tf /4, 

;t;:; O. 



118 

the effect of azimuth angle J varl.atJ.ons It The solid 

curves show the Stokes profiles for a depth indepen­

dent field direction (1Y.~ TII4-) Y ';=. rrj I-j ) Wl th res­

pect to the Ilne of sight. This case, we shall keep as 

-a standard and shall refer to it as c.Jse X. rrhe I, P 

a.nd q pt:'o:(iles for (~:::.1f; ~ It':::. 0) are same as for the 

case X because of the complimentary nature of the 

az~muth angles Jr. and O. The dotted curve in Figure 
M 

ld for this later case shows that the position angle 

~ is quite small throughout the profile and arises only 

because of the magneto-optical ef£octs. Notice thut 

the position angle is the only parameter which distin-

guishes the two cases, hence the importance of its obser-

va tion. We have included the depth l3ependence of the 

azimuth angle ;: in the transfer equation by replacing fR 

by fR - 2 « eelit' !~) J c(?!). A small varia tion represented by 

?tL1t);:::* e'1C~ is used. This case ~s represented by 

-dot-dashed curves. The intensity I is not much affected 

except in the core. The p profile equivalent width in­

creases and its central depth is reduced. The q profile 

is affected to a larger extent only near the If ..... component 

of the triplet. The sharp changes in the position angle 

c9 near \9 N 7 are due to the fac t tha t Q and U para-

meters simultaneously change sign in_this reg10n (see 

alse Staude, 1970). This ~s obvious because ( ~j 'f /2) 
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are the inflectlon po~nts in a symmetric Zeeman triplet. 

At these points, a matching of the '"'1p occurs wi th ')1.. 

or ~i. These pOints are slightly shlfted now, because 

of the radi~tlve transfer effects. Recently, Oeguchi 

and Watson (1985) have computed the Zeeman lines fonmed 

in such a twisting magnetic field. The Stokes profiles 

in Figure 1 are In good agreement with their so called 

'optically thick' lines. 

Figure 2 shows the changes produced by the depth 

variation of V. For the case 1V:::.o j :2:'::0 (indicated 

by dashed lines), we can see that the u -components are 

clearly stronger and the~-component is absent; p = 0 

and ~ = 0 because it is che case of longitudinal Zeeman 

effect. The q profile does not show the • rr .. component 

splitting I indicating that the ·coupling of the Stokes 

parameters' is basically essential for such a splitting, 

along with the usual magmeto-optical effects (see case~1 

solid line). ']'he varia tion of t.he angle "V as V('t')::;:~ t:1't'1:') 

has defini te effects on the I, q and ~ profiles (1V= 11 ~J 

X ;::::,If!~ I dottend Hnes). The <j> profile undergoes 

fluctuations because of a strong coupling of the V para­

meter to 0 and U through magneto-optioal effects and a 

changing inclina.tion (see Beckers, 1969). P also fluc­

tuates, but it is unresolved in the figure since it is 

smaller in magni tude. Noti ce that the '1V var 1 a tion l.ntro ..... 
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duces a large deepening of the lr - component in the 
-
I profile, and a 1T - component spli tting 1n the q prof 11e. 

In Figure 3 we show a combination of the simultaneous 

variation as mentioned above, of l' and! along wi th a 

slight variation in field strength according to the for-

mul a "e/'1;') -.:! 16 t 1 t 0·1 (1 - e:x.p (-'1:))}, C+ 1'.t !:: -'I.9r- =: '\933 «1:')) • 
From the profiles (dashed lines), it is seen that in the 

core of the line the 1'varia tion domlnates while in the 

wings ('\9f\J10) f variation is important J.n the line for­

mation. The effect of inhomogeneous (depth dependent) 

field is marginal compared to the changes produced hy 

angular variations. The case is also shown for com-

parison In this figure. 

In Figure 4 we show the profiles formed in quite 

general situations. The dotted lines are the profiles 
l 

formed in an arbitrarily moving atmosphere respresented 

by 19 tt') cO. 2 +0 .. 1 ( 1 + exp (-'t' )) , ct Lrt') =- COS-.iJ4 +1f e.xp~) I 
with the magnetio field also being taken as inhomogeneous. 

The field variation is effected as mentioned before. One 

can see thdt the field gr.J.aient. enhances the asymmetry 

near the line centre and reduces the same in the wings. 

The full lines are the profiles when there is a change 

in the angles 1V and;t only {see e.g.figure (3)). The 

dashed lines represent the most general case of the pro­

files formed in arbitrarily varying angles,velocity and 
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magnetic fields which, excepting a small asymmetry, 

are not much different from the former qase (full lines). 

Thus when the line shift asymmetries (dotted lines) are 

weaker, t.he angular variation of the field vector is a 

dominant rnechanismwhich can change the shape of the 

polarization profiles. It is thus clear that these 

effects are quantitatively more pronounced for the solar 

magnetic regions, than whi tedwarf atmospheres. The spe-

cific intensity vectors are computed on 256 grid points 

(16 latitudes and 16 longitudes) on the visible disk of 

white dwarf for a given angle of inclination (i) of the 

dipole axis to the line of sight. Equations (4-53) and 

(4-54) have been used for this purpose. The disk inte-

gration, which is a double integral is performed using 

a 16 point Gaussian quadrature formula. The results of 

this computation are presented in table 1. We have com­

pared for few cases, our results (referred to as DA = 
diffusion approximation) with the solutions obtained by 

Martin and Wickramasinghe ~1982) (referred to as MW). 

The linear polarization is extremely small and not much 

significance can be placed on it unless it is still lar­

ger in magnitude. We like to mention that the difference 

is not entirely due to the approximation of our calcula-

tion of specific intensities. The coarse grid employed 

for disk integration by us, also contributes to that diff-
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erence. The above authors use a still larger number 

of grid points for that purpose. Thus we feel that 

diffusion approximation is not a bad approximation, at 

least for the white dwarf atmospheres. 

As a further test on the usefulness of the diff-

usion approximation, we have computed the continuum 

linear and circular polarization in a magnetic white 

dwarf atmosphere with a central dipole field of polar 

7 field strength Bp = 10 G. A model atmosphere of a 
o 

DA white dwarf with 1ff = 20,000 K, log 9 = 8, taken 

from Wickramasinghe (1972) is used. The continuum pola-

rization is included according to Nagendra and Peraiah 

(1984), as described in section 2.2. 

4.4 An astrophysical application: cyclotron resonance 

absorption in the magnetic atmospheres 

In the review article on magnetic white dwarfs, 

Angel (1978) has shown some objects which show both con-

tinuum polarization indicating a high magnetic field, 

and absorption features which can not be identified with 

the Zeeman sub-components of the important lines. GD 229, 
o 

G240-72, Grw + 70 8247 are such objects. It has been 

suggested (Lamb and Sutherland,1974; Angel 1977; Gnedin 

and Sunyaev,1974b) that cyclotron absorption can play an 

important role in the optical spectrum of these objects. 



Some characteristics of cyclotron absorption in real-

istic situations, as referred to magnetic white dwarfs, 

has been discussed extensively by Martin and Wickrama­

singhe (1979a). An absorption coefficient for the cyclo-

tron resonance absorption has been derived quantum mecha-

nically by Lamb and Sutherland (1974). This formula 

applies only to right hand circularly polarized light. 

In the normal wave representation, this fonnula is ana-

logous to the absorption coefficient of the extraordi­

nary mod.e. In the cold plasma limit which we have been 

USing, the absorption coefficient of ordinary mode re-

mains smaller and almost constant near the cyclotron 

frequency, hence its contribution being quite negligible 

. The collisions have been neglected in deriving this for-

mula. A classical and approximate formula has been given 

by Bekefi (1966) which includes the collisional broaden-

ing of the cyclotron resonance absorption. As suggested 

by Martin and Wickramasinghe {1979 a),we adopt a composite 

model, in which the Lamb-Sutherland formula 



is used in the Doppler core, and the larger of the 

above and the collisionally damped absorption coeffi­

cient 
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due to Bekefi (1966), is used in the Lorentz wings of the 

Voigt like resonance absorption profile. The collisional 

frequency can be calculated using 

from Melrose (1980). The nature of the spectrum and pOla-

rization depends quite strongly on the viewing angle, be-

cause of strong anisotropy of the radiation field (see 

section 3.4). In Figure S we have shown the flux and 

polarization emerging from a T et? 
o = 9000 K, log g = 8 

line blanketed model in radiative equilibrium, taken 

from Wehrse (1976). The resonance absorption depresses 

the continuous flux spectrum in the range of wavelengths 

AA 4000-8000 ~ (dashed line), since it operates effeqti­

vely in the frequency range, approximately, Wc.C13p) t.:.., W,,(BIJ)):2-J 

corresponding respectively to the polar regions which con­

tribute 'strongly' in the blue, and to the equatorial re-

(4-56) 

(4-57) 
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gions which contribute 'weakly' in the red-the reason 

being a reduction in field strength by a factor of 2 

between the pole and the equator of a dipole field. 

The disk integration has to be done using a careful 

selection of pOints. The demardfor a higher order 

quadrature is more in this problem. The non-magnetic 

(B=O) flux spectrum is shown by the dotted line for the 

sake of comparison. Since the 'collisionless plasma 

approximation' absorption coefficient (equation (4-55» 

has very narrow profile, its contribution is insigni-

ficant though it is very strong where as the classical 

'cold plasma approximation' absorption coefficient (equa­

tion (4-56» absorbs over large frequency band at each 

point On the disk. The effective absorption band widths 

are quite large because the collisional damping (equation 

(.4-57» is very strong. The flux and the polarization 

spectrum calculated by us differ in many respects from 

those ca'lculated by Martin and Wickramasinghe (1979a) who 

use a constant value of collision frequency, which is ra­

ther high, throughout the atmosphere. We use the depth 

dependent collision frequencies calculated at every depth 

pOint using equation (4-57). This causes large variations 

in the effective bandwidth of absorption throughout the 

atmosphere. An extensive and systematic study of the 

quantum effects in cyclotrbn plasma absorption has been made 



by Pavlov, Shibanov and Yakovlev ~1980a). The spectra 

and polarization produced in a realistic atmosphere under 

cyclotron mechanism are difficult to understand qualita-

tively, when the disk integration is performed. However, 

certain features of the spectrum and polarization shown 

in Figure 5 can be understood by comparing it with Fi.9ures 

2,5 and 6 of Pavlov, Mitrofanov and Shibanov (1980b). Our 

computations using other models show that 

sign of polarization depend on (i ~ I ~ 
the degree and 

) and (~ !2 
for a given field distribution on the stellar disk. The 

circular polarization q shows a strong wavelength depen-

dence, unlike the thermal continuum polarization in weak 

field magnetic white dwarfs. Collisionally damped cyclo-

) 

tron absorption is stronger than expected earlier, and the 

saturation produced by it is responsible for the difficulty 

in fitting thermal energy distribution to the observed 

spectrum, when such a strong non-thermal phenomena is oper-

ative in the magnetic stars in general and in the white 

dwarfs in particular. 



CHAPTER 5 

SOME NEW PHYSICAL PROCESSES WHICH AFFECT THE POLARI­

ZATION OF CONTINUUM AND LINE RADIATION 

In this chapter we shall first concentrate on two 

physical mechanisms which are well known in experimental 

physics, namely the Stark-Zeeman effect and the plasma 

polarization shift of spectral lines, and incorporate 

them into the radiative transfer equation. We then solve 

the transfer equations for these two problems under most 

realistic situations, relaxing all the approximations 

made in the chapter 4. In section 5.3 we shall discuss 

the Zeeman line formation for oriented atoms. In section 

5.4 we will discuss the effect of atmospheric structure, 

and the line shifting mechanisms, on Zeeman line transfer. 

In these two problems, we shall retain the level of appr-

oximation used in the chapter 4. The physical conditions 

of the plasmas selected for these studies represent diff-

erent astrophysical situations, particularly the magnetic 

stars. Finally, in section 5.5 we demonstrate the effect 

of refraction of the beam of light,on the solutions obtain-

ed using the conventional polarization transfer equations 

where refractive effects are not included. We solve the 

pure absorption polarization transfer equation individually 

taking each of these effects into account, separately. 
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5.1 The influence of combined Stark-Zeeman effect on 

line formation in a magnetic field 

The Stark and Zeeman effect are equally important 

in computing the hydrogen line profiles 'in moderately 

strong magnetic fields, where the Zeeman or Paschen 

Back effects are not too dominant over the Stark effe­

cts. Such moderately strong fields (few hundreds to 

few thousands Gauss) are found in pre-main sequence 

chemically peculiar ~Cp) stars and Ap stars. Till now, 

only pure Zeeman effect is used as a basic phenomena 

in theoretically modelling the hydrogen line profiles in 

these objects. Many years ago Nguyen-Hoe et al.(1967) 

were the firsttDc~ulate the Stark ·profile functions· 

in a magnetic field using the impact approximation. R 

Recently, in a series of papers, Mathys \1983,1984a,b 

and 1985a) has developed a more accurate unified theory 

and computed the profile functions for a wide range of 

temeperatures (Te ), electron densities (Ne ) and mag­

netic fields (B). In the unified theory, the ionic and 

the electronic contribution to, the electric microfield 

distribution, is taken simultaneously into account. The 

unified theory approach for the non-magnetic Stark pro­

files is given by Smith et al.(1969}, Vidal et al.(1970, 

1971). The modification of the unified theory to include 

ion dynamical effects is presented in Cooper et al.(1974). 
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The hydrogen line broadening is primarily caused by 

a strong linear Stark effect due to interactions between 

the radiating atom or ion andlocal electric microfields 

produced by perturbing ions and electrons. When an exter­

nal magnetic field is present, such as to act only as 

an additional perturbation# the classical straight line 

path approximation remains still valid. In a recent 

work Mathys (1984b) has included the ion dynamial 

effects also in the computation of Stark-Zeeman pro­

files. The Stark-Zeeman profiles can not be obtained by 

simply convolving the non-magnetic Stark broadened pro­

files with pure Zeeman patterns, because the collisional 

transitions between the Zeeman substates of a given level 

can not be neglected (Mathys# 1984b) • Hence we have to 

use the magnetic field modified Stark profiles# and con­

volve them with a Doppler broadening function to obtain 

the required profile functions. 

