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ABSTRACT

The solution of the radiative transfer equation
taking account of the polarization state of the radi-
ation field is an important problem. The light emi-~
tted by any physical system is polarized only if there
exists an intrinsic anisotropy in the medium, in which
the radiation interacts with matter. The anisotropy
in both microscopic as well as macroscopic scales
produces a net polarization of the diffuse radiation
field in the medium. The equation of radiative trans-
fer establishes a natural link between the microphysical
quantities like absorption and scattering coefficients,
refractive indices etc.and thermodynamic gquantities such
as temperature and radiative flux gradients as well as the
geometric structure of the medium. Hence a correct theoretical
interpretation of the observed polarization data using the the~
ory of polarization radiative transfer offers a better chance
to determine the physical state of the matter in the
emitting regions and the spatial, temporal and geometrical
parameters of these regions. These parameters are the basic
data needed in further studies of any astrophysical probklem,
In this thesis we have made an attempt to develop gene-

ral solutions of the problem of radiastive transfer for



polarized radiation field. We mainly use the Stokes

vector representation in the polarization transfer

equations,

In the first chapter we describe the need for
the solutions to polarization radiative transfer pro-
blems. In the second chapter we have studied the pure
absorption continuum polarization transfer problems
in some detail. Here we bring out the relation bet-
ween the Stokes vector and normal wave representations.
We apply the solution method to the problem of conti-
nuum polarization in magnetic white dwarfs, In the
third chapter we describe a general numerical method
of solution which can be used in both pure absorption
and scattering problems. After a discussion of the
calculation of anisotropic transfer coefficients, we
use the method of solution in the computation of polari-
zed radiation in the atmospheres of magnetic white, dwarfs
and neutron stars. In the fourth chapter we concentrate
on the Zeeman line transfer problems. We also suggest
here an approximate method of solution of the transfer
proklem, The chapter five is devoted to some new phy-
sical processes which are of importance in various astro-
physical situations., We incorporate these effects - in
dividually into the polarization radiative transfer equa-

tion and solve it. In the sixth chapter we have attempted

II



to compute the linear polarization in resonance lines
when the scattering and the frequency redistribution
effects are taken into account. The line transfer
problem is solved in both the plane parallel and spheri-
cally symmetric media. The effects of sphericity on

the lines formed under the mechanisms of coherent scatter-

ing, complete redistribution and partial frequency re-

distribution is indicated.

IITI



CHAPTER 1

INTRODUCTION

1.1 The generation of polarized radiation in astrono-

mical objects and the importance of its measurement

The observations of electromagnetic radiation recei-
ved from astronomical objects is the major source of
information regarding these objects. Hence our emphasis
should be on finding the connection between the micro-
scopic phenomena, like the interaction of radiation with
matter (with and without external fields) and the macro-
scopic phenomena like the transfer of radiation, the con-
duction, convection ¢©r mass motions, in order to under-
stand the physical nature of these astronomical objects.
Unless such a link is estabiished, a correct thecretical
modelling of the regions emitting the radiation becomes
difficult and ambiguous, We shall now describe some astro-
nomical objects where significant amount of polarization
of light is observed, and mention the theoretical efforts

made to explain the observations.

(i) The environment: Light which we are exposed to in
the environment is in general partially linearly polari-
zed, the degree of linear polarization being as much as
70% or more in a cloudless sunlit sky. It may reach very

small values for a thick overcast sky. The circular polari-



zation is very small (a fraction of a percent). The
polarization of our environment is explained in terms
of multiple scattering of sunlight in an atmosphere
composed of molecules, dust, aerosols etc., along with

a reflecting ground.

(ii) Planetary atmospheres: The sunlight reflected by
planetary atmospheres is observed to be polarized
(5-10%) linear polarization). The theoretical calcula-
tions of this so called planetary problem is guite
complicated, A surface with a given law of ground
reflection is assumed here a priori. The radiation
transfer equation for the polarized radiation is solved
in a molecular atmosphere where dust particles and
aerosols are suspended. A combination of Rayleigh-
Chandrasekhar theory and Mie theory of scattering has to
be used. A good level of understanding has been achieved

in general, in this area.

(iii) Stellar intrinsic polarization: This term refers

to the polarization due to scattering in the atmospheres

of stars. Practically all stars that show emission lines

in their spectrum, including those of early type stars

have some intrinsic (5-10% linear) polarization. Even in
the sun, this has been observed near the limb (ppalO-élo-%s).

with the electric vector nearly tangential to the limb,
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The circular polarization is zero in principle, because

of the spherical symmetry of the stars. These stellar

and solar observations are interpreted in terms of
scattering by electrons,atoms and molecules as well as

the scattering involving the bound levels of resonance
lines, as the case may be. We deal with such problems in
our present studies. Another class of important observa-
tions is the polarimetry of magnetic stars like Ap and

Am stars, white dwarfs etc. The theory of Zeeman and
Stark effects in the line are important for the former,
whereas both continuum and line polarization are important
for magnetic white dwarfs. The modelling has been attempted
only in recent years, The difficulty is with magnetic
field strengths and gecmetries. We shall discuss these

type of problems in this thesis.

(iv) Circumstellar and interstellar polarization: The
polarization of light is produced in the circumstellar
dust envelope around a star. The red variables, cool
glants and shell stars show this type of polarization,
The polarization ("~ 5-15%) is wavelength dependent and
show time variability. The interstellar polarization
is produced by scattering of star light in the inter-
stellar mediumn, and is also wavelength dependent. The
Observations are interpreted in terms of Mie scattering

on dust grains of various shapes, sizes and composition.



The grain alignment by the interstellar magnetic field
U\Jlo—SG) happens to be crucial. The circular polari-

zation is also observed.

(v) Polarization of light in the nebulae: The scattering
of starlight by the dust grains in reflection nebulae
produces a strong polarization (1-30%). These objects
offer a chance of studying the scattering and optical
properties of grains in relatively small volume of space.
In the calculations, the major difficulty arises from

the irregular geometry of any such nebula.

(vi) Miscellaneous objects: It has been recently dis-
covered that the pulsed emission from any pulsar is
highly polarized (1-15%). The time variation of the
degree of linear polarization and the position angle of
polarization gives an idea of the magnetic field

strength and inclination, for an assumed model of the
emitting region. The results on the beaming of polari-
zed radiation in strong field emitting regions presented
in the thesis fall in this class of theoretical modell-
ing. The light received by extragalactic objects,
external galaxies, magellanic clouds etc., is also polari=-
zed. A combination of high energy (Compton scattering)
or low energy (Thomson scattering) processes with the
thermal and non-thermal synchrotron radiation is used for

the interpretaticn of the observations. The quasars, BL



ot

Lac objects and Seyfert galaxies also emit highly
polarized radiation, and the radio observations

offer a useful tocl in understanding the structure
of these objects. In one of our examples studied,
we have pointed out a more complete and correct'way

of treating the radiative transfer of radio waves in

a magnetized medium,

Almost all aspects of polarization, with parti-
cular reference to astronomy, namely the instrumenta-
tion, observation and theory can be found in a great
collection of papers presented in the book "Planets,
Stars and Nebulae" studied with photopolarimetry,

edited by Tom Gehrels (1974).

1.2 The representation of polarized radiation and the

Stokes vector of an arbitrarily polarized beam of

light

It is well known that, on scattering, light in
general gets polarized. The scattering being a natural
way of radiation-matter interaction, it is understood
that the radiation, in general is always polarized
to a smaller or larger extent in most of the physical
situations. The diffuse radiation field in a scattering
medium, for example is always partially polarized. Also,

it is well known that to describe a general radiation
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field, four parameters should be specified which will
give the intensity, the degree of polarization, the
plane of polarization and the ellipticity of the radi-
ation, at each point in the medium and in any given
direction. Before discussing the problems of radiative
transfer for the polarized radiation, it is useful to
understand how a beam of arbitrarily polarized light

is represented., This fixes our idea, about what are
going to be repeatedly used in the forthcoming chapters
the Stokes vector and the polarization nornnal waves -
and helps to avoid the confusion with notations.

It has been shown by Chandrasekhar (1950) that the
formulations of the equations of radiative transfer can
be most conveniently effected if a parametric representa-
tion of the polarized light in terms of four parameters,
originally introduced by Stokes are employed. We give
below certain basic definitions, which are useful in
future discussion. A clear mathematical description

of all aspects of polarized radiation is given in
Chandrasekhar (1950), from which we have selected the

required equations.

(i) Stokes parameters: An arbitrarily polarized bzam of
light can be completely analyzed by the following
procedure. Introduce a known amount of phase retardation

in one direction relative to the direction at right angles
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to it, and then measure the intensity in all directions

in the transverse plane. Let

e) D)

E,= B, smlwe-¢)  and  E = Sin (we-€,) (1-1)

represent instantaneous

vibrations of the elec-
tric vector in a beam of
light. The amplitudes x
and phaseé undergo irre-

gular variations in a

partially polarized beam
- but the ratio of ampli- '
tudes and the difference X+THi2

in phases 'remain con-

stant'. At present we

are interested in phase differences only. Hence equation

(1-1) can be written as

2> ®>
Ei:.gﬂ&huﬁ ond €.= &, Qﬁ(wt—5> (1=2)
subjecting the second component to a phase retardation
€ o+ we get

)] @)
§L= a.smcut amA_ Er: Er Sin (we-4§-€) (1=3)



Resolve the vibration (1-3) in a direction making an

angle\}/witﬁh respect to the 1 direction, i.e.
© ' © ( .
T, sinwt Cosy + m_gn@m—o—g)&nw
) > _
==[§}m5y-+‘i'msg}é)&nw]Smum —

@
— E Sin(§+E) Siny CoS wt
T

The momentary intensity is therefore given as the sum

of the squares of the amplitudes,

%?Cufje) = [ Ef):fcoéﬁy + C Ef)jzsweqf —-

=) (o)
42 5 (cos. cose —Simd.sin€)simpcosy .

To get the apparent-intensity in the direction Y} ,

we must take the mean of this expression keepingl]fand €

constant. Thus
L) = T cofy £ L 7. o
Loy, e)=Cx ] .Cosy + C EY:] . Sy

+ {2[‘5) E;:O)COS‘S]CDS € — 2[}5) Ef)SinS:l Sin c—:} Siny cosyr

From this equation it is clear that the intensities in
the 1 and Y directions are independent of & and are

given by

F;mg - ¢) _2
IL:[\&L] ) va[f’rj

(1-4)

(1-5)

(1-6)

(1=7)
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Now, let

o o ) (o)
U=20%"%"css] and V=2L% 35 sinsl .

(1-8)
These definitions of the Stokes parameters are consistent
with the usual definition for an elliptically polarized
beam of light given by
w>]—£ @;‘""’
I=C%3d ; I,=C: "0 ; @&=TI-I, , (1-9)
) 0 e _
U=2L% ¥ Jcoséd = V=21L% ¥ Jsind .
LT ? Lo (1-10)
since in the latter case, the phase difference remains
constant. From the equations (1-7),(1-8) and (1-6), we
can write
in 2
IOy, €) :Iicoszqr +IrSin21}r -l-CUCOSé'“VSme) ‘S"‘?_“y (1-11)
or, defining o
o) 2 > 2
I =L +I, = [E_'_:] '\"EHT]
, s ) (1-12)
(o) _ ©
@ = T,-1, = Ly d — L5 ]



we can also write

Loy €= T1& cos™y 4 T8 sin'y | (Ucose —Veine) Sio2¥
= _?2 Li+@Qeos2y 4 (Ucese =V Sin €) Sim2y 1 .

From the equation (1-13) we can see that an arbitrarily
polarized light i1s characterized by the set of four

Stokes parameters I,Q,U and V. The vector (I Q U V )T
is called the Stokes vector of the polarized radiation

field.

(ii) Eguivalence: Two beams characterized by the same set

of Stokes parameters are equivalent.

(1ii) Additivity: The Stokes parameters of a mixture of
several 'independent streams' of elliptically polarized
light is given by an algebraic sum of the Stokes parameters

of the separate streams. Thus

! B M ) I
I:Zl ; I&:: ZT‘L ) IY——ZI*

n m
Q:Z&(,) == 2 T Cos 2Py COS 2V,
U= ZU@) = 3 T cos 2 B, Sim2y,
tn -
V=XV = 10828,

I(n), ;K% and Qh are the intensity, the plane of polari-

zation, and the ellipticity of the component streams, This

(1-13)

(1-14)



property holds as long as the component streams
forming the mixture have no permanent phase rela-

tions between themselves.

(iv) Natural lights It is represented by

N AT - - U =V e
ITlya=41 ;5 @a=U=V=0

(1-15)
(v) Elliptically polarized light: If the orientation of
the ellipse is;r, then
tan B =y EEOESGS L To U] (1-16)
major axis
The + signs of ﬁ correspond respectively to right and
left handed polarizations. Also
2 2 2 .2
I =4q +U 4V
(1-17)

(vi) Oppositely polarized streams: Two streams related
in the manner ( p ) ;K ) and (- P,;K +T)2 ) are said
t0 be oppositely polarized., It can be shown that the
natural light is equivalent to any two independent
‘oppositely polarized' streams of half the intensity.
This concept of opposite polarization is useful in
understanding the polarization normal waves introduced

in section (2.1).
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Notice that, for partially polarized radiation,
2 2 2 pu
I >6,4+U +V The degree of linear polari-
zation (p), circular polarization (g) and the polari=-

zation position angle (@) are defined as

F:\er'i-—L}l/I ;9 = V/I ; qJ:f]z-tam_1(.'U/8v)

We use this notation throughout our discussion in the

thesis,

1.3 A preview of the results presented in the thesis

We review the existing literature and recent
developments in each individual chapter. Here we indi-
cate only the topics discussed in the chapters to follow
and try to make a common link between them, In Chapter 2
we first describe the simple case of radiative transfer
equation for the continuum polarization in two alternative
but equivalent representations. We then calculate the
strong field continuous dichroism for various absorption
coefficients relevant to a realistic stellar atmosphere.
We alsc give a second order accurate formula for cal-
culating the magnetic dichroism of a general power-law
type opacity. This may be useful in rapid computations

of magnetic dichrocism in a practical model construction,

(1-18)



where the transfer equation has also to be integrated
over a visible disk of the star. Then we compare the
solutions obtained on some test cases with standard
methods used by other authors. Lastly we present the
results on continuum polarization in magnetic white
dwarfs, and discuss the interesting behaviour of
linear (p) and circular (q) polarizations near the

absorption edges of the bound-free absorption coefficient,

In chapter 3 we treat the more complicated problem
of magneto-scattering plus magneto-absroption, in the
continuum., Here we describe in detail the¢ numerical
method of solution of the radiative transfer equation,
for true absorption and coherent scattering taken to-
gether., Next, we calculdte the magnetic dichorism of
the continuum absorption and scattering coefficients
exactly, using recent developments in the calculation
of these cross sections. Since the theory of these cross
sections was originally given for the polarization
normal modes of a-plasma, we have preferred to solve the
transfer equation in the normal mode representation it~
self, though a transformation to the Stokes representation
is straight forward. Then we describe the polarization
of radiation in the realistic atmosphere of a hot magnetic
white dwarf. The strong field magneto-scattering and

absorption are included in the computation of the



emergent intensities, A similar calcula tion has also
been done for the conditions typical of pdar cap

regions of the accreting magnetized neutron stars,

We discuss the interesting behaviour of the polarization
and spectra when both these types of atmospheres are
externally irradiatcd. The role of change in the source
function gradienls caused by such an irradiation and
heating, 1s also shown. It should be noted Lhat the
computation of magnotic dlchroism is more exact here

than the second chapter and the scattering has alsoc been

included,

In Chapter 4 we compute the Zeeman line profiles
Formed 1n strong magnetic fields ofF white dwarfs. FPFlrst
we describe the line transfer equation in both the Stokes
vector as well as normal wave representations. Then we
study the line formation uncler general physical condi -
tions. The magnetic f£leld whose magnitude and direction
changes with depth, the velocilty fields in the atmosphere
or ihe combinatlion of these factors taken together ars
included in studying the Zeeman line formation, We also
indlcate a simplification of our earlier method of solution
described in chapter 3, in treating the true absorption
problems, We show the practical utility of this simpli-
fication by applying 1Lt to some cumputationally time

consuming problems, like disk integrated continuum polari-



zation and cyclotron resonance absorption problems.

The pure Zeeman line transfer equations described

in this section are useful for our future discussion

in chapter 5, where we solve the line transfer equation

including many new physical effects.

The chapter 5 mainly deals with the Zeeman line
formation in much more realistic conditions than
considercd earlier. First we briefly discuss the
very recent development of combined Stark-Zeeman effect.
Stark effect has not been consistently included in any
of the Zeeman line formation problems till now, to
our knowledge. We present this somewhat difficult but
essential computation briefly. We show the impact of
combined Stark-Zeeman effect on the hydrogen line forma-
tion in a main sequence star model atmosphere, represen-—
tative of a magnetic Ap star, The plasma polarization
shift of hydrogen-like ionic lines has been studied in
laboratory plasmas for gquite some time. Here we have
discussed the impact of this effect on some weeman sub-
cemponents ©f He IT lines as a function of magrotic
field and the temperature. This mechanism, is shown
to affect the line formation strongly. The influence
of the orientation of atomic magnetic moment in a strong
magnetic field is found to contribute to the broadband

polarization, in strong field white dwarfs. The effect

1 d

of organized velocity fields or the atmospheric structure

J



are shown to affect the Zeeman lines strongly. Lastly
in this chapter we write the normal wave transfer
equation for correctly treating the transfer of long
wavelength radiation in a magnetoplasma. We demonstrate
that one has to include the ray refraction effects in
treating the transfer of microwaves and radiowaves etc.,
to get reliable flux and polarization spectra of the

extended radio-emitting regions.

In chapter 6 we develop a sclution of the eguation
of transfer for the resonance line polarization. First
we describe the relevant general equations of the problem.
Then we describe a general numerical method of solution
of the problem, including the frequency reaistribution
in the line source function, and the sphericity of the
atmosphere., After making a comparitive study of the
solutions, using some standard results available in the
literature, we proceed to calculate the line profiles
and polarizations in a spherically symmetric medium taking
account of various line scattering mechanisms such as
coherent scattering, complete frequency redistribution

and partial frequency redistribution.



CHAPTER 2

THE SOLUTION OF THE EQUATIONS OF CONTINUUM RADIATIVE

TRANSFER IN ANISOTROPIC ABSORBING MEDIA

The equation of transfer for Zeeman split lines
was formulated by Unno (1956) in the Stokes vector
formalism. Those general equations can be used for
the polarization transfer in the continuum also as we
do now in this chapter. Unno equations hold in
general to any anisotropic media under pure absorption
approximation. Kemp (1970a) showed that the light
emitted from any thermal source in a magnetic field
is characterized by diffuse circular polarization in
the continuum. He has proven his prédiction in the
laboratory,and has found the effect in a white dwarf
Kemp (1970b). This was the starting point of really
serious attempts to detect and then interpret conti-
nuum circular polarization in stellar objects, which,
for obvious reasons was believed to be extremely small
as to go undetected. After unsuccessful attempts to
explain the 'wavelength dependent' continuum polari-
zation of magnetic white dwarfs,using the 'magneto-
emission' theory it was realised that a radiative
transfer calculation is essential to get the correct
wavelength dependence (see Shipman,1971). Later
Angel and Landstreet (1974) extended his approach.

Lamb and Sutherland (1974) gave a general treatment
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of the magnetic dichroism of bound-free and free-

free absorption coefficients and gave analytical
solution to the transfer equation, written as a density
matrix equation., The same problem was approached in
the so called 'normal wave representation', by Gnedin
and Pavlov (1974). After wards many refinements have
been made, in terms of using realistic atmospheres,
including new dichroic opacities and using various
field geometries (see Martin and Wickramasinghe, 1984
and references there in). In this section we shall
present a numerical solution for this problem of conti-
nuum radiative transfer in a magnetoactive mediun. We
shall use LTE (local thermodynamic equilibrium) model
atmospheres in plane parallel approximation in all our
studies. We shall use both uniform and dipole field con-
figurations and compute the emergent spectrum and pola-

rization.

2.1 The continuum transfer equation in Stokes vector

formalism and its relation to the polarization

normal wave transfer eguations

(i) Stokes vector transfer equation: Unno derived the
Stokes vector transfer equation for magneto-absroption
only. Beckers (1969) introduced the magneto-optical

effects (also called magnetic birefringence) into the



Unno equation. Further on we shall always use the
Unno-Beckers equation when we work in Stokes vector

formalism. The equation is written as

p% = — (KT8 +K V) +HK By
f‘f%:—. — (KT K8 = s’i;ul>+1<a‘13Q ,
r%}é.u—«(?;aﬂguf-t’v:\!) ,
F%\{L = —(K T+ fVLU + K V) K, By
where I = (I QU V )" is the Stokes vector with the four

Stokes parameters as components.p.= cos @, 8 = angle

between the ray direction and the axis along which the

optical depth is measured (Z-axis). By is the lccal

source function which ig just the Planck function in
LTE approximation. The absorption coefficients for

the Stokes parameters are given by

] ! i Q
KI :—12: KPSm P —{-ﬁl; (KJL"\' Kyd) (1H-Cos yr) 5

(2-1)

(2-2)

(2-3)

(2-4)

(2=5)
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K&;: :j?-' f\F S5in L}I ——'-2}_ ( K_L 1 KY ) Sin \V
Ky =4 ('K;M \<‘L) cos Y

where'lp’is the angle between the direction of the ray

!

f /
and the direction of the magnetic field. kp . k; and kr

1

are the Zeeman-shifted continuous absorption coefficients.

The solution (I QU V )T to Ecuations (2-1) to (2-4)

is to be multiplied by

i 0 0 o‘\

0 cos2@ -Sm29 O

0 sinad cos2§ o)

0 0 0 bt

to obtain the actual solution for an arbitrary orienta-
tion of the magnetic field in a coordinate system in
which @ is the field azimuth with respect to an arbi-

trary x-axis at right angles to the line of sight.,
l
The parameters ﬁ( and fy represent the magneto-optical
i
effects due to free electrons. ﬁi produces a rotation

}
of the electric vector of linearly polarized light. {4

leads to a phase retardation between the linear polari-

20

(2-6)

(2=7)

(2-8)



zations parallel and perpendicular to the field direction.

These parameters, for W o, are given by

2
Pl . UJP We COS”l}f

= - P
R C(u}»-u%?)
i A pe . 21
P Wp SNy g
W 2cw (W w.)

-

(2-9)

(2-10)

whe re u?::(uﬂfu%[me) 1s the plasma frequency and W, - eB/w@C

{ I
is the cyclotron frequency. kp : Ky

continuous absorption coefficients at the Zeeman

shifted frequencies when it is assumed that all the
sources of opacities are dichroic (k;:ho, hiﬂfk_,ﬁ
We can also select only those opacities as dichroic for
which Lamb-Sutherland shifts are known to be applicable

(Landstreet and Angel,1975). With this choice equations

(2-5) to (2=7) become

Ko Pk sy + 4 Chovky) (v cos™v)
.2 .

Kg=1 k,5m v — L (R 4 k) sin"y

ke = 4 (h—h,) o5

c
where :;Ch ~“hp) is the ‘residual opactity'.

k,= k,(H-DE, H-ff, He-bf, He-ff, Hebf, H-ff, He~ff) is

[
k and kr are the

(2-11)

(2-12)

(2-13)



the 'selective' continuous opacity for p electrons in
our choice (see Unno,1956; p.113). Defining an optical
depth scale dn’ = -ch dZ using the non-magnetic opacity

k€ , we can write equations (2-1) to {(2-4) as

}L,Lsir_f; = 'YLI(I -B,) + G + ’ﬂv\f ) (2=14)
f*i% WQ(I”BQ +ma - KU, (2-15)
M iltt.f = a4mu - v (2-16)
P%L\é - qv (z-8y) + R, U Vo (2-17)
with

M, = )r:é—)’“ €+ ﬂzp' sy + 1%1 (1 -+ cos™y) (2-18)
and

7%f:<KQ/kC)7 °TLVT:(KV/'h(:)) nﬁiﬁﬁz(kwflﬁf)

(2-19)

i

¢
i ¢
: e=(CPp/tk)
Rw"(fR,W /PR ) and P

Pl
Note that € < < 4 . Equations (2~14) to (2-17) represent
outgoing rays (0 <« 4 =< 1 ), The same set of equations

represents the inward going rays by replacing . by (- K ),
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(0= M < 1). The method of solution which is based
on the 'discrete space theory of radiative transfer',
Grant and Hunt (1968a,1969a,b) and Peraiah and Grant
(1973), suitably modified for the case of magnetized
media will be presented in section 3.3 along with a
detailrd comparison with some standard methods of
solution. The Unno solution for equations (2-14) to
(2-17) at T = Tmax can be employed as a suitable

boundary condition for the problem (see section 4,1).

(ii) Normal wave transfer equationss: The formalism
described above is very general. There is a formalism
which is considerably simpler, and faster on a computer.
However, it is far from being always applicable, This

is called the 'normal wave representation' of the pola-
rization transfer equations., This is based on the concept
of two normal (natural) waves - the ordinary and extra-
ordinary which propagate in an anisotropic medium inde-
pendently of each other. See also the definition of
‘oppositely polarized streams' given in section l.l. It
consists of a system of two 'uncoupled' transfer equaitions
for the intensities of the normal waves. This formalism
of the polarization radiative transfer eguation is appli-
cable in an optically thick medium if at distances corres-
ponding to unit optical thickness the phase shift of one

normal wave compared to the other is large, that is

w {n,=MNyl /C >k, + k) /2 where W is the angular fre-



quency of the radiation, M, and 'nzare the refractive
indices of the normal waves, and 'k1 and k, their
absorption coefficients. The reduction from the
general density matrix equations (which are fully equi-
valent to the Stokes vector fomalism), to the normal
wave transfer equations is explained in Gnedin and
Pavliov (1974). We shall simply write down the equa-
tions which we have used in our computations. We shall
also discuss briefly the conditions of their validity.