Since the hydrogen lines are used for deriving fund­

amental stell~r parameters such as log g, a correct pro­

file function calculation l used in a realistic radiative 

transfer treatment is very essential in order to fit the 

observed line profiles in these magnetic stars. The 

theory of polarization radiative transfer for hydrogen 

line formation under the combined influence of Stark 

and Zeeman effects has been formulated by Mathys (1985b). 
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We briefly describe the requiredequQtions and solve them 

to obtaine the hydrogen line profiles formed in a real-

istic model atmosphere, for a given value of the mag-

netic field. Tffimodel arnosphere and the field strength 

represent the condi tions typical of magnetic Ap stars. 

We use the radiative transfer formalism presented by 

Mathys (1985). The transfer equation in LTE, for the 

polarized intensity ~ = (I Q U V)T is given by 

where, as usual }A -;::: coSe -' e being the angle between the 

propagation and vertical (Z) directions. A and S are 
..-.. ---

respectively the absorption matrix (transfer matrix) and 

the source vector, represented as 

. 
/ 

where I is a (4 x 4) unit matrix and J 
T = (1 0 0 0) • B1 

t c 
is the Planck function. d.<J:'==-R rd 1.) R being the 

continuous absorption coefficient (in cmr/gm) and P 
L.. 

the mass density. Tre,line absorption matrix A and --L. 
the emission vector 5 

L I 

A ---- N B - N B • -1lb.8 - em ) 

are given as 

L 
5 == NE - - ) 

(5-2) 

(5-3 ) 
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where Nand N i (cm-3 ) are respectively the populations 

of upper level n and the lower level nl • The stimulated 

emission matrix is given for a frequency W by 

'2.. 
B = '2.rrw 
-em 1; c 

The most general form of .£eh1 has been derived by Mathys 

( 1985b) • The .Eem in a restricted (zero azimuth; ;t' == 0) 

coordinate system is given by 

o .) 2co5'qf R;:x.;)C. 

o 

o 

The absorption matrix, in the same choice of coordinate 

system is given by 

'l. I :1,., .. I l. I 1 
C 1 +C05 V> ~#5il\ 't' Il-'%. j Sill 1V CIzi" I.,,::J ; o 

I 

; 2.C.OS1V Rx:>:. 

o . 
) 

( 5-4) 

( 5-5) 

( 5-6) 
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where IV is the angle between the propagation and field 

directions. We define 

Re 
I - - 1'V~ xx. 1r ......... . 

) 

I - 'R.e -r 
21- - 1r ..)1..2 

with the emission profile functions defined as 

~')(. =- .L [ <)') la..."'mttl FA I Ylta.ma.> X 
{ ~ .t'-rrno I J 

fA and E are the density opera tor and the dipole 

momentum operator of the radiator (refer to Mathys, 1984p 

for the actual calcula tion of the profile functions). J-zz. 

is obtained by replacing x by z in the expression above. 

The polarized perofiles are given (for any direction of 

polarization!!,.., ) by 

I (w)S) =. -~'r!] I (11~a./11IA.I~<Qt·Y(lL~llI~><':n/;'~"m~I~·DI-n~blnb) X 

f.2,(m,nI} 

} I J n } -r -1 I I I > 
)< < Ii lb I'nb ~ 11).b /()b I [~w ~ d- (~Wo)] \1'1 Ja. "m(l.; )') 1o:m4. , 

( 5-7) 

( 5-8) 

(S-9) 



where ~ can be ~x) ~<1 or ~z.. The quantum theory 

requi red for calcula ting I ( w, .§L) is developed in the 

series of papers by Mathys, as already mentioned. Notice 

that :foX-x.. and 1;."l- are closely related to I (w, s;.:x.) and 

I( W'.£"Z.) respectively. The R profiles are defined as 

R (w) .€.) = -~e L < )1l~1(IQ.l g. gl "'1~ ')Y\~ > <n' A ~)'Y\~ It· !?11'l.2b-mb>)( 

f9).:"In, m'] 

In LTE, a further simplification is possible. the popula­

tions of various (Zeeman) sublevels are, to a very good 

approximation equal for a given principal quantum number 

n, so that onecan consider the a to mic densi ty matrix e1e-

as independent of 1 and.~ 

having a constant value given by ( \I..,,"l- ). Thus, in LTE, 

The absorption profile functions I' and R' can be obtained 

I 
by just replacing n by n in the above expressions. The 

populations of the levels nand d can be obtained from 

the Saha-Boltzmann equation. The spontaneous emission 

vector E is given by 

( 5-10) 

( 5-11) 



E ....... 

The prof~le functions mentioned above are valid for a 

radiator at rest. The thennal motion of the radiators 

can be accounted for by convolving them with a Doppler 

broadening function as follows (Mihalas,1978; eq.9.28) 

+'tXl 

I::.:.;.(.· Ix'): (w) == J \:.x lw- i w) W Lt;) cL~ 
-00 

+1):) 

R:;w,=- RX)'(W) =. J R"x (W- % w) W L')) d.t; 
with 

-1)0 

8 'l. 

I C.w):::: 10 A.. 
.:x.:x. 2..rrc.F 

o 

I Col) 
.xx 

, 

There are two similar expressions for I1.z. 'and R;z.z.. We 

have employed I and R profiles instead of I and RI in 

computing the matrix elements of ( l2. e"l'Y'l ~. 

is the Maxwellian velocity distribution function which 
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is the probability of finding an atom with an observer's 

frame line of sight velocity "C) in the range L -c; I ~ -;- d. '"t;) 

The thermal velocity of the atoms is ~o =:: ,p:.-RT jM , 

(5-12 ) 

( 5-13) 

( 5-14) 



It is to be noted that the natural line broadening 

is always negligible compared to the Stark broaden­

ing, so that the Doppler convolved Stark pr~files 

represent a realistic situation in a dense hydrogen 

plasma. 

The 1 ongi tudi nal ( 'V = 0) and transve rse ('"IV -;:::: tr}'2.. ) 

Stark-Zeeman profile functions are given by 

and 

where e),) §. d and ~"Z. are positive unitary vectors along 

ox,oy and oz respectively, with the z-axis taken along 

the direction of the magnetic field. They are also called 

unit polarization vectors. The factors ~ and ~ are in­

troduced in order to insure that the possible normali­

zation of the polarized profiles is conserved when they 

are combined to get the unpolarized profiles I II ( W) and 

I~ ( W). The polarized profiles, for any direction of 

polariza tion ~ are given by expressions like equation 

(~-9). The profile function for any arbitrary angle lV 
measured from the z-axis, can be calculated using 

( 5-16) 



:2.. 2-
1.11 Lw) COS '"tV + I.,l (w) Sin "tV • 

The .normalized unpolarized profiles are given by 

tOO 

$ (~A) -= c: (I (fli\) / .,.), 5S (~A) d.(AA) := i ) 
II) ..l. II,.J. -1)0 1I,..l. . 

where f is the total line strength, which has to be cal-

culated by summing the squared matrix elements of the 

dipole operator (~I~) over the initial and final mag­

netic substates (see Mathys, 1983) 

C is an arbitrary constant. The Doppler convolved profile 

functions ~I • ..l.. 'C C::. A) can be obtained by a convolu-

tion procedure as described above. 

In Figure 1 we show the Doppler convolved Hoc...profile 

functions calcu~ed for an electron density 
15' -3 

Ne = 10 em 

- *1 f temperature 1:= 10 <. and a magnetic field 0 B -=- 4- IOlt Et ~ 

We have used the recent unified theory of Mathys (1984b) 

for this purpose, which takes ion dynamics into account. 

We have also marked in the figure the position of the q-' 

-component of the normal Zeeman triplet. A comparison 

of this Figure with Figures 17 and 18 of Mathys (1984a) 

( 5-18) 

(5-19 ) 

( 5-20) 
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4 B :4)(10 G 

IUl -2.00 
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..J 

-2.50 

-3·00 

-3·S0 

-4·00 ~----...... --~~~-------------....... o 2 4 6 a 10 12 14 16 

Fig.l. Combined Stark-Zeeman profile functions of H~ 

computed using unified dynamic theory of line broad-

ening. 



shows a close agreement. The small differences in the 

wings are due to the static ion theory used by Mathys 

\1984a) in computing those profiles. Mathys (1984a) 

h ( is"" -3) as shown that, at high densi ties such as Ne ~ 10 em 
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the profile functions are flat natured, though there is 

a marked change near the Zeeman peaks (the positions 

of the (] - components). But the low densi ty profiles 

show a much stronger wavelength dependence inside the 

line. He also has shown that the Zeeman peaks will 

also be narrow in low density profile functions. The 

Doppler convolution in general, widens the original 

Stark-Zeeman profile functions, and makes it deeper near 

the line core. 

In a mf,gnetized plasma, the atoms moving in a mag-

netic field 'see' an electric field (a Lorentz electric 

field), whose contribution to the Stark broadening is 

not a priori negligible, at least .for the outermost 

layers of the stellar atmosphere, though the contribution 

is qui te small for lower field strengths (B ...:::. 3 -'t 10'+ Ei ) 
U... -3 

and higher densities ( Ne > fo ClYI ) • Yet, the in-

clusion of this effect into the Stark-Zeeman profile 

function calculation would' be rather difficult and time 

consuming, i~ view of the explicit velocity and angle 

dependence of this Lorentz electric field. We are grate­

ful to Dr.G.Mathys for drawing our attention to this pOint 

through a personal communication. 
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For the computation of HeX. line profile shown 

in Figure 2b, we have chosen a model Qf normal stellar 

.atmosphere from Kurucz (1979) with 'C.-ff = 20,000 K, 

log g = 4.5 and log (solar abundance) = O. The free 

parameters of the calculation are: J.A.::: "\. E = 2. .10~~) V.:::.1T)1..) 1. -:::7f)J,. 
, ) 

The reduced intensity f =- I (0, fA) / B1 (0)1 where B~ (0) 

is the Planck function at the topmost layer of the trun-

cated model. p:: U&'l.-t-~V~ II.. ).100 and c9= O.5-t.M~CV/a.,) 

represent the percentage linear polarization, and the 

pol~rization position angle in radians respectively. The 

insert shows the full drawn curve of the main figure i t­
o 

self, over a wider range of 20 A. The line wings reach 

a continuum level at I ~ 2.0.and employed a field strength 

!t-of B = 2.10 G. The I and R profiles were computed using 

the code kindly provided by Dr.Mathys, and then the con-

volution .:is performed to get I and R. In Figure 2a we 

have shown the variation of I and R profiles (in arbi­

trary units) across the line. They represent the profile 

functions for the physical parameters indicated in the 

figure. Notice the symmetry of the I profile functions 

and the anti symmetry of R profile functions about the 

line centre. We have evaluated them at the nodal pOints 

of a ( -1,+1) Gaussian quadrature which obviously has a 

low resolution near the line centre. Because of this, the 

positions and widths of ~ peaks in the I and R profiles 
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Fig.2b Hoc. line profiles (Ao = 6563.813 .4.) formed im a tra­

nsverse magnetic field, under the influence of combined 

Stark-Zeeman effect, in a magnetic atmosphere. 
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are semewhat appreximate. However, this Figure illustra-

tes the behavieur ef these prefile functiens acress the 

line. The methed ef solutien ef the transfer equation 

is described in Nagendra and Peraiah \1985a) or sectien 
:T 

3.3. The beundary cendition used at '1:"::: '1::')))RJC..is:; =lB; 000).' 

The depth integratien ef the transfer equation is stopped 

at f"IJ :3 N 1)' -3 "'m~)I. ~ .2.. in erder to. satisfy the requirement e~ 10 C-m 

needed to. use the unified theery with ien dynamics in the 

profile functien calcu.13:t.ien. The lewer limit ef Ne 
-3 

is fixed by the condition 4.04 10 We ~ B • Only half 

of the line is shown, since it is symmetric abeut the 

line centre. The importance ef treating the hydregen lines 

with an eXdct theeretical analysis employing the theery 

of cembined Stark-Zeeman effect has been clearly demen­

strated by Mathys \1984a,1985b). We shall new see the 

usefulness ef such a calculation when adopted into. a 

realistic line fermation problem. Since all the physical 

parameters are depth dependent, it is not easy to. draw 

general cenclusiens using these results. Hewever, the 

fellewing qualitative remarks can be ~seful in the anlysis 

of hydrogen Zeeman li~ s. 

The detted line represents the ~ line cemputed for 

B = 0, which corresponds to. the case ef Doppler convelved 

pure Stark profile functien. An absorption feature near 
o 

~ 0-2.. A represents the region of the profile where 
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the Stark effect begins to be 'significant. The line 

core is dominated by the Doppler effect. As expected 

(Mathys,1985b),the central depth of this non-magnetic 

line profile is larger than the corresponding magnetic 

profile (the full line). Further, the line width and 

the total line strength are smaller than the magnetic 

profile. The important case of Doppler convolved Stark-

Zeeman line profile is shown by the full lines. For 

B ~ 'I u =- '2..\'0 G, I I::l/lr; ~ D.~ A nearly equal to the Doppler width 

of the line in deep layers of the atmosphere. The pro­

file functions have a prominent Zeeman peak near bA:;::' C.AB 

The peak is more pronounced in the case of low electron 

densities. At higher densities, this peak gradually dis-

appears. This general behaviour Qf the profile functions 

is weakly dependent on the temperature. Hence we can 

say that the line shape as well as its width are mainly 

determined by the electron density at different levels 

in the atmosphere. The temperature dependence of the 

profile function on the optical depth comes mainly through 

the Doppler broadening. In other words, the Doppler con­

volution leads to wide, shallow and flat natured profile 

function in the deeper layers of the atmosphere, and to 

slightly narrow, centrally deep and structured profile 

function in the top layers. The main characteristic of 

the Satrk-Zeeman line profiles is their si~ilarity to 



the normal Zeeman pattern. This is so because, for as 

4 
~trong a field strength as B = 2.10 G, the magnetic 

, . 
term dominates the Stark-Zeeman profile function cal-

culation. The wings of the line profile are however 

strongly damped due to ion dynamical contribution to 

Stark effect, as well as due to pure Doppler broaden-

l .A!Q 
~J: U 

ing of the Stark-Zeeman profile functions. The dashed 

lines represent the line formation by just the combined 

Stark-Zeeman effect (viz.without Doppler convolution). 