The transfer equation for the intensities of elliptically

polarized normal waves is given by
Pdl}_ :———‘;Z 1. + ’h Ej_ » 3:1,2.) i (2-20)
Pdz i A

under the usual LTE approximation. ‘hJBq /2 1s the
thermal emission coefficient with B, the Planck
function. The absorption coefficients of the normal

waves are given by

b

1 £ 12” Co21)
= . . @ o o 4+ s 4 2=2

where bf = bound-free and ff = free-free, representing
the type of absorption. The relation with Stokes para-

meters is represented by

] d
I=3L ;=Y ET; U:ZPI.'V:ZRI.; (2-22)
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1,2, TFor the transfer equation in the restricted

coordinate system (gf = the azimuth of the magnetic
}

field = 0), EJ = 0 and U = 0, The coefficients

fj;v and fﬁ are given by

i

Vv

J ' i j 2
P = af Lol 5 R =(—1)4—’§3ﬁ:@¢)- ; gq=J1=E . (2-23)
I A (R 2y @

It is important to note that, we can also write

3 L i o :
P:L_.Eé_coszxj ; b= i‘—m; 7 (2-24)

where k%-: 0y /bi is the ratio of the major to the
minor axes of the polarization ellipses of the normal
waves and ;t;the orientation of thelr major axes with
respect to a fixed axis in space, in the plane trans-
verse to the direction of propagation. It is also
important to remember that the equa tion (2-20) can be
used when the normal waves are orthogonal to each other
that is, when the major axes of their polarization ellipses
are perpendicular to each other (]x1_};g| = T"/Z)

and the ellipses themselves are similar. In a magneto-
active plasma, the requirement of orthogonality is satis-
fied for 'any angle of propagation' and for ‘'any magni-

tude' of the magnetic field if the radiation frequency



W >> VY, , the electron ion collision frequency. Thus
we can define a non-orthogonality parameter |[ocl,0 =< x| =4
as a measure oOf applicability of the normal wave transfer

equations., This parameter is defined as

lxl”-_ ) — == ;= 2b 0= Re (7)

— e ey (2=25)
Vo T (C+b*+1) ~ b=1Im (7)

where T is a dimensionless complex parameter whose
value depends on the particular situation under consider-

. LN e*
ation. For example, for a cold tenuous (W >>wWp, W

P T,

being the plasma frequency) magnetoactive plasma, for

which Imy - 1] < < 1 , the and vy parameters

are given by

T= -1—2~ = - SmY tenW 3 Y = e Ve SV ton Y (2-26)
Y Wh A, (wl s\nytwyf)/4

where W, = CIB/W@C is the cyclotron frequency. From

this equation, we see that total orthogonality occurs

in a cold magnetoactive plasma only for longitudinal

and transverse propagations of waves (W=0, W =T|2)

or under conditions that < = 0. When w>>7.,xl<<t,

so that the normal waves are almost orthogonal. If the

two conditions W, |8ay tanW¥ | = 2L Ve and

W—~ 0 (or actually w—> wp) are fulfilled at the

same time, then we have total non-orthogonality ("5‘ = + i;

[

%4,2’ = 1T+ 7|4 for Y > 1|2 and }, —-TT-'lr Por W < L)



that is, instead of two normal waves, we obtain one
linearly polarized in a direction inclined at an angle

of ﬂ74 to the direction of the magnetic field.

The absorption coefficients have been derived in
the cold plasma approximation by many authors (see eg.
Gnedin and Sunyaev,1974a and Meszaros, 1982 for details
of earlier work). We employ the expressions in the form
given by Kaminker et al.(1982). These coefficients
will be described in section 2.2. OQur discussion till
now shows that the two formalisms are closely related
and the transformation is simple, though guite often
it is not necessary to do so. The real connectioﬁ
is needed mainly because we can utilize the important
work in plasma physics llterature where the transfer
coefficients (absorption coefficients, refractive indices,
anomalous dispersion coefficients etc) are derived usually
for the normal waves. We can easily transform them to
the absorption coefficients for p,l1 and r electrons etc.
such explicit connections are made again in section 4.1
where the line formation problem is treated in both

these representations,

2.2 The calculation of anisotropic continuum transfer

coefficients in a magnetic field

(i) Anisotropic transfer coefficients for the Stokes
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parameters ("l y Mg > M, f= and fy )1 we
have already given expressions for ’WI a.v and
P|z,vq in section 2.1, Notice that M__ . are functions

of 7“%L,Y which have to be primarily calculated

for any given set of physical parameters, like magnetic
field (B), temperature (T) electron density ( N, ) and
the particular atomic species involved. We shall apply
these calculations in a cool magnetic white dwarf atmos-
phere, where almost all important sources of continuous
opacities are operative. Initially all these non-mag-
netic opacities are calculated using the polynomial
approximations given in Kurucz (1970). The correspond-

ing magnetic dichroism is calculated as described below.

Bound=-free dichroismi: Following Lamb and Sutherland
(1974), we write the field free opacity of hydrogen like

atoms in a general form

where f(y) is a continuous function of frequency v .
Further, under the rigid wave function approximation
introduced by the same authors, thé opacities in the
presence of a strong magnetic field for the right cir-
cularly polarized light (corresponding to a AM = +1

transition) and left circularly polarized light (corres-



ponding to a AM = -1 transition) are given by

Ry () = come. VE(I— AMIL) (2-28)
AM = M¢~M.:o)ii 7‘9'—"—35/1-}-ng€ 7 (2-29)

where My and M; are the final and initial state
magnetic quantum numbers respectively, and ’QL is the
Larmor frequency. Eguations (2-28) are accurate to

first order in ( V. |9 ). From Equation (2-27)

and (2-28) the magnetic dichroism is calculated by

(éﬁ) = ke —RoO) _ FO-w - () (2-30)
R 3 R, (V) £ (9)

Expanding the functions £( 9 — V. ) and £( I + V)

in a Taylor series about 7V , one obtains correctly to

o (V. [v)

Ak e 4

22 = —29 (2=~31)
( k ) Lodo £

Y

If the unshifted compoment 'ﬁo C{) can be expressed as

a power law, say

ko ('V) = Const. V (2-32)

where o/ = spectral index of opacity, then from equations

(2=-27) and (2-31) we get
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Equation (2-32) is very useful for an approximate cal-
culation of circular dichroism. The coefficients };rtw
and k_(9) can be calculated separately in the follow-
ing manner. From equation (2-27) we get under the

rigid wave function approximation of Lamb and Sutherland

_ _ ke (9=
{L CQ '\)L‘) Comat. (V- QL)

P (V+9) = R (DI
Comat. (¥ + I.)

) = ko (9)

Corat.

5

and substituting equations (2-34) and (2-35) in eguation

(2-28), we find that

R, () :B%D R, (V- >

- _ D
R.(W = EIER ko (V+7.)

It can be verified that this approximation gives the

same result as expressed in eguation (2-31). Sub-

(2-33)

(2-34)
(2~35)

(2-36)

(2-37)

(2-38)



-stituting equations (2-34) to (2-36) into equation (2-30)
and after simple algebra one gets for an opacity varying

like (2-32), the general expression

(mz) = 9| 2@ T 4o -0 (2-39)
R/, VI ()"

For Y <<V which is satisfied for weaker fields, equation

(2-39) reduces to equation (2-31) as

_D—OL .Q?'COL‘*J‘)

« :
(Mz) = 92DV V| g ) e ¢ 2-40)
R Q)

~ ‘

Notice however that equation (2-39) is more accurate

formula than equation (2-33). But in the actual compu-

tations of dichroism we have used the exact formulae

(2-~37) and (2-38).

Free-free dichroisms: Free~free dichroism for H and He
were predicted by Kemp (1977a,b). The coefficient A~ 3.0
for both these atoms. As a first approximation, we have
used the Lamb-Sutherland frequency shifts for the cal-
culation of free-free dichroism also, though they were
originally derived only for bound-free mechanism. We
make this identification because both the grey body

emission formula of Kemp and the rigid wave function



approximation, give same values for the bound-free
dichroism. In fact we have calculated the dichroism
of all the opacity sources using the equations (2-37)

and (2-38).

(ii) Anisotropic transfer coefficients for the normal
waves ( R, and k, )3 we give below some accurate

formulae derived in recent years.

Bound-free absorption coefficientsi- For weaker magnetic
fields ( W, << W ) an expression given by Pavlov

(1973) in the hydrogenic approximation, can be used

b§ }
R (f)-( [ﬂ+ Fix o) A, (6)] (2-41)
Obf
where R is the zero field linear absorption coeffi.
cient.

— _&__d_: AW—Nue — [.B_%*_—_En.wji.]__.l\]: D-N (2-42)
wf.

where N = Integer (D). Therefore 0 £ X £ 1.

_ _ | kT (2-43)
= Tp fwe = 0y

M = mass of the emitting atom. The profile function
f(x,a) which is a periodic function with period unity,

is given by
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o :
rrazdz 2 [y eelteyoR) /ot ] dy

0
T ~TR

In the dipole approximation, the absorption amplitudes

are given by

A=t 5 AE=L

The energy of the ™ 1level E = IH(l-l/nz),where

Iy 21.36 1012 ergs. n is the principal quantum
number of the bound state. In the optical range (the
Paschen continuum), the value of n is 3. Pavlov has
calculated the normal wave absorption coefficients for
the H™ opacitles also., It is interesting to note that
hﬁ of both these opacities undergo resonances at

8w, (s=1,2,344000..) Wwhich is the general characteristic

expected of a free-free absorption coefficient.

Free-free absorption coefficients:- The free-free absor~

ption coefficient for an ion of charge (Ze) is given by

k) =+ YT e

33

(2-44)

(2-45)

(2-46)



th
cient for the o component, of the cyclic projection
)
of (of the medium polarizability tensor) . (%)

see Kaminker et al.(1982)

7;:—_7;“%'\)”/1)

where the longitudinal and transverse effective colli-
sion frequencies are given by (see Pavlov and Panov,

1976; Ventura,1973; Nagel and Ventura,1983)

|2 2 4
)7 (3) G5pR w5 - B Gl RTD)

¢

The radiative width is

The magnetic Gaunt factors 3, , exhibit resonances

at Aw, (8=1,2,3,....). In the present computations we
have employed 9m¢.: 9 the non-magnetic Gaunt
factor, which is a good approximation for w,<<W , In
the equation (2-46) the quantities t, which are the
dimensionless components of the polarizability tensor

of an electron in cyclic coordinates, are given by

34

(2-47)

(2-48)

(2=-49)

(2-50)
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‘tm:(wocﬁ) s U= = e 3 (2-51)

/
The amplitudes (} (‘g) are given by
. b \E .

! 2 :
Q%) = %ﬁ (N + P;) ;4 (B) =

é . (2=-52)
4 2%

— *

= L1+ 5 +2E 5 - P 1—%)]

satisfying the completeness and transversality condi-

tions (Ventura,1979)
. v
9 1_,.\_ - 3 L 3

Za+(a) ot ,2_5 ; o (5)=1-% ¢ ZFd(g):’L 5 (2=53)
t it <

FELY) =4
The factors Eg' and Pi are defined in equation (2-23).
After having given the formulae required for calculating the
magnetic dichroism we shall study the wavelength depend-
ence of these dichroisms. The reason for this particular
interest is that the main application of the theory has
been in the calculation of the wavelength dependent
polarization of the magnetic white dwarfs. The wavelength
dependence of the dichroic opacities of H bound-free
transitions is shown in Figure la. The opacities are
calculated for the physical conditions at an optical

depth"[fsN 0.75 of the model atmosphere of a white dwarf,

000
The local temperature is Tr~~9050°K. The dichroism at
the absorption edges predicted by Lamb and Sutherland

(1974) for optically thin conditions, is found to be
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Fig.l. Wavelength dependence of the dichroic

opac-ities k_,k,, and k_ for B = 10'G. The
symbol k represents the mass absorption coeffi-
cient (in the units g"lcmz). The values corres-
pond to an optical depth T (A = 5000 K)N 0.75,
where T = 9040 K. (a) Hydrogen bound-free dich-

roism., (b) Negative hydrogen ion (H™) bound-free

dichroism.
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50



present even for a realistic model also. The strong
polarization changes that occur at these edges can
manifest themselves in the continuous spectrum even

after integrating over the stellar disk. The H bound-
free opacity i1s shown in Figure 1b. This opacity dominates
in the optical wavelengths and reaches its maxima in

the infrared. This source of opacity and dichroism plays
a key role in producing the continuum polarization and
the spectra in the present model. We note that we have
included the He bound-free dichroism also in the cal-
culation using the same hydrogenic prescription of
Lamb~Sutherland shifts. Its spectral index o is nearly
equal to 3., Its wavelength dependence is also almost

similar to that of hydrogen,

In the Figure 2a we have shown the H free-free
dichroism. It can be seen from the figure that the
contribution to dichroism is significant in the far
infrared (>\> 13000 i) though the opacity 1s still small,
in comparison with the H and H bound-free opacities.
This opacity is important mainly in deeper layers of the
stellar atmosphere. The contribution to total dichroism
from He free-free-transitions is again very small for
the temperaturesthat we have considered. In the model
employed by us, H free-free (> 1) is an important
source of dichroism and Opaéity particularly in the
infrared, see Figure 2b. This was first introduced into

magnetic white dwarf continuum polarization modelling by
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Fig.2. Same as Figure 1 but for free~free dichroic opa=-

cities, (a) Hydrogen free-free dichroism. (b) Negative

hydrogen ion dichroism. (c) Negative helium ion (He™)

dichroism,



Liebert et al.(1975). The He free~free dichroism
(> 1,85) is shown in Figure 2c¢. An extension of

the rigid wavefunction approximation to this important
source of opacity in cooler He-rich stars was made by
Landstreet and Angel (1975). Figures 1 and 2 also
show explicitely the relative contribution to total
opacity and dichroism,by different absorbers, in a
cool hydrogen-rich white dwarf atmosphere. The main
emphasis is to approximately indicate the regions of

the spectrum where flux and polarization can be expected

to undergo noticeable changes.

We like to point out that the dichroism calculated
using the more exact formulae (that of normal waves) also
give a similar wavelength dependence except for the fact
they undergo resonances at the cyclotron hormonics, with
a strong resonance near the fundamental. The Lamb-
Sutherland formulae, on the other hand are basically
suitable only for 'va<‘i VY  where ‘VL is the barmour
frequency. The cold plasma normal wave absorption
coefficlents also have a rather similar restriction,
They can be generalized by relaxing the ‘'cold-plasma‘’
and ‘collisionless' plasma approximations, Such cal=-
culations have been recently attempted by many authors.
See Pavlov et al.(1980) for detailed calculations and

references to earlier work. The review article by
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Meszaros (1982) is also useful in this regard.

2.3 The solution of the transfer problem and its compari-

son with some existing methods

The solution of the polarization radiative transfer
equation (for continuum or the lines), in the true absor-
ption limit is relatively simple compared to the solution
of the general true absorption plus scattering problem,
which is explained in full detalil in the next chapter
(chapter 3). The true absorption problem is a special
case of that more general treatment, and all those
equations of the solution method go over to the true ab-
sorption problem by simply substitutingw= 0, where W
is the ‘'albedo' for single scattering (=probability of
scattering). The method of solution is based on 'the
discrete space theory of radiative transfer' developed
by Grant and Hunt (1968a,196%9a,b), suitably extended
here for the case of magnetized media, We just mention
here, for the sake of clarity, that the same algorithm
of continuum transfer can be used even for true absor=-
ption lines, the difference being only in the construction
of the transfer matrix ‘3' . Since for true absorption
mechanism there is no coupling of any two frequency points
in a line or continuum, the transfer problem can be
solved for individual frequency points separately. Because

of the absence of coupling between any two angles, the
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the true absorption problem can be solved ray by ray,

in otherwords, for individual values of M, instead of
simultaneously solving the transfer equation for a

grid of |'4 . Thus the dimensions of the matrices
appearing in the algorithm is now just (4 x 4) or (2 x 2),
depending on whether one is working in Stokes vector
representation or normal wave representation. The normal
wave transfer equation further can be decoupled from the
matrix form of transfer equation to a set of scalar
transfer equations for ordinary and extraordinary waves,
because the transfer matrix is diagonal. It is not
possible on the other hand to ‘'diagonalize' the transfer
matrix Yl of the Stokes vector representation for any

WA

given set of angles"W’and.){ , though it can be done
under restrictive conditions on:ﬂﬂand ){ (see Stenflo,197]
for details). The asymptotic boundary conditions (using
the Unno solution at"Uma% in both representations are

given in section 4.1,

With these comments, we shall proceed further to study
the usefulness of the method of solution, in some detail.
This we do, by comparing the solutions obtained by three
methods' viz. Runge~Kutta method (RK) Martin-Wickramasinghe
method (MW) and our method of solution, which we call

discrete-space method (DSM). The tables (1) to (5) are



Tuble 1.

1

Unno atmosphere with a linear source function B, =
1+0,2 1 for the given values of constant opuacities Ny and n

Runge-
Kutta

= 0; Uz0

O; ey
1 I
1.1 I
Q
Y
2 1
Q
\
100001 I
Q
v
1.5; Py
2 1
Q
U
\Y

1.16000
1,15427

. 00190
-.00521
1.12566

.01169
-.03209

= 0.75

1.12256

.00855
-,00836
~,02482

Martin &

Wickramasinghe

1.,16000
1,15445

.00190
~.00621
1,12585

01169
-,03209
1.08000

. 02738
-.07617

1.12276
..00855
-.00836
-,02482

Stokes
vector

represen-

tation

1.16000
1,15445

00190
~-.00521
1.12585

01169
~,03209
1.08000

.02738
-, 07517

1.12276

. 00855
-.00836
-,02482

-

p

Normal
- wave

represen-

tation

1.16000
1,15434

00190
-,005621
1,12585

011649
-,03209
1,08251

02825
-,077517

=n

Table 2, A gray atmosphere temperature structure T = Te (0.751+0.5)i

for different constant opacities Ny and n

L)

0]
1
1.1

o

) pw

10000

Runge-
Kutta

= 0; 0=0

1.66270
1.64425

.00630
~,01730
1.54135

.04183
~-.11401

1.538306

03466
~,02477
~-.09218

Martin &
Wickramasinghe

1.66320
1,644b1

. 00629
-,01728
1.54196

.04150
-,11391
1.33161

11350
-.31157

1.53375

.03464
-,02476
-.09212

=m =L

Stokes
vector

represen-

tation

1,66378
1,645835

.00631
~-.01732
1.54228

.04158
-.11415
1.33160

. 11359
~-,31160

1.53405

.03468
~-.02480
-.00226

Normal
wave

represen-

tation

1.66328
1.64487

.00630
-, 01730
1,54169

01150
-.11406
1.33bbY

. 11499
-.31714



Table 3. A reualistic wodel atmospherce from Wickramusinghe
(172), T = 12,000 K for constant opacities n, and n_ =

Ny = 1.

Tuble 4.
(1972),

ll\ e

o)
——

with n = 0,2 + ¢

Bungu -

Kutta
pg = 01 py = 0; U0
ne = 1n I 2,98068
Ny = 1.1l 1 2,95600

Q .0087Y
vV -.02412
Np = 20 I 2.,79155
Q ,06473
vV -.17770
Ny = 0000Ln1I -
Q -
v -
pp = 1.9; Py = 0.75
Ny = 2n I 2,78489
Q ..08787
U -.06609
V ~.136061

Martin &

Wickramasioghe

2.97477
2,94820

. 00875
-,02403
2,76625

.06453
-.17713
1,98794

33778
-.92722

2.77945

. 056809
-, 065637
~.13541

p =M =0
Stokes Normal
vector wave

represen-  represen-
tation tation

2,98229 2.97047
2,956068 2.94474
. 00880 .00870
-,02415 ~.02417
2,79293 2.78140
.06481 .06471
-.17792 -, 17764
1.99154 1.99205
.33911 . 34061
-.938090 -. 95460
2,78606 -
.05828 -
-.06598 -

"t13586

P
Runpe - Marcin & Stokes Normal
Kutta Wickramasinghe vecetor wave
represen~  represen-
tation tation
bR = 0; Py = 0; U=0
n, = 1 1 2.645864 2.64677 2.65103 2.64975
Ny = 1.1 I 2.61067 2.61165 2.61400 2.61457
Q .01204 01202 .01208 01206
vV -.03305 -.03299 -.03309 ~, 03300
ny = 3 I 2.,40256 2.40377 2.40658 2.40629
0 .08327 .08317 .08317 .08340
V ~,22889 -, 22832 -.22900 -,22875
N = oooa I - 1,82349 1,82571 1,823562
Q - . 28179 .28238 .25187
v - -, 775354 - 175827 -, 17377
pp = 155 py = 0.75
N, = 2 I 2,48y42 2.39083 2,39460 -
Q .07454 07448 .07468 -
U -,04114 -,04111 -.04129 -
V -.19063 ~.19042 -, 19080 -

A realistic model atmosphere from Wickramasinghe
12000 K for r-dependent opacities n



arranged in the order of increasing complexity; for
example table 1 represents the case of a depth independent
transfer matrix, called the Unno atmosphere, which is
actually a Milne-Eddington mode with a source function,
linear in optical depth. The values given for the
coefficients 7¥A”,nearly represent various postions

in a hypothetical p,l,r Zeeman triplet, say far in the
continuum or almost near one of the ¢ - components of

the triplet,etc.(see the first column in the tables).
The tables are self explanatory. The column with the
title Runge-~Kutta represents the solutions obtained in
one of the most accurate methods of solving the linear
differential equations. DBeckers (1969) used a fourth
order RK for solving the transfer problem (which is
currently a matrix differential equation), and since
then many authors have been using this method. We have
programmed one such RK scheme for computing the results
presented in the column Runge-Kutta. Just as in Beckers
method it is a constant step size matrix RK method, the
step size h being fixed arbitrarily (RK fourth order
schemes arer\Jg) accurate). It turns out that a con-
stant and small step size h is not really needed at all
positions in a line. This is dictated by the magnitudes

of the numbers occuring in the transfer matrix 7 .

But there is no consistent way of exploiting this advantage,



Table 6.

=1 +
np 1

Pp = Qi Py

n., =1

I
=

[l

N = 100001

A realistic model atmosphere from Wickramasinghe
(1972), Tg = 12000 K tor T - dependent opacities n, = 1,

L

“ D M dH H S O R O

Runge~
Kutta

= 0; U=0

2.55208
-.09376
0
2,52056
-, 07780
-, 02092
2,32724
01778
~-.193006

0.75
2,32646
.03671
-.02388
-,185563

Martin &
Wickramasinghe

2.55216
~,09461
0
2,52072
-.,078686
-.02684
2,32773
.01701
~,19254
1,75273
. 25757
-, 70706

2,32713

04618
-.02393
-,18522

Stokes
vector

represen—

tation

2.55378
-, 09452
0
2,b62123
~-,07856
-.02694
2,33065
01734
-.19324
1.75506
. 256840
~. 70934

2,33013

.03644
-.02392
-,185683

Normal
wave

represen-

tacion

2, 55519
-. 09158
0
%.52605
-.07568
-.027b4
2.311b6
L U1892
-.17455
1,74403
.25736
- . 70650

45



Table 6, Accuracy and specific times t (in Secs) on IBM 370/155, required for

obtaining a soclution (IQUV)T. For all the cases y= 0.8, £ =0.7, Cos 2 x=0.6.

Positions

Unno/ Beckers/ Variable DSM-
exact RK step RK Strokes
Inside the line: Unno T  1.12276 1.12276 1.12268 1.12276
peiosplers E;f*g'zlfg' Q  .00855 00855 .00852 .00855
pga Ly T " U -.00836 ~.00836 -.00837 -.00836
voo-.02482 -.02482 ~.02476 -.02482
£ 0.05 40 10 0.9
Inside che line: Real I - 2.78459 2.78657 2.78606
utmosphere.n =n;=m, o .05787 .05768 ,05828
=2, n=0, 24, pp=de3, -, 06609 ~.06585 ~.06598
Py 73 voo- -.13551 ~.13535 - 13586
t - 40 10 0.9
Continuum; Unno atwo- I 1,16076 1.16076 1.16041 1.16076
sphere B=140.2v, n.=l, o _ 40004 -, 00004 ~.00004 - .00004
Nyme93an =104, =005, L 00016 ~.00016 ~.00016 ~.00016
=~ 01 v -.00508 -.00508 ~.00505 ~.00507
¢ 0,05 40 7 0.7
Cuntinuum; Real atmo- I - 2,60191 2,60171 2.60125
Sphere n =l+.1T,n =95+ o ~.00036 - 00036 - 00036
(106t 0, =1,04+.09527, ~.00092 -.00091 -.00091
PR= ~« 73 py= =01 v ~.02641 ~.02634 -.02630
¢ - 40 7 0.7



in constant step RK methods. Exactly this inability
makes the constant step RK a slower method. Landi
Degl'Innocenti (1976) improved the RK solutions by
deriving a step size criterion. This criterion is

based on the properties of the eigenvalues of the
transfer matrix :L . S0 this criterion consitently

and automatically fixes the step sizes for different
positions in the line. By using the variable h, we

find that RK scheme becomes nearly 4 to 5 times faster
than the constant step size RK method lsee table 6),
retaining almost same accuracy. The third column in

the tables (1-6) represents the MW solutions. Since

we have repeated the test case of Martin and Wickra-
masinghe (1979b), we have simply taken these numbers
from their work. The fourth column ‘'Stokes vector re-
presentation' are the solutions obtained by our method.
Here, also, the step size is automatically determined by
certain criterion called the positivity of the trans-
mission matrix. It is straight forward to see that this
criterion leads to a step size, calculated using T < T, &
Mim (‘z.g.\" 1{1 ) . We discuss more about this T’CY;,; in
section 4.2. But we mention here that, this so called
critical optical depth T,,, criterion ( T < Tevie )

is not a strict requirement for the 'true absorption

problems' at least in the stellar atmospheres where the



source function is nearly linear function of ‘T and,

its gradient issmoothly varying. The last column

'normal wave representation' are the solutions obtained
in the discrete space method itself, but employing the
normal wave transfer equation. The transfer coefficients
hé can be obtained by algebraic transformations, using

the parametric values of ‘nnkv.given in the first column,

and the analytic expressions for hé .
The method of solution is second order accurate

because of the half-implicit differencing (diamond scheme).

It can be used in arbitrary situations, with ease and

no extra precaution is needed. From the tables it can

be noticed that the solutions obtained using normal wave

representation are quite accurate when compared to the

Stokes vector formalism, keeping in view of the approxi-

mations involved in the normal wave representation at

the formulation stage itself, the correctness of which

depends also on the ‘'wavelength position in the line'.

The accuracy of the later depends on the position in the

line. Actually, near the line centre, the normal waves

are non-~orthogonal and the basic treatment itself becomes

inapplicable. Excepting such situations, it can be used

as a convenient alternative to Stokes vector formalism

for rapid computations, in realistic situations. The

Stokes vector representation however, is the most general,
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accurate and complete. The average times 1in seconds,

on IBM 370/155 computer, required to obtain a solution
(I guUv )T in the tables 1 through 5 are: Beckers/RK
(36), variable step RK (9), Mw(0,35), DSM-Stokes (0.8)
DSM-normal wave (0.5). A further comparison of accuracy
and computing time is made in the table 6 for both the
continuum and line problems in ideal or realistic atmos-
pheres. We conclude that DSM solutions are sufficiently
accurate, economical and the method is easily generali-

zable to true absorption plus scattering problems,

2.4 An astrophysical application: the continuum polari-

zation in magnetic white dwarfs

As already described in section 2.2, it turns out
that onehas to solve the vector transfer equation for
polarized radiation taking into account properly of the
magnetically anisotropic absorption coefficients (or
magnetic dichroism) in order to get the correct wave-
length dependent polarization observed in the magnetic
white dwarfs. The review article by Angel (1977) gives
an account of wvarious aspects, observational and theore-
tical, of the problem of polarization in magnetic white
dwarfs., It i1s now possible to make good modelling of
these interesting class of objects, by including various

dichroisms, strong field Zeeman effect, realistic atmos-
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pheric structure and magnetic field distributions on
the surface etc., in the radiative transfer equation,
and then by surface integrating the specific inten-
sities obtained for a two dimensional grid of lati-
tudes and longitudes over the stellar disk., See
Wickramasinghe and Martin (1979), Martin and Wickrama-
singhe (1984) and Angel et al.(1981) for the develop
ments and a detailed list of investigations carried out
by many authors. Still, some problems are left open,
namely the correct wavelength dependence of flux and
polarization in strong field ( I3 > 5-1516 ) white
dwarfs, and the wavelength dependence ¢f all the polari-
zation parameters (p(\ ), q(A ) and Q(A~) in the entire
range of wavelengths k'k 3000 A to 14,000 3. The large
degrees of circular and linear polarization and, in
particular an increase in these polarizations in in-
frared wavelengths (contrary to what one expects in a
thermal model),in some of the suspected strong field
white dwarfs are still not fully understood, However,
the inclusion of non~thermal sources of opacities such
as cyclotron resonance absorption etc., and a carefully
chosen field strength and its distribution over the
disk are found to explain the observations fairly well

(see Martin and Wickramasinghe, 1984).

We shall now see some details of the radia tive trans-



fer solution in a magnetized media, We have used the
Stokes vector representation throughout. The model
atmosphere employed was provided by Dr.Wehrse (private
comminication). A grid of atmospheric models for

DA (H-rich) and DB (He-rich) white dwarfs have been
published by Wehrse (1976) and Wickramasinghe (1972).

Q
The model parameters now used are Te = 9000 K, 1log

££
g = 8.0, log A (He,C,N,0) = solar value and log A
(metals) = solar value =-2.0 (A = elemental (abundance).
This model has also been published in Wehrse (1976).

We have computed all the non-magnetic opacities using
the polynomial approximations of Kurucz (1970). We

have compared total opacities calculated in this manner
with the opacity data which was also provided by
Dr.Wehrse for this particular model, and found the cal-
culation to be accurute. While calculating the mag-
netic dichroism, one needs the opacity values at two
shifted wavelengths also, along with the original wave-
length. If one is working in the continuum wavelengths
away from the absorption edges, these opacities at the
shifted wavelength can be obtained by an accurate inter-
polation in the non-magnetic opacity table. But such

a procedure is not possible when we are close to the

edges. Hence we have directly computed the dichroic

opacities for all the reguired wavelength points. First
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we have compared the non-mugnetic flux QK computed by
us with the published flux values in Wehrse (1976).
This is to check the accurate integration of the trans-
fer equation so that th- calculated results genuinely
represent the model* The fluxes can be calculated

using the definition Fﬁ

i

F, (T =0) = Zq‘};co,v)r*clw
From the Figure 3 it can be seen that our calculation
of continuum non-magnetic fluxes is accurate and coin-
cides with the original model (the comparison of
numbers also is made actually). For the convenience
of the flux calculation we have solved the transfer

equdtion for the roots (F% , j=1,4) of a Gaussian quadra-

ture.

For the calculation of results presented in Figures
(4) to (6) a uniform magnetié¢ field directed along the
Z-axis (the symmetry axis of the plane parallel atmos-
phere) is employed. In Figure 4a, the optical*ﬁepth
dependence of the net flux F(T) = F (T)= ZT[JI@»")P'J'F
is shown, for X = 5000 g. The net flux increases sharply
from T =8 to 7 =0.1 and then remains almost constant,
The magnetic fluxes are slightly smaller than the non-
magnetic fluxes. The degree of circular polarization
assuming the entire opacity as dichroic (€ =0) is shown

in Figure 4b. The polarization of light behaves in an
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Fig.4. Optical depth dependence of flux and
circular polarization. (a) Net flux as a func=-
tion of optical depth® (A = 5000 A), ‘in units
of erg cm"2s"le"1.(b) Circular polarization:
(percentage) as a function of optical depth for
B = 107G.qris the angle between line-of=-sight
and magnetic field. (c) Wavelength dependence

of circular polerization for different values ofVY.
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analogous manner to the net flux F (¥ )., q( T, V)

is larger for smaller v-lues of V. This behaviour is
as expected of an absorbing layer or Zeeman active gas.
The wavelength dependence of g( /) shown in Figure 4c
reflects the wavelength dependence of the flux unless
there is a source function gradient reversal which

for instance can arise as a result of discontinuity in
the opacity. Notice that the wavelength dependence is
angle dependent, The wavelength dependence is very

weak for\y = 86.0£i This is because of the increased
coupling to linear polarization which has a weak wave-
length dependence, unlike circular polarization. The
effect of an absorption ‘'edge' on the linear polarization
p and circular polarization g is shown in Figure 5a,b

for & :# 0. The hydrogen bound-free absorption co-
efficient which undergoes drastic changes at the absor-
ption edges (see Figure la) gives rise to a large change
in the magnitudes of p and g as well as their signs, the
effect which was predicted by Lamb and Sutherland, for the
optically thin case. The Figures 6 and 7 show the same
quantities for other two intermediate values of angles
where, both p .and q are quite large. In all these compu-
tations (Figures 4 to 7), we have neglected magnetic
birefingence ( PR = fly = © ). 1In Figure 8 we have
plotted the circular polarization spectrum @(x);FVL)\) /F'L O\>
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computed assuming a centred dipole of field strength

HP = 1O7G. The angle i between the dipole axis and the
line of sight is taken as zero. We have used 8 lati=-
tudes and 8 longitudes. The field strengths and orienta-
tions are calculated at all the grid points. The polari-
zation radiative transfer equations are solved at all
these grid points, and then rotated properly using the
rotation matrix to refer the solution to a fixed frame

of reference., The solution is then integrated over the

———"

disk. The disk integrated linear polrization P =0
because of the symmetry (i=0). The magneto-optical
effects are included ( fp#0 5 &, F O ), but they

do not have significant effcct on the values of q because,
in the cold atmospheric model we have employed, the electron
densities are quite small. We feel that q is probably
overestimited because of the lower order angular quadra-
ture used for averaging over the disk, It can be

clearly seen from Figure 8 that the thermal magneto-
absorption model gives the expected wavelength dependence
of'E in the atmosphere of a magnetic white dwarf, though
the treatment of magnetic dichroism is quite approximate.
Useful solutions can be obtained only by an accurate disk
integration of the transfer equation, assuming a realistic
field distribution. Such calculations are necessary for

any realistic modelling of the continuum polarization

and the spectrum of magnetic white dwarfs.,



CHAPTER 3 GO

THE SOLUTION OF THE EQUATIONS OF CONTINUUM RADIATIVE
TRANSFER IN ANISOTROPIC ABSORBING-SCATTERING

MEDIA

In the previous section, we confined ourselves to
the true absorption approximation in treating the polari-
zation radiative transfer, For the transfer of radiation
in the atmospheres of cold magnetic white dwarfs, where it
is a reasonably good approximation. Often in astrophysi-
cal applications we come across situations, when scatter=
ing of radiation is extremely important., Whenever the
albedo (U defined as the ratio of the scattering coeffi-
cient to the extinction (scattering + absorption) coeffi-
cient, (0 < W < 1) is large, the correct and the
natural way of obtaining the radiation field in a medium,
is to solve the transfer equation where scattering is in-
cluded, The transfer equation for the polarized radi-
ation, taking scattering into account was formulated by
Chandrasekhar (1950), in the Stokes vector representa-
tion, He used this equation to solve the problem of
polarization of the sunlit sky. These equations being
very general in nature can be extended to treat the
transfer problem whenever the scattering mechanism. can
be approximated as dipole scattering. For this reason,

the scattering by molecules or electrons can be treated
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using the same Rayleigh scattering equations, with the
only difference that the ‘scattering phase matrix* and

the scattering cross section are different in each context.
Chandrasekhar's equations have also been generalized to
treat more difficult problems such as polarization by

the Hanle effect or the resonance line polarization with
frequency redistribution. We shall, in this chapter
address ourselves to solving the polarization (absorption
+ scattering) transfer equations in a different context,
different in the sense that the absorption process is also
anisotropic, along with scattering. This situation arises
when there is a strong magnetic field in the medium, The

calculation of absorption and scattering coefficients in

a strong magnetic field by itself is a difficult problem,
and the cross sections have been calculated only recently.
In this section, we use the Stokes vector as well as normal

wave representation depending on the convenience,

3.1 The continuum radiative transfer equation in ani-

sotropic absorbing - scattering media

The radiation polarization density matrix transfer
equation have been discussed in Dolginov et al.(1970) for
an arbitrary anisotropic medium, For the general argu-
ments leading from these equations to the normal wave

equations see Gnedin and Pavlov (1974) and section 2.1.
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At present we shall confine ourselves to coherent
scattering in the continuum. The transfer equation

for the intensities of elliptically polarized normal

waves (j = 1 extraordinary and j = 2 ordinary wave) is

given by

(Jx.V)IJ(Z,IL):-*xj(ZJJL)IjGEaJL)'+

+ %iﬁﬁﬂtﬁ> L, (2,004 & (2, 0) B2 (3-1)

The following approximations are made in deriving the
equation (3=-1) from the general density matrix equation

(which is fully equivalent to Chandrasekhar equation):

(1) The plasma is tenuous and cold that is, thermal and
recoll effects are negligible, with the refractive
indices *né (j=1,2) not differing much from unity.

(ii) The polarization ellipses of the intensity components
I, and I, are similar and orthogonal. (iii) The relative
phase shift W My —"M.1>> (Ry+ky) /2 where k, and
k2 are the absorption coefficients, It is this last
assumption (that of strong Faraday depolarization),

which diagonalizes the density matrix and allows to define
the normal wave ‘intensities'. In a magnetized plasma

the approximations made above are justified if (’Qcoll/ﬁ))

<< 1,( W | W )<< 1 and the medium is optically thick.



w{)ﬁ:wll is the electron ion collision frequency.

The equation (3-1) is a full range (-1% B =cos O £+1)
equation for the azimuthally symmetric radiation field
in plane parallel geometry, 6 1s the angle between the
ray und the Z4-axis along which the optical depth T is
measured, 8ince all the guantities are dependent on 2
and rio.we do not write them explicitely in what follows,
except where informative. uﬁé s (,0“.5 + hé) is the mass
extinction coefficient which 1s the sum of the integral
scattering coefficlent f;‘“’:’ and the total absorption co-
efficient ké of the mode j. }2& By ]2. is the thermal
emission coefficient with (3, the Planck function. In

a more explicit and simplified form we can write equation

(3=~1) as

i

A
AL, 4o 'y e’ By
M’ig e %’ é' w (E g T (g') dg -+ 'fzd -

¥ = cos'y where Y is the angle between the ray and the
magnetic fleld and % {s the field azimuth in an ortho-
gonal system, with the ray going along the z-axix. P is
the mass density. dﬁ”’m C"é,ﬁi) / dg  is now, the azi-

muthally symmetric differential mode conversion scattering

coafficient,

63

(3=-2)
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For a detailed discussion and references to works based
on the multiple scattering °'Stokes vector transfer
equations' and various methods of solution, see van de
Hulst (1980) and, for applications, Gehrels (1974).

The other approach, which is useful for most of the
astrophysical plasmas but less general, is the ‘polari-
zation normal wave representation' transfer equation
which is a special case of the general density matrix
formulation of the transfer equation (see Ginzburg,
1964;Dolginov,Gnedin and Silant'ev, 1970; Zheleznyakov,
1970; Lamb and ter Haar,1971). A slightly different
approach is taken in Pacholczyk (1977) and Melrose (1980).
For recent literature on the applications of this method

see Meszaros (1984).

3.2 Calculation of the continuum scattering and absorption

coefficlients in strong magnetic fields

The cross sections for the normal waves in the ‘cold
plasma' limit have been calculated by a number of authors
(see e.g.Canuto et al.,1971; Gnedin and Sunyaev,1974a;
Ventura, 1979 etc). We employ the expression in the form

given by Kaminker et al. (1982)

A
deinert) 3 (M) ft dem e =
dn sn\ POt T
mi(ﬁﬁﬁ) fl oy d
T ogmw\ ¢ P apt T Tap T

«,F= -1

(3-3)



jok = 1,2, 'xw{B = 0,4+ 1. The cyclic projections of

the cold plasma 'medium polarizability tensor®

B | -lu o ]
~ A . — We ...EB
M= b0 =g, W=t
0 0 -fm <
L. —

onto the orthogonal coordinate system ( %, , Yo , Z.),

with 2z axis along B and the ( Z, X

parallel to ( Z X

) plane being

) plane, are given by

J J+1 5 12
)= €= U+ B+R) (1”E2)
24 + P
' | ot i j ,
é (JL):;_-——F Cxti®y _ (__13)+ {£e)(1+R)—(+%) P é:F ¢
i > 2 J2 (" + B
which form circular polarization basis vectors. (exeyez)

are the electric field components in the (x y z) ortho=-

gonal system, with the ray going along the z-direction.

They form a linear polarization basis system. The Stokes

parameters are actually defined in this frame. The major

axes of the extraordinary and ordinary wave are per-

(3-4)

(3-5)

(3-6)
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pendicular and parallel respectively to the (zx) plane.

‘g‘ = C0S Y where '\V is the angle between the ray

and the magnetic field. @ is the azimuthal angle

measured anticlockwise from the ( Bx, ) plane. The

scattering amplitudes are given by

j nY) = gj g N

-1
The dimensionless constants t, = (1~FOLFE) are the
elgenvalues of the complex polarizability tensor (3-4) in
d
cyclic coordinates. [ , R, ::tmhflﬁj  together represent
(|

the degree of linear polarization. PL = 0 because, for

the normal waves | @,- f,|=T)2 , Pj being the inclination
of the major axes of the normal waves in the (xy) plane
with respect to x, In other words, normal waves are ortho-
gonal, Ei is the degree of circular polarization. With-
out any loss of generality, we can take (@ = O.which means
that the radiation field is azimuthally symmetric. This
choice makes the opacity calculations simple and leads

to  (‘ZX) Il (7, %) Il (z x) . The corresponding
azimuth angle averaged form of the equation (3-3) can

be obtained by equating ({ = 0 and then integrating

l .
the resulting expression over ( . Thus, the azimuthally

symmetric (azlmuth angle independent) form of the transfer

(3-7)
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equation is given by equation (3«2). The differential

scattering cross sections are given by

1
d6, (€8) _ 3 [Nebs 2 R
nosl =2 (% )O(;wm 0, (8 e
since
(&:)J(s)*— ¢ |1-}ﬂcf(' Vo' = 21 &, o (¥) (3-9)
CL “OO-LOL — DC(E) ) QLP Ea(p) ‘P _— T OCP 0(.{3 -

The scattering amplitudes are now given by

a’ e 3

@ =S (1+R) (3-20)

1 § d

] 2 2

0, =4 (1+€+2RE5—FR0 ) (3-11)
satisfying the completeness and transversality condi-
tions (Ventura, 1979)

J 4~f§? ] 2 i ]

3":1,1 3";1,2 o =1

which assert that the normal modes span the two dimensional

plane transverse to the direction of propagation.
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] 419 ) i 4 n (4) - w
= -1 - P =F1) d . = . == -

€=cosy = P.cos @, + (1= )1 gim U "

o (3-14)
4h.

! /
g::COS\V:FCOS@B'-I- 1»-}4) Sin Bg

where () is the angle between the Z-axis and the field

direction measured in the (X2) blane. The integrated

'partial' scattering coefficients are given by integrating

over the outgoing angles,

+1 +1 .
_ [ dm0sE) | o [Nebr & d (E) Ah
Gj‘h(g)'-—tj[ I J 5 ( P )02;1“ x « (3-15)

satisfying the ‘normalization conditions'

1 +1

P}\;Z%S (€)de ; ZP\ =1 ZP\“:—'% (3-16)

u’z =-—4

With the help of equations (3-15), we can obtain the
'full' integrated scattering coefficients by summing

over the final polarization states,

7 ()= n;?m =67, (6, (E)= (N )Zt - (3-17)
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The absorption coefficients hd== hd~+}§ +----- for the

normal waves can be calculated as the sum of contributions
from individuval atomic processes. We have described the
calculation of important absorption coefficients in the

previous chapter (see equations (2-41) to (2-50)).

3.3 A general numeric¢al solution of the anisotropic

transfer equation in an absorbing-scattering medium

Now we present the method of solution. Since the
basic theoretical development of the discrete space
theory of radiative transfer and its methodology are well
described in detail in the early pioneering papers by
Grant and Hunt (1968a,and 1969a,b), Peraiah and Grant
(1973) and recently reviewed by Peraiah (1984), we do
not go into the details of the discrete space theory.
Instead we present the extensiéns to be made, to calculate
the radiation field in an anisotropically absorbing and
scattering medium. The problem of non-magnetic, pure ani-
sotropic scattering (the standard Rayleigh scattering
polarization transfer problem) has been solved by Grant
and Hunt (1968b). Basically, in discrete space theory,
the 'finite difference equations' are derived by a dis-
crete ordinate approximation to the equations of radiative
transfer. The discrete ordinate form of equation (3-2)

can be written in a matrix form as
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) ..,_+1 , | | —
B = AMIM—{G [P LR + 1-3) A0 B ()

_ /o
— W L () I, (k) € ) (3-18)

pEED 2 henzen— [ [BERK) TEH + -3) B, 00 B EK)]

— W WE* -1 F") Iy (Mo) ET/PO ) (3-19)

where M & (0,1)and B (W is taken as generally anisotropic.

The last terms on the right hand side in equations (3-18)
and (3-19) represent the contribution to the source function
due to the directly transmitted beam wI.,*( Mo ) in the
direction W, incident on the free surface (T=0) of the
medium. Equations (3-18) and (3~19) represent the rays
in the upper and lower half space of angles respectively,
with respect to optical depth scale, lncreasing into the
atmosphere. In the continuous analytic form each one

of the equations above is a matrix equation with A and B
being (2x2) matrices and I and B the (2x1) vectors. The
optical depth scale dft’ = — ( hd 4+ 6) P dz 1is defined with
respect to the zero field extinction coefficient. The

A matrices are defined as

_x S +
WA 4 (1-B)p, ; W= — =2 A= A(EF) (3-20)

{> +
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= 0 [q o L R AtA"“H)
A PE SRSt A
T

's' and ‘'a' denote the scattering and true absorption.

et

(0 is the albedo for single scattering (0 < W < 1).

S

The scattering phase matrix defined as

oy

! A 65y (8, E) 6 (5 €')
P“u.’]ul’)_-: 1 OLG:J"M (£,%5) — j_‘;_ i | 12 |
G5 (5 §') G‘Ez(E,E)—_J

-

v~ oy dE 67 de

(3-22)

satisfies the normalization

(3=23)

+1
LIpeowydp =1 ;5 ~t<k, et
.41

The scattering integral source term gives rise to a
diffuse radiation field. The second term in the

flower brackets is the 'internal thermal emission®

source term. The intensity and the anisotropic thermal

source vector are written respectively as

}»(-J-'-'P) — I,‘ Ci‘}") . ECiP) — B(_if-‘) /2.

(3-24)
I, (i“H) g B (M|
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Now, the 'discrete ordinate' forms of equations (3-18)

and (3-19) are written, in matrix form, as

where the signs in the superscript indicate the signs

attached to ]P] in the respective physical quantities.

! I =M J.
M:V{ O,}S C = [Ci O;I : MM[M"J Fi * ﬁ)l'-'e:‘—12--*3",

C: = [Cin]:Cj 6\‘”2

++ —

b At _ PR = B _
ot B |, Tap Thpl J=Re | ap=t2

P: ' +| ) + - gt
SR Fal B =Tpteh=Rg [ g ko

-

B” and B . J is the

-l

with similar expressionsfor P,
order of the guadrature formula which is used for angular
discretization. Hence all the matrices are now of
dimension (2J x 2J) and the vectors. are of dimension

+ —— +
(27 x 1), The matrices P and P and I, are

(3=-25)

(3-26)

(3=27)

(3-28)
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Et‘ Iﬂﬁ Fw.n I;tpx | Y‘ }4;&(&1 Pc’ 5?!4) POCP;\&" d‘) P""‘:t 2
. IO R . (3=~29)
e B T L ) Po S )= 1’-7
- - M{?“* gi}%% ‘P.. >O
J d
“‘“’ E’ ;,.T
D L Oy L, () Jm ] (3-30)
Integrating the matrix equations (3-29) and (3-30) over
fee st bounacd by the planes 'tn and T, .4 we get
+ “+
mtﬁnw.}m‘) &‘KA } :3:” &y{ ’"*%;EE xwwmﬂf’rgm&w wm&]_i—
N~ if ¥ b :”rtﬂ?“ }F @ w&"ﬁ’] Ho + +
« (A * : S ? . ot o T
} el "’"»m:;fw . £~ } (1 wm%)ﬁmﬁm% QM%} y  (3=~31)
-MLE, L oora o eav e, [P ¢, 42 6% ]+
e A ST Mg bt T I T S
S e oY P -
A L A (- .
* 7*”2' xmg’%”w ) (ﬁ %1) ‘\“ U w’nr%)ﬁamw. E,n*j_} y, (3=32)
r b3 ¥ 1
whth L, % T (1) 5 Lo, @ L (Ta), M= 1, 2, - - -~ N,

where N = number of ghells into which the atmosphere
le divided, The suitable cell averages based on the

diamond scheme (see Grant and Hunt 1968a) are expli-



citely used in writing equations (3-31) and (3-32).

The subscript n+¥% denotes such averages, for example

Dt

u¥*%==ﬁan4+ﬁx0)2.and so on. The last term is written

by cell averaging the dilution coefficient exp(-‘t/'yc)

+
of the direct beam I, , over the given cell. We
p 2

&
take AT = (k + s:r)m_d{ . t’m% (By=Ep ) =T, =Ty -

Making use of the expressions

r 1 + +
— (3-33)
'Iwn-\-_L 2 ( l:Y\-M T }'n) ’
2-
we can re-arrange equations (3-31) and (3-32) in a
canonical form as
P~ +_ -y -~ i - -y
K P
I Lo, ) x (men)| | I, Yot
= )| | - + (3-34)
T ] Y (myd M t (n N+ I
" L..MC . ™) wo ] LB u;“*ji,«

This straightforward, but tedious 6 elimination can be
cast in. the form of a computing algorithm which we have
given below. The operators r and t appearing in the
canonical form (3-34) have the physical interpretation
as matrix operators for diffuse reflection and trans-
mission respectively, of the radiation incident on the
shell between the planes T, and Ty,4. Similarly the

~~ctor operators E:m+%: represent the radiation which
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emerges from the surfaces of the shell due to internal

emission sources plus the contribution from directly

transmitted beam.

A computational note: The procedure is based on the com-

putation of r,t and X operators of all the N shells, into

which we have divided the medium. We have explicitely

assumed in deriving the equations (3-31) and (3-32) that
the stability and non-negativity of the cell operators,
and hence of the specific intensity vectors is assured,
for the value of the shell thickness AT <7 Teyie 1S

(4]
the 'local critical optical depth' which is actually cal-

L]

- +
culated by requiring that é_ >0, S o and A >0 . For

a large class of scattering problems one can use the ex-

pression

LK
’t ) — M jfﬂ i B IV ; 3
(Tore 1 J [ U-Tnpg vy (Ko H) Ca')]

to compute this value, If AT >"§ﬁt.the shell is fur-
ther sub-divided, and theag,gaand~§ operators of the
composite thick shell can be generated by a fast doubling

algorithm (Grant and Hunt 1969b). A convenient test of

the accuracy of the solution is offered by the requirement

of 'global flux conservation'- the outgoing flux should
equal the incident flux for a 'conservative' scattering
atmosphere ( W= 4 Y., It is shown in Grant and Hunt

(1969b) and Peraiah and Grant (1973) that this criterion

(2-35)



is always satisfied provided care is taken to ensure
that the scattering phase matrix is normalized to a
high degree of accuracy. Consequently, it is pre-
ferable that a finer angular discretization is employed,
particularly for the strong field scattering phase
matrices which are highly anisotropic. A complete
discussion of these aspects viz. the spatial and
angular discretization and flux conservation in the
finite difference schemes, can be found in Wiscombe
(1976a,b) . Since the recursive algorithm used for
computing the internal and emergent radiation fields

is the same as that given in Grant and Hunt (1968b)

and Peraiah (1984); we do not discuss them here. But,
the r,t and E; operators should now be computed from the
algorithm given below along with the relevant boundary
conditions which are specified based on the problem.
Algorithms Computation of transmission and reflection
matrices and source vectors.