This intensity and polarization profiles are nearly simi­

lar to a broadened (electronic or resonance) normal 

Zeeman triplet of a Lorentz line shape. The shape of the 

line core region is determined by the magnetic effects 

and that of wings by the Stark effect. Notice the mer-

ging of the non-magnetic Doppler broadened Stark inten­

sity profile (dotted line) with this dashed profile, in 

the wings. Since these dashed lines represent the Stark-

Zeeman line formation for a radiator at rest, they are 

unrealistic, and given here, only to show the effect of 

Doppler convolution. These dashed profiles also serve 

a purpose to show that the impact of Stark effect (as a 

broadening mechani·sm) on the non-magnetic profiles is 

more severe (see dotted lines) than on the magnetic pro-

files (see dashed lines). 
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The magnetic fields encountered in chemically 

peculiar (CP) stars or Ap stars produce a magnetic in­

tensification of the lines, which may be nearly a factor 

of 2 or 3 depending on the effective field strength 

being longitudinal or transverse. It is well know that 

the abundances of these otherwise normal atmospheres 

have to be increased few times, to match the strength 

of observed line profiles. The Zeeman effect, in 

contrast, can much more efficiently enhance the line 

strength in normally saturated lines such as hydrogen 

lines. In the case of hydrogen lines formed in magnetic 

atmospheres, we have to use the Doppler convolved Stark­

Zeeman profiles instead of Voigt profiles, in view of the 

strong linear Stark ef~ect.in hydrogen lines, which can 

not be depicted fully, by varying the damping constant 

in a Voigt profile. Also, substantial differences exist 

between the non-magnetic line profiles (dotted line) and 

the magnetic line profiles (full line), which implies that, 

using non-magnetic profiles for matching the observed pro­

files of magnetic atmospheres may lead to discrepancy. 

Hence we conclude that the procedure described in 

this section for computing Stark-Zeeman line profiles, 

though time consuming for quantitative work, is useful 

for detailed studies on a particular line. Since these 



profiles are more sensitive to the electron densitYI 

than temperature I they offer a useful tool for esti-

mating electron density more accurately. 

5.2 The plasma polarization shift of spectral lines 

in a strong magnetic field 

The plasma polarization shift (PPS) is a line shif-

ting mechanism which affects the lines formed in dense 
1't- -3 

plasmas ( Ne ~ 1 0 em). The exampl es are the a t-

mospheres of white dwarfs and the pol~r cap emitting re­

gions of accreting white dwarfs and neatron stars. The 

nearly linear dependence of this shift on B even for 
'r 

strong fields ( B > '0 Gi ),. and on the electron den .. 

sities Ne makes it relevant in strongly magnetized dense 

plasmas in general. It is an effect originating in the 
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partial screening of nuclear charge by an excess of nega­

tive space charge I mainly caused by the perturbing free 

electrons moving in the Coulomb field of the emitting ion. 

It is important only when the radiating atom ~s ionized l 

the simplest example beiqg He II. Here the interactions. 

~f the emitting ion with the plasma environment are res­

ponsible for an average negative space charge which partly 

lies • wi thin the bound electron orbits' I .and therefore 

partially shielding nuclear charge, thus altering the 

energy level structure of the emitter. The statice level 
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shift arises due to initial correlations and is frequency 

indepenoent. Also, the shift is negligible compared to 

Stark effects in the case of neutral atoms. The shifts 

in the He-like ions is again smaller than the H-like iOris. 

The explicit dependence of PPS on electron density ( Ne ) 

and the temperature \T) leads to stronger radiative trans-

fer effects particularly in deep layers of the stellar 

atmosphere. See Jaegle etal. l 1985) for some recent experi-

mental and theoretical work regarding PPS. 

The quantum mechanical treatment of this· problem is 

due to Griem (1974) and Volonte (1975). According to 

Griem's theory, the average perturber charge density due 

to plasma, at the (Z-l)e chargedion (radiating particle) 

is given by 

2. TT ( ~ - 1) l' J 1\ V 
1 - e:x p (-271-C-~"':"~--1-) -e'l.."'-/-"h-V-]--

assuming isotropic perturber distribution. V is the velo­

ci ty of the perturbing electron. The shielding charge e A x.l'l 

within the level ~ (principal quantum number) is given by 

rr txI 

Jd.SfcLV y'1.. SinB PCV) f(V) , 

o 0 

(5-21 ) 

( 5-22) 



where ''''{I = Cy\'l.J?)~iS the bound orbit radius, Qo being. 

the Bohr radius. j~) is the Maxwellian velocity distri­

bution. The shielding by the bound electrons is negli-

gible compared to that of the electrons in free states, 

because the contribution to negative space charge in the 
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Griem's model comes mainly from free electrons in the plasma. 

However, in Volonte's (1975) model, the perturbing elect-

rons move in the Coulomb field of the emitting ion cons i-

dered as a point charge. In principle, these electrons 

can be either in bound or in free states. In the quantum 

mechanical treatments of both the authors, the radial in-

tegral shown ab0ve appears, and ~ is used as a sui table 

cutoff radius in performing the integral. In more recent 

calculations, radially dependent charge density distri-

butions in the ionic volume are also used. The shift of 

the level n ( Y'\"> 1 ) is obtained in the hydrogenic appro-

ximation as 

from which the relative wavelength shift 'of the level follows 

( 5-23) 

( 5-24) 
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where 

, e'2-
E := -.-

H '2.<to 

1"n == A")'\ + D. A'Yl is the shifted position of the level. 

In Griem's theory the perturbing charge density is esti-

mated 'at the nucleus' where it takes its maximum value 

and is assumed to remain constant at that value, through-

out the ion volume. Such a treatment is justified for 

i"=l- -3 
low n values and high (Ne ~ 10 em) density plasma en-

vironment. The ground state of an ion is not shifted in 
I 

Griem ' s theory. Let i and -y be the frequency of a point 

in the unshifted and shifted profiles respectively, the 

line shift being produced by pPS. Then the relative shift 

can be expressed in reduced frequency units as 

I 

" = 

where, as usual, 

and 

-, J 2.B.T ..yo . 6:V. =~ =--v) 
) 'D C. MGT 

( 5-25) 

( 5-2i) 

( 5-27) 

( 5-28) 



:x: -n' can be obtained by a replacement 'rI~"()/. ,,1 and YI 

are. the principal quantum numbers of the lower and 'upper 

energy levels. EH is the binding energy of the ground 

state of hydrogen atom. We shall now estimate the effect 

of PPS on the spectra of He II ion in a strong magnetic 

field. The energy levels of this ion including linear 

and quadratic Zeeman effect in a strong magnetic field 

T CB > 10 €i) have been computed by Surmelian and O'connell 

(1973) usirig the perturbation theory. We have taken 

those eigenvalues and included the PPS using the equations 

given above. It is well known that the binding energy of 

the ground state of hydrogen atom increases monotonically 
S q 

for field strengths B > 10 -\0 q (Rajagopal et al.1972,. 

Cohen et al.1970). The wavelength shift for any line in 

general can be computed using 

, 

where X-n and 'X'n,are as given before. The displaced weve-

length is given by Ay\YI' :; A'YIYl' + 6. Ann" ~n is the wavelength 
it 

corresponding to the excitation energy of tme ~ level. 

We have assumed in deriving the equation given above, that, 
~ 

En > E)\/. But in very strong magnetic fields, B ~ 10 61 

the inter-n mixing of highly excited states occurs, thus 

diminishing the impact of PPS, and even leading to a shift 
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(5-29 ) 



of opposite sign compared to the corresponding transition 

in a lower field strength. The ground state ionization 

energy is calculated using 

. 
) 

It should be noted that the mean radius of the atom de-

creases for field strengths 11 
B > 5· J 0 q. This has to be 

taken into account when extending the basic formulation 

of PPS theory in the presence of a strong magnetic field. 

Since we are not aware of whether such a strong field 

calc~ion exists, we have used the non-magnetic shift 

fonnula itself as a first approximation. However, we 

have consistently included the magnetic field effect on the 

energy levels, by employing the magnetic field modified 

eigenvalUes for a given field strength. When PPS is at all 

important, the lin~ar andor quadratic Stark effects are corn-

paritively much weaker and vi'ce versa. The asynunetry of the 

resonance and subordinate lines of He II for example, are 

caused mainly by PPS in a dense plasma. Hence we discuss 

further, the impact of PPS on the line shift of He II lines 

in a strongly magnetized plasma. 

In a strong magnetic field, a large number of Zeeman 

sub-components are produced (Kemic,1974) in any line. We 

have selected one such subcomponent, 3d - 2p which is a 
2. 1 
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very strong transition. In Figure 3a, we have shown 

the wavelength displacement A 1\ produced by PPS and 

measured with respect to the steady state wavelength 

position of this transition at a given field strength. 

The displacements are quite large in a low temperature 

plasma, because the thermal velocity of the electrons 

is smaller, leading to a larger value of time averaged 

perturber charge density at the radiating ion. The dis-

placements for a transition, 'l.P1 -150 are shown in 
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o 
Figure 3b. The PPS displacements curve for A = 298.26 A) 

the wavelength position corresponding to B = 10~ G is 

not shown, since it is unresolvable, in the adopted scale, 
o 

from the curve corresponding to A = 302.3 A. The dis-

placements are very small because (i) they vary as the 

fourth power of the principal quantum numbers of the 

levels involved and (ii) they are directly proportional 

to the wavelength of the transi tion, .both of which are 

smaller presently. The displacements of this resonance 

transition in a non-magnetic plasma is also shown (dashed 

line) •. In general, the displacements depend on the difference 

in shifts between the upper and lower levels and are 

directly proportional to the electron density Ne • While 

using the PPS fODnulae given above, in. a strongly mag-

netized plasma, it is safer to verify that the classical 

straight line path approximation is satisfied. This appro-
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Fig.3 (a) The tempernture dependence of PPS wavelength . 

displacements of a subordinate line Zeeman sub-compo-

nent of He II, in strong magnetic fields. The first 

of the numbers in the paranthesis represents the wave-

length of the transition, corresponding to the field 

18 -3 ) strength given as second number. Ne=10 cm (b Same 

as (a), but for a strong Zeeman component of the re-

20 -3 sonance line. N = 10 crn • e 
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ximation means that 't. =- "nIe' J~~T/.M ~ Y: ='l'1\ J'l. namely the 
~ eB r)'l I) 

gyroradius is larger than the radii of the Bohr orbitals 

of the levels involved in the transition. It is not a 

stringent criterion because, the time averaged negative 

polarization charge overlapping the bound electron radius 

is actually more important than the details of the electron 

paths. 

Now we shall compute a practically important line 
o 

(He II 4685.7 A) which is used sometimes in the spectral 

line analysis as a gravity indicator. In view of this 

application, we have employed a realistic model atmos-

phere of a DB white dwarf wi th T~",.} = 2iOOO K and log g 

=9, given by Wickramasinghe (1972). The normal Zeeman 

pattern of this line is computed for a field strength 

B = 2 MG. The transfer equation and the absorption matrix 

elements required for the calculation, including the line 

plus continuum magneto-optical effects and the continuum 

polarization are giv'en in Nagendra and Peraiah (1984, 

1985b) and described in sections 4.1 and 2.2. We use the 

same notation here and mention only the changes to be 

made to include the PPS in the computation of a reali-
~ 

stic line profile of He r I14685.7 A. Once again, as 

in previous section, all the physical parameters are depth 

dependent. The line absorption coefficients for ~ple 

are now calcu~ed using 



L 
~. - 'Y] H (0.) '1J-'1'i) ) 

.I. 0 

where 

and AM = 0) ..:!: 1 for i -= p, j, Y' respective ly. The wave­

length shift due to PPS is given by the equation (5-29). 

'2..) 2.. The Zeeman shift is bAa::: ee "1) It-lTm G • The parameter 

~o is calculated using 

The damping constant, a ::= r /4-Tf" A-Yp ') -r being the total 

damp~ng width of the line. f' is the mass density # f 

is the oscillator strength of the line and N the number 

density of the lower level of the transition. The results 

of calculation are shown in Figure 4. We have computed 
o 

the realistic normal Zeeman profiles of He II 4685.7 A 

line adopting the model atmosphere of a heliUm-rich DB 

white dwarf (~i = 25#000 K# log g = 9) given by Wickra­

masinghe (1972). The model atmosphere is truncated in 

h ( 17 1018 -3) t e electron density range Ne~ 10 to em to 

take eare of validity of the simple model of PPS used in 

lUG 

(5-31 ) 

(5-32) 

(5-33 ) 
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Fig.4 Impact of PPS on Zeeman line triplet of H~ II 4685.7 
o 
A line. The dashed curves correspond to the case when the 

PPS mechanism is included in the profile calculation. 



our computations. This however, provides the optical 

depth range sufficient to integrate the transfer equa­

tion accurately. The full lines correspond to the case 
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of normal Zeeman effect in the line, and without including 

PPS. The Zeeman components are well separated since the 

field strength is large~ but they are narrow since the 

damping constant a is quite small. The Stokes profiles 

are already asymmetric because of the continuum polariza­

tion and the continuum magneto-optical effect l the later 

being quite strong-in deepening the line profile and de­

polocizing it. The p and q profiles have some difference 

in shape at the 11 and u posi tions, as compared to the 

Stokes profiles formed in constant opacity atmosphere 

(see e.g .Figure 7). The position angle cP in particular, 

is highly scrambled and less aseful as a diagnostic. All 

these changes occur mainly because of the depth dependence 

here, of even the Doppler width and the damping constant, 

which are usually kept constant (see for example sectioI'l 

4.3). The dashed lines show the impact of PPS on the 

Zeeman intensity and polarization profiles. The profiles 

clearly show a blueshift, but the shift is not uniform. 