Define that

+ ++ + - . ﬁm :
- w P ¢ = W :
M“.*.i?: w“*iiwn*ii v ) “'%Ti'b"ii h""ji' wh""‘-?i - )
(A1)
- _ —— — —_— —+
= G = ,P ¢
ag& then z
' + ++ + = + -
— ,,__..:L — ' - ..4.... T ’
é - \.1:..]' 2 TTH—J.?: (&“”:3 «-@’md» " é 2 ‘h+-1£ %'ﬂ%’% )
(A2)
— - L — —
S =M-Llx . (A — S =iT @ )
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Then, the transmission and reflection matrices are given

by

ot +- -t

+
toer,m=tag +7 ¥

e ey e T -
tone) =t 1A S Ay Y ] X mdoaty KMo

and,

-+~

Y (et )= (1—

L
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the source vectors have the form
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n+,12__) 'h+.fL t
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We shall now give some simple forms of the normal wave
transfer equation which provide a simple way to underw
stand the propagation of normal waves in an optically
thick magnetoplasma. Further, we can use the limiting
case (B= 0) of the normal waves to check the correctness
of the program. It is also useful in understanding the
degree of excess anisotropy caused by the magnetic field.

We give the required equations below.

Zero feild limit of the cold plasma normal wave
transfer equationss: The governing equation can be
obtained by subgtitut{ng the magnetic fileld strength
B=0(u=0; q=0; é; =0; ﬁL = T 1; td_=~1, XL =0, +1;

j = 1,2). Since there is no preferred direction in the
medium which is isotropic, we can také E= MW, The nor-
mal waves Iiz:m (= x“i)jz.are now clrcularly polarized
with the Z-axis, the normal to the atmosphere, being the

physically distinguished direction.

From the normal wave equation (3-2) we finally get

+1

Il' /
lTo) I aj 3+ Er=)F O} T .dp'—-@-a){m} (3-36)
i |ve) =] T 0 AL i

Notice that these equations can also be obtained from the
Stokes vector equations of Chandrasekhar Dy taking Ilnﬁiql

in the azimuth-independent part of the phase matrix. The



first equation is simply the transfer for Rayleigh

phase function (see Chandrasekhar, 1960 p.17). So,

this case can be used as a check on the correct pro-
gramming of the algorithm, since the tabulatedsolutions
for this standard problem are available, e.g.van de
Hulst (1980). There is one more interesting case of the
normal wave transfer equations; that of superstrong mage
netic fields, found near magnetized neutron stars. This
helps in calculating the so called directional diagrams,

or the angular dependence of polarized radiation in a

strongly magnetized plasma.

Limiting case of superstrong magnetic fields: If we have
a situation where W<< & for example the optical range
and the magnetic field B>> kﬁ@ the normal waves are cha-
racterized by a large linear polafization over a wide
range of angles E . For this case (u» 1} q > 1; 1?:&:;‘.1)'

1%@0;§ﬂﬂatfﬂjjnm19 we get the following transfer equations

P dr (P) or T, cons tant,
.".L...z-.“‘) ~ 9 (1=¥) T, (W) lf ~€)(1-¥) I, (8" dp'
M3 . (F b, "

- (1-B) (1-E* )

§=§u@b §Q=E%HU. It is intersting to note that the

ordinary wave equation (3-38) is independent of the

(3-37)

(3-38)
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field strength but becomes highly angle dependent.
Particularly, for quasi-transverse propagation, the
electric vector vibrates in the directions almost parallel
to the field lines, which is responsible for the little
influence of the field on the electron oscillations.

The absorption and scattering coefficients are nearly
equal to their field free values. As far as the extra-
ordinary wave is concerned, these coefficients become
extremely small compared to the ordinary wave. There-
fore the radiative transfer hardly alters the value of

I, ,» which remains constant according to equation (3-37).

3.4 Two astrophysical applicationss transfer of polari-

zed radiation in the atmospheres of magnetic white

dwarfs and neutron stars

The method of solution given here can be used for
computing polarization of radiation under true absorp-
tion mechanism, by setting the albedo @ = 0. We apply
the theory presented in the previous sections to cal-
culate angle dependence of the polarization in the at-
mospheres of hot magnetized white dwarfs and a plasma
slab immersed in a superstrong magnetic field. This kind
of plasma emission regions are found to be responsible
for'the polarized pulse emission from the pulsars. We

show the changes in the polarization and spectrum caused
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by external illumination and heating of the outer

layers of a white dwarf atmosphere. In the strong field
case we have clearly demonstrated the large changes
(such as the beaming of the radiation) caused by the
magnetic field. A comparison is made with the non-

magnetic Thomson scattering model. The optical depth

effects are also discussed.

Recently two hot magnetic white dwarfs have been
discovered by Liebert et al.(1983). In the atmospheres
of such stars, scattering plays a significant role at
lower optical depths. In weaker magnetic fields(w¢4<1wl
B 1;Pq and optical wavelengths), the transfer co-
efficients do not differ much from the non-magnetic
values, So the polarization is in general very small,

and sziéh as in the case of magneto absorption models

of chapter 2.

In Figure 1 the angular distribution of the emergent
f.p and q are shown when isotropic radiation is incident
at T,y given by I; (Troac ) = E_%mug and no radiation
is incident on the top of the atmosphere; these are
the conventional boundary conditions. The computations
have been carried out for a model of white dwarf with
Tepg =50,000 K,log g = 8, taken from Wesemael et al.
(1980), The field strength is set at B = 5 10%:. An

eight point Gauss quadrature is used in the angular dis-
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Fig.1l, Angular distribution of emergent intensity
I(in the unlts of B, (W, T, being the tempcrature
at T = 0), percentage llnear polarization p =
Q/1 and circular polarization g = V/I computed for

a model atmosphere of pure hydrogen white dwarf,
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cretizations The transfer equat.ons are integrated

up to U 22, Full lines correspond to (], = 0

who re ®B 1s tho angle betwean tho [ield dlrection

B and the normal 4 Lo the plane parallel atmospheric

layers, Dot-dash lines and dashed lines correspond to

(H)u ‘ nJ'l- anad HI’J.. respectlively, The dotted lines

roprogent. the gspeclal cage of the magneto-absroption

(W -~ 0), The lontenslty distributions f[or (H)B = )

and @u . "}‘J uwre nol reasolved in the adopted scale,

The angular distrisutions of T are almost similar for all

Lhe cases, namoely dﬂg“‘“(}, fr/ip 3 TT']LJ wlth the emergent

Intonglty in general lncreasing by a very small amount

( 1 per cent) with the increasing values of O, .

But p amd ¢ are more sensltive with respect Lo the angle

(H}ﬁ . The angular distributions for G =0 and W
= W () do nol differ vary much because the ‘partial'’

anguldr depandence has already entered through h‘? in the

former case (Lrue absorption) also. Notice that the

Jngular dapendence Ls not only determined oy the magnetic

fleld affecta, but also by the limb darkeing phenomena

which has modlfled the former effect, The effect of

external 1llumination (I: (t =0) '"*”’/" 0 ) on the free

surface, along with the inner boundary condition is shown

in the Flgwre 2., For all the cases shown, @9 =0,

Full linesi: an ijsotroplc low-temperature lrradiance gilven



0 0.8 0.6 04 0.2 0.0

L

Figs2. As Pigure 1, but showing the effect on
f,p and ¢, of an external illumination on the
top surface T = 0, along with an input at
T = T .

max



by Id (H) e Bq(TD) /':2. v J=1,2. Dashed liness an
external illumination distributed as cos €, i.e.

+ (W) =[By(r) [2]p} ), Kk = cos® . Dot-dashed
lines: a high-temperature external irradiance IJ @"‘D"—“-
?:"--[Bq (T=75,000 K)/z:] ’J- » an arblitrary change in the
temperature gradient obtained by enhancing the local
temperature continuously, from 1% at T = 10”4

to 11% at T & 0, thus changing the source function
gradient. For isotrepilc illumination, p is enhanced

by a large amount, particularly for transverse directions
(@B::c) ; D = ﬂ‘}z_); while g is only slightly reduced.
Notice that the original angular dependence of p itself
ls changed., Thus, the 1isotropically illuminated stellar
atmospheres are better sulted for polarization observa-
tions near the limb. For an anisotropic unpolarized
diffuse external irradiance (not the direct beam), the
value of p increases, but its relative lmportance near
the limb 18 suppressed because of the angular dependence
of the incildent radlatlion, which dominates that of the
emergent radiation fleld., g increases near the limb
for the same reason. The effect of altering the normal
''source function gradlent', by lrradiating a high
temperature ambient radiation at T =0, 1s again larger
on the p values than on g, particularly in transverse
directions., In general, the circular polarization g is

proportional to the 'temperature gradient' in a high
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temperature atmosphere, unlike the case of a cooler
medium where it 18 proportional to the radiative flux
gradient (see Gnedin and Sunvaev 1974b; Kaminker et al,
1982), Notice also that an increase in p 1s always

associlated with a decrease in the values of q.

In Flgure 3(a) we have shown the realtilve inten-
sities of the extraordinary {ext) and ordinary {(ord) modes,
for a 'self emitting' plasma slab whose parameters are
representative of a polar cap emitting region of a

magnetlzed neutron stars T = 1081(, (%L_?—:) = 1}

(-J%%ﬂ) m 0,29 Ne = 1023 cm"aj the total optical depth
of the slab = 10°, The ext-mode dominates because of
its larger mean free path (smaller O ) over the ord~
mode, But more important 18 the effect of ‘mode con-
version scattering' by which the ordinary photons enter
the ext~-channel and escape easily. This process is
effective because the medium ls optically very thick
resulting in large mean number of scatterings. For this
reason, p and ¢ (FPigure 3{(b)} depend strongly on the
thermal structure of the medlum and the details of transe
fer, than on the cross~sections of the normal waves them-
selves (see Meszares and Bonazzola,1981)., Figure 4(a)
corresponds to a physically identical but relatively thin
slab, and hence T (I oL (%J- (]*)/ H) contrary to the
optically thick caiae. The scale on the left refers to

normal waves, The dotted and dot~dashed curves, which

correspond to an ldenti¢al non~magnetic slab are refered
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to the scale on the right, The ord-wave i1ntensity domi-
nates because large absorption ensures large emission,
and particularly because the number of scatterings is
smaller in this case. Clearly, the radiation field now
'depicts' the strong angular anisotropy of the cross-
sections, rather than the transfer effects. To obtain

maximum polarization, we have taken ()

M

l, in the
non-magnetic case, The input given at the lower boundary
is I‘J_,Y“ = B; « The linear polarlzation F'T. for this
case, see Flgure 4b, reaches a maximum of around 10%

for M~ 0, When this slab 1s lrradlated normally on
the free surface hy IQ.Y' Oim“l_) ::Big we agaln get large
polarizations. p and g nearly follow the samebehaviour
as intensity, but the strongly linearly polarized
ord-wave dominates thelr general behaviour. A steep
reduction Iin the cross sections for photons travelling
parallel to the field (Canuto et al.,1971) is responsi-
ble for the sharp intensity maximum, the ‘pencil beam'
(of half width ~v20°) in Figure 3{(a), as well as the
'hollow pencil beam!, an intensity minimum in Figure
4(a), for very small angles of propagation. Unlike the
case of magnetic white dwarfs p is wvery strong in these
objects (see also Kaminker et al.,1982), For an irradi-
ated magnetized slab, the results are quantitatlvely
different. This polarized beaming (directionality) of

radiation is useful in constructing the pulse shapes
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of X-ray pulsars, exploiting the strong dependence of
the directional diagram on W !MC and % (see Nagel

1981y Meszaros,1982 and Silant'ev, 1982).

The (conservative) scattering in a non-magnetic
slab of the same thicknass glves rise to a smooth
angular dependence for the emergent intensities L¢ v
and the linear polarization p (see Figure 4). When
this slab is illuminated on the top surface (T =0)
by a normally incident ( B o 1) diffuse radiation
fleld, a large amount of linear polarization can be
obtalned with a steep increase near the limb. A
grazing incidence for example produces a negative p.
However, the detalled structure of the azimuthally
dependent radiation fleld lsa qualitatively different
from the azimuth-independent case, slnce in the former
case, the coupling of p and ¢ is stronger. For
computing these later results, we have used Chandra-

sekhar's equations (1950,p.43) of Rayleigh scattering

polarizatlion,

From the results presented above we see that
for weaker magnetic fields, the spectra and peclarizatlion
of hot white dwarf atmospheres do not differ much from
the results of simple magneto-absorption theory presented
in chapter 2. This is essentlally because of the large

densities and relatively low temperatures of the atmose
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pheres of cool white dwarfs. But we have shown that
the external ilrradiation of even such atmospheres can
have dramatlc effects on the polarized radiation
emitted by these atmospheres, This has far reaching
consequences on the modelling of the polarization of
magnetlic white dwarfs because, the thumb rule of large
integrated linear polarization means large magnetic
field in a magnetized plasma, can be misleading. And
linear polarization seems to increase by large amounts
in irradlated and heated atmospheres, We feel that
such possibllities have to be explored in modelling the
recent observations ¢of large linear and circular polari-
zation in even ‘hot' white dwarfs {(where we have the
difficulty that we can not take strong fields to model
them using magneto~-absorption theory since thelr line
data indicate low field strengths), The method of
gsolution presented i1s qulte simple and easily generali=
zable for a wlde range of situations, some of which
have been demonstrated above, It is computationally
economical also, since we work in normal wave representa-
tion. We have calculated the radiation beaming in
superstrong magnetic fields by using a small angular
grid, and the results compare well with those calculated

using much larger grid of angles. This useful property
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arlising due to the conservative nature of our differ-
encing the transfer equation helps us i1n getting
accurate solutions to problems where high optical depths
are encountered with relatively less computing efforts,

even when the highly peaked magneto=-gcattering cross

sectLons are invoelved,
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CHAPTER 4

THE SOLUTION OF THE EQUATIONS OF RADIATIVE TRANSFER
FOR SPECTRAL LINES IN ANISOTROPIC ABSORBING

MEDLA

In this chapter we shall attempt to solve the line
transfer equation in a magnetized medium. Plrst we shall
clearly wrlte down the basic line formation theory for
true absorptlon Zeeman lines in the two parallel repre-
sentations we have been using-the more general Stokes
vector formulation and somewhat restrictive, normal wave
formulation, A comparlitive study of soluitlons obtalned
by these two formulatlions is already made in section 2,3.
We shall first establish a link with the normal wave
transfer equations written earlier for the continuum
problems, Then we shall give a simple but very useful
computing scheme for the practlical computations quantita=-
tive in nature, where somewhat approxlmate but quick
methods of solution are preferred. We shall demonstrate
this simple procedure by applying it in some test cases.
We shall also study the Zeeman lline formation under
general physical conditions., Finally we apply the solu-
tion scheme to quite a time consuming astrophysical com=
putation and show that even here, with the approximations
made, the accuracy ls reasonably good, Also we shall
show some interesting behaviour of continuum polarization

in a very strong field magnetic white dwarf where cyclotron



resonance absorption phenomena is operative.

4.1 The Zeeman line transfer equations i1n Stokes
vecgtor and normal wave representation including

the continuum polarization

(1) Stokes vector transfer equationss The LTE Zeeman
line transfer equations are descrihed in detall for
the Zeeman multiplet line formation, in Stenfloc (1971)
and Landi Degl'Innocenti (1976), For our purpose we
have chosen to work with Zeeman triplets (the normal
zeeman effect and the Paschen Back limit), since the
conclusions drawn here are essentially Independent of

this choice, Hence the relevant LTE transfer ecquation

1s the Unno-Beckers equation, and is given by

where
— 1
W o Ny ¢
M=l Fy 1y A=l TR
O I"J o o M T
anad '(lv ° ﬁN Y]i

(4-1)

(4=2)

(4-3)



which 18 an 'ordinary matrix differential equation'

in plane parallel siratification with 2, the symmetry

axls of the medium being the independent variable, As
usual, M 18 the angle between the Z-axls and the
direction of propagation, I, Aand B are functions
of the optical depth T and the angle variable M |
For simplicity of notation, we shall not write this
dependence expllcitely., The coefficients of the ab-

sorption matrix A (also called the transfer matrix)

are gilven (with ¥ :20) by

A ".L 4. N e - r
M=y TSy 1 (M) (0 cosy) )

. 2 \
Ny F 4 0, Sin‘y '}f" (n,40) sy

YLJ::L '11_ (‘}?HV\.‘)COSW 3

where 1/ = anqle between the ray and the magnetic field.
If the #solution for an arblirary azimuth 2’ is required,
it can be obtained by rotating the solution vector using

T
the transformation matrix for (Q U)™, namely

el

|Co6 2.% ~Gin2X
6in Y cos 2 )

For the purpose of discussion, retaining the picture of

a triplet we have,

(4=4)

(4=5)
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‘T]L -~ ’YL—\_ Tli - —na+nDH (0”"3“1}!) ’ ]:'""" 1‘3)1;-\{ *J (4“6)
where
ﬁ“ﬂ‘“ﬂ" A = Je [ERT (4=7)
L AV ’ DT C N M ) -

a 18 the damping constant., '\7*, (i=p,1l,r) are the central
frequencies of AM =0,+1 transitions respectively. 1’]'1:I is

the line centre absorption ccefficlent for zero dampling

¢\ 1 -
- L W We cosy 0 v\ i i
R=ft = i) [F(6, v-0)—F(e, P-Y)jcosy 5 (4-8)

P FL wlwl Smlilr
e, T T et -G S A (L V-1 e
4 EN+ W lcmbd (mq_#m:) 'Yio [.F( ) F‘)

— L TRl vw) + F, v} oy (4-9)

waﬂlw”ﬁll"’”‘; is the plasma frequency and Wg = cl3 [T’”eﬁ
the cyclotron frequency. The Voigt and the plasma

dispersion function are given by

0 ( esepl g™ - eaxp B (4-u) ] i}
H(n,Ju),,ﬂ_w o, dy ; Flaws- jﬁéﬁ—fﬁ%a} dy ,  (4=10)

with H(a,u) = H(a,-u);F(a,u) = -F(a,-u), We can use

the following useful relations (Heinzel,1978)



F‘(D.,’U.] = %—: [%—-UH(CL,U.) —\— JLI%ELH [CL,LL]] y (4wll)
or
Flaw=g [Lurew +L{Rewe—Howu] (4-12)
Therefore,
- s { )‘:L 1
xp i~ (Y-
Few= LXkew=1 ;:r;i g };‘5- &j | dy | (4-13)

The H and K functions can be computed by fast algorithms

given by Matta and Reichel (1971),

The Stokes parameters proflles arlsing due to linear
zeeman effect and anomalous dispersion in the line, pre-
serve symmetry (for I,Q and U) or antlsymmetry (for V)
about the line centre., Many authors have computed such
profiles - Beckers (1969),Stenflo (1971}, Landi Degl!
Innocentl (1979) and Wittman (1974) to mention only few
as examples, In strong wmagnetic flelds, higher order
magnetle perturbations (Stark effects which can cause
large asymmetries) affect the 2Zeeman line profiles (Nage-
nira and Peraiah,1986), Apart from this, the macroscopic
mass motlons, stellar rotation and gravitational redshift

can also produce asymmetric Stokes profiles, All such

effects mentioned above can easily be included in a uni-



fied way for the computations of pure absorption lines.
If the macroscopic velocity vector U, @) makes an angle
ol (T) with respect to the line of sight, the Doppler

shift of the line centre frequency in the rest frame of

the star is given by

Um @)
'QO(T]': ’90 -+ Co5 oL{r) . LCC - Y,  »

from which we can get, for any frequency + in the line,

V) = 9 — Cos o () Unf) Y, ,

C A
where
_Ha“’\ou((v) . —_ Q“Qﬂl - — ':Do
r\j(‘rﬂ“' g—’%* ) w"*aiql; J A:?D = < Y

Expressing the velocity ‘Um (T) in terms of some stand-

ard mean thermal units {mtu) U. , we have

VE) = Y— Co3 ) N, (W)

where Vm ) = Ui () }'u-r 18 a dimenslonless parameter.

When the continuum is taken to be polarlized and magneto=-

optic, the Stokes profiles are basically asymmetrlc since

both the absorption and dispersion coefficients do not

preserve symmetry about the line centre. The most general

J6

(4=14)

(4=15)

(4-16)

(4-17)



and exact boundary conditlons are found to bhe, the asym-
ptotic boundary conditions, for both the line and conti-
nuum transfer problems. The solution calculated in the
first Eddington approximation-the generallized Unno solu-
tion - 1s found to be a very good cholce as an asymp-

totic boundary condition and is used by many workers in
the field. However, the solutions obtained with higher
order Eddington approximation also can be used as given
in Landi Degl' Innocenti (1976), We use the generalised
Unno solution (equations (4-18) to (4-23) at VT,.x as

the boundary condition. These equations are useful for

both the continuum transfer problems of chapter 2 and

the line transfer problems solved here, They are defined

by the following equations:

I = B.q+

99

(4=~18)

(4w19)

(4=20)

{4m21)
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where
....1 C‘.
P =B ﬁ / (4-22)
and
’Y]IN = 'q]: + ’F{M /nx 7
fo= FRFW /(‘11 WIW)
Moo= f’:)m — flﬂm r (4-23)
Mg = g T My

(1i) Normal wave transfer equati;ansz The normal wave
transfer equations for the general case of Zeeman multie
plets are given, for example in Dolginov and Pavlov
(1974), We shall give below the equations for a Zeeman

triplet. We note that these equations are also useful

in chapter 5,

First we shall show the possibility of modifying the conti-
nuum transfer equations given in chapter 2 to get the line
transfer equations, Notlce that the ’B) factor given in

the equation (2-26) 1is the cold tenuous plasma (mj*ﬂ"i*’-j )

limit of a more general expression

fb) = 2bo —tq = b4 SNy tany 9 (4-24)
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where T, (W) are proportional to the diagonal com-
ponents of the complex polarizability tensor in cyelic

coordinates, and for the cold magneto-plasma they are

glven by

%
Wi

cL Ve “"CW*OL We)

T @) = 4-25)
ot,{) y (

in the wusual notation, Now, for the absorption of radi-

ation by an atomic gas in a magnetic field, with a

Lorentzian profile function, these factors are given by

L,
’Lﬂw):% (234D T /LHT [V~ (w-w, - s f2) ] (4-26)

where N,/ is the number density of atoms in the lower

state ', TL is the upper level radiative width., W,

T
1s the line centre frequency, "-Jj.*::-'lTT (T_‘_‘. + Jeon) 18 the
total width of the level J. F\)cau is the effective

collision frequency in the plasma, Since the formula
(4=-25) can be obtained from (4-26) by making the sub-
stitutions W —> wc.)'l.) W —~> W, N 7\11".3.—-:# AT w;‘ [c .,
all the relevant formulae of the cold plasma are still
applicable to the Zeeman line formation theory after
appropriate substitutions mentioned above., It is impor-
tant to note that the orthogonality condltion |%]-—=>0

is fulfilled only in the line wings, which forms the major
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restriction on the usefulness of this approach. At

the line centre,

%
W, [siny tany] /ﬂj P w ey tony] > Vo

] = (4-27)
‘DT/UJ‘:ISM\J{’&DMI“ g (.U.;[Sm'ty' tﬂﬂW‘ < "'y)j. J

lx| -1 represents total non-orthogonality and in that case

the normal wave transfer equations cannot be used, In-

stead of the crude procedure mentioned above, we have

used the correct formulation developed by the authors

mentloned above, Accordingly., the transfer equation is

given by

B -
H%mi& (Ia-a—-—-?fa) ) (4-28)

ﬁd

where, as usual

ﬁa:: k (5) = .__%ﬂ Zt. ¢ o (8= L ) T, & (&) (4-29)

and k is the continuous absorption coefficlent an
(cmz/gm) unlits. The other quantities appearing in egua-
tion (4-29) are given in section 2.2, As an alternative
to Ty (W) gilven in equation (4-26), these authors

give a more accurate representation of these line absor-

ption coefficients (in cmnl) as
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1, = % No @2T+1) T, § (W— = ague [2) (4-30)
- hoe? (LU——*UJG—«OLQUJC_}’)_) ) (4=31)

g being the Lande g~factor. The profile function G( w )

1s glven by

00 Lx?
Gw) = Jﬁ(ﬂ exp g dt J'G;(WJ dw =1 (4-32)

where the time ordering functilon g(t) is in general
steeper than exp(- Ty t ), specific forms of which are
given in Dolginov and Pavliov (1974), However, it is
always assumed that the collision width 1s much greater
than the natural width, It is shown by Pavlov (1975)
that the general expregsion for the transfer coefficlents

(which are useful even in the Stokes vector formalism)

are given by

ﬂﬁ(w) + {&Cw) =, Tﬁ(w) —

PRE T
%ﬁj {5 (- ut,-—otw,_)l) + 4D (-t — o wc)?_)} (4-33)

The line centre absorption coefficient ls defined as
L 0 L. d
R = h & (o) , and T, = R / R 3y at the line

centre wo . The real part ) (o(_: D, _+,_1) rapresent the
oL,
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absorption coefficients and the imaginary part fx 0’-*’)
reprasent the anomalous dispersion coefficients for the

p.l and ¥y Zeeman components respectively, The function

D{ W ) is given by

.t..w

SR R
D= & [ 9

A comparison of equation (4-33) with the following equa-

tions

=M He,v-v) 0 §="Flv-v), 1=k

with 'UL-..:: AM w.:)ima“ﬂn brings out clearly the connection
between the two formalisms, Note that S’L are simply

the terms appearing in the expressions for ?R and ?w
the usual anomalous dispersicon parameters In the Stokes

vector fomalism (see equations {4-8) and (4-9)).

The h:i for the continuum processes can be calcula-
ted according to the equations {(2-41) through (2-53) of
chapter 2, and vectorially added to the line transfer co-
efficients calculated above., Thus the line plus conti=~
naum polarization transfer equation can be easlly salved

similar to the Stokes vector formalism, The boundary cone

ditions to be used now are

(4-34)

(4=35)
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_ By (Prmoy) . { % B, (g;-]‘ DT C‘t‘)ﬂ

——

which 1s a first Eddington approximation or Unno type
golution of the normal wave transfer equation, at large
optical depths, Notice that the same boundary conditions

can be used even for pure continuum problems of chapters

2 and 3.

4,2 A simplified method of solution to the polarization

transfer problem = its usefulness and limitations

A simplification of the general method of solution
glven earlier in section 3.3, 1ls described for problems
which involve only absorption, This allows us to attempt
to solve under realistic conditions and with reduced com-
puting efforts, the important problem of polarization of
light emerging from magnetized stars, For true absorption
the matrix differential equation (4=-1) admits an analytical
solution, The simplest is the Unno scolution which is deri-
ved analytically using a Milne - Eddington approximation.
This solution is restricted and can not be used in compu-
tations involving realistic model atmospheres., Instead,
the formal solution itself can be used in realistic atmos-

pheres also, TFor arbltrary source function gradients,
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and line formation problems the depth integrating which
occurs in the (omal solution however, requires a large
number of grid points, Among the numerical solutions,

the most accurate and widely used is the Beckers' method,
which is a Runge~Kutta scheme for the vector transfer
equation, For a detailed discussion on accuracy and com-
puting times of some of the numerical solutions, see
Martin and Wickramasinghe (1979b) and Nagendra and Peraiah
(1985a) which also have been described in section 2.3.

In the computations of spectra and polarizations of mag-
netic stars (Ap stars, white dwarfs etc. ), we are re-
guired to solve the transfer equation over a large number
of points on the visible disk and finally integrate these
local solutlons, along the line of slght. This l1s a highly
time consuming but unavoldable process, particularly so
in line computations where large number of frequency points
are also involved, In view of this difficulty, one is
forced to go for faster methods though less accurate, We
have previously described a procedure based on the dis=-
c¢rete space theory (hereinafter called DSM) of radiative
transfer (see Nagendra and Peraiah (1985a) and section
3,3), Now we describe a simpliflcation of the same, which
turng out to be faster computationally, To solve the
equation (4~1), the following boundary condltions are

given at the bottom and the top of the stellar atmosphere,
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TO,M=9 5 I (T M =h (4=37)

L

The transfer matrix A has the following characteristics
(1) It is symmetric Hermetian when fo= fiy = O but
not so otherwise, {ii) diagonal elements are always posie
tive, and in the special case of very weak anisotropy, A
is diagonally dominant also, (iii) by a proper choice of
coordinate system, A can be diagonalized, {(iv) it 1s irre-
ducible because, by any set of transformations, it is not
possible to reduce 1t to the upper triangular form. The

equation (4-1) can be written in the half space of angles
H c(0,1) as

o OE oy
L= LAL-B) (4-38/
wdl. £l g
Lok d.T'H H (L-8) ) (4-39)
+.

with I =1 (% -} ) and 1 =1 (T, ) representing the
rays emerglng towards the surface of a star and entering
into the atmosphere respeciively. In the integration of
the transfer equation over an elementary ‘cell;,I, B and
A can be taken as constant, being some sort of averadge

of these quantitles at the boundaries of the cell, bounded
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Peraiah and Varghese, 1985; Nagendra and Peraiah
1985a). The formal solutlons of the equations (4-38)

and (4-39) can be written as

e
L s T, et boe '+ [enpw b KM £ 81 d
ruﬂ

]

¥

tor the outgoing ray, and

T

Y ) - WA -
par En GHPIEATELA ] H exp [- (U M ATM (A B4t
Tn

=

for the incoming ray. AT = Ty, Uy

/
+
wnere N = number of layers, ‘.A gj is the source

LV

'*"1 nnlj'zil!l'l#N'

function, For the present discussion, we shall concen-

trate on only the outgoing ray (4-40). now, assuming
ix
that L&‘ EJ 1s independent of optical depth ~ that

is, it remains constant in the range 7% to Th,, we

get an expression for JI. by performing the integra-

tion in equatlion {4-40), as

— L

Y [
L= B exeTavale {1~ 8}

which is the usual formal solution and, agaln demands

no restriction on AT, as leong as the physical pro-

perties remaln constant in the range of integration,

(4=40)

(4-d1)

(4-42)
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Now, we dlscretize the matrix transfer equation

(4-1) by directly integrating it over an elementaty

ceall as before., We then oObtain

£ + *+
tMlI -~ L 1="T,, ﬂﬂ%[;m{ Bragd o (4-43)

where the subscript (n+%) refers to the average of the

values of physical variables at T, and (':’n+1 . For the

diamond difference scheme, we have

-t T o ﬁ&"tnl"- '.E’m..—"‘fh; ke (4eedd)

which assumes that the intensity is linear in optical
depth within the cell, For further details on the
method of solution, see Peralah (1984) and section 3,3.
Restricting ourselves to the outgoing ray. we have from

DSM, the following expressions for the outward directed

ray

I =L I, "F"jmn,:é Apot B = LI, T T > {4=45)
where

t =48 8 ; (4-46)
- - —

£ =T tHd Ty Byl ) (4-47
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Now expanding the é matrix (equation (4-47) in a

matrix power series, then substituting in equation

(4-45) and truncating the resulting expansion to the

quadratic terms, we get

- -1
M v'-'*nﬂzl:wwﬂ **md,;-] +

{ ;M—- gmi]}ﬂ B (4-49)

Now lmposing an asymptotic boundary condition, like the

Unno solutlion

3 ~ 4B -
(""I“NH) “\ M[ﬂmﬂj E B = e ‘NH ) (4-50)

at the lower boundary (N+l) of the stellar stmosphere, we
can get the emergent intensity recursively (n=N, Nel,....l1)
using the equation (4-49), It is more useful when the
source function is a linear or a nearly linear function
of T and the linear perturbation vector E ls weak.

In that case, we can substitute a Unno solution at each
grid point n and, assuming a constancy of opacity and

source function in each cell, we get a relation of the

form
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—

- ~1 - %
o — 4 L
J;n“" (lﬂ)U E“'ﬁn% I_ 11.?....’1 hmii- E‘rt'ﬂ,r%“' y {4-51)

When @ << Tp,r. ), « this equation is stable and gives

y»

an accurate and convergent solution even for step sizes

T‘-‘H-L,_ﬂ AT, > 4 « In practice, we can use the nodal
points, of the tabulated stellar atmospheric model, them-
selves as the grid points for constructing the cells, be-
cause 1n the deeper 'thicker' layers of the model the 9
parameter will be very small, and in the upper layers,w
where 9 could be larger, the nodal point spacing itself
would be very small (i.e"lfm_h.a £ 1), making the solu-
tion (4~51) still correct. Notice however, that the ori-
ginal DSM equation (4-45) 1s simply the implicit Crank-
Nicholson matrix approximation for exp E—J-'*f"i' M ......,.11+ i ]
wnich occurs when solving the inhomogeneous parabolic

matrix differential equation (4~1). It is well known that

the Crank-Nicolson scheme is second order accurate, un-
conditionally stable, and a consistent approxlmatlon for

all step sizes, since ’Rer)\- >0 (see Varga,1963,p.270)},

where A = a, “L (i=1273 k) are the elgenvalues of

-1

M '&'hrJ« . & are the elgenvalues of the transfer
™

matrix A , with two of them being complex in general,

S

It can be clearly seen from equations (4-45)-(4-48)
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that the central difference approximation to the trans-
mission matrix t, 1s a matrix power series approximation
for the matrix exponential exp L”Tnt_ai M A s ]
through quadratic terms, Similarly A 1s a backward

Syt

difference approximation to the same matrix exponential

through linear terms, again being unconditioconally stable.

Thus, we can write the equation (4-45) to the lowest

order approximation as

——y

-4 .- _ — -
L o= QKPE'T-J“'_% E!' *&hfi?:—l [»];mrd- rlj’ﬂf-l:_m “&’m’h&] /

T

and we see that the right-hand side of this equation is
convergent even for T'”sz > . This is a conse~
quence of the approximation of linear variation of the
gource function with optical depth (implied in the use

of diamond scheme), This has the important property of
causing the calculated intensities to be correct in the
‘diffusion limit', Grant (1963) has shown in this regard
that the difference equations of DSM naturally reduce to
the difference analogue of the diffusion equation (e,g.
equation (4~51)),in the limit of large QﬁHJ%. This
property is lost 1f one assumes a c¢onstant source function
throughout the atmosphere (see Wiscombe, 1976a) or if the
source function is a highly non-linear function of optl-

cal depth., Obviously, this property of DSM equatlons

(4=52)
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provides large practical advantages, particularly in

the work with stellar atmospheres like those of white
dwarfs. In the following section, we show the results
obtained using this c¢riterion for the propblems of conti-
nuum and line polairization, using realistic model atmos-
pheres., Since our primary interest in such computations
is only the emergent (at T =0) values of __Z'E:, the follo-

wing simplified form, of the conventional DSM equations,

namely
{ (1 N) = £(1) -*_l;m*- _Ets)*“l:(u) - *'E(Nd) .j:(m) y (4=53)
and

ECH\I) =S A€M T+ ED E0-E (L0 ie L@ W

wc ek BB LB B N-D T (N (4-54)

can be used. N, here is the total number Of atmos-~
pheric layers considered from the model atmosphere.
Though diffusion approximation places no restriction
on the step slze, one can use ’thbji v, ), as a safe

cholce in computing the }: and & matrlices of the resg-

Nl

pective layers (see Kalkofen and Wehrse, 1982 a,b).,

These authors have made an extensive analysis of the
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finite difference techniques in general, Our equation
(4-45) is, for example, the polarized analogue of the
equation (25) in their (1982a) paper with a half-impli~
cit differencing weight. The thick layer operators can

be generated by the usual doubling algorithm (Grant and
Hunt, 1969b; Peraiah,1984)., We have repeated some of the
test cases-the tables (1) ~ (5) of section 2.3, now

using the diffusion approximation described in the pre-
vious section (equations (4-45},{4=50),(4~53) and (4-54)).
Since the agreement is good upto the third or fourth
digits, we do not repeat them here, In addition, the follo~
wing two tests, namely ’\p(fl‘:‘) = (0, IT) with ye)=0 'L}f(’f'm,):?r
for ¥ =0 should give Q)= U(®) = 0 and X)) = (o "1-7T>
with X(@=0 % C’UMM) = 27 for Y = rja should give
V) =N@) =p « which are the checks based on symmetry
requirements are satisfied exactly, confirming that no
apurious sources or sinks are iIntroduced by the diffusion
approximation, even in a realistic atmosphere. We feel
that, such an approach should be reasonably good 1in the
gquantitative work where accurate solutions are not needed
in the initial stages of the modelling. We have got
nearly 30% savings in the computing time over the earlier

procedure described in section 3,3.
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4,3 Zeeman line formation under general physical

condirtions: a discussion of results

In the computation of Zeeman line profiles preseg-
nted in this section, we have always used the Stokes
vector representation and the equuations (4«1} to (4-23).
The lines have bheen computed in realistiec atmospheres,
But, the following assumptions are made (i) the Doppler
width Ay , damping constant o and the ratio "QO are
depth independent. All these are good approximations.
Even though both the line centre absorption ¢oefficient
and the continuum absorption coefficlent vary by large
amounts from deep in the atmogsphere to the outer lavers,
their ratio almost remains constant, (1i) the continuocus

dichreoism and anomalous dispersion are depth independent

and treated as constants with thelr typical values through-
out the line profile, This is also a good approximation,
We shall now proceed to discuss the results., In the

Zeeman line computations, it 1s generally assumed that the
field strength B, 1ts inclination “LJI with the line of
sight and 1its azimuth/}/ measured with respect to an arbi-
trary x-axix in the plane transverse to the line of sight
are always independent of the optical depth v . In ab-
sence of any direct observational means of measuring the

depth depencence, which 1s definitely therxe, this has been
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accepted as a reasonably good approximation, But it
1s important to know, to what extent can such depth
dependence really affect the Zeeman line formation,
elther in a steady state atmesphere or an atmosphere
having ordered velcolty fields, This will provide a
basic understanding, and helps in the fine analysis of
lines formed in such complicated, but realistic situ-
ations. The general conclusicons remain valid for the
lines formed in any magnetic atmosphere say the solar

atmosphere or the white dwarf atmosphere etc,

In FPigures 1 to 4 we show the changes produced by
taking some of the parameters as depth dependent., A
hypothetical Zeeman triplet with a line centre wave-
length ?\U ("@;;o) = 5000 i is used in these computations.
W = A{)/b{]D and Vp =0,VYp=16 , Yo = —l€ correspond to
the centres of the Zeeman components, ﬂb.i. = Amj27e

L AVp
for p,l,r respectively. O,ﬂ“P/LHT&’QD 1s the damping

';ﬁﬁﬁ@i1
~1
parameter, 1! being the total damping constant (in S )
of the line, We have fixed a = 0.,1. The continuous di-
chroism is intréoduced by selecting 7y, = 1.003 Y}£ = 0,94,
&

_ 2
Gy =115 (i =-10cosy and )y = -0,25 sin®yr
b is always taken as 0.8. '7]0 1s taken as 104, All
the parameters mentioned above are typical of a weak line
formed in a cool, high-gravity white dwarf atmosphere.

a

A hydrogen rich convective equilibrium model with 'E;:ﬁ =9000 K

log g = 8, from Wehrse (1976) is adopted., Flgure 1 shows
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Figel. Intensity (a),percentage linear (b)and

circular (c¢) polarization,and polarization pogie
tion angle (d) for a hypothetical Zeeman triplet.
Full curves (case x) :'\p'r- /4, X = T/4 ,Dot-dashed
curvesiVY = TT/4,QC=X(T’) .Dotted curvesYr= 1l/4,

/’tr-' 0.
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the effect of azimuth angle/'[/vamatlons. The solid
curves show the Stokes profiles for a depth indepen-
dent field direction (Y=l | 7,4 = rr/;, ) with res=-
pect to the line of sight. This case, we shall keep as
a standard and shall refer to it as case X, . The I,p
and g profiles for (’1,1’:11111; Y =0) are same as for the
case X because ol the complimentary nature of the
azimuth angles _Hﬂ‘, and 0O, The dotted curve in Figure
1d for thls later case shows that the position angle

@ is quite small throughout the profile and arises only
because of the magneto-optlical effects, HNotice that

the position angle is the only parameter which distine
gulshes the two cases, hence the importance of its obser=-
vation, We have included the depth Jdependence of the
azlimuth angle % in the transfer equation by replacing ?R.
by PR“QFCCL;“U) /d’f-‘_) . A small variation represented by
'){C@)m% Cxp (#H) 18 used, This case 18 represented by
dot-dashed curves. The intensity I is not much affected
except in the core., The p profile equivalent width in-
creases and 1lts central depth 1s reduced, The g profile
is affected to a larger extent only near the II-component
of the triplet. The sharp changes in the position angle
(_p near Y~ 7 are due to the fact that Q and U para-
meters simultaneously change sign in this region (see

also Staude, 1970)., This 1s obvious because ( Yy /2)
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are the inflection points in a symmetric Zeeman triplet.
At these points, a matching of the ’Tip occurs with T)Q
or Y"T”' These points are slightly shifted now, because
of the radiative transfer effects. Recently, Deguchi
and Watson (1985) have computed the Zeeman lines formed
in such a twisting magnetic field. The Stokes profiles

in Pigure 1 are 1n good agreement with thelr so called

'optically thick' lines.

Flgure 2 shows the changes produced by the depth

variation of YV . For the case V=03 Y=o (indicated

by dashed lines), we can see that the 6 ~components are
clearly stronger and the [T-component is absent; p = 0
and Q = 0 because it is the case of longitudinal Zeeman
effect. The q profile does not show the 'i{T-~ component
splitting' indicating that the 'coupling of the Stokes
parameters' 1s basically essential for such a splitting,
along with the usuwal magneto-optical effects (see case Xt
solid line). The variation of the angle VY as V(1) gjlg f;uf;é-’t’))
has definlte effects on the T,q and d? profiles (V= ’tp‘@:)
% :-:W}ll- t+ dottend llnes), The q) profile undergoes
fluctuations because of a strong coupling of the V para-
meter to Q and U through magneto-optical effects and a
changing inclination (see Beckers, 1969). F algso fluc-

tuates, but it 1s unresolved in the figure since it 1s

smaller in magnitude. Notice that therarlation introe~
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duces a large deepening of the 7T =~ component in the

I profile, and a 7} - component splitting in the q profile.

In Figure 3 we show a combination of the simultaneous
variation as mentioned above, offqran%)falong with a
slight variation in field strength according to the for-
mula V() = 16 {1+ 04 (1- @xp (YN ) (+Vy=-1%.= Yp(®)) -
From the proflles {(dashed lines), it is seen that in the
core of the line the'yfvariation dominates while in the
wings @%quﬂ %- variation is lmportant in the line for-
mation. The effect of inhomogeneous {(depth dependent)
Field is marginal compared to the changes produced by

angular variations, The case X is also shown for come

parison in this figure,

In Figure 4 we show the profiles formed in quite
general situatlons, The dotted lines are the profiles
formed in an arbitrarily moving atmosphere respresented
by W) = 0.2 +0.1(1+ exp (%)) ,dC¢)nCasﬂi}*+qﬂ,§e"P6’E)j
with the magnetic field also being taken as inhomogeneous.
The field variation is effected as mentioned before, One
can see that the fileld gradient enhances the asymmetry
near the line centre and reduces the same In the wings.
The full lines are the profiles when there 13 a change
in the angles "}f and;t only {(see e,g.figure (3)), The
dashed lines represent the most general case of the pro-

files formed in arbitrarily varying angles,velocity and
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Full lines:y=1Y (&), /'}_’ = ¥ (*). Dashed lines:
Y= Y@, XL O, V= Vi (T), A= (T), B=BT).



magnetic.fields which, excepting a small asymmetry,

are not much different from the former case (full lines).
Thus when the line shift asymmetries (dotted lines) are
weaker, the angular variation of the field vector is a
dominant mechanism. which can change the shape of the
polarization profiles., It is thus clear that these
effects are quantitatively more pronounced for the solér
magnetic regions, than whitedwarf atmospheres. The spe-
cific intensity vectors are computed on 256 grid peoints
(16 latitudes and 16 longitudes) on the visible disk of
white dwarf for a given angle of inclination (i) of the
dipole axis to the line of sight. Equations (4-53) and
(4-54) have been used for this purpose. The disk inte-
gration, which is a double integral is performed using

a 16 point Gaussian quadrature formula. The results of
this computation are presented in table 1. We have com=-
pared for few cases, our results (referred to as DA =
diffusion approximation) with the solutions obtained by
Martin and Wickramasinghe 11982) (referred to as MW).
The linear polarization is extremely small and not much
significance can be placed on it unless it is still lar=-
ger in magnitude. We like to mention that the difference
is not entirely due to the approximation of our calcula-
tion of specific intensities. The coarse grid employed

for disk integration by us, also contributes to that diff-
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erence. The above authors use a still larger number
of grid points for that purpose. Thus we feel that
diffusion approximation is not a bad approximation, at

least for the white dwarf atmospheres.

As a further test on the usefulness of the diff-
usion approximation, we have computed the continuum
linear and circular polarization in a magnetic white
dwarf atmosphere with a central dipole field of polar
field strength TBP =107 G. A model atmosphere of a
DA white dwarf with I%¥= 20,0000K, log g = 8, taken
from Wickramasinghe (1972) is used. The continuum pola-

rization is included according to Nagendra and Peraiah

(1984), as described in section 2.2.

4.4 An astrophysical application: cyclotron resonance

absorption in the magnetic atmospheres

In the review article on magnetic white dwarfs,
Angel (1978) has shown some objects which show both con-
tinuum polarization indicating a high magnetic field,
and absorption features which can not be identified with
the Zeeman sub-components of the important lines, GD 229,
G240-72, Grw + 76> 8247 are such objects. It has been
suggested (Lamb and Sutherland,1974; Angel 1977; Gnedin
and Sunyaev,1974b) that cyclotron absorption can play an

important role in the optical spectrum of these objects.



Some characteristics of cyclotron absorption in real-
istic situations, as referred to magnetic white dwarfs,
has been discussed extensively by Martin and Wickrama-
singhe (1979a)., An absorption coefficient for the cyclo=-
tron resonance absorption has been derived quantum mecha-
nically by Lamb and Sutherland (1974). This formula
applies only to right hand circularly polarized light.

In the normal wave representation, this formula is ana-
logous to the absorption coefficient of the extraordi-
nary mode. In the cold plasma limit which we have been
using, the absorption coefficient of ordinary mode re-
mains smaller and almost constant near the cyclotron
frequency, hence its contribution being quite negligible
.The collisions have been neglected in deriving this for-
mula. A classical and approximate formula has been given
by Bekefi (1966) which includes the collisional broaden-
ing of the cyclotron resonance absorption. As suggested
by Martin and Wickramasinghe (1979 a),we adopt a composite

model, in which the Lamb-Sutherland formula

32, 2 §|2 n —1 S
"ly.: %)E (%c) (-N%) [ 1::5 ZOS"q’] ) [1 — €xp (_‘ _E%J:)] ) exP[—- ?h:’w%oi"’qy](f_ss)



is used in the Doppler core, and the larger of the

above and the collisionally damped absorption coeffi-

cient

_ fi) (_N.s) ET 2 Veon ‘
ﬁv—(mec N (Irer)(’l—{—COS v) [(w—wc)l + Veow ]'

[or)1]

due to Bekefi (1966), is used in the Lorentz wings of the

Voigt like resonance absorption profile. The collisional

frequency can be calculated using

2 .
W, € . KT In N I 3 0T
P l . \) - .?.-_. - - ~ «d] — el —_—
?on ""e\éz nh > e me ’ b 1 3 z 2 T

- from Melrose (1980). The nature of the spectrum and pola-
rization depends quite strongly on the viewing angle, be-
cause of strong anisotropy of the radiation field (see
section 3.4). In Figure 6 we have shown the flux and
polarization emerging from a »Qgp = QOOOOK, log g = 8
line blanketed model in radiative eguilibrium, taken

from Wehrse (1976). The resonance absorption depresses
the continuous flux spectrum in the range of wavelengths
X)\4000-8000 % (dashed line), since it operates effecti-
vely in the frequency range, apprOximately,CJcCDﬁ)to“%CBQFB
corresponding respectively to the polar regions which con-

tribute ‘strongly' in the blue, and to the equatorial re-

(4=56)

(4-57)
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gions which contribute 'weakly' in the red-the reason
being a reduction in field strength by a factor of 2
between the pole and the equator of a dipole field.

The disk integration has to be done using a careful
selection of points, The demardfor a higher order
quadrature is more in this problem. The non-magnetic
(B=0) flux spectrum is shown by the dotted line for the
sake of comparison. Since the 'collisionless plasma
approximation' absorption coefficient (equation (4-55))
has very narrow profile, its contribution is insigni-
ficant though it is very strong where as the classical
‘cold plasma approximation® absorption coefficient (equa~
tion (4-56)) absorbs over large frequency band at each
point on the disk. The effective absorption band widths
are quite large because the collisional damping (equation
(4-57)) is very strong. The flux and the polarization
spectrum calculated by us differ in many respects from
those calculated by Martin and Wickramasinghe (1979a) who
use a constant value of collision frequency, which is ra-
ther high, throughout the atmosphere. We use the depth
dependent collision frequencies calculated at every depth
point using equation (4-57). This causes large variations
in the effective bandwidth of absorption throughout the
atmosphere. An extensive and systematic study of the

quantum effects in cyclotron plasma absorption has been made
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by Pavlov, Shibanov and Yakovlev {1980a). The spectra

and polarization produced in a realistic atmosphere under
cyclotron mechanism are difficult to understand qualita-
tively, when the disk inﬁegration is performed. However,
certain features of the spectrum and polarization shown

in Figure 5 can be understood by comparing it with Figures
2,5 and 6 of Pavlov, Mitrofanov and Shibanov (1980b). Our
computatiOns using other madels show that the degree and
sign of polarization depend on (-%?-\._/} ) B ) and (i‘{;& B )
for a given field distribution on the stellar disk. The
circular polarization g shows a strong wavelength depen-
dence, unlike the thermal continuum polarization in weak
field magnetic white dwarfs., Collisionally damped cyclo=-
tron absorption is stronger than expected earlier, and the
saturation produced by it is responsible for the difficulty
in fitting thermal eneréy distribution to the observed
spectrum, when such & strong non-thermal phenomena is oper-
ative in the magnetic stars in general and in the white

dwarfs in particular,



CHAPTER 5

SOME NEW PHYSICAL PROCESSES WHICH AFFECT THE POLARI-

ZATION OF CONTINUUM AND LINE RADIATION

In this chapter we shall first concentrate on two
physical mechanisms which are well known in experimental
physics, namely the Stark-Zeeman effect and the plasma
polarization shift of spectral lines, and incorporate
them into the radiative transfer equation. We then solve
the transfer equations for these two problems under most
realistic situations, relaxing all the approximations
made in the chapter 4. In section 5.3 we shall discuss
the Zeeman line formation for oriented atoms. In section
5.4 we will discuss the effect of atmospheric structure,
and the line shifting mefhanisms, on Zeeman line transfer.
In these two problems, we shall retain the level of appr-
oximation used in the chapter 4. The physical conditions
of the plasmas selected for these studies represent diff-
erent astrophysical situations, particularly the magnetic
stars., Finally, in section 5.5 we demonstrate the effect
of refraction of the beam of light,on the solutions obtain-
ed using the conventional polarization transfer equations
where refractive effects are not included. We solve the
pure absorption polarization transfer equation individually

taking each of these effects into account, separately.