This is because the PPS strongly varies with depth. The 

shift in the deepest layers of the atmosphere is nearly 

20 times larger than the shift in the outennost layers. 

In the deepest layers, the magnitude of PPS in fact appro-



aches the Zeeman splitting itself, for the field 

strength B = 2MG which we have used. This leads to an 

extreme overlapping of the 1T and ~ -components in 

these layers. Such an overlapping, coupled with 
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Doppler width variations is responsible for the 

appearance of additional structure in the shifted 

components and sharp variations in the p,q and ~ profiles. 

The line strength and its polarization are also en­

hanced in general. Thus, an interpretation based on 

half width or Zeeman shift measurement becomes diffi­

cult if the PPS is not included in the calculation. 

Though the effect of PPS may have been overestimated 

here because of its approximate treatment, the qualita­

tive features may not change in a more exact calculation. 

The impact of any such line shift mechanism, depends 

also on the degree of Zeeman splitting (strength of the 

magnetic field). The large asymmetries in the polarized 

line profiles lead to an increase in the surface averaged 

continuum polarization near these lines, affecting conse­

quently, the field strength measurements which use the 

continuum polarization as diagnostic. The increased line 

blanketing due to PPS, in such high gravity white dwarf 

atmospheres slightly changes the original atmospheric 

structure which indirectly influences the spectral lines. 



In the strong magnetic field white dwarfs, there 

is some difficulty in understanding the differential 

weakenings and shifts of the Zeeman subcornponets, be-

cause they are sometimes incompatiable with the theore-

tically calculated wavelength positions and strengths 

of Zeeman subcomponents. We feel that the PPS of low 

excitation resonance lines of He II in strong magnetic 

fields (particularly in high gravity stars) may account 

for this discrepancy in line identifications and model 

fitting. 

5.3 The influence of atomic orientation on Zeeman line 

transfer in a strong magnetic field 

In a strong magnetic field the atomic magnetic 

moment is preferentially oriented along the field lines, 
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which results in unequal populations of the Zeeman substates 

of a given atomic level. This effect is important when 

the magnetic fields are strong enough to produce full 

Paschen-Back effect ( 13 > > 10'" 9 ), but weak enough that 

the quadratic Zeeman effect can be neglected. -Hence the 

high excitation lines formed in cool ( 1r~~ = 6000 K) 
1-

low field ( 13 ~ 10 Ei ) magnetic white dwarfs. are signi-

ficantly affected by this mechanism. Since it directly 

affects strengths and depths of Stokes profiles asymmetrically, 



the contribution to the broadband (continuum) polari-

zation is quite large, when a disk integration is per-

formed, with a given field distribution on the stellar 

surface. 

In the present calcultions we assume that the line 

is affected only by normal Zeeman effect. An approximate 

criterion for neglecting the quadratic Zeeman effect is 
It- 4-

given as 1) 13, <.< 10 I where 5, is the field strength 

in units of M~ (= 10' q) and n the upper level princi­

pal quantum number. In our study we shall employ a field 

strength of • The theory of atomic orientation 

is developed in Pavlov (1975) from which we have taken 

the relevant formulae. The normal wave transfer equations 

given in section 4.1 (see equations (4-28) to (4-36) are 

used. But, now we have employed the modified transfer co-

efficients which incluue the atomic orientation. They are 

given by 

where 

The degree of orientation depends not only'on (llWc. }2~T)) 
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( 5-34) 

( 5-35) 
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I 

but also on Land L of the states involved in the trans-

ition. W represents the linear perturbation to the di-

chroic opacities of the non-oriented atoms. Thus the tra-

nsitions involving high angular momentum states in a 

low temperature strongly magnetized plasma are affected 

by atomic orientation, to a large extent. From the equa­

tion given above it is clear that 'Y\ LW)+ifLw)~ "1 (w)+ifCw) 
lot «. 0( (;It 

when c;(::O which represents the IT - component of the 

Zeeman triplet. Also, the ~ -components are unequally 

affected, leading to a symmetry breaking of the Stokes 

vector profiles about the line centre. 

In Figure 5 we have shown the Stokes profiles compu-

ted including this effect. A DA white dwarf model atmos-

phere with 
o = 7000 K, log g = 8, taken from Wehrse 

(1976) is employed. The following parameters are used: 
~ 0 

'Y!o::::.lo, Q:::Q'1) Ao =50oo A) ]J..= 1 ) "V =1rIIt,Z= rr)Lr and a uni-

form magnetic field of B == 7.5 MG. The continuum is pol-
e G ~ 

arized and magneto-optic: "1 .,. t (}qlr J 1-1 ('A:neL fR=-1ocoS'fJ fIN "'-0·1.5 Sin'1..r 
p,(Y' 

The magnetic dichroism and anomalous disperSion are com-

puted for both the continuum and the line. The depths 

of I,p and q profiles at V ~ -400 are slightly smaller 

than those at V -::::::: +400. The position angle being more 

sensitive, undergoes fluctuations and distortion. We have 

noticed however, that the polarized continuum in itself 

contributes majorly to these type of changes in the 
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I I PI q and 41 profiles. Hence the atomic orientation acts 

as an additive perturbation along with the continuum pol-

arization l in distorting the components of Zeeman lines, 

but its contribution becomes insignificant compared to 

continuum polarization in the case of strong magnetic 
51 

fields ( 13 ~ 10 q ) • The atomic orientation effebt, 

for the atmospheric and line parameters we have used at 

present, is quite small. Obviously, for high excitation 

lines formed in cold magnetized plasma regions excited 

radiatively, this effect is more significant and produces 

asymmetric Zeeman profiles and contributes to broadband 

polarizations. 

5.4 The effect of atmospheric structure and the velocity 

field on the Zeeman line formation in a magnetic field 

The line shape and the depth of an absorption lin~ 

largely depend on temperature structure and source. funq-

tion gradient in the atmosphere. In the Figure 6 we have 

compared the intensity and polarization profiles formed 

in model atmospheres (Te~~ = 9000 K, log g = 8), of DA 

white dwarfs which are in radiative (dashed line) and 

convective (solid line) equilibrium. The model atmos­

pheres are taken from Wehrse '1976). We have used a nypo-

thetical Zeeman triplet taking representative parameters 
!i b 

typical of a weak line formed in a low field ( to - 10 ~ ) 

l on 00 
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magnetic white dwarf. The following parameters are used 

in computing this hypothetical triplet: "'lo;:::: 10~ Q-::..Q,1) 

\ =S-oooA, /-A:::. 1, 1V=1rl~ )%=1I 1) =D,:!Jb The continuum is dichroic 
1.,'):>1-,. • c! 

and magneto-optic: "'y)d J." = 1) d· 9J..., 1·1 and PI<-=-
2. . L P. • y-
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-10Cvsy I fIN :::: - O. 'l.5"" Si n"- '"0/ The relevant equations 

are described in section 4.1 (see equations (4-1) to (4-23». 

For simplicity, the transfer matrix A is taken as depth 

independent; hence the constancy of Doppler width over 

the depth does not introduce significant errors. The 

temperature distribution is the key factor. It is clearly 

seen that the lines formed in a convective model are 

deeper, and wider also, than those formed in a radiative 

model. In the convective model, slight distrortions are 

produced in the Stokes profiles near the centre of the 

TT and (J -components. In the same figure we have shown 

the effect of altering the source function gradient in 

the outermost layers of the convective model (dotted line). 

Such changes in source function gradients may be caused 

for example, by an accretion of matter by the white dwarf. 

Since the medium is in LTE we have introduced such a gra-

dient by simply reducing the temperature smoothly by 5% 

(at'l::"::: 10-2. ) to 10% ( at 7;:::::: 0 ) respectively. We see 

that a deeper 1r -component is produced in this case, and 

the line becomes narrow and developes triplet structure. 

Marked changes in linear and circular polarization also 

occur at the centres of Zeeman components. It is well 
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known that a similar effect occurs when one increases 

the line blanketing in the model atmospheres. The posi­

tion angle cp almost remains unaffected to such changes. 

In Figure 7 we show the line shifting produced by macro­

scopic steady state mass motions in the atmosphere. The 

lines in a moving atmosphere can be computed by using 

'\.9L'"t) - ~ - C.QS d.. (rt) V..,." t~) ) 

where 

instead of ~ in the calculations. \T~ (~) is the dimen-

sionless velocity parameter. ol.. tt? is the angle between 

the velocity vector 'U'W\ C~) and line of sight. Here 

we have used ~ -independent velocities with 0(.('1::) = 0 

and ~ -independent Doppler widths. The dashed lines 

indicate the Stokes profiles formed in a radially inward 

directed constant macroscopic velocity of 0.4 mtu(rv '/("m}.sec); 

1 mtu (mean thermal uni t)= VT [ '1:') • The dotted lines 

are computed for an outwardly expanding medium with a 

velocity of 3 mtu. The Stokes profiles are blue shifted 

in this case. The solid lines represent the Stokes pro­

files formed in the static atmosphere.. It should be 

( 5-36) 

( 5-37) 
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noticed that the gravitational redshift of spectral 

lines which can be computed using 

for a white dwarf of mass M and radius R, actually gives 

such a large (3-4 mtu) Ired' shift of the Stokes profiles 

( Preston, 1970). The gravitational redshift being isotropic 

over thestellar surface, leads to a 'residual continuum 

poL3rization i contributed by the Zeeman split lines, when 

integrated over the visible disk of the star. Also, a 

depth dependent velocity produces the Stokes profiles which 

look wiggly, with deeper cores and increased half widths. 

We feel that such processes which produce line distrotions 

and line shifts in extremely overlapping Zeeman lines, 

formed in strong magnetic fields, may contribute signifi-

cantly to the continuum polarization, and non-thermal like 

continuum energy distribution, observed in these objects. 

Thus a knowledge of the differences in line profiles 

produced in different atmospheric models helps in isolating 

the suitable model required for further work. We have 

shown that small changes in the source function gradients 

in the outer layers ofl the stellar atmosphere can lead 

to a decrea.:e.in too equivalent width and a large increase 

in the line polarization. As already pointed out, the 

gravitational redshift has to be included consistently 

in the line profile calculations of whit dwarfs. 

( 5-38) 



5.5 The ray refraction effects on tOe transfer of long 

wavelength polarized radiation 

The x-ray emission observed in some hot white dwarfs 

indicates the presence of hot and dense plasma emitting 

regions near these objects. The examples are Hz 43 and 

AM Her etc. A similar situation is encountered in accre­

ting columns of weak field magnetic white dwarfs and 

neutron stars in binaries. Zheleznyakov (1983) has pOinted 

out that a detailed anlysis of the spectra and polari­

zation of these objects in the infrared and radiowave 

regions of the spectrum is neeqed in order to understand 

the accretion mechanisms. In this section we have dis-
p­

cussed the radiative transfer of far infra-red (..y N 10 H%.) 

'continuum radiation' as well as a frequency near the 

cyclotron resonance occuring in the same spectral range. 

The refraction effects are included in the calc~ions. 

Such far infra-red observations are made for an AM Her 

star by Liebert and Stockman \1983). The refractive effects 

are also important in the calculation of solar radio emission. 

Thus, whenever the plasma is anisotropic and the refractive 

indices of normal waves differ significantly from unity, 

the ray refraction effects become important. 

In this section we again use cold plasma normal wave 

transfer equations (see section II.1) but in a modified 



form. The normal waves (polari~ation ellipses) remain 

almost orthogonal away from the cyclotron hormonics and 

the spectral line centres. The relevant transfer equation 

for the problem is (see Zheleznyakov,1970) 

, 

where 'U~ are the modified specific intensities given by 

'U, =- T I COSd.i \ / Il~ 
j J (J J 

where OCj) J::: -1, '2.. is the angle between the group velo-

city vector ':i~ (direction of the energy flow in a loss 

free media) and the wave vector of the jth wave. rnj are 

the real refractive indices, and Ijare the usual normal 

wave specific intensities. Clearly, ~i are also (like Ij 

the invariants of propagation in an anisotropic refra-

cting medium. The equation (5-39) holds only within the 

framework of the approximation of geometrical optics, 

where the ray treatment is possible. The normal wave 

transfer equation can be used in the place of full den­

si ty transfer equation only when W J'lI1-Y11.Ijc. » ct?1+R.)/:l-which 

means that the relative phase shift between the normal 

waves caused as a result of propagation through unit 

optical depth is a large number. A simpler criterion, 

( 5-39 ) 



176 

which is satisfied in most of the astrophysical LTE 

plasmas is that w» ..ve.ff ' where -Velf. is an effective 

collision frequency. This condition ensures that the 

nODmal waves are nearly orthogonal, similar and propagate 

independently (also see section 11.1) .. The 'cold plasma' 

transfer coefficients are appliable as long ~s I w - hWc.1 

»w IS) J2.}n/'h'1eci:' } ~:::.. Cos Y J .,S == 1J ~/" "" being the cyclo­

tron harmonic number, is satisfied. In the' case offre-

quencies away from the qyclotron harmonics, we use simple 

analytic expressions given by Zheleznyakov (1970) and 

Stix (1962) for the following transfer coefficients. 