5.1 The influence of combined Stark-Zeeman effect on

line formation in a magnetic field

The Stark and Zeeman effect are equally important
in computing the hydrogen line profiles in moderately
strong magnetic fields, where the Zeeman cr Paschen
Back effects are not too dominant over the Stark effe-
cts. Such moderately strong fields (few hundreds to
few thousands Gauss) are found in pre-main sequence
chemically peculiar ‘CP) stars and Ap stars. Till now,
only pure Zeeman effect is used as a basic phenomena
in theoretically modelling the hydrogen line profiles in
these objects. Many years ago Nguyen-Hoe et al.(1967)
were the firsttocalculate the Stark 'profile functions'
in a magnetic field using the impact approximation. R
Recently, in a series of papers, Mathys (1983,1984a,b
and 1985a) has developed a more accurate unified theory
and computed the profile functions for a wide range of
temeperatures (Te ), electron densities (Ne ) and mage
netic fields (B). In the unified theory, the ionic and
the electronic contribution to the electric microfield
distribution, is taken simultaneously into account. The
unified theory approach for the non-magnetic Stark pro-
files is given by Smith et al.(1969); Vidal et al.(1970,
1971). The modification of the unified theory to include

ion dynamical effects is presented in Cooper et al.(1974).



The hydrogen line broadening is primarily caused by

a strong linear Stark effect due to interactions between
the radiating atom or ion andlocal electric microfields
produced by perturbing ions and electrons. When an exter-
nal magnetic field is present, such as to act only as

an additional perturbation, the classical straight line
path approximation remains still valid. In a recent
work Mathys (1984b) has included the ion dynamial

effects also in the computation of Stark-~Zeeman pro-
files., The Stark-Zeeman profiles can not be obtained by
simply convolving the non-magnetic Stark broadened pro-
files with pure Zeeman patterns, because the collisional
transitions between the Zeeman substates of a given Ievel
can not be neglected (Mathys,1984b). Hence we have to
use the magnetic field‘modified Stark profiles, and con-
volve them with a Doppler broadening function to obtain

the required profile functions.

Since the hydrogen lines are used for deriving fund-
amental stellar parameters such as log g, a correct pro-
file function calculation, used in a realistic radiative
transfer treatment is very essentlal in order to fit the
observed line profiles in these magnetic stars. The
theory of polarization radiative transfer for hydrogen
line formation under the combined influence of Stark

and Zeeman effects has been formulated by Mathys (1985b).
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We briefly describe the requiredequations and solve them
to obtaine the hydrogen line profiles formed in a real-
istic model atmosphere, for a given value of the mag-
netic field, Themodel amosphere and the field strength
represent the conditions typical of magnetic Ap stars.
We use the radiative transfer formalism presented by
Mathys (1985). The transfer equation in LTE, for the

>T

polarized intensity I = (I Q U V)" is given by

é'; =ATI- 5 (5-1)
P dry T == =

where, as usual K=Co50, 6 being the angle between the
propagation and vertical (Z) directions. A and S are
respectively the absorption matrix (transfer matrix) and

the source vector, represented as

L
A=L+A ; 3=7TB8B

+ 5 | (5=2)

T
where I is a (4 x 4) unit matrix and J = (1 000) . By
é ¢ .
is the Planck function. dT=-kpdZ, k being the

continuous absorption coefficient (in cm/gm) and f
L

the mass density. Tle.line absorption matrix A and
L
the emission vector é are given as
L i L
A =N -NB 3 S5=NE ) (5-3)
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where N and N (cm*B) are respectively the populations
of upper level n and the lower level n’ . The stimulated

emission matrix is given for a frequency w) by

_ 2T1:Lw (b.Cm)

~em  hc P (5-4)

The most general form of b, has been derived by Mathys
(1985b). The bg, in a restricted (zero azimuth; o 0)

coordinate system is given by

S,

L
(ST +9 W, 5 SMW(LL,); O ;5 2005y R,

Sy (1,71, 3 (HrCoS W) T+ SmMYI, 5 2005y I, 5 O

0 § —2008¥ Ty 3 (0SS YL 5 Sty (R~ Ry )

(5=5)

| 2005WR,, 5 0 . Sy (R Ry, )5 U+COSY) T 4smy I,
p—

The absorption matrix, in the same choice of coordinate

system is given by

—

T / 1 / ! ; ) !
CH+Co8 YT Sy, 5 SMY (LT, 05 0 5 2005W Ry,

/
;O
z2 XK x

l J !
Sim W (LT, ) 3 L1+C061w)1u+53hlvru3“ZCOSVIJL (5-6)

/ !
0 5 200sW I, 5 (1H+C0SUYIT Sy T, 5 Sy (R s R,,)

/ /

L !l 1 / 2 /
2COSY R, 5 O 5 SIMY (R R ) (05 VIT + Sy Iy,

—



where |/ 1s the angle between the propagation and field

directions. We define

r\)e — ’Re
- T T L. = T Iz
y (5=7)
— ZEm ~ L
Rx:x. B 1 ¥ _‘Yxx Rlz—_ —T—;—D‘ _];-Z

with the emission profile functions defined as

T = 1) <migmifingm> x
{ﬂi’mm’j

-,
X <MLM |8, DIMgm > <nl my e - DImiym,> X (5-8)
. L “1

X <m'ym; nimIaw—L (AW Pngm, 50 Lm, > -

fA and D are the density operator and the dipole
momentum operator of the radiator (refer to Mathys,1984b
for the actual calculation of the profile functions). J,
is obtained by replacing x by z in the expression above,

The polarized perofiles are given (for any direction of

polarization e ) by

— !
I(weg)= _Tl:rm Z<Y‘Qama‘§.'9‘“‘ll:ﬁ“,a> {n'tymy le-nimdgmyy x
4, Lmyed |

1
X <h’1;;m,',; iy [[aw—T (Aw)] |nigmg s rlmy > s (5-9)
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where e can be & , §.5 or £,. The quantum theory
required for calculating I(W, € ) is developed in the
series of papers by Mathys, as already mentioned., Notice

that 7J,, and 7 are closely related to I (w, £x) and

I( w, 2, ) respectively. The R profiles are defined as

S.Qll','m"m/}

—4
X <Wn‘1im£ : T\ﬂb‘mb][Aw*I(Au%)] Imigmg s m‘ﬂim)a> (5=10)

In LTE, a further simplification is possiblet the popula-
tions of various (Zeeman) sublevels are, to a very good

approximétion equal for a given principal quantum number
n, so that onecan consider the atomic density matrix ele-

ments <’“QJ%WA\7\9¢,M0.> as independent of 1 and m

naving a constant value given by ( }m* ). Thus, in LTE,

I, =T, )| T, = I (w&,)|n*

(5=11)
Ry, = Rw, g,) /™ Ry, = R (w.gx) [

The absorption profile functions I‘ and RI can be obtained
by just replacing n by n' in the above expressions. The
populations of the levels n and n' can be obtained from
the Saha-Boltzmann equation. The spontaneou’s emission

vector E is given by



3
2Hw
= W g g (5-12)
- (2mc)
The profiie functions mentioned above are valid for a
radiator at rest. The thermal motion of the radiators
can be accounted for by convolving them with a Doppler
broadening function as follows (Mihalas,1978; eg.9.28)
-+
T = T — s
L.= I, (W= JIxx(‘*’” > w) W ds
~0
_ 4o (5=13)
R, = R (W=[R_(w->w) W (5) d3
with “”
2 0 7.;3
AAA)
T =22 1 ;5 as= R) , Eareten, (5-14)
b 5 2TTCE X% F,
There are two similar expressions for fzz and R,, . We
have employed I and R profiles instead of I and R, in
computing the matrix elements of ( bem ).
W (8) dg =1 Exp(~$1/~;")~‘ﬁ P (5-15)
i o /%,

is the Maxwellian velocity distribution function which
is the probability of finding an atom with an observer's
frame line of sight velocity € in the range (%, $+d<)

The thermal velocity of the atoms is g = J_{RT /M,



140

It is to be noted that the natural line broadening
is always negligible compared to the Stark broaden-
ing, so that the Doppler convolved Stark profiles

represent a realistic situation im a dense hydrogen

plasma,

The longitudinal ( W = 0) and transverse (V=T1|2)

Stark-Zeeman profile functions are given by

I, w=4TTwe)+Tiwe)] s
and

I = £ [Twed+ T(we)+2T(w e,)];

where gx)\gg and £, are positive unitary vectors along
ox,0y and oz respectively, with the z-axis taken along

the direction of the magnetic field. They are also called
unit polarization vectors. The factors % and % are in-
troduced in order to insure that the possible normali-
zation of the polarizéd profiles is conserved when they
are combined to get the unpolarized profiles I, (W) and
I, ( W). The polarized profiles, for any direction of
polarization g are given by expressions like equation

(5-9). The profile function for any arbitrary angle Y/

measured from the z-axis, can be calculated using

(5=16)

(5=17)



L (W, W) =L (W) 0sY 4 T, (W) sin y -

The normalized unpolarized profiles are given by

+0
S" LN = C (IMLAM /£) —JS“(AA) disn =1

2

where f is the total line strength, which has to be cal-
culated by summing the squared matrix elements of the
dipole operator (e,d) over the initial and final mag-

netic substates (see Mathys,1983)

PR
$= ¢y 7 [<ngmale-dingm S|

Ma J,mg

C is an arbitrary constant. The Doppler convolved profile

functions Eﬂ‘L'(_ﬁfk) can be obtained by a convolu-

tion procedure as described above.

In Figure 1 we show the Doppler convolved +%Lprofile
functions calculxed for an electron density Ne=:tJ§cw{3
temperature 1= m41< and a magnetic field of D= 4\‘*6-
We have used the recent unified theory of Mathys (1984b)
for this purpose, which takes ipn dynamics into account.
We have also marked in the figure the position of the ¢

—~component of the normal Zeeman triplet., A comparison

of this Figure with Figures 17 and 18 of Mathys (1984a)

(5-18)

(5-19)

(5-20)



Log S(AN)

0-00 I — ] | I ] | |
it Sl(AX)
-050Y\: -
/_ -S-“( AN Doppler Convolved
_ T:10%
1.00F \: 5 3 —
' - Nez10cm”™
-1.50} B-4x10% _
—2'00 — .ﬁ
-2.50} -
-3.00} -
-3.50 |- —
-4.00 | | | ! L | |
0 2 4 6 8 10 12 14 16
AN(A)
Fig.l. Combined Stark-Zeeman profile functions of H,

computed using unified dynamic theory of line broad-

ening,



[
K
G

shows a close agreement. The small differences in the
wings are due to the static ion theory used by Mathys
{1984a) in computing those profiles. Mathys (1984a)
has shown that, at high densities (such as Ncé.bﬁfwf3)
the profile functions are flat natured, though there is
a marked change near the Zeeman peaks (the positions

of the g— - components). But the low density profiles
show a much stronger wavelength dependence inside the
line. He also has shown that the Zeeman peaks will
also be narrow in low density profile functions. The
Doppler convolution in general, widens the original
Stark~Zeeman profile functions, and makes it deeper near

the line core.

In a magnetized plasma, the atoms moving in a mag-
netic field 'see' an electric field (a Lorentz electric
field), whose contribution to the Stark broadening is
not a priori negligible, at least .for the outermost
layers of the stellar atmosphere, though the contribution
is quite small for lower field strengths (B < 3-4 10°6)
and higher densities ( Ng >'1Jk c“r§ ). Yet, the in-
clusion of this effect into the Stark-Zeeman profile
function calculation would be rather difficult and time
consuming, in view of the explicit velocity and angle
dependence of this Lorentz electric field. We are grate-

ful to Dr.G.Mathys for drawing our attention to this point

through a personal communication,



For the computation of H , line profile shown
in Figure 2b, we have chosen a model of normal stellar
.atmOSpheré from Kurucz (1979) with Tee, = 20,000 K,
log g = 4.5 and log (solar abundance) = 0, The free
parameters of the calculation are: H':'\; ]3:-.Q.-1o‘1€,,'lv'r—IT)a_)]t.’:7r}/f
The reduced intensity T = T(o,p) /By (e), where By (0)
is the Planck function at the topmost layer of the trun-
cated model. P= ({&+U> /T ) - 100  and §= 0.5+m (V[a)
represent the percentage linear polarization, and the
polarization position angle in radians respectively. The .
insert shows the full drawn curve of the main figure it-
self, over a wider range of 20 f\ The line wings reach
a continuum level at I =~ 2.0.and employed a field strength
of B = 2.101" G. The I and R profiles were computed using
the code kindly provided by Dr.Mathys, and then the con-
volution i performed to get I and R. In Figure 2a we
have shown the variation of I and R profiles (in arbi-
trary units) across the line. They represent the profile
functions for the physical parameters indicated in the
figure. Notice the symmetry of the I profile functions
and the antisymmetry of R profile functions about the
line centre. We have evaluated them at the nodal points
of a ( -1,+1) Gaussian quadrature which obviously has a

low resolution near the line centre., Because of this, the

positions and widths of the peaks in the I and R profiles
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are somewhat approximate., However, this Figure illustra-
tes the behaviour of these profile functions across the
line. The method of solution of the transfer equation

is described in Nagendra and Peraiah ‘1985a) or section

3.3. The boundary condition used at T= T, is §==(Ba0005F
The depth integration of the transfer equation is stopped

at Tha Y 32 in order to satisfy the requirement chéiaiﬁs
needed to use the unified theory with ion dynamics in the
profile function calcuktion. The lower limit of Ne

is fixed by the condition 4.04 163 JN. 2 B . Only half
of the line is shown, since it is symmetric about the

line centre. The importance of treating the hydrogen lines
with an exact theoretical analysis employing the theory

of combined Stark-Zeeman effect has been clearly demon-
strated by Mathys ‘1984a,1985b). We shall now see the
usefulness of such a calculation when adopted into a
realistic line formation problem. Since all the physical
parameters are depth dependent, it is not easy to draw
general conclusions using these results. However, the
following qualitative remarks can be useful in the anlysis

of hydrogen Zeeman lines.

The dotted line represents the H, line computed for
B = 0, which corresponds to the case of Doppler convolved
pure Stark profile function., An absorption feature near

AN <= (}2_& represents the region of the profile where



the Stark effect begins to be significant. The line

core is dominated by the Doppler effect. As expected
(Mathys, 1985b), the central depth of this non-magnetic
line profile is larger than the corresponding magnetic
profile (the full line), Further, the line width and

the total line strength are smaller than the magnetic
-profile. The important case of Doppler convolved Stark-~
Zeeman line profile is shown by the full lines. For
B:’L\’(DAC—, , A?kB’:i D-L,Z nearly equal to thé Doppler width
of the line in deep layers of the atmosphere. The pro-
file functions have a prominent Zeeman peak near A'X::A}\B
The peak is more pronounced in the case of low electron
densities. At higher densities, this peak gradually dis-
appears. This general behaviour of the profile functions
is weakly dependent on the temperature. Hence we can

say that the line shape as well a§ its width are mainly
determined by the electron density at different levels

in the atmosphere. The temperature dependence of the
profile function on the optical depth comes mainly through
the Doppler broadening. In oﬁher words, the Doppler con=-
volution leads to wide, shallow and flat natured profile
function in the deeper layers of the atmosphere, and to
slightly narrow, centrally deep and structured profile
function in the top layers. The main characteristic of

the Satrk-Zeeman line profiles is their similarity to



the normal Zeeman pattern. This is so because, for as
strong a field strength as B = 2.1O4G, the magnetic

term dominates the Stark-Zeeman profile fuhction cal-
culation, The wings of the line profile are however
strongly dampedvdue to ion dynamical contribution to
Stark effect, as well as due to pure Doppler broaden-
ing of the Stark-Zeeman profile functions. The dashed
lines represent the line formation by just the combined
Stark-Zeeman effect (viz.without Doppler convolution).
This intensity and polarization profiles are nearly simi-
lar to a broadened (electronic or resonance) normal
Zeeman triplet of a Lorentz line shape. The shape of the
line core region is determined by the magnetic effects
and that of wings by the Stark effect. Notice the mer-
ging of the non-magnetic Doppler broadened Stark inten-—
sity profile (dotted line) with this dashed profile, in
the wings. Since these dashed lines represent the Stark-
Zeeman line formation for a radiator at rest, they are
unrealistic, and given here, only to show the effect of
Doppler convolution. These dashed profiles also serve

a purpose to show that the impact of Stark effect (as a
broadening mechanism) on the non-magnetic profiles is
more severe (see dotted lines) than on the magnetic pro-

files (see dashed lines).



The magnetic fields encountered in chemically
peculiar (CP) stars or Ap stars produce a magnetic in-
tensification of the lines, which may be nearly a factor
of 2 or 3 depending on the effective field strength
being longitudinal or transverse. It is well know that
the abundances of these otherwise normal atmospheres
have to be increased few times, to match the strength
of observed line profiles, The Zeeman effect, in
contrast, can much more efficieﬁtly enhance the line
strength in normally saturated lines such as hydrogen
lines. In the case of hydrogen lines formed in magnetic
atmospheres, we have to use £he Doppler convolved Stark-
Zeeman profiles instead of Voigt profiles, in view of the
strong linear Stark effect. in hydrogen lines, which can
not be depicted fully, by varying thé damping constant
in a Voigt profile. Also, substantial differences exist
between the non-magnetic line profiles (dotted line) and
the magnetic line profiles (full line), which implies that,
using non-magnetic profiles for matching the observed pro=-

files of magnetic atmospheres may lead to discrepancy.

Hence we conclude that the procedure described in
this section for computing Stark-Zeeman line profiles,
though time consuming for guantitative work, is useful

for detailed studies on a particular line. Since these



profiles are more sensitive to the electron density,
than temperature, they offer a useful tool for esti-

mating electron density more accurately.

5.2 The plasma polarization shift of spectral lines

in a strong magnetic field

The plasma polarization shift (PP8) is a line shif-
ting mechanism which affects the lines formed in dense
plasmas ( N 2 101?'CW$3). The examples are the at-
mospheres of white dwarfs and the polar cap emitting re-
gions of accreting white dwarfs and neutron stars. The
nearly linear dependence of this shift on B even for
strong fields ( B >'10? § ), and on the electron den-
sities N, makes it relevant in strongly magnetized dense
plasmas in general., It is an effect originating in the
partial screening of nuclear charge by an excess of nega-
tive space charge, mainly caused by the perturbing free
electrons moving in the Coulomb field of the emitting ion.
It is important only when the radiating atom is ionized,
the simplest example being He II. Here the interactions.
of the emitting ion with the plasma environment are res-—
ponsible for an average negative space charge which partly
lies 'within the bound electron orbits', and therefore

partially shielding nuclear charge, thus altering the

energy level structure of the emitter. The statice level



shift arises due to initial correlations and is freguency
indepenaent. Also, the shift is negligible compared to
Stark effects in the case of neﬁtral atoms, The shifts

in the He~like ions is again smaller than the H-like ions.
The explicit dependence of PPS on electron density ( Ng )
and the temperature ‘T) leads to stronger radiative trans-
fer effects particularly in deep layers of the stellar
atmosphere. See Jaegle etal.l1985) for some recent eéxperi-

mental and theoretical work regarding PPS.

The quantum mechanical treatment of this problem is
due t0 Griem (1974) and Volonte (1975). According to
Griem's theory, the average perturber charge density due
to plasma, at the (Z-1)e chargedion (radiating particle )

is given by

2
z-1) € |fV
P(V) = —(en,) =20 (z-4) - (5-21)
1- exp-2m (z-0 € [hV ]

assuming isotropic perturber distribution, V is the velo-

city of the perturbing electron. The shielding charge € A%,
within the level m (principal quantum number) is given by

0 ™w vo
.
eaz“=27rjow jde jdv v sim@® E(V) P(V) » (5-22)
0

o (o}
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where ., :;Cﬁbé)%is the bound orbit radius, @, being-
the Bohr radius. {(V) is the Maxwellian velocity distri-
bution. The shielding by the bound electrons is negli-
gible compared to that of the electrons in free states,

because the contribution to negative space charge in the

Griem's model comes mainly from free electrons in the plasma.

However, in Volonte's (1975) modeél, the perturbing elect-
rons move in the Coulomb field of the emitting ion consi-
dered as a point charge. In principle, these electrons
can be either in bound or in free states. In the gquantum
mechanical treatments of both the authors, the radial in-
tegral shown above appears, and WQ is used as a suitable
cutoff radius in performing the integral. In more recent
calculations, radially dependent charge density distri-
butions in the ionic volume are also used. The shift of

the level n ( M>1 ) is obtained in the hydrogenic appro-

ximation as

Ae e (T8 ) =0z Az, & o

fromwhich the relative wavelength shift of the level follows

y

3/ - E Y2 3 2, 2

S =3 () () A T et
- .

(5=-23)

(5-24)



where
2
2
° b T m €™ W20,

\Xh: '>\‘n + A(/\n is the shifted position of the level,

In Griem's theory the perturbing charge density is esti-
mated 'at the nucleus' where it takes its maximum value
and is assumed to remain constant at that value,

out the ion volume.

-3
low n values and high (“% 313? ¢m ) density plasma en-

vironment.

The ground state of an ion is not shifted in

Such a treatment is justified for

through-

|
o1

/
Griem's theory. Let ) and 9 be the frequency of a point

in the unshifted and shifted profiles respectively, the
line shift being produced by PPS,

can be expressed in reduced frequency units as

l
Vo= Y+

crd — ~5) D
v, L5 e e 30

where, as usual,

_ =9
A

and
3 = 3%
T 3

{ ——
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Then the relative shift
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(5=25)
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X ., can be obtained by a replacement ﬁpan . m and m

are.the principal quantum numbers of the lower and‘upper
energy levels. EH is the binding energy of the ground
state of hydrogen atom. We shall now estimate the effect
of PPS on the spectra of He II ion in a strong magnetic
field. The energy levels of this ion including linear
and quadratic Zeeman effect in a strong magnetic field

(B >-15}6) have been computed by Surmelian and O'connell
{1973) using the perturbation theory We have taken
those eigenvalues and included the PPS using the equations
given above. It is well known that the binding energy of
the ground state of hydrogen atom increases monotonically
for field strengths B >|oa—|g G (Rajagopal et al.l1l972,
Cohen et al.1970). The wavelength shift for any line in

general can be computed using

~ (xy=2n) 37+ (5-29)
A - x“x““' T Ay >\1m‘ ?

!

where th and ﬁaéare as given before. The displaced wave-

length is given by A, = Ay F O8N0+ ), is the wavelength
corresponding to the excitation energy of the Tﬁ'level.

We have assumed in deriving the equation given above, that,
En > E,s -« But in very strong magnetic fields, B > Hﬁ &

the inter-n mixing of highly excited states occurs, thus

diminishing the impact of PPS, and even leading to a shift



of opposite sign compared to the corresponding transition
in a lower field strength. The ground state ionization

energy is calculated using

2
h L2 eB
W~ Mg a_ ; =
W ?_me : +h €L e LT amec

It should be noted that the mean radius of the atom de-
creases for field strengths B > 5-m55 . This has to be
taken into account when extending the basic formulation

of PPS theory in the presence of & strong magnetic field.
Since we are no£ aware of whether such a strong field
calculation exists, we have used the non-magnetic shift
formula itself as a first approximation. However, we

have consistently included the magnetic field effect on the
energy levels, by employing the magnetic field modified
eigenvalues for a given field strength. When PPS is at all
important, the linear andor quadratic Stark effects are com-
paritively much weaker and vice versa. The asymmetry of the
resonance and subordinate lines of He II for example, are
causeimainly by PPS in a dense plasma. Hence we discuss
further, the impact of PPS on the line shift of He II lines

in a strongly magnetized plasma.

In a strong magnetic field, a large number of Zeeman
sub-components are produced (Kemic,1974) in any line. We

have selected one such subcomponent, 3d1- 291 which is a

156
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very strong transition. In Figure 3a, we have shown

the wavelength displacement A)\ produced by PPS and
measured with respect to the steady state wavelength
position of this transition at a given field strength,
Thg displacements are gquite large in a low temperature
plasma, because the thermal velocity of the electrons

is smaller, leading to a larger value of time averaged
perturber charge density at the radiating ion. The dis-
placements for a transition, 2¢%-15° are shown in
Figure 3b. The PPS displacements curve for 'X = 298,26 X)
the wavelength position corresponding to B = 109 G is

not shown, since it is unresolvable, in the adopted scale,
from the curve corresponding to A = 302.3 X. The dis-
placementsare very small because (i) they vary as the
fourth power of the principal gquantum numbers of the
levels involved and (ii) they are directly proportional
to the wavelength of the transition, both of which are
smaller preséntly. The displacements of this resonance
transition in a non-magnetic plasma is also shown (dashed
line). . In general, the displacements depend on the difference
in shifts between the upper and lower levels and are
directly proportional to the electron density NC' While
using the PPS formulae given above, in a strongly mag-
netized plasma,4it is safer to verify that the classical

straight line path approximation is satisfied. This appro-
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gyroradius is larger than the radii of the Bohr orbitals
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ximation means that Yc;:" Q_hT‘/M ;}’;\:'na_n/‘z namely the
of the levels involved in the transition. It is not a
stringent criterion because, the time averaged negative
polarization charge overlapping the bound electron radius

is actually more important than the details of the electron

paths.

Now we shall compute a practically important line
(He II 4685.7 A) which is used sometimes in the spectral
line analysis as a gravity indicator. In view of this
application, we have employed a realistic model atmos-
phere of a DB white dwarf with Tegg = 25000 K and log g
=9, given by Wickramasinghe (1972). The normal Zeeman
pattern of this line is computed for a field strength
B = 2 MG. The transfer equation and the absorption matrix
elements required for the calculation, including the line
plus continuum magneto-optical effects and the continuum
polarization are given in Nagendra and Peraiah (1984,
1985b) and described in sections 4.1 and 2.2. We use the
same notation here and mention only the changes to be
made to include the PPS in the computation of a reali-
stic line profile of He II.4685.7 A. Once again, as
in previous section, all the physical parameters are depth
dependent. The line absorption coefficients for example

are now calculzxed using



L
"]- = Y] H (_Q., fw'(wi) D] iz P)L,T’) (5=31)
A o
where
V= AN AN, omd W= (AM-AX; + AN ) /AN (5-32)
and AMM=09, *1 for i= pd Y respectively. The wave-

length shift due to PPS is given by the equation (5-29).
2 2.
The Zeeman shift is AXB = eBN, /LHTWIC- . The parameter

ﬂo is calculated using

©p

Nf 1
— ALK N S (5=-33)
", RS AV

=
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The damping constant, a = T'/pr a9, > T' being the total
damping width of the line. F is the mass density, £

is the oscillator strength of the line and N the number
density of the lower level of the transition. The results
of calculation are shown in Figure 4. We have computed
the realistic normal Zeeman prdfiles of He II 4685.,7 A
line adopting the model atmosphere of a helium-rich DB
white dwarf (Thp, = 25,000 K, log g = 9) given by Wickra-
masinghe (1972). The model atmosphere is truncated in

17 8 -3

the electron density range (Ne:: 107 "to 101 cm T ) to

take care of validity of the simple model of PPS used in
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our computations. This however, provides the optical
depth range sufficient to integrate the transfer equa-
tion accurately. The full lines correspond to the case
of normal Zeeman effect in the line, and without including
PPS, The Zeeman components are well separated since the
field strength is large, but they are narrow since the
damping constant a is quite small. The Stokes profiles
are already asymmetric because of the continuum polariza-
tion and the continuum magneto—optical effect, the later
being quite strong-in deepening the line profile and de-
polarizing it. The p and q profiles have some difference
in shape at the T7Tr and ¢ positions, as‘compared to the
Stokes profiles formed in constant opacity atmosphere
(see e.g.Figure 7). The position angle @ in particular,
is highly scrambled and less useful as a diagnostic. All
these changes occur mainly because of the depth dependence
here, of even the Doppler width and the damping constant,
which are usually kept constant (see for example section
4.3). The dashed lines show the impact of PPS on the
Zeeman intensity and polarization profiles. The profiles
clearly show a blueshift, but the shift is not uniform.
This is because the PPS strongly varies with depth. The
shift in the deepest layers of the atmosphere is nearly
20 times larger than the shift in the outermost layers.

In the deepest layers, the magnitude of PPS in fact appro=-

16



aches the Zeeman splitting itself, for the field
strength B = 2MG which we have used. This leads to an
extreme overlapping of the T and ¢~ -components in

these layers. Such an overlapping, coupled with

Doppler width variations is responsible for the
appearance of additional structure in the shifted
components and sharp variations in the p,q and ¢ profiles.
The line strength and its polarization are also en-
hanced in general. Thus, an interpretation based on
half width or Zeeman shift measurement becomes diffi-
cult if the PPS is not included in the calculation.
Though the effect of PPS may have been overestimated
here because of its approximate treatment, the gqualita-
tive features may not change in a more exact calculation.
The impact of any such line shift mechanism, depends

also on the degree of Zeeman splitting (strength of the
magnetic field). The large asymmetries in the polarized
line profiles lead to an increase in the surface averaged
continuum polarization near these lines, affecting conse-
quently, the field strength measurements which use the
continuum polarization as diagnostic. The increased line
blanketing due to PPS, in such high gravity white dwarf
atmospheres slightly changes the original atmospheric

structure which indirectly influences the spectral lines.
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In the strong magnetic field white dwarfs, there
is some difficulty in understanding the differential
weakenings and shifts of the Zeeman subcomponets, be-
cause they are sometimes incompatiable with the theore-
tically calculated wavelength positions and strengths
of Zeeman subcomponents. Wé feel that the PPS of low
excitation resonance lines of He II in strong magnetic
fields (particularly in high gravity stars) may account

for this discrepancy in line identifications and model

fitting.

53 The influence of atomic orientation on Zeeman line

transfer in a strong magnetic field

In a strong magnetic field the atomic magnetic
moment is preferentially oriented along the field lines,
which results in unequal populations of the Zeeman substates
of a given atomic level. This effect is important when
the magnetic fields are strong enough to produce full
Paschen-Back effect ( B :>>'1J16 )., but weak enough that
the quadratic Zeeman effect can be neglected. "Hence the
high excitation lines formed in cool (vjé#, = 6000 K)
low field ( B < 10* § ) magnetic white dwarfs are signi-
ficantly affected by this mechanism. Since 1t directly

affects strengths and depths of Stokes profiles asymmetrically,



the contribution to the broadband (continuum) polari-
zation is quite large, when a disk integration is per-
formed, with a given field distribution on the stellar

surface.

In the present calcultions we assume that the line
is affected only by normal Zeeman effect. An approximate
criterion for neglecting the quadratic Zeeman effect is
given as 'nw DB << H#, where B is the field strength
in units of Mg (= 106 & ) and n the upper level princi-
pal quantum number. In our study we shall employ a field
strength of 0.75 By . The theory of atomic orientation
is developed in Pavlov (1975) from which we have taken
the relevant formulae. The normal wave transfer equations
given in section 4.1 (see equations (4-28) to (4-36) are
used. But, now we have employed the modified transfer co-

efficients which include the atomic orientation. They are

glven by
T+ B = (M 0+ ig, @) [1—aw]+ 6 (how [2hT) (5-34)
where

Hwe / ! — . -
W= [L(L—H)——L(L—M) 2] (5-35)

The degree of orientation depends not only on (%ukjihT))
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but also on L and ﬁ of the states involved in the trans-
ition. W represents the linear perturbation to the di-
chroic opacities of the non-oriented atoms. Thus the tra-
nsitions involving high angular momentum states in a

low temperature strongly magnetized plasma are affected

by atomic orientation, to a large extent. From the equa-
tion given above it is clear that 7Lp»)+—igaﬂ)z jiuw-kzg@@
when A = O which represents the T = component of the
Zeeman triplet. Also, the ¢~ -components are unequally
affected, leading to a symmetry breaking of the Stokes

vector profiles about the line centre.

In Figure 5 we have shown the Stokes profiles compu-
ted including this effect. A DA‘white dwarf model atmos-
phere with 1}1; = 70000K, log g = 8, taken from Wehrse
(1976) is employed., The following parameters are used:
’}o=1ou", =01, /\°=5oao/%/ H=1,Y =7y, ¥X= ﬁ)z,. and a uni-
form magnetic field of B== 7.5 MG, The continuum is pol-

arized and magneto-optic: "']:1‘:1) 0-94, 41 and Pi:-—‘loc::syf, ﬁi';*D'ISSinly
The magnetic dichroism and anomalous dispersion are com=-

puted for both the continuum and the line. The depths

of I,p and q profiles at ¥V = -400 are slightly smaller

than those at V = +400. The position angle being more
sensitive, undergoes fluctuations and distortion. We have

noticed however, that the polarized continuum in itself

contributes majorly to these type of changes in the
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I,p,q and ¢ profiles. Hence the atomic orientation acts
as an additive perturbation along with the continuum pol-
arization, in distorting the components of Zeeman lines,
but its contribution becomes insignificant compared to
continuum polarization in the case of strong magnetic
fields ( B > lf § ). The atomic orientation effett,
for the atmospheric and line parameters we have used at
present, is quite small. Obviously, for high excitation
lines formed in cold magnetized plasma regions excited
radiatively, this effect is more significant and produces
asymmetric Zeeman profiles and contributes to broadband

polarizations,

5.4 The effect of atmospheric structure and the velocity

field on the Zeeman line formation in a magnetic field

The line shape and the depth of an absorption line
largely depend on temperature structure and source func-
tion gradient in the atmosphere. In the Figure 6 we have
compared the intensity and polarization profiles formed
in model atmospheres ( Tgge = 9000 K, log g = 8), of DA
white dwarfs which are in radiative (dashed line) and
convective (solid line) equilibrium. The model atmos-
pheres are taken from Wehrse '1976). We have used a hypo-
thetical Zeeman triplet taking representative parameters

5 6
typical of a weak line formed in a low field ( v - 1o § )
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Fig.6.The variation of the Zeeman line pro-
file when different atmospheric structures

are used in the line computations.
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magnetic white dwarf. The following parameters are used

in computing this hypothetical triplet: ﬂO::1J3 a=01,

>\D=50002, K=t Y =m|n , 2=

% V=0y+)p, The continuum is dichroic
) bir - d
i d e . —
and magneif—optlc. 'n_h!.r._ 1, 0.9, 11 and f& =
—jocosy ﬁN = - O.ﬁLE'S;YF'ﬂy . The relevant equations

are described in section 4.1 (see equations (4-1) to (4-23)).
For simplicity, the transfer matrix A is taken as depth
independent; hence the constancy of Doppler width over
the depth does not introduce significant errors. The
temperature distribution is the key factor. It is clearly
seen that the lines formed in a convective model are
deeper, and wider also, than those formed in a radiative
model. In the convective model, slight distrortions are
produced in the Stokes profiles near the centre of the

TV and G -components. In the same figure we have shown
the effect of altering the source function gradient in

the outermost layers of the convective model (dotted line).
Such changes in source function gradients may be caused
for example, by an accretion of matter by the white dwarf.
Since the medium is in LTE we have introduced such a gra-
dient by simply reducing the temperature smoothly by 5%
(at U = 1dQ') to 10% ( at =0 ) respectively. We see
that a deeper T -component is produced in this case, and
the line becomes narrow and developes triplet structure.
Marked changes in linear and circular polarization also

occur at the centres of Zeeman components. It is well



known that a similar effect occurs when one increases

the line blanketing in the model atmospheres. The posi-
tion angle @ almost remains unaffected to such changes.
In Figure 7 we show the line shifting produced by macro-
scopic steady state mass motions in the atmosphere, The

lines in a moving atmosphere can be computed by using

9 ()

f

U — (05 & (T) Vi () )

where

V_(T) = U (¥) [V (1) 5 N () = Ja_mfr)/m

instead of Ny in the calculations. Vo (TD is the dimen-
sionless velocity parameter. ol (T) is the angle between
the velocity vector U., (%) and line of sight. Here

we have used T -independent velocities with o (¥)=0

and ‘T -independent Doppler widths. The dashed lines

indicate the Stokes profiles formed in a radially inward

directed constant macroscopic velocity of 0.4 mtu(n~ 5kmjsec);

1 mtu (mean thermal unit)= V. ( ¥ ) . The dotted lines
are computed for an outwardly expanding medium with a

velocity of 3 mtu. The Stokes profiles are blue shifted
in this case., The solid lines represent the'Stokes pro=

files formed in the static atmosphere.. It should be

=1
Pt

(5-36)

(5=37)
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noticed that the gravitational redshift of spectral

lines which can be computed using

1

— C M
V) = Y4 v {(1 R E '1} 3 (5-38)

for a white dwarf of mass M and radiﬁs R, actually gives
such a large (3-4 mtu) ‘red' shift of the Stokes profiles
(Preston,1970). The gravitational redshift being isotropic
over thestellar surface, leads to a 'residual continuum
polarization' contributed by the Zeeman split lines, when
integrated over the visible disk of the star. Also, a
depth dependent velocity produces the Stokes profiles which
look wiggly, with deeper cores and increased half widths.
We feel that such processes which produce line distrotions
and line shifts in extremely overlapping Zeeman lines,
formed in strong magnetic fields, may contribute signifi-
cantly to the continuum polarization, and non-thermal like

continuum energy distribution, observed in these objects.

Thus a knowledge of the differences in line profiles
produced in different atmospheric models helps in isolating
the suitable model required for further work. We have
shown that small changes in the source function gradients
in the outer layers of' the stellar atmosphere can lead
t0 a decrea= inthe equivalent width and a large increase
in the line polarization. As already pointed out, the
gravitational redshift has to be included consistently

in the line profile calculations of whit dwarfs.
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5.5 The ray refraction effects on the transfer of long

wavelength polarized radiation

The x-ray emission observed in some hot white dwarfs

indicates the presence of hot and dense plasma emitting

regions near these objects. The examples are Hz 43 and

AM Her etc. A similar situation is encountered in accre-
ting columns of weak field magnetic white dwarfs and
neutron stars in binaries, 2Zheleznyakov (1983) has pointed
out that a detailed anlysis of the spectra and polari-
zation of these objects in the infrared and radiowave
regions of the spectrum is needed in order to understand
the accretion mechanisms. In this section we have dis-
cussed the radiative transfer of far infra-red (A~ 10”_**7-)
'continuum radiation' as well as a frequency near the
cyclotron resonance occuring in the same spectral range.
The refraction effects are included in the calculations.
Such far infra-red observations are made for an AM Her

star by Liebert and Stockman {1983). The refractive effects
are also important in the calculation of solar radio emission,
Thus, whenever the plasma is anisotropic and the refractive
indices of normal waves differ significantly from unity,

the ray refraction effects become important.

In this section we again use cold plasma normal wave

transfer equations (see section II.1) but in a modified



[

form. The normal waves (polarization ellipses) remain
almost orthogonal away from the cyclotron hormonics and
the spectral line centres. The relevant transfer equation

for the problem is (see Zheleznyakov,1970)
u Ry
. AT I
dv R P2
where ‘uj are the modified specific intensities given by

. — | ) L I .
uj—;[jlcosaa\/'né ) gﬂ1,2?

where o« §=4,2 is the angle between the group velo-
city vector :ig (direction of the energy flow in a loss
free media) and the wave vector of the jth wave. N, are
the real refractive indices, and Idare the usual normal
wave specific intensities. Clearly,'ui are also (like Ij
the invariants of propagation in an anisotropic refra-
cting medium. The equation (5=39) holds only within the

- framework of the approximation of geometrical optics,
where the ray treatment is possible. The normal wave
transfer equation can be used in the place of full den-
sity transfer equation only when w lm—nzl/c % (Ry+ks) pwhich
means that the relative phase shift between the normal

waves caused as a result of propagation through unit

optical depth is a large number. A simpler criterion,

i

(5=39)

(5=40)
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which is satisfied in most of the astrophysical LTE
plasmas is that W >> Qe#; , wWhere Ve;; is an effective
collision frequency. This condition ensures that the
normal waves are nearly orthogonal, similar and propagate
independently (also see section II.l). The ‘cold plésma‘
transfer coefficients are appliable as long aé = Auwe|
>>W|§) J2kTmect ; E=CosYy, -5= 12 being the cyclo-
tron harmonic number, is satisfied. In the case of fre-
quencies away from the cyclotron harmonics, we use simple
analytic expressions given by Zheleznyakov (1970) and

Stix (1962) for the following transfer coefficients.

an . Y Vegs
[Yﬁqmj1 1+FWE! L%]au 2wy (1% Ju lE[)* ’

vlu (- &%)
[tQ.T\O(__] < — 7 h)
aL 2Iml O FT I51)
QL
where QL = quasilongitudinal propagation. My and 2% are
the real and imaginary parts respectively, of the complex

refractive indices of the normal waves. We also use

2z Y (j—v) 1 1-—-V
M = 4— ;[ =
[ 'JQT ! C1-v-u(-g*y1 ° [, (1-ve-)

A Vege[(-v) 4 u (18D ] o Y Vet
['X‘]QT 2 wingd, [4-v-ut- EX)I* ) D{"QT ?—uJ[mJaT)

(5=41)

(5-42)

(5-43)

(5=-44)
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w\d (1- v) Sin W -
| tom « ]QT 2 Dny] g, T-v-u(-€H)2* g omes)
Y (1-V) Sin 2y
tom o _ (5-46)
[ ’] 2Tn:] ar C1-vEg*]* )

where QT = quasitransverse propagation, and

1

N |
w W LT Ne€ eB
V= Tk o W=ho GpEiTES sy Wemoo) B sy (5-47)

The quasilongitudinal propagation means that

2 e 7
Lw.(4—eD] << [2w(1-MmE] ; w:'u»-g ) << 2w (4-W) (5-48)

with the additional criterion for the cold plasma

PR 2
L= 1] >> Ve - (5-49)

The gquasitransverse propagation means that

[ w, (- Ez)]l » 2w (HJ)E]l ) (5-50)

with the corresponding requirement for the cold plasma

=

2
[wt=Ju-¢) )] >> Ve - (5-51)



The approximations mentioned above are uséd to oktain
simplified formulae (equations (5-41) to (5-47) from

a general expression for the complex refractive index
(see Zheleznyakov,1970 and Ginzburg,1964). Generally
small values of‘%f lead to quasilongitudinal, and large
values of WV' lead to guasitransverse propagations,
The effective electron ion collision frequency is given

approximately, for a fully ionized plasma as
5.5
Vg ™ Wl quQOTNC:y%r T< 3 16 K 3

Vg T Lot PINE] dor T >3 107 K

where Ne is the electron number density and T the kinetic
temperature of the plasma. For a sufficiently hot medium
in which the free-free absorption is the dominant mecha-

nism, one can calculate the absorption coefficient in a

simple way as

LW .
%yEﬂ%m%

Near the cyclotron resonance, the absorption coefficients
and the refractive indices of extraordinary and ordinary
waves differ from each other by large amounts. Hence we
can expect the ray refraction effect on the polarization

to be stronger in this region. The cyclotron absorption

e

l:,l
o.3]

(5=52)

(5-53)

(5~54)



coefficients for the normal waves (j = 1,2) are cal-

culated using

C»‘.’C = (.OL - * 2
— T % i+ ¥ CoS oty
hﬂ B J_; cw T g S (_‘11 ) mE ?

Cye 4 u} -4[(%£5(z€+1)]2 o, Cosa
ot 92
k BT jwl- Bl (1+8*)3 EIPFEz) z ?

= "iiﬁ cw Mg
where
R el T g = (kT eB |
5O Bwigimy T Jrmec* “7 mec

" and, the squared modulus of the probability integral

is given by

pa — 9. 2 2 2-2_
Wi = [exp CZ, ] D+ 5 fexp (> dac ] -
[}

The refractive indices are calculated using (Zheleznyakov,

1980)
L owr g€ Al (o
n=-w —- B % exp]}14n4]o exp (x7) dx ,
2.
Ty =1 - —F

w*r (1+€) )

The angles og are computed now, from the exact relation

(Stiz,1962)

i-,,\}

2

(5=55)

(5=56)

(5-57)

(5-58)

(5-59)

(5-60)
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since the approximations mentioned earlier are not appli-
cable near the cyclotron resonance. The Faraday rotation
of the polarization ellipse with respect to a fixed

axis, in the plane, transverse to the propagation direction
is given by

L Yadiams

wc~y0n+%ﬂd

where L is the total geometrical thickness of the plasma

slab.

From the table 1, it is seen that the linear (p)
and circular (g) polarizations and the Faradaybrotation
( f{ ) in radians are underestimated if we neglect the
ray refraction effects (by taking Ty = 1 and cosd;=1,{=12)
The effect is particularly stronger for transverse
propagation of the electromagnetic wave, than the longi-
tudinal propagation, with respect to the magnetic field
direction. It also tends to be stronger in a uniform
magnetic field than in the non-uniform case. For cal-
culating these results, we have used the following plasma
Parametrs:T:‘locK ) Ng = 1.65- !O“rC?n—B, w=6'13319mf—11and H=o0.8

o ]
Y = 10 (for QL) and W#’ = 72 (for QT) propagations.

o

<)

(5-~61)

(5-62)
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Uniform field Non-uniform field
pQLi 1.31E-4 | 1.09E-4 6.66E-5 | 5.56E-5

qQLi -3.05E~1 |-2.54E-1 | -2.20F~-1 |-1.8B4E-1
YOL 2.33E+4 | 2.31E+4 1.655E+4 1.64E+4

pQT% 3.23E-3 | 8.50E-4 2,21E-3 5.32E-4
qQT% -7.93E-2 |-2.07E-2 | =7.66E-2 |-1.84E-2
YQT 7.31E+3 | 7.26E+3 5.17E+3 5.14E+3

Table 1. The difference between ﬁhe solutions

where the refractive effects are included (first)
column) and neglected (second célumn) for a uni-
form magnetic field B = 104G. The last two columns
show a similar comparison for a field varying as
A

se surface (r = 0) of a star of radius Ry .

B(r)

G being the field

Uniform field

p%4 1.70E-2 | 1.16E-2
‘q% | -1.65E+0 |-1.13E+0
vy | 7.65E+5 | 8.02B+5

Table 2. Same as table 1, but for cyclotron ab-
sorption‘of radiation in a uniform field B = 3.3
10°G for an angle of propagationqr=10. (quasi-~
longitudinals QL). It can be noticed that the
error committed in neglecting the ;efractive eff=
ects is now enhanced because of the transfer of

radiation in optically thick mediuh.
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Total height of  the slab is 6 KM. The parameters are
representative of a dense thin corona around a white
dwarf. From the table 2 it is seen that for frequen-
cies near the cyclotron resonance . the linear and
circular pclarization show stronger, but qualitatively
similar behaviour as for the thermal radiation away from
the resonance (Table 1). But, the Faraday rotation de-
creases when the refractive effects are included (first
column of Table 2) because, near the resonance, ‘ﬂjlin
particular increase in magnitude unlike the behaviour at
a frequency far away from the resonance, where they de=-
crease slightly from the values ﬂhc£1, in the cold plasma
theory. Thus we see that in the solution of normal wave
transfer equtions, particularly for the long wavelength
radiations and mear the resonances, the ray refraction
effects make significant changes in the polarization over
the conventional solutions obtained by neglecting these

effects,

The contribution of ray refraction effects to con-
tinuum polarization of low frequency radiation propagating
in a magnetoplasma is found to be significant at least
near the cyclotron resonances, Near these resonances, the
Faraday depolarization is also effectively decreased. This
later aspect may prove useful in the correct calculation
of internal Faraday rotation in transparent synchrotron

radio sources.
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CHAPTER 6

THE SOLUTION OF THE EQUATION OF TRANSFER FOR LINES
IN ANISOTROPIC ABSORBING~SCATTERING MEDIA IN-

CLUDING FREQUENCY REDISTRIBUTION

In this chapter we shall attempt to solve the non-
LTE (non-local thermodynamic equilibrium) equatlons for
the transfer of polarized radiation in spectral lines,
Our present interest is only the case of zero magnetic
field. Also, we shall use the transfer equation written
for the set of Stokes parameters I and X, , thereby
restricting ourselves to the azimuthally symmetric part
of the radiation field. An extension of these restricted
s{okes vector (I, Ty ;-equation to the full Btokes
vector (IL I, u V)T equation and the inclusion of magnetic
field, naturally leads us to the transfer equation for
the well known “Hanle effect". Further, the inclusion of
frequency redistribution during the scattering process
increases the complexity of these two proplems by a large
amount., Hence only few attempts have been made in solving

both of these problems in their full generality.

In the absence of magnetic fields a spectral line
may be polarized if coherent scattering plays a role in
the line formation. The coherency is caused by the in-
terference between the overlapping magnetic sublevels of

the scattering atom. This "level=-crossing interference"
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is modified by a magnetic field due to the change in the
degree of overlapping of the Zeeman sublevels. In the stro-
ng-field case, when the Zeeman components are well seapa-
rated, the interference effects disappear (the normal Zeeman
effect). The Zeeman effect gives rise to line polarization
in the presence of a magnetic field, regardless of whether
scattering occurs or not., The class of polarization pheno=~
mena due to interference between the Zeeman sublevels in
‘coherent scattering' in a magnetic field is known as the
Hanle effect. This type of polarization generally does not
disappear when the magnetic field vanishes, Collisions may
distroy the, phase relations between the sublevels and make

the scattering incoherent. The interference effects then

disappear.

Polarization in coherently scattered light was dis-
covered by Rayleigh (1922), Further laboratory experi=-
ments by Hanle (1924) showed how this polarization depends
on the magnetic field. The basic physical understanding
of these effects was developed by Briet (1925), Dirac (1927),
Weisskopf (1931) and Hamilton (1947) to mention only few
important references. Zanstra (1941) developed a theory to
calculate resonance line polarization in the solar atmosphere.
Chandrasekhar (1950) introduced the Stokes parameter re-
presentation of polarized light in the equation of radia-
tive transfer. This made it possible to attack much more
general problems af the transport of polarized radiation
in scattering and absorbing média. Since that time the

thebry of resonance line polarization has been discussed



1896
and developed further by a number of authors (Voigt,1951:
Warwick and Hyder, 1965; Obridko 1968; Lamb, 1970;

House, 1971; Stenflo,1971; Omont et 51,1973; Dumont et
al.,1973; Sidlichovsky (1974). Treatments in terms of
quantum electrodynamics are found in Lamb (1970), House
(1971), Omont et.al (1973), Sidlichovsky (1974),.

Bommier and Sahal-Brechot ‘1978) and Landi Degl'Inno-
centi (1983). The most complete and diverse studies

in the theory and observations of resonance line pola-
rization and the Hanle effect has been conducted by
Stenflo and his collaborators (see Stenflo,1976; Stenflo
and Stenholm, 1976; Stenflo,1978; Stenflo,Baur and Elmore,
1980; Stenflo,1980; Auer,Rees and Stenflo, 1980). They
have written the transfer equation in a form analogous

to the formalism normally used for the well explored
non-LTE line formation in a two level atom. This has
helped in linking these two areas of the line fommation
theory. Rees and Saliba (1982), have extended this
formalism to a slightly more complicated problem of reson-
ance line polarization Qith partial frequency redistri-
bution, and used them in a study of Ca II K resonance line
polarization (Rees armdSaliba 1983)., Detailed studies on
similar lines have been carried out recently by McKenna
(1984) and the references therein). All these authors
have used the plane parallel approximation. The obser-

vations made by Brukner (1963), Stenflo (1974,1980) and



Wiehr (1975,1981) on the linear polarization in re-
sonance lines of Ca, Na and Mg have been quite success-
fully explained by these thearetical calculations. But
stili, the basic theoretical approach itself needs to
be improved, since some simplifying approximations were
made in all the earlier calculations. By far the most
general solutions have been obtained by Rees and Saliba
(1982) who have compared the solutions obtained for
coherent scattering, complete redistribution and partial

redistribution {represented by REA) scattering mechanisms

in the line.

In this chapter we shall first describe the theory
of resonance line polarization in the form which we have
used (see Dumont et al.,1977; Rees and Saliba, 1982) and
which also happens to be a most suitable form for the
parameteric study which helps develop an insight into the
physics of line formation (see Mihalas,1978). We then
describe the useful limiting forms of the general equation
and compare the solutions obtained by our method with the
solutions obtained by Rees and Saliba (1982) in these
limiting forms, by taking few test problems. We then
describe our method of solution in some detail., Finally
we present a comparison of the solutions obtained for
plane parallel and spherically symmetric media through

sample cases,

—
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6.1 The thecry of non-LTE resonamnce line polarization

with frequency redistribution for a two-level atom

We now describe the relevant equations. The follo-
wing notation is used throughout this chapter: CS=

coherent scatteringy CRD = complete redistribution; and

- PRD = partial redistribution.

Consider an atmosphere which is isotropically illu-
minated only at the lower boundary ( T = T'max ) and
has isotropic distribution of scattering particles. Then
the radiation field is azimuthally symmetric about the
normal Z to the surface and can be describedcompletely
by two Stokes parameters, Ik and IT as already mentioned
in section 3.1. We shall use the two-level atom approach.
The model atmosphres now used are finite isothermal slabs
or spherical shells with (or without) a given thermmal
source distribution. For clarity of discussion, we shall,
at present, neglect the depolarization and frequency re-
distribution by collisions. Our main interest is to show
that accurate solutions can be obtained from the discrete
space methods of solving the line transfer equation even
with a modest number frequency points used for the frequency

integral in the source function.

We adopt a simple vector analogue of standard non-
LTE theory for a two level atom with an unpolarized back-
ground continuum. For the sake of generality, we shall

write down the equations for a spherically symmetric

medium,



The equation of line transfer in divergence form in

spherical symmetry is given by

3 2 . _
B2 Frmentt 22 {0-)z 0k} =

2 Y op
R IP+0G prv] stk —1 & pmn)] (6-1)
where L (¢, :[.Ix (BT Iy_ (x, 1, v) jT is the

-
Stokes vector specific intensity at an angle dD:ws#(rtéLO,'])

to the symmetry axis (radius) at the radial point <y in
' Y=o
AVp
in the line. 7y is the frequency of the radiation, 7,

the atmosphere, and the frequency point X =

is the line centre frequency, and A3, is the Doppler
width which is assumed to remain constant throughout the
atmosphere. _VS“j(x, K 7) is the source vector. If A(Y‘)=}.,ﬂ‘rl
is the area of the spherical shell of radius -y then

writing

WBOLMY) = AG) T oMY
, ; (6=2)
S LMY = A & (K

where b(T) = ]i,“i@-) D) B» CY) being the local Planck func-

tion, we can write the equation (6-1) as

o oo ky) + 2 ) u e wr] =

K Lp+ 9 kY] [S Gmy) —uEr1] ) (6=3)
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for H>p and, for the oppositely directed beam (M <0)

as

P ue-pm- L2 - ute g ] =

L
R [P+ 00-p ] [S (mk,7) = Wlg-pr) ] -

The quantity P is the ratio of unpolarized continuous
absorption coefficient per unit interval of € to that
in the line (= integrated line opacity). The normalized
line absorption profile is represented by a Voight func-

tion, written in the usual notation as

+ A o0
_Hlx, Ky | -
QL. K Y)= ———ﬁ_f—d ; -g_—ﬂf‘imtx,ﬂ, »dxdp =1

with constant damping to Doppler width ratio a. The

source vector is given by

¢
UICAND, 5(%#») + BSm
CEEARY) ?

S (X, Hy)=

d T
where S(v) =f(¥).Bwh ; h=[,1] is the unpolarized con~

tinuum source vector. {(¥) is a parameter proportional
to the temperature gradient in the medium. The mean opti-

cal depth at frequency '90 is defined as

L
d‘t’ = ’Zd.T = Z%- (N‘lBh_“ N1311) d_'r .
D

.’")

(6=5)

(6=6)

(6=7)
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where B,, and B,,are the Einstein coefficients and
N, and N, are the population densities of lower and
upper levels respectively in a two level atom. The
line source vector for a two level atom is given by
L 8 (X, 1)
S bRy = [*,_ '
Sy (¢, 1, r)

+1

joliR (o, W ) Wi, pwdp' 4+ eBM b - (6-8)

_g-e

Pex. kv
The scattering redistribution matrix R (25 K39, K, v )
accounts for the correlation in frequency, angle and pola-
rization between the light absorbed at frequency x in the
direction p'and emitted at frequency 9 in direction pm .
In ord.r to simplify the numerical solution of the transfer
problem, we adopt a prescription for the redistribution
matrix, suggested by Rees and Saliba (1982)3: a hyhrid
model which retains the angular correlation present in the
resonance line scattering polarization via the phase matrix
2 H, P’) and introduces the frequency correlation via
the angle averaged scalar redistribution function 'Rnn (. x')

of Hummer (1962). It is written as

R (x,nx W) = PK) R, (20, (6-9)

where

1. 2 2
L+ M (.
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is the well-=known phase matrix for resonance line

scattering (see Chandrasekhar,1950). The factor (1-E, )

measures the effect of depolarization. It depends in

the j{ and gg(af the transition involved. The formulae
for E, are tabulated in Chandrasekhar (1950). They

correspond exactly to the gquantity Wj, given by Omont

et al.(1972), A maximum polarization occurs for-(ﬁ;@—a
(ju :_1) type transitions (e.g.the Ca I 4227 A resonance
line) where E,=W,;, = { . In this case ;ECy,pO reduce

to the Rayleigh scattering phase matrix.

T g 1z
Ryg () =y, J7 [ b (E0)—tar” E5%) ] du,

1 xx|

where

L =Max @) and X =Min(%x") -

Thus the line source function can be rewritten as

-+1
) P (MEY U (K dp cdm.
5(’1}4 ) = (p“‘)fdx e x_if_,(HH)m( »

The probability per scatter that the photon will be

destroyed by collisional de-excitation is given by

(6-11)

(6=12)

(6=13)



Cay
Gy T Ay Lt — exp (=h7kr) 3T

m
I

In our parametrized calcubktions here, € and [Q)are
assumed in advance and are required to remain constant

throughout the atmosphere.

For the calculaion of profiles under the assumption

of CRD, we have used the following equation. 3

R (x,ux b y) = P(LED QOLHY) - Q(x HY)-

“~CRD

For the approximation of coherent scattering, the follo-

wing equation is used:

R, (o, wm) = P (KH) S0 @, p,7) -

It is to be noted that the following normalization con-

ditions

+00 +1 e+

1

4 J dx Jam [ d fdrt’ R(zpx,M,r) =1;

- -4 -0 =1
and

4 o 1 / /
Q. pr) == _f R (¢, M, x, M,Y) da’ dp )
—o0 24

are always satisfied by the redistribution function. In

practical computations where finite number of angle and
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(6-14)

(6-15)

(6=16)

(6=17)

(6-18)



frequency points are employed, these normalization con=-
ditions are exploited to renormalize the redistribution

functions and profile function in the selected bandwidth.

In the static medium, the following symmetry proper-
ties of redistibution matrices can be used to save the

computing time:

R (¢ B x, W)

I

R (X, M3 =%, M)

»a

R K X)) = R Ex-p5-%,-H)

i

R (o pyx, gy =R (4x,-pH, X, —p) 5

and

R (2 pg x, P}) = R (x p.') x H) -

When there is non-coherence in the atom's frame (e.g. E;31)
the relation (6-22) is not satisfied., In a static medium
one needs to calculate only half of the line profile be-
cause of the symmetry of the profile functions, redistri-
bution functions, source functions and the specific inten-
sity about the line centre. In all the examples studied,
we solve the line transfer equation in the rest frame of
the star, PFor a critical discussion of radiative transfer

in rest frame, see Mihalas (1978).

(6=19)

(6-20)

(6=-21)

(6=22)
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6.2 A general numerical method of solution of the problem

of resonance line polarization transfer with frequency

redistribution

We shall now describe the method of solution of the
polarization line transfer equations with frequency redis-
tribution. The equations are written, again for the more
general case of a spherically symmetric media. All the equa-
tions automatically go over to the special case of plane

parallel medium if the curvature factor {)-—»0

Calculation of cell operators: In arder to solve the aquations
(6=3) and (6-4) we use the 'discrete space theory of radi=-
ative transfer. For that purpose, we have to develop the
reflection and transmission operators which embody all the
physical information contained in the problem posed by us.
In the discrete ordinate method where we employ a finite
number of angle and frequency points (usually the nodal
points of a suitable quadrature formula) to perform the
respective integrations, the reflection ( Y ) and transmi-
ssion (t) matrices are the 'matrix operators' having a
matrix structure dictated by the problem at hand. The
accuracy of the discrete representation for the continuous
variables is determined naturally by the degree of appro-
ximation used for the discrete representation-in other words,

on the number of angle and frequency points employed for



the purpose, However it should be noticed that the
accuracy of the intensities and fluxes (as compared to

a standard analytical solution) are generally very good
even for a modest angular and frequency resolution, be-
cause the differencing schemes employed to discretize the
transfer equations are essentially conservative in nature
and are of second order. Hence they can be made as accu-
rate as possible by selecting smaller and smaller step
sizes., We now have to descritize the equations (6-3) and
(6-4) in frequency, angle and space coordinates. For fre=-
quency discretization, we choose the discrete frequency

points aci and weights &, so that,

40
+I T
q)(x)uer)cix o= Z(l;\"oci) ) ia,;:_-i )
—B0 i=~T 1=—L

and for the angular descritization, we choose angular

points {H{} and the weights [g} such that

A . }
Jiovde = 5oty 5 St

Following Peraiah and Grant (1973) and Grant and Peraiah
(1972) we shall integrate the transfer equations (6-3) and
(6=-4) by using the 'cell' method. Here, we integrate the
transfer equation over an interval[yn,y-m‘ X [H»a-_jj 3 Hj-+1£]
defined on a two dimensional grid. By choosing the roots

Pé and the weights Cﬁ of Gauss-Legendre quadrature

(6~25)

(6=26)



formula of order J over (0,1) we calculate the set }*OIA,

as given by

i
J*ji ZCh anal. Hé~%= ZCR ;

j=t 23

we shall define the boundary of the angular interval as
Py=o -

It is obvious that K, =M = M1

D‘LJ‘_,%_

the line,

; 5+1.j gives us, for the frequency point i in
PR

de

2 .t A + +
F"—D—‘; y.i,i ('Y) +%.' { (,1“ H_ﬂ_%_) B _%__(T)"" U“ H;:_ji) B:‘.J-";: (Y)} +

torm{pte mlu.m= grm{Fopredmlsmn +

+T T
,e)”); ,Z R, ,,(v) u,,(r)—l—R DU, (v)]c}

and

3

—

O M 2 U -
i¥ o EUCY) \al

{( - Fj'r—%) y.:»,jg_ (ﬂ"““}‘a’idi) Yi5a O
+e *“*){9“?;- W} ¥ 9 =GRm IR+ ¢ @ lemh +

+ (- é)l;g ZI_[R o u ,,(Y)+R 50 Yy ) ¢} s

. Inte-
L z
gration of equations (6-3) and (6-4) in the interval
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W
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(6=27)

(6-28)

(6=29)
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where WM is taken as the mean value (or mid point) of
the angle interval [}, 4 , %ﬁd. We have used the
- P

abbreviated notation

+
U= Wle, TR T ;
3

fl

++
R A () = B(x;,}“j} x;:;f"j/}v) s

L

-+

(¥) = R (x;)—}"d'; X;-)f‘d';)'Y') 5

I
+ .
G, 00 = P Gy T MY

etc. The vector notation as of now represents 2 dimen=-
sional column vectors or (2x2) matrices. The reason for
the choice (6-27) should now be obvious; it permits us to
evaluate the scattering integral term with the maximum
accuracy assuming that the solutions 1£”3(v)) kgd(y)

are sufficiently smooth in the angle space. Provided we
consider the diffuse radiation field, we can be sure that
this is indeed the case. We shall now define }fhd+é:(7)

which are the intensities at the boundaries of the angular

cell, as

+ + x

11 . (v) = (HAH"HM-%:JL‘;;(W "j" (M5ey — HJ' )y-'i.a'ﬂ 92 s
“Li+g ( Kivr — Hj)

j = 1020300000-., J-l.'

+ -
and define U, N (v} = y:; J-(y) by interpolation, as
M'J 2. LI

~T

(6=30)

(6-31)



L Lo o= A + W, M)
W =y o= gy 0+ 00) (6-32)
We can write a system of J equations, like the general equa-
tions (6-28) and (6-29) for the set of angles over the in-
terval [p,l] « That system of equations can be written
in a compact form if we use matrix representation, as shown
below:

Bu oL, (1
Moo=+ [/\ u(v)—}— N LU (ﬂ]—kh(v){ﬁwn—kqlm}u ()
+
= ke {[m) Bz, e @ MIBMh, . +
+ 4 u- E)Z [a cmz e, u (T)—}-ﬂ. (r)R M gwy.,m}} (6-33)
I::—'I

and

U _ LT - LU y @]
2'1——5&—- Ty [Aq_jui_ () ‘+ ../,\.13 Ei (Y)]"'H‘(T) {?EL3+ gi fﬁ} y"' br)

= ko {[Pm BL,  +€ 8 BMb, s+

4T

+ (1- C)Z [a cﬂn (v)c u (v)+a (v) Lv)c m]} (6-34)

=271
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where, the factor 2 in the subscripts 2J, comes because
of the two states of polarization we are considering.
T
)

Inthe most general (I, I_U V representation of the

polarized light, 2 will be replaced by 4., As of now, the
column vectors are of dimension 2J and the matrices are

of dimension (2J x 2J). They are defined as (written here

explicitely)

* T T T
v = {ymﬁm gm$m]5

! T
lhrﬁt): [uit%hGJ' u?thLD)'""""uthnUJ] 5 (6-35)
- i‘ —r
Uy 00 = Dagn () Uggyg B -~ - L g (]
where, for example

PR

uirgm(u’=4WWI%%>iPh'&7) (6-36)

with j=1,2,3¢ee.....J represents the L component of the
specific intensity vector at the outer boundary of the

n™ shell of the stratified medium.

_ | e . - .S
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¢ e . .
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(6=37)
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xT g):— EE;,n L) = [(pj,td,ha’) gjj’])
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ﬁi_(ﬂv— : T ® ) N

e Pin gl.m (RY = [Qx,igm R &5 ]
with j,j' =1,2,3....J representing the running indices
br rows and columns respectively. (Sak is a Dirac delta
function.

T
¥

b=l e do =[]

Iy is the unit matrix of dimension (2J x 2J). The cur-
-1 9 : I i

vature term ——— of the original transfer equation
+ E °f, gir q

is approximated by the A, matrices which are defined

according to the Peraiah-Grant method as followss

+
t A:T [>)
N = - b)
—2T +
0 A
"‘ -J

x

where the (J x J) matrices /\_J_ are defined as

+ + o
_ — (= Mas) (Me—H) . i'= d+
_L\.T__[/\“,] — i jed "7y

G (P = Hy) Ta=t
("‘P;:rt}(“aﬂ ~Hirg) Q- Mg ) (s Hion)
G (M= B ¢ (W= M)

= . ,
(- Mig) (B—Wg) . =41
¢ (K —Hiy) >y =23, 7
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(6-38)

{6-39)

(6-40)

(6-41)
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with j and j representing the running indices for rows

“+

The matrices L\'I

'curvature scattering' matrices, the reason for which is

and columns respectively. are called

explained later. Now, we define the redistribution matri-

ces as follows:

+t

(0=

L (1, 2)

o)) Bﬁ-i @) |’

SN i,i'mn

Y
J'l
-j.

- g

where the block matrices corresponding to the components

of the phase matrix are defined as

Tt ++
R'a‘)‘;1 Y\(d B) R’) 1)1" 1,N Cd P) -7 —'Rl“l‘llj T B)
++ , : :
,...‘, (o, B) = ; i
AL “++ o .'-H— +
RN 1,Ln’9) Ri,ﬂ: i',lmm' ﬁ A »(*\ 2

T ++ l ) ""J
Here again the usual convention of‘R i3l =R(GM 5% K S T

is understood. The redistribution matrix (6-43) is re=-

placed by a (4J x 4J) matrix, in the general case of

complete Stokes vector (I Q U V)T In that case, however,

it contains explicitely, all the azimuth dependent Fourier

components also.

(6~42)

(6=43)

(6-44)
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Now, to perform the discritization with respect

to the radial coordin.te Y , we have to integrate the -

equitions (6-33) and (6-34) over spatial cell [V,,Y,,,]

Such an integration from 7 to Y, gives us

+

o +  + - -
L’LU[L&W”-—B i,n] T ﬁ;[ﬁul‘fhma&—* ./,\,,_—S Himﬁ-%j +

+ + +_
"\' Tnh\z[ﬁiu‘f g; ]n+12~u;)n+3i:(t’“*ﬁ[fg;lr+ eg].i]h+12.‘

Tt ++ 4
Boia hoot 1w t-0)) |a R G U
+o, R -
o0 R U .
l',YH-J?: “"'.)'.gm,%__ ~ny w;l‘n+nf] D (6=45)

4 +T 4 .
4 -€ é U
B’mi,—_ bz's+ * T“*%_ (1 )‘A’:X—r[ Oi',m%_ Em‘, g T2T T n+d
a, R, C . . (6-46)
+ LI"Y\*"‘% =, ii‘YH—jz-_ ~ 2y ui', ﬂ.‘-_ﬂi]

Here the subscripts n, n+l and n+) refer to guantities at

T’n, Yot and Ym-%_- where n+¥s refers to a suitable average

over the cell (or a mean value) of the parameter over the

cell bounded by Y, and Y, ,. We can take the ‘shells' into

which we have stratified the medium, themselves as funda-



mental 'cells' provided certain conditions (to be

stated later) are satisfied. If not, we can subdivide
the shell into a finite number of identical subshells
where each subshell satisfies the required conditions,
and hence a subshell then represents a fundamental ‘cell!’
The r and t matrices for the shell can be generated by a
doubling procedure starting from the operators of the
subshell. We have used the following definitions in
writing equations (6-45) and (6=-46)1 A1h+i=‘ﬁH4—Yg;
th):: hLCTM%)AYm—g: ; Y;1+-’£:%—CYY‘+1 _,_y«h))being a mean radius.
§5:51%+%—}7hk&is called the curvature factor, A convenient

By

definition of lil,‘ha~% is

X A

+ x
= — U, ) (6-47)
L/L;) Y\‘f'ji Z (yiiﬂ*" + a4

which is the conventional 'diamond' difference scheme which
was used in the plane parallel case (Grant and Hunt, 1968).
Because of the scattering integral in the tranafer equation,
all the frequency points in the line have to be treated
simultaneously. This means that the equations (6-45) and
(6-46) have to be written for the set {X;} of I frequency
points and solved. This we can do by writing the system

of equations in a matrix form, For that purpose, we need

a general index }2 which i1s defined as



(Paid= k= §4+ (DT 4+ (P-DTT 5 gk & bIT (6-48)

with p,1i, and j being the running indices. J and I are

the number of angle and frequency points, and p is the
number of polarization parameters considered. In our
Present study, p = 2 and, for the general Stokes vector

P =4, Thus, now onwards our column vectors and the
matriceé are of dimension (2IJ) and(2IJ x 2IJ) respectively,
and we do not write these subscripts explicitely, for the
.economy of notation., The equations (6-45) and (6-46) can

now be written as

+ + + + - -
N [Bnﬂ- yhj+ Fc [/\ uﬂ+’f_—\_ A y’“*“ﬂ'—] +rrm‘ji é"‘“liy"“*

> ot o+ X
Trig 80y +30-9T0 [E'W W 4R
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and



where, for our present studies of restricted Stokes

vector we have,

M=[pépls ¢ [ Shr ) (6-51)

The block-diagonal curvature matrices are given by

i * * + +
1\-' = [/\hhl])' /\hh': /\331 = A \(Ha') HJ') (6=52)

The intensity vectors are defined as

T t *
ET\ = [-URJY\]; u

R 1 =u * s T3 P) et (6=53)

The profile function matrices are defined as

I+

*

oy
i'n.\.iiﬁ [B ¥ (pk ]m,;?__ Skh' 5 CPh,TH—Ji: (p(x;) TH Tlm—ii; P (6-54)

The thermal source matrices aré defined as

x +
§h+%—:[Fp+e q)k ]'h_’__%: Bh'\"&: 6hhl ‘ (6—55)

The redistribution matrices are defined as

++ N bt

+ . /
B“*r%,::[ R*‘fk','“*%.] > Ry h’,n+g-_-: R(3 Hj P3ox by b s ng;) -

(6~586)
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etc., the weights matrices are defined as

++ ++

5 etc., (6=57)
with
+ ++ ++
W = C; (6-58)
q)h YH——L hh-!-i" aiJ'YH-%: J ?
and the renormalized weights of integration defined by
++
Q = mA %’“*J" - (6-59)
Wy h{:P‘»C ;t v St th n+4 ,
i y
In all the equations (6~51) - (6-59) k and k represent
the running indices for the rows and columns of the con-
cerned matrices. They are defined as
. ! ,I . |
*2-—'9 + (=) T 4+ (p-1)T T ; R = 4+ G-I+ P-NT7T )
{
|3':‘_ 1,7_ }3 = '1) cl-
L= 4 23----1 =1, 2,3-----1I
ML
i =123 ---73 3 =4, 2, 3,----T (6~60)
|
1< k<2 } <« k' £ 2T7

By using the equation (6-47) we can rewrite equations

(6<49) and (6-50) in the canonical form
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where § = (1- €). The subscript (n+k) is left out,

for convenience, A comparison of this equation with the

interaction principle

+ ] [ 1 .t ]
L t (m+1, M) T (M, n+49) Un
N4 — -~ :
U Y (nat, M) t (n,n+1) | Uf
o LT

(see éiant and Hunt 1969 a,b) for a fundamental layer
bounded by the planes n and (n+l), gives two pairs of re-
flection (r) and transimission (t) operators (matrices).
These linear operators can be expressed in terms of
matrices and vectors appearing in egquation (6-61). With

the following auxiliary quantities
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We can write the transmission and reflection matrices as

N '

t(msm) = E‘T [__At,ﬂ +i+*§:+]

M ) = E; [AD +~3:+g_+~j X (6~64)
(hei,m) = g g "TT+AA]
Ymmed = 47§ [2+2 D] J

5 o

and the source vectors as

(6=-65)

All the cell operators given in the equation (6-64) and
(6~65) correspond to a cell of optical depth of T and
Curvature factor f . The simplifications obtainable
Ccomputationally in a non-polarized case, Or angle average
redistribution functions, or static media canl be easily

recognized and the computing time and memory can be saved.

We must choose U and 2 in a cell in such a way
that we obtain a stable solution. The requirement for

Stability is the positivity of the matrices A,D.hand & —

r- 4
G , § . For instance, consider the matrices A, and O_-



;
>
)

To obtain non-negative L pand A_, we must have positive
diagonally dominant character, and negative off-diagonal
€lements in the matrices (M +12 TZE . ) and .(__J‘j +3T2 )

respectively. This requirement of 4. 20 leads to a

criterion
e+ &N,
<. -— . -
T = Ty mh‘“ 1 S RT* W )
= (@ 2 "rk YRR (6-66)
for the diagonal elements, and
G mn | min _Si.ﬁkh, Wiy
- < ! ¥ ) (6-67)
T R k=R Nrr

for the off-diagonal elements., The condition (6-66) can
always be easily satisfied. However, the condition (6-67)
imposes a severe restriction on the size of the curvature
factor fc to be used in each cell to obtain hon-negative

L and r matrices. FOrmally, we divide the medium into seve-
fal shells of equal optical thickness, If the optical depth
in each shell Tihar =~ Tcar , then we have to subdivide
the shell and use the ‘'star algorithm' given in Grant and
Hunt '1968) or Peraiah (1984), for calculting the r and t_
operators of the whole shell., If the medium i1s very thick,

then we can use the 'doubling method' (van de Hulst,1965)

which is faster. In the doubling method we choose T and §
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values satisfying the conditions (6~66) and (6-67). If
very high accuracy is needed one can take small fractions
of ¥ and { so that the truncation errors would be mini-
mized in compounding the cell operators. It should be
kept in mind that too small values of T and . may

lead to round off errors due to enhanced arithmetic
Operations. If we halve the shell p times, the star
a8lgorithm is repeated p times, and in this event, the cur-
vature factor gs‘ and the optical depth T, of the subshell
Or 'cell' are given in terms of those of the shell (viz, {3

and % ) by

om g Je-¢ -2 5

(6~68)
The square of the mean radius of the subshell 'is given by
v o= ) ! Lo (i £ 4 L 6-69
¥ = R {1“2['“5:]“*‘“5@[""‘"1“"4)}) ( )

where gs corresponds to a subshell approximately midway
in the shell, and S; is the curvature factor for the
whole shell, defined as 5 = AY [Youe . Tss is also
derived from the assumption that the absorption coeffi-
cient in the shell is uniform. R is the outer radius of
the shell in terms of the inner radius of the medium, and

K = 271 _ 7P
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One of the important checks of the method is the
conservation of flux. In a purely scattering medium,
where energy is neither absorbed nor emitted, the input
radiation energy must palance the output energy. This
can be achieved only by satisfying the normalization
conditions to the highest accuracy possible (say machine
dccuracy). The normalization condition for the redistri-

bution function is given by

2T3 LI3J

A ++ o+ -t -~ -+
72 YOLW R W, W, Ry W =1 (6-70)
=1 a=1
where
Ai R
Wea = h