) 

where QL = quasilongi tudinal propagation. 'l1j and ;tj are 

the real and imaginary parts respectively, of the complex 

refractive indices of the normal waves. We also use 

L 'Y\~ ] = 1- u (1- vJ 
, '\T [1-"'-'U(1-~'2..)J 

( 5-42) 

(5-43 ) 

(5-44 ) 



) (5-45) 

) ( 5-46) 

where QT = quasi transverse propagation, and 

w - _e.B > 'C, = CoS 1lJ • 
c""':-c. 'J . T 

'''e' 
(5-47) 

The quasilongitudinal propagation means that 

( 5-48) 

with the additional criterion for the cold plasma 

1.. 2.-
[ W ( 1 - ,fit I ~ I ) ] > > -Ve~~ . (5-49 ) 

The quasi transverse propagation means that 

( 5-50) 

with the corresponding requirement for the cold plasma 

2- '2.. 

[W(1-JU(1-~1.) )] > > -Vet? • (5-51 ) 
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The approximations mentioned above are used to obtain 

simplified formulae (equations (5-41) to (5-47) from 

a general expression for the complex refractive index 

(see Zheleznyakov,1970 and Ginzburg,1964). Generally 

small values of 1V lead to quasilongitudinal, and large 

values of lead to quasitransverse propagations. 

The effective electron ion collision frequency is given 

approximately, for a fully ionized plasma as 

where N is the electron number density and T the kinetic 
e 

temperature of the plasma. For a su.fficiently hot medium 

in which the free-free absorption is the dominant mecha-

nism, one can calculate the absorption coefficient in a 

simple way as 

Near the cyclotron resonance, the absorption coefficients 

and the refractive indices of extraordinary and ordinary 

waves differ from .each other by large amounts. Hence we 

can expect the ray refraction effect on the polarization 

to be stronger in this region. The cyclotron absorption 

(5-52) 

(5-53) 

( 5-54) 



coefficients for the normal waves (j = 1,2) are cal­

culated using 

, 

where 

(..J- We eB 
W :::: -" , 

c.. lTle C 

and, the squared modulus of the probability integral 

is given by 

-
'1. ~ 

I W \2.. = [exp t-;Z~ ) ] [t + ~ Sex? ex'>-) d:>c.] • 
o 

The refractive indices are calculated using (Zheleznyakov, 

1980) 

The angles ct. are computed now, from the exact relation 
~ 

( S ti z, 19 62 ) 

( 5-55) 

( 5-56) 

( 5-57) 

( 5-58) 

(5-59 ) 

( 5-60) 
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since the approximations mentioned earlier are not appli-

cable near the cyclotron resonance. The Faraday rotation 

of the polarization ellipse with respect to a fixed 

axis, in the plane, transverse to the propagation direction 

is given by 

where L is the total geometrical thickness of the plasma 

slab. 

From the table 1, it is seen that the linear (p) 

and circular {q} polarizations and the Faraday rotation 

("'( ) in radians are underestimated if we neglect the 

ray refraction effects (by taking 'Ylj =. 1 and cos otr= 1 J J=t2.) 

The effect is particularly stronger for transverse 

propagation of the electromagnetic wave, than the longi­

tudinal propagation, with respect to the magnetic field 

direction. It also tends to be stronger in a uniform 

magnetic field than in the non-uniform case. For cal-

culating these results, we have used the following plasma , ~ ~ 
parametrs:T.:::10 t< , Ne = 1,'5· 10 c,)-(\"3, w:.G·2.Q3 19Hz:;and fA= 0.8 

o 0 'lV = 10 (for QL) and '¥ = 72 (for OT) propagations. 

( 5-61) 

(5-62) 



181 
Uniform field Non-uniform fie~d 

~qL% 1. 31E-4 1.09E-4 6.66E-5 5.56E-5 

qQL% -3.05E-1 -2.54E-1 -2.20E-1 -1. 84E-1 

YQL 2. 33E+4 2. 31E+4 1. 65E+4 1. 64E+4 

5 .• 32E-J PgT% 3.25E-3 8.50£-4 2.21£-3 

'lQT% -7.93E-2 -2.07E-2 -7.66£-2 -1. 84E-2 

Y Q'l' '7.31£+3 7.26E+3 5. 17£+3 5. 14E+3 

~able 1. The difference between the solutions 

where the refractive effects are included tfirst) 

column) and neglected (second col~n) for a ~ni­

form magnetic field B = 104G. The last two columns 

show a similar comparison for a field varying as 

B(r) = 1*( R~!~ ~3,B*,,= 104'G being the field 

rle surface (r = 0) of a star of radius R* .' 

Uniform field 

p% 1. 70E-2 1.16£-2 

'q% -1.65£+0 -1. 13£+0 

y 7. 65E+5 8.02£+5 

Table 2. Same as table 1, but for cyclotron ab­

sorption of radiation in a uniform f1~ld i • 3.3 

lOSe for an angle of propagatiomV-10 e, (quas~­
longitudinal a QL). It can be noti~ed that the 

error committed in neglecting the refracti"e eff­

ects is now enhanced because of tfte transfer of . . 
radiatioD iD optically thick medium. 



Total height of, the slab is 6 KM.The parameters are 

representative of a dense thin corona around a white 

dwarf. From the table 2 it is seen that for frequen-

cies near the cyclotron resonance UJc, the linear and 

1 (H) 
J..U ..... 

circular polarization show stronger, but qualitatively 

similar behaviour as for the thermal radiation away from 

the resonance (Table 1). But, the Faraday rotation de-

creases when the refractive effects are included (first 

col~n of Table 2) because, near the resonance, 11' in J. 
particular increase in magnitude unlike the behaviour at 

a frequency far away from the resonance, where they de-

crease slightly from the values nj ~ 1) in the cold plasma 

theory. Thus we see that in the solution of normal wave 

transfer equtions, particularly for tffilong wavelength 

radiations and ~ear the resonances, the ray refraction 

effects make significant changes in the polarization over 

the conventional solutions obtained by neglecting these 

effects. 

The contribution of ray refraction effects to con­

tinuum polarization of low frequency radiation propagating 

in a magnetoplasma is found to be significant at least 

near the cyclotron resonances. Near these resonances, the 

Faraday depolarization is also effectively decreased. This 

later aspect may prove useful in the correct calculation 

of internal Faraday rotation in transparent synchrotron 

radio sources. 



CHAPTER 6 

THE SOLUTION OF THE EQUATION OF TRANSFER FOR LINES 

IN ANISOTROPIC ABSORBING-SCATTERING MEDIA IN-

CLUDING FREQUENCY REDISTRIBUTION 

1°~ ...... uu 

In this chapter we shall attempt to solve the non­

LTE (non-local thermodynamic equilibrium) equations for 

the transfer of polarized radiation in spectral lines. 

Our present interest is only the case of zero magnetic 

field. Also, we shall use the transfer equation written 

for the set of Stokes parameters :r:.t and -:I."l'" ' thereby 

restricting ourselves to the azimuthally symmetric part 

of the radiation field. An extension of these restricted 
T 

Stokes vector ( :I J.. T Y' ) equation to the full Stokes 

vector (11 IT U V)T equation and the inclusion of magnetic 

field, naturally leads us to the transfer equation for 

the well known "Hanle effectll. Further, the inclusion of 

frequency redistribution during the scattering process 

increases the complexi ty of these two problems by a large 

amount. Hence only few attempts have been made in solving 

both of these problems in their full generality. 

In the absence of magnetic fields a spectral line 

may be polarized if coherent scattering plays a role in 

the line formation. The coher~ncy is caused by the in-

terference between the overlapping magnetic sublevels of 

the scattering atom. This Illevel-crossing interference" 
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is modified by a magnetic field due to the change in the 

degree of overlapping of the Zeeman sublevels. In the stro­

ng-field case, when the Zeeman components are well seapa-

ra ted, the interference effec'ts disappear (the normal Zeeman 

effect). The Zeeman effect gives rise to line polarization 

in the presence of a magnetic field, regardless of whether 

scattering occurs or not'. The class of polarization pheno­

mena due to interference between the Zeeman sublevels in 

'coherent scattering' in a magnetic field is known as the 

Hanle effect. This type of polarization generally does not 

disappear when the magnetic field vanishes. Collisions may 

distroy the, phase relations between the sublevels and make 

the scattering incoherent. The interference effects then 

disappear. 

Polarization in coherently scattered light was dis­

covered by Rayleigh (1922). Further laboratory experi­

ments by Hanle (1924) showed how this polarization depends 

on the magnetic field. The basic physical understanding 

of these effects was developed by Briet (1925), Dirac (1927), 

Weisskopf (1931) and Hamilton (1947) to mention only few 

important references. Zanstra (1941) developed a theory to 

calculate resonance line polarization in the solar atmosphere. 

Chandrasekhar (1950) introduced the Stokes parameter re­

presentation of polarized light in the equation of radia­

tive transfer. This made it possible to attack much more 

general problems Qf the transport of polarized radiation 

in scattering and absorbing media. Since that time the 

theory of resonance line polarization has been discussed 
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and developed further by a number of authors (Voigt,1951; 

Warwick and Hyder, 1965; Obridko 1968; Lamb,1970; 

House,1971; Stenflo,1971; Omont et al,1973; Dumont et 

al.,1973; Sidlichovsky (1974). Treatments in terms of 

quantum electrodynamics are found i~ Lamb (1970), House 

(1971), Omont et.al (1973), Sidlichovsky (1974),. 

Bommier and Sahal-Brechot \1978) and Landi Degl'Inno­

centi (1983). The most complete and diverse studies 

in the theory and observations of resonance line pola­

rization and the Hanle effect has been conducted by 

Stenflo and his collaborators (see Stenflo,1976; Stenflo 

and Stenholm, 1976; Stenflo,1978; Stenflo,Baur and Elmore, 

1980; Stenflo,1980; Auer,Rees and Stenflo,1980). They 

have written the transfer equation in a form analogous 

to the formalism normally used for the well explored 

non-LTE line formation in a two level atom. This hdS 

helped in linking these two areas of the line formation 

theory. Rees and Saliba (1982), have extended this 

formalism to a slightly more complicated problem of reson­

ance line polarization with partial frequency redistri­

bution, and used them in a study of C~ II K resonance line 

polarization (Rees a:r.dSaliba 1983). Detailed studies on 

similar lines have been carried out recently by McKenna 

(1984) and the references therein). All these authors 

have used the plane parallel approximation. The obser­

vations made by Brukner (1963), Stenflo (1974,1980) and 



Wiehr (1975,1981) on the linear polarization in re-

sonance lines of Ca, Na and Mg have been quite success-

fully explained by these theoretical calculations. But 

still, the basic theoretical approach itself needs to 

be improved, since some simplifying approximations were 

made in all the earlier calculations. By far the most 

general solutions have been obtained by Rees and Saliba 

(1982) who have compared the solutions obtained for 
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coherent scattering, complete redistribution and partial 

redistribution trepresented by R ) scattering mechanisms 
nA 

in the line. 

In this chapter we shall first describe the theory 

of resonance line polarization in the form which we have 

used (see Dumont et al.,19??; Rees and Saliba,1982) and 

which also happens to be a most suitable form for the 

parameteric study which helps develop an insight into the 

physics of line formation (see Mihalas,1978). We then 

describe the useful limiting forms of the general equation 

and compare the solutions obtained by our method with the 

solutions obtained by Rees and Saliba (1982) in these 

limiting forms, by taking few test problems. We then 

describe our method of solution in some detail. Finally 

we present a comparison of the solutions obtained for 

plane parallel and spherically symmetric media through 

sa~ple cases. 
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6.1 The theory of non-LTE resonance line polarization 

with frequency redistribution for a two-level atom 

We now describe the relevant equations. The follo­

wing notation is used throughout this chapter: CS= 

coherent scattering1 CRD = complete redistribution; and 

PRD = partial redistribution. 

Consider an atmosphere which is isotropically illu­

minated only at the lower boundary ( '1:' ::: rt''mo,x ) and 

has isotropic distribution of scattering particles. Then 

the radiation field is azimuthally symmetric about the 

normal Z to the surface and can be described completely 

by two Stokes parameters, IA and Iy as already mentioned 

in section 3.1. We shall use the two-level atom approach. 

The model atmosphres now used are finite isothermal slabs 

or spherical shells with (or without) a given thermal 

source distribution. For clarity of discussion, we shall, 

at present, neglect the depolarization and frequency re­

distribution by collisions. Our main interest is to show 

that accurate solutions can be obtained from the discrete 

space methods of solving the line transfer equation even 

wi th a modeS:: number frequency points used for the frequency 

integral in the source function. 

We adopt a simple vector analogue of standard non­

LTE theory for a two level ~tom with an unpolarized back­

ground continuum. For the sake of generality, we shall 

write down the equations for a spherically symmetric 

medium. 
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The equation of line transfer in divergence form in 

spherical symmetry is given by 

T 
where I eXJ', i) ~ [I1 v:,p, r) I y (x, fl) Y") J is the 

Stokes vector specific intensity at an angle 6J)==COS-~(~l:[Cl,1]) 

to the symmetry axis ( radius) at the radial- point, in 

the atmosphere, and the frequency point x-;:::; .::v--vo 
t::. ~p 

in the line. -y is the frequency of the radiation, -Vo 
is the line centre frequency, and A ~ is the Doppler 

width which is assumed to remain constant throughout the 
J ~ 

atmosphere. ~ [x~ p~ Y) is the source vector. If A('t)-hrrr 

is the area of the spherical shell of radius J then 

writing 

~ (X, 1-'11 )1") - A L ... ) I (;i" f-il Y') 

J 1 -a (x, fJ, Y) I 
A (r) ~ (;::c) fl, y") 

where b ty) = }3:g(r2 , By LV) being the local· Planck func-
"2-

tion, we can write the equation (6-1) as 

Lt. E- U l'X u Y) + 1. ~ r(1- v." 'U. eX.; fA, '(')1 = 
J ()y- --' , I, Y' at" L! ,-") - ~ 

k [p + tV (:x, IA. y)] [~ (;x) ~, 'r) -1!- (x, J-lJ 1")] , 

(6-1 ) 

(6-2) 

( 6-3) 



for jA>o and, for the oppositely directed beam (fA <'0) 

as 

L 

P [~+ cp Cx} - P J 'r)] L~ (X;, - J-l) Y') - 1b tX)-p ~ y) ] . 

The quantity ~ is the ratio of unpolarized continuous 

absorption coefficient per unit interval of xto that 
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in the line (= integrated line opacity). The normalized 

line absorption profile is represented by a Voight func­

tion, wri tten in the usual notation as 

+ 1 -rOO -t J J <P (X~ ~J '1') c!~ eLp. :::: i 
-1 -0<) 

with constant damping to Doppler width ratio a. The 

source vector is given by 

~ ('): J ,... I Y") = ~.ct..;-"L!..L-==:...::=.-=..!-..::...:...::::---=-::-,:--,=--~ - ) 

c! 
Where .5 Ly) = f(Y). f3tt)h ~ 

J 
ll= [I ... 1] is the unpolarized con-

tinuum source vector. f' (Y") is a parameter proportional 

to the temperature gradient in the medium. The mean opti-

cal depth at frequency ~ is defined as o 

(6-' \ 

( 6-5) 

( 6-6) 

(6-7 ) 



where 13n. and 51-1 are the Einstein coefficients and 

N 1 and N"2- are the population densities of lower and 

upper levels respectively in a two level atom. The 

line source vector for a two level atom is given by 

-too +1 

( 1- £) J J I J ) J) C' I I I + ( .\ = ~(;X:''''.JY-)_,,:) ~x_1 R (x, ~,:x.,JA,"t Y X J f-tJY-) t:t.}-L c B "i.l1 . 

The scattering redistribution matrix R (")C./f'L):>i/~') y-
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accounts for the correlatio~ in frequency, angle and pola­

rization between the light absorbed at frequency x' in the 

direction fl' and emitted at frequency 'X in direction fA- • 

In ord,.r to simplify the numerical solution of the transfer. 

problem, we adopt a prescription for the redistribution 

matrix, suggested by Rees and Saliba ~ 1982), ,a hybrid 

mOdel which retains the angular correlation present in the 

resonance line scattering polarization via the phase matrix 
J £.. ( t-t I ~ ) and introduces the frequency correlation via 

the angle averaged scalar redistribution function 'P-,n.1I ():.."x') 

of Hummer {1962). It is written as 

fJ- i 1 'l.J 1 +4 (l-!:I)' L 

( 6-8) 

(6-9 ) 

( 6-10) 



is the well-known phase matrix for resonance line 

scattering (see Chandrasekhar,1950). The factor (1-E 1 

measures the effect of depolarization. It depends in 

the ~..(. and ~u of the transi tion involved. The formulae 

for E1 are tabulated in Chandrasekhar ~1950). They 

correspond exactly to the quantity WQu. given by Omont 

et ale (1972). A ffiq.ximum polarization occurs for C3.t=0)---1 
o 
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type transitions (e.g.the Ca I 4227 A resonance 

line) where q" = Wlu = i . In this case Pel-'; IJ') reduce 

to the Rayleigh scattering phase matrix. 

'\)0 'l. 

~JrA (:x., X'):= ~/2.J e'LL [to..vi1 ~x~'U )_ttl.Yl-1 E~~'Ll)J d:u.) 

tlx-~I 

where 

x = Ma.x (x) X' ) a.:nd.. X ~ MiYl (XJ X') • 

Thus the line source function can be rewritten as 

The probability per scatter that the photon will be 

destroyed by collisional de-excitation is given by 

( 6-11) 

( 6-12) 

(6-13 ) 



• 

In our parametrized calcul3.tions here, 6 and ~) are 

assumed in advance and are required to remain constant 

throughout the atmosphere. 

For the calcul~ion of profiles under the assumption 

of eRn, we have used the following equation. I 

For the approximation of coherent scattering, the follo­

wing equation is used: 

It is to be noted that the following normalization con-

ditions 

+00 -H -tOo +1 

~ J c1X J cif-l J dx' i cL~1 
-0) -1 -co -1 

and 

are always satisfied by the redistribution function. In 

practical computations where finite number of angle and 

132 

( 6-15) 

( 6-16) 

(6-18) 
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frequency pOints are employed, these normalization con-

d1tions are exploited to renormalize the redistribution 

fUnctions and profile function in the se.lected bandwidth. 

In the static medium, the following symmetry proper­

ties of redistibution matrices can be used to save the 

computing time: 

and 

When there is non-coherence in the atom.'s' frame (e.g. E:1.:f-1) 

the relation (6-22) is not satisfied. In a static medium 

one needs to calculate only half of the line profile be­

cause of the symmetry of the profile functions, redistri­

bution functions, source functions and the specific inten­

sity about the line centre. In all the examples studied, 

we solve the line transfer equation in the rest frame of 

the star. For a critical discussion of radiative transfer 

in rest frame, see Mihalas (1978). 

( 6-19) 

( 6-20) 

( 6-21) 

( 6-22) 
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6.2 A general numerical method of solution of the problem 

of resonance line polarization transfer with frequency 

redistribu tion 

. We shall now describe the method of solution of the 

polarization line transfer equations with frequency redis­

tribution. The equations are writtenl again for the more 

general case of a spherically symmetric media. All the equa­

tions automatically go over to the special case of plane 

parallel medium if the curvature factor 

Calculation of cell operators: In order to solve the 9quations 

(6-3) and (6-4) we use the I di'screte space theory of radi-

ative transfer. For that purpose, we have to develop the 

reflection and transmission operators which embody all the 

physical information contained in the problem posed by us. 

In the discrete ordinate method where we employ a finite 

number of angle and frequency points (usually the nodal 

points of a suitable quadrature formula) to perform the 

respective integrations, the reflection ( X ) and transmi-

ssion (1) matrices are the 'matrix operators' having a 

matrix structure dictated by the problem at hand. The 

accuracy of the discrete representation for the continuous 

variables is determined naturally by the degree of appro­

ximation used for the discrete representation-in other words. 

on the number of angle and frequency points employed for 
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the purpose. However it should be noticed that the 

accuracy of the intensities and fluxes (as compared to 

a standard analytical solution) are generally very good 

even for a modest angular and frequency resolution, be-

cause the differencing schemes employed to discretize the 

transfer equations are essentially conservative in nature 

and are of second order. Hence they can be made as accu-

rate as possible by selecting smaller and smaller step 

sizes. We now have to descritize the equations (6-3) and 

(6-4) in frequency, angle and space coordinates. For fre-

quency discretization, we choose the discrete frequency 

points 'X" and weights 0..(. so that, 

-+-1lO 

J ~ (;x.) .f1 (x) d.x. "".f a., He,) , 
_'()Q .1.'::"-]; 

and for the angular descritization, we choose angular 

points {I\J and the weights (cd such that 

~, ~ 

J t (1-4) elf C!.r b~ ~ (JL~) ) 
o 6:r1 

m 

.L b· = 1 • 
4=1 ~ 

Following Peraiah and Grant (1973) and Grant and Peraiah 

(1972) we shall integrate the transfer equations (6-3) and 

(6-4) by using the 'cell ' method. Here, we integrate the 

transfer equation over a~ interval LY'l\)'Y"M'I]X [","~-1,; J /-L3+t, ] 

defined on a two dimensional grid. By choosing the roots 

p~ and the weights Ca of Gauss-Legendre quadrature 

( 6-25) 



formula of order J over (0,1) we calculate the set J-t~± ~ 

as given by 

1:;:; 1'2. ',3., ..• ' jo 
(I ~'" 

we shall define the boundary of the an~lar interval as 

r~ -=-0 • . It is obvious that t-tj_\. ~ Pj. ~ f- Jr1: • Inte­

gration of equations (6-3) and (6-4) in the interval 

[fA: ) ...... -1--* ] gives us, for the frequency point i in 
J-~ "~ 

the line, 

and 

4 +1: t -.... -I- -- - ,1 ] t'2 (1-f) [0.\1 [R ... /, ()") :!d-.,.,(Y)+ E .... ,.,t'd ~i"j (Y")j Cj , , ./ :r . 1 I •• I 4 1 I j ,):1) I, ~ ,3 l=- j :: ,~,) •• 
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(6-27) 

( 6-28) 

(6-29 ) 



where PA is taken as the mean value (or mid point) of 

the angle interval l f'lj-i. ) ~T.1.1. We have used the 
'l..- :l.> 

abbreviated notation 

± 
U, . Cy-) =- 1::!:: eX. I ± U4 ) )") ; 
..... I,~ I r~ 

++ 
E" ,1.1 (Y) - .B (Xi. IAj ; XiI I I-'jl) -r-) ; 

I,J) 1,3 

-+ 
S ..... , (y-) = 8: ('Xb-~:i) xj,)fdd y-) ;, 

',1 j I ,l 
± 
~.. (Y' ') = ~ ('Xi > ± P. j I Y) , 

" ~ 
etc. The vector notation as of now represents 2 dimen-

sienal column vectors or (2x2) matrices. The reason for 

the choice (6-27) should now be obvious; it permits us to 

evaluate the scattering integral term with the maximum 
+ -

accuracy assuming that the solutions Y-I,j (v-)) 1! i,l C'r") 

are sufficiently smooth in the angle space. 

consider the diffuse radiation field, we can 

this is indeed the case. We shall now define 

Provided we 

be sure that 
± 
~ i '-H- Ct) 

I 1 2.. 

197 

( 6-30) 

which are the intensities at the boundaries of the angular 

cell, as 

:t 
U l . .i. tt) -=:. 
-,j;':2,. 

f 
) 

(6-31 ) 

j = 1,2,3 ••••••• , J-l., 
+ -

and define 1! i .1. tV') = 1t l ..1- (y) by interpolation, as 
J 7. ) 2-
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We can write a system of J equations, like the general equa­

tions (6-28) and (6-29) for the set of angles over the in­

terval Lo,l] • That system of equations can be wri tten 

in a compact form if we use matrix representation, as shown 

+:t ++ -t-l' + +- +- ,1} + 1..2.. (i-E) \" [Or ('(') R .. (Y") C U .. ("'t) +0.., C't),B., ., tV') f .... J:f, ()")J ,; "L " ---I I' -2.J" -I' I I i -.. 01. ,= -1:' , 

and 

( 6-32) 

( 6-33) 

( 6-34) 
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where, the factor 2 in the subscripts 2J, comes because 

of the two states of polarization we are considering. 

In'the most general (I.t I'f" U V) T representation of the 

polarized light, 2 will be replaced by 4. As of now, the 

column vectors are of dimension 2J and the matrices are 

of dimension (2J x 2J). They are defined as (written here 

explicitely) 

± l Yi;n (L') 

+ 
'll- (L) = ['U. 1-1 Y\ ()...) J 
-1,Y\ .,- ) 

.±. 
'U . 0<) = ['Uj ± 1 '" (R) } 
-IJ ),,) I ." 

where, for example 

.,... 
U. ±2. "" (L.) ) .' - - . _. 1..L j , :t-Jj'YI (L) ] ; 

I. , , • 

T 
CU. ±l "" (R) - - - .. - ·U. +:r .,JR.)] , 

.... ) , ' , ) .... -- J' , 

with j=1,2,3 •••••••. J represents the L component of the 

specific intensity vector at the outer boundary of the 

nth shell of the stratified medium. 

M = [th j4 J • M = L}-t· '0.."/] , 
-"L.'l .Q. .t:1:r ) -:1 j jj 

G = [£"3" ~JJ • ~:r -:& [ Cj ~~/J } ...... 'l."S 9.. ) 

( 6-35) 

(6-36) 

(6-37) 



± 
~iJYI (L.)::::: [qJj, ±L 11 (L.) 6H /J j 
± 
liYl (r.,) -::: [~~) ±~)'h (l<) 6j~1 J, 

J 

with jfjl = l,2,3 •••• J representing the running indices 

!Or rows and columns respectively. ~ k. is a Dirac delta 

function. 

T 
h -[1 i J. 
- '.l-'J - - '"J - ':r ) 

J 

.!-:r ::::: [111, 11 , • - •• 1J .. 

.!."2..1 is the uni.{ matrix of ,dimension (2J x 2J). The cur-

va ture term 1-1-"- ~ ot' the original transfer equation 
i ~, :t 

is approximated by the j}~3 matrices which are defined 

according to the Peraiah-Grant method as follows, 

+ [ ± - 1\ 
1\ =:. --:r 
-- 2'1 '.Q 

where the (J x J) matrices 
I 
1\ are defined as 
---:r 

• 
. I ..l 
J = cJ.-r1 
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(6-38) 

t 6-39) 

(6-40) 

) 3 -= 1, 2,' ..... "J-1 ; 

- • j'= ~-1 - } j _ '2-,"3"' .. - . 'J 



and 

-1 
'2.C' ;1 

&'/1 L ) 

with j and j' representing the running indices for rows 
± 

and columns respectively. The matrices ~3 are called 

'curvature scattering' matrices, the reason for which is 
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explained later. NOw, we define the redistribution matri-

ces as follows: 

where the block matrices corresponding to the components 

of the phase matrix are defined as 

+ ..... 
R. 1 . I 'l. nfP, ~)-

'I ~4. J 

++ J J 
Here again the usual convention of n ..... 1 'J",= 1«('):..;.14; ) ~.t.""~ ; "f'l'I) 

I j .. ,I.,j, " 

is understood. The redistribution matrix (6-43) is re-

placed by a (4~ x 4J) matrix_ in the general case of 

complete Stokes vector {IOU V)T. Im that case, however, 

it contains explicitely, all the azimuth dependent Fourier 

components also. 

( 6-42) 

( 6-43) 

(6-44) 
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Now, to perform the discritization with respect 

to the radial coordin.Jte -r , we have to integrate the 

equ"ltions (6-33) and (6-34) over spatia.l cell ['Yn J Yn .... 1J 
Such an integration from ~ to 'Y'YI-t-1 gives us 

+. + + + --
M. r lJ.. - U. ] + f [1\ 'U 'L + AU, .LJ + 
--- 2."3 L - I. Yl t 1 -', Yl c.. -1.:J' -', Yl .... "'L ........ 1.'1' ~ 4.)"I'I-t- 2.. 

, 
) 

and 

+ ci~ YI +4: 13 iJ i ~ Yl+~ s;, 2.."J" U~ I) Yl+4r. ] -
Here the subscripts n, n+1 and n+~ refer to quantities at 

y. y; and 'Y"",~.L where n+~ refers to a sui table average 
7), r> ... 1 It'l-

over the cell (or a mean value) of the parameter over the 

cell bounded by Yh and 'Y'l1t"1- We can take the • shells' into 

which we have stratified the medium, themselves as funda-

( 6-45) 

( 6-46) 
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mental !cells' provided certain conditions (to be 

stated later) are satisfied. If not, we can subdivide 

the shell into a finite number of identical subshells 

where each subshell satisfies the required conditions, 

and hence a subshell then represents a fundamental 'cell~ 

The £ and ~matrices for the shell can be generated by a 

doubling procedure starting from the operators of the 

subshell. We have used the following definitions in 

writing equations (6-45) and (6-46). A'Y'YI+-.1.="'f111-1-1'.,,) 
2-

1: =- kL,y: ) 8 Y" ~'Yn.L ::. 1. (r: + "Y'\,\)) bei ng a mean radius. 
l\T~ \... 'l'I+~ "tH" 2... ... 2- )..... )'1 .... 1 

~ -:.l:lY; +4- J"'t~. i is called the curvature factor" A convenient 
c.. ." 2.... r~ 1: 

defini tion of 1J" J.... is -J., Y\-+ 2.. 

1 -2. 

+ 
( "'U" -I, "'(\1''1 

which is the conventional 'diamond' difference scheme which 

was used in the plane parallel case (Grant and Hunt, 1968). 

Because of the scattering integral in -the transfer equation, 

all the frequency points in the line have to be treated 

simultaneously. This means that the equations (6-45) and 

(6-46) have to be written for the set iX,d of I frequency 

pOints and solved. This we can do by writing the system 

of equations in a matrix form. For that purpose, we need 

a general index ~ which is defined as 

(6-47) 



with p,i, and j being the running indices. J and I are 

the number of angle and frequency pOints, and p is the 

number of polarization parameters considered. In our 

present study, p = 2 and, for the general Stokes vector 

p = 4. Thus, now onwards our column vectors and the 
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matrices are of dimension (2IJ) and(2IJ x 2IJ) respectively, 

and we do not write these subscripts explicitely, for the 

. economy of notation. The equations (6-45) and (6-46) can 

now be written as 

and 

( 6-48) 



where, for our present studies of restricted Stokes 

vector we have, 

The block-diagonal CUIVature matrices are given by 

+ +- ± ± :t 1\ [ t\~ R' ] 
. 

I\ld~1 = " •. I 
:=: 1\ ,( f-tj J f-{j') - ) 

33 

The intensity vectors are defined as 

+ ± 
u 
-'h 1J.~ == 'U (X,i , + '''\j ; 'Y"..., ) 'p) e~(.. 

K,YJ 

The profile function matrices are defined as 

The thermal source matrices are defined as 

± ± 

.8'Y1+l::: [r ~ + ~ ~~ Jll-t t 81''11--1: c5k~1 . 

The redistribution matrices are defined as 

40+ ++ -t4-

R -= [ RL. ,-' 1:J )' R ~J =. R (x; I-l..i P ~ x;, ""., p) -J 1':11++))' . 
-"'+~ K K '1'\+ R ",.1.. ~ oJ ' ~ oJ ... • , ');. ) " , ~ I·-t- 2.. 
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(6-51") 

( 6-52) 

(6-53) 

(6-54 ) 

( 6-55) 



etc., the weights matrices are defined as 

etc. , 

with 

and the renormalized weights of integration defined by 

++ 
0.. 

.i. )1+..1... , 2.. 

the running indices for the rows and columns of the con-

cerned matrices. They are defined as 

k = ~ + ( 1-1) J + (p -1)"1":r j 

~ = 1,2 

~ - 1, '2., 3, - - - :r 

1 ~ ~ ~ '2..I:r 

hi-=:: j/,.-l-U.I_1):r+(~-1)I:r) 

~ = 1 .. ~ 

~' - 1, '2-, 3)--,--T 

\ ~ 1<' ~ '2.I"J 

By using the equation (6-47) we can rewrite equations 

(6-49) and (6-50) in the canonical form 

2DG 

(6-57) 

( 6-58) 

(6-59 ) 

( 6-60) 



M 1:' [.:1:.+ c:S ++ 1-i-J ~ + 
1'l .. -- 'f --R W _....£/\ """ 2.. _ 2.- - l.~ 

tl -+ -+ e -
1. R W +..£ 1\ -r--- 2.-

rr: - 6 -- -- e + .M. + - r ~ - - R W J-~ 1\ ..,.,.... '2. L..,...J 2. - .,..,. 2.. -

t'r 

where & -::::: C 1- c) . The subscript (n+~) is left out, 

for convenience, A comparison of this equation with the 

interaction principle 

+ t-
U t l'fl+1, 11) -yo Cn, 'Yl """0 11" -1'\ ;-1 ---

-..--.,. ---u -r Cn;-1, -n) t (Yl) Yl-H") 1!-'Y\ t1 """'YI - --
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(see Grant and Hunt 1969 a,b) for a fundamental layer 

bounded by the planes nand (n+l), gives two pairs of re­

flection (r) and transimission (jJ operators (matrices). -
These linear operators can be expressed in terms of 

matrices and vectors appearing in equation (6-61). With 

the following auxiliary quantities 

-t- [ -t- --t -1 -1'" --t _+ -1 
i = ! -1 1. J) 5 = [1-1 1. ] } 

1:' 
P ==M--c 
-- - 1. _-

+ -1 
b.. =[M +~~ J -- - 2..-+ 

. 
) 

. 
~ 

-+ 7::' --
q ':::: -. A .y~ o 2.. --' ---

) 

A =:: Iv\_~-::z. , 
- ±::.!. 2- =: + 

!J= = [.M + i E _]-1 , 

( 6-61) 

(6-62 ) 



~+ 6 T+ 1-+ 0 + 
~::= --- R W + ~ A ' --+ 2. - - 1:' - ) 

i- ~ -- -~ Pc. 1-
~ ~ ..,..-RW ---A, 
- - 2. - ........ '1;' '-: 

we can write the transmission and reflection matrices as 

E Cn+1J -n] {- [~~ + i- i+ J 

1, (11, not-i) - ~-t [~2. + i+ l-r- J 
r C"n-r1.,)1) - i,-t i-+ [! + t fl] 
y.. ('Y1 J )1+1) == ~+- ~+- [! + l:l,-!2. ] 

and the Source vectors as 

+ 
~- [ ~ i + i- ~- g-] 1:' L ('Yl-t1,"r1) = 

-... 

t ('Y\, "rI+1) -= i+[~- §.- + i+ 6 ~+ J1:' 
"-

All the cell operators given in the equation ( 6-64) and 

(6-65) correspond to a cell of optical depth of 1:::' and 

Curvature factor ~ • The simplifications obtainable 

computationally in a non-polarized case, or angle average 

redistribution functions, or static media can be easily 

recognized and the computing time and memory can be saved. 

We must choose 'l1 and Pc in a cell in such a way 
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( 6-63) 

( 6-64) 

( 6-65) 

that we obtain a stable solution. The requirement for 

stability is the positivity of the matrices ~,£.'~jlnd~_ 
+- -t 
Gt I§". For instance, consider the rna trices ~+ and b._. 
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TO obtain non-negative ~+- and ~_I we must have positive 

diagonally dominant character, and negative o~f-diagonal 

e'lements in the matrices (M. + 112. '1: E +-

respectively. This requirement of ~:t >,. ~ leads to a 

criterion 

for the diagonal elements, and 

fOr the off-diagonal elements. The condition (6-66) can 

always be easily satisfied. However, the condition (6-67) 

imposes a severe restriction on the size of the curvature 

factor fc. to be used in each cell to obtain non-negative 

t and r matrices. FOrmally, we divide the medium into seve-....., 

ral shells of equal optical thickness. If the optical depth 

in each shell ~,,4hd).. > 1::' Cell. , then we have to subdivide 

the shell and use the 'star algorithm' given in Grant and 

Hunt \1968) or Peraiah (1984), for calculting the..r. and!... 

operators of the whole shell. If the medium is very thick, 

then we can use the 'doubling method' (van de Hulst, 1965) 

which is faster. In the doubling method we choose 1: and ~ 

( 6-66) 

(6-67 ) 



values satisfying the conditions (6-66) and (6-67). If 

very high accuracy is neede~ one can take small fractions 

of 1:'. and ~ so tha t the truncation errors would be mini­

mized in compounding the cell operators. It should be 

kept in mind that too small values of 1:' and Pc. may 

lead to round off errors due to enhanced arithmetic 

operations. If we halve the shell p times, the star 

algorithm is repeated p times, and in this event, the cur­

vature factor ~s and the optical depth '1::'ss of the subshell 

or' cell' are given in te rms of tho se of the shell (vi z. ts 
and rt:s ) by 

~s ~ ~ {P / 1: 1 - ~ (i' - i P ) ] :; 

-p 
1::'.ss = 'C'..s 2. , 

The square of the mean radius of the subshell"is given by 

where ~ corresponds to a subshell approximately midway 

in the shell, and ~ is the curvature factor for the 

whole shell, defined as ~s == by- /-rout • 't'ss is also 

derived from the assumption that the absorption coeffi­

cient in the shell is uniform. R is the outer radius of 

the shell in terms of the inner radius of the medium, and 

K ::: 2-1 - 2-P • 
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( 6-66) 

(6-69 ) 



One of the important checks of the method is the 

conservation of flux. In a purely scattering medium, 

where energy is neither absorbed nor emitted, the input 

radiation energy must balance the output energy. This 

can be achieved only by satisfying the normalization 

conditions to the highest accuracy possible (say machine 

accuracy). The normalization condition for the redistri­

bution function is given by 

2.1:1 'l.J: 1 * I I [w;+~: W:+ + w/ R-~ 'W~+J -1 
1>::1 'l~1 

) 

where 

WP.G. -, , 
and 

see also equation (6-60). Similarly the normaliza.tion on 

the curvature matrices is given by 

h = 1, '2, - - .. - .. :r . 

The boundary cond~tions we have employed for the finite 

atmosphere of optical thickness T can be written ~xpli-

citely as 
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( 6-70) 

( 6-71) 

( 6-72) 

( 6-13) 



+ 
~1 -=-0 ] 

that is, no radiation is incident on either side of the 

medium. The continuwn source function (the Planck function) 

is always set equal to 1. In semi-infinte atmosphere$, 

however one has to use the conventional boundary condition 

+ 
1!-'\ -=0 

) at 1:;'-::>[) ] U -"5 . oJ: 'I::=T ..... N+1 ) 

Further details on the line transfer in spherical or 

moving media can be obtained from Peraiah (1984). We 

describe our parametrized study of resonance line tran­

sf~r in the section 6.3. 

6.3 Limiting forms of the resonance line polarization 

transfer problem and their solutions 

In this section we shall compare the solutions obta-

ined by our method with the accurate solutions of Rees 

and Saliba (1982) on some test cases, and discuss some 

advantages as well as difficulties of our approach in 

comparison with the standard Feautrier's method which 

(6-74) 

( 6-75) 



has been used by these authors and is widely used as 

well. We have considered only finite atmospheres with 

a scaled Planck function B = lOO.We always use angle-

averaged partial redistribution function 'R~A in the 

PRD calculations. We use a 3 point Gaussian angle qua­

drature on Q <"]-A- ~ 1, and a trapezoidal frequency qua­

drature on Q<.X<'DO. The parameters of the study are: T, 

the optical thickness of the line forming region; a, the 

dimensionless damping parame·ter; € , the thennalization 

parameter (or the probability of photon destruction during 

sca ttering); p , the parameter which represents the amount 

of coupling of the line to the continuum levels of atom. 

Other free parameter which we have n~set equal to zero is 

the depolarization factor d = (~-E, ) which represents 

the amO\lnt of mixing of the dipole like and isotropic radi-

ation fields. This choice represents the case of maximum 

polarization attainable under a given set of conditions. 

The transfer problem is solved using the procedure des-

cribed in the section 6.2. 

Complete redistribution approximation:- The complete re-

distribution is quite a good approximation in the line 

core. It is very easy to handle in the transfer problems 

and economical in terms of computing efforts. Major part 

of the work in the theory of resonance line polarization 

has been done using this assumption of ORD. The definition 

of CRD is given in the equation (6-15). 



In t.he following, we shall show the resul ts of our t:est 

case wi th CRD, for the sake of discussion. 'l'he beh,w.i.our 

of CRD profiles in r,::;sonance line pol,irization has however 

been, well studied by Dumont et al.(1977) and Rees and 

Saliba (1982). For radiatj.on in the normal dir.ection 

( f = 1 ) # symmetry of the problem demands that the 

in tensi ty components satisfy I = I and hence the linear 
I r 

polarization be identically zero at all the frequencies I 

for any redistribution function. The polarization is lar-

gest for the smallest values of f' i.e.near the limb of 

the stelld r 3tlnosplwre. For CRD, the line source function 

!i L ( X J fL 1 r) (see equation (6-13» is independent 

of fr,'quency x. In Figure 1 we have shown the specific 

intensi ties and the polar:izations in the line for these 

values of observing angles fL. It is clearly seen that 

the polarization is nearly frequency independent for the 

optically thin medium. However the eRD polarization pro-

files develop a peak at the line centre for optically thick 

media. The large increase of linear polarization in the 

Ilne, for smaller values of f is clearly seen in the<line tra­

nsfer calculation'also (See section 3.4,where we have shown 

the behaviour of intensity and polarization for the coherent 

scattering of the continuum radiation in a non-magnetic 

Thomson scattering medium)~ This angular behaviour of in~ 

tensity and polarization has actually been observed in the 



-t Complete Redistribution 

_21---------------PI .&ll) 

x 
Fig.l.eRD profiles for three dire-

ctions of propagation in a plane par-

allel medium,given by PrO.113,fA2= 0.5 

and fA- 3 = 0. 89. 

"'---''---r--,- .. -- .. ,---r--__ ---"T""I 

-, 

-, -~ -4 
0 

....I 

-5 

-6 

-7 

PartlQl Redistribution 

'·2 

0.6 

x 
Fig.2.PRD profiles for the three 

directions of propagation, as 

mentioned in Figure 1. 
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solar atmosphere. In the case of stars, the integrated 

flux also shows a qualitatively same behaviour. This is 

the reason why CRn computations have been successfully 

used in the theoretical interpretation of observed res~ 

nance line polarizations. It has also been shown by Rees 

and Saliba (1982), that the difference between the line 

profiles and polarizations computed using eRn and PRO 

approximations is indeed very small in the line core region 

( X <. 1). As is expected, the PRD effects are dominant in 

the line wings, and a careful treatment of PRD effects 

needs a finer frequency grid than what is normally needed 

for CRD computations. This point, we will also show through 

Our model example of PRD. In table 1 we compare our solu­

tions with those of Rees and Saliba (1982). We have compu-

ted this solution (which is the same one shown in Figure 

1 also) by using a very modest frequency grid of 8 trape­

zoidal frequency points with a spacing of 0.5 Doppler 

widths. Rees and Saliba (1982) have used 20 trapezoidal 

frequency pOints, the first 15 spaced at in"tervals of 0.25 

Doppler widths and remainder being determined logarithmically. 

The good agreement with their exact results is encouraging. 

The use of smaller number of frequency paints in discrete 

space theory implies that the demand on the computer memory 

is less and a drastic reduction in the computing time 

because of a reduction in the size of the matrices appearing 
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in the calcuLl!:ion. We feel that both these are very ad-

vantageous for detailed work in the non-LTE line transfer 

computations, at least in the CRD approximation. 

Partial redistribution approximation using R!cA l Through 

another test case, we study the PRD line formation problem 

again using a 8 point trepezoidal quadrature for frequency 

integration of the transfer equation. We adopt the simpli­

£ication for R.n:A' suggested by Rees and Saliba (1982) in 

order to simplify the transfer problem (see equations (6-8) 

to (6-13)l. The basic physical nature of R~Afunction is 

described in Mihalas (1978). Rees and Saliba have used a 

further simplification of R~A ~)~) redistribution function, 

in treating the frequency redistribution. It is the Kneer's 

(1975) approximation to R:O;A- 0:-.JXI) function. This composite 

formula is written conveniently as 

where 

" " 

< a. >:x:1 - J a.,jC. ,q> cx) d:x:. , 
-1)0 ,:x 

and 

For CRD, Q:;c,xJ ::::: O and for coherent scattering (CS), ~ ... .)'.~ 1 . 

In this f;JrTnula, the line core is dominated by eRD profile, 

with a gradual transition to CS in the wings. 

(6-76) 

( 6-77) 

(6-78) 
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We have used exact formula for ~ A (:?C, x) given by 

equation (6-11), instead of the Kneer's approximation 

given by equation (6-76). This choice partly accounts for 

the difference between our results and the results of Rees 

and Saliba (1982) in the values of polarization, parti­

cularly in the wings. In the Figure 2 we show the in­

tensity profile and the polarization across the line. It 

can be seen that in the inner line-core, x <. 0.5, the diff­

erences between the eRD and PRD profiles are insignificant. 

The shape of the intensity profile is also not much diffe­

rent from the eRD profile. Note, however, that for the 

particular case of ~ =0 (that is the pure line transfer 

without the introduction of any continuum processes), the 

PRD polarization tends to zero in the wings as opposed 

to a constant non-zero value for CRD. This special be­

haviour of CRD polarization profile arises because in the 

CRD case, photons can scatter into the wings from the 

core, thereby giving rise to wing polarization 'at all 

frequencies'. This general conclusion is true only when 

the optical depths are very small (say T ~ 1). But, when 

the optical depth T is large or an overlapping continuum 

radiation field is included, by setting S1=/=O , the 

polarization is automatically driven to zero as the radi ... 

ation field merges with the unpolarized background in the 

far wings. This natural behaviour of polarization maxima 



in the line core, and Zero polarization in the far wings 

is correctly predicted even for as small a value of T as 

0.1 which we have chosen. Hence PRD offers a better re-

presentation of resonance line polarization throughout the 

line profile. A good analysis of the resonance line polari­

zation by CS, CRD and PRD as well as the effects of varying 

T, E) ~ and a has been done by Rees and Saliba (1982). In 

the Table 2 we have compared our PRD solution with those of 

Rees and Saliba. It can be seen that the computation of 

intensities is quite exact, but the values of polarization, 

differ by large amount in the wings. This is not surprising 

because, the PRO effect is strong only in the wings. With 

Our choice of low order quadrature, using also a rather 

large interval of 0.7 Doppler width, it is not possible to 

reproduce the sensitive polarization information correctly 

to a better accuracy. This situation however, can easily 

be improved by employing a larger number of frequency pOints. 

This in turn increases the dimensions of the matrices and 

consequently'the computing time. We also would like to pOint 

out that our method of solution is direct unlike the iter-

ative procedure of Rees and Saliba (1982). The method 

takes arbitray variation of physical variables in the medium, 

and can be generalized to treat the line fonmation under 

any type, of frequency redistribution mechanism or even the 

velocity fields in the atmosphere. Such calculations have 
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been described in Peraiah (1978) and Wehrse and Peraiah 
( 1979) • The behaviour of diffuse rad'ation ... field inside 

the medi um can be studied as a natural outcome, without 

any add! tional efforts, 1.' n th 1 e ca culation of emergent 

radia tion field. Using the general equations presented 

in the section 6.2, we can also solve the resonance line 

polarization transfer problem with frequency redistri­

bution, in spherically symmetric media. 

6.4 Resonance line polarization transfer in planar and 

spherical geometries - a comparison of solutions 

It is well knoW'} that the plane parallel (pp) appro­

ximation is an excellent approximation when the density 

scale height in the atmosphere is very small compared to 

the radius of the star. It is interesting to study, as a 

natural generalization of this approximation, the line 

transfer problems in spherically symmetric atmospheres. 

We shall attempt such a problem now, confining ourselves 

to non-extended spherically symmetric atmospheres. How­

ever, the essential characteristics of the so called 

'spherical radiative transfer problem' can be demonstrated 

even with such a geometrically thin, shell like spherical 

atmosphere. Chandrasekhar (1934) and Kosirev (1934) were 

the first to examine the radiative transfer equation in 



spherical symmetry. I I 
n ater years, many authors have 

a ttempted this p bl b 
ro em oth analytically and numerically. 

'rhis di fficul t problem has been of great importance in 

the theory of radiative transfer, obviously because of 

its gr t ea er generality and the immediate applications it 

finds in the whole f area 0 stellar astrophysics. The 

review articles on spherical radiative transfer in the 

book: UMethods in radiative transfer" edited by W.Kalkofen 

(1984)provide a good description, and a complete list of 

references to earlier work in this field. Our main in­

terest here is to solve the radiative transfer equations 

for resonance line polarization, in spherical geometry 

and compare them with the plane parallel solutions. In 

problems dealing with spherical symmetry, the ray conti­

nuously changes its direction with the radius vector which 

amounts again to some sort of scattering, which is generally 

called the curvature-scattering. This, taken together with 

the scattering by free electrons or bound levels of atoms, 

greatly complicates the process of emergence of radiation 

from such atmospheres. There have been some attempts 

towards these problems in the past (Cassinelli and Hummer, 

1971; Schmidt-Burgk,1973,Shapiro and Sutherland,1982 and 

others) • Peraiah (1975) has developed a numerical solution 

of radia ti ve transfer equation in spherical symmetry when 

the spherical medium scatters radiation in accordance with 



Rayleigh phase matrix. He has studied the effects of 

sphericity (curvature effects) on the angular distri­

bution of intensity and polarization in such a pure 

scattering medium. The method of solution he has used 

is a vector analogue of the Peraiah-Grant method (Peraiah 

and Grant, 1973). We have described the method of solution 

for the'line transfer with frequency redistribution'in 

spherical geometry, in section 6.2. These equations can 

be used to obtain both SS and PP solutions, for any given 

set of physical parameters. 

We shall calculate the line profiles in isothermal 

homogeneous spherical medium having the rest of the phy-

sical properties same as the PP medium, though it is natural 

that the spherical atmospheres should have power-law type 

radial distribution of opacities. Nevertheless, for the 

non-extended atmospheres,our choice is reasonably good. 

Our primary interest is just to see how curvature of the 

medium affects the polarized radiation field in a medium. 

We study the 'effects of sphericity' on the polarized line 

transfer under all the three line scattering mechanisms 

already mentioned, namely coherent scattering, complete 

redistribution and partial redistribution in frequency. 

We have used the same isothermal model atmosphere as mentioned 

in Table 1, namely E ~ 10-4 , fo = 0, B = 100; a = 0.01, 

T = 0.1. The ratio (B/A) Of the outer to the inner radius 



of the atmosphere is a measure of sphericity of the 

medium. != 1 represents the plane parallel atmosphere, 

and l2. ..I. 1 d h A ~ a spherical atmosphere. We have use a sp eri-

cal atmosphere with! = 1.2, a value representative of 

normal stellar atmospheres or thin chromospheric emission 

regions. We mention that, in the extended atmospheres 

of giant stars, this ratio can take values anywhere between 

few tens to few hundreds. The boundary condition employed 

in all the cases is that, no radiation is incident ex-

ternally on either side of the PP slab or SS shell. The 

model actually represents high temperature emitting region 

with a small line optical depth. 

Discussion of results: We adopt a graphical representa-

tion for our discussions. In all the Figures (3), (4) 

and (5), the solid line and the dashed line in each frame 

represent the intensity and the polarization profile res-

pectively, in a·plane parallel atmosphere. The dot-dashed 

curve and the dotted curve represent the corresponding in-

tensity and polarization profiles respectively, in a spheri-

cally symmetric atmosphere. In all the computations, the 

specific intensity in spherical geometry is defined as 

2 
~ = r I where r is the radius. In the reduced radial 

coordinates the value of r ~ l)at the inner boundary of the 

spherical shell, and r = (B/A) at the outer boundary. It 

takes intermediate values between 1 and (B/A) for other 



shell boundaries in the atmosphere. For instance, in 

Our present computations emergent vector! can be ob­

tained as I = Y/(B/A) 2 = y'!1.44,since we have selected 

(B/A)= 1.2. For the sake of comparison, we have actually 

plotted the Uvalues itself to represent the spherical 

transfer solutions. This we have done for the sake of 

comparison with the PP solution vector I in the line 

profile. Hence, it should be remembered that the emer-

gent specific intensity values of a 55 solution are 

always smaller in magnitude, than the corresponding PP 

solutions. As expected, the intensity profiles show a 

limb darkening for both PP and SS situations. Also, 

the polarization is the largest in the tangential dire­

ctions (small values of ,.,... ). in both PP and SS situations. 

The polarization in the SS media is smaller in magni tude 

than the plane parallel media. We note that this behaviour 

is characteristic of optically and geometrically thin 

emitting shells. In the photospheric type conditions, 

with large line optical depths, the multiple scattering 

effect coupled with the large sphericity can lead to 

the opposite of this behaviour. 

We have computed the coherent scattering profiles, 

taking the damping parameter a = 10-2 • We have shown 

these profiles in Figure 3. The CS intensity profile 

matcl1es wi th the eRD profile upto X::::: 3. In the line 
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wings however CS produces a damped profile unlike CRD 

profiles. The CS profile nearly coincides with the 

PRD intensity profile throughout the band width of x. 

This is obvious because, for T = 0.1, the line wing 

optical depths are very small and hence the transfer 

effects are weak. Exactly for the same reo;son, the 

228 

PRD effects are also weakened in the line wings. Thus 

the CS intensity profiles follow the shape of the absor­

ption profile (Voigt profile currently), which is chara­

cteristic of coherent scattering in the line. The degree 

of polarization is however, always larger for the CS 

mechanism than the CRD or PRO mechanisms, because of a 

larger frequency coherence, which preserves the polari­

zation during the act of scattering. 

In the Figure 4 we have shown the eRD profiles. The 

polarization p is nearly frequency independent. The diff­

erence between the PP and SS solutions is again maximum 

for the large values of ~ , i.e. in the radial directions 

in a S5 medium. The difference between the PP and SS in­

tensity profiles in the line wings, is smaller in the 

case of CRD mechanism of line formation than the CS mecha­

nism. CRD profiles are similar to the PRO profiles in the 

line core excepting the difference in the polarization 

profiles. 
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In the Figure 5, the PRD profiles are shown. The 

PHD intensity profiles have CRn like behaviour in the 

core regions X ~ 3., and have the CS like behaviour in 

the far line wings. The polarization profiles are 

231 

wider ( t:. x ~ 3) than the coherent scattering polarization 

profiles. The difference between the PP and SS polari­

zations is also larger in this PRO mechanism of line for­

mation, than in either CS or CRD mechanisms. Hence we 

feel that, in the resonance lines which are dominated 

by the PRD effects, the effects of sphericity of the 

medium is also more severe. Hence in the calculation 

of such line profiles and polarizations, the spherical 

radiative transfer has to be used. We note that the 

effects of sphericity of the atmosphere on the ~ines, 

is much larger irrespective of the line scattering mecha­

nisms, when the medium is optically thick or it is extended. 

We intend to study these interesting effects in detail, 

in our future calculations. 
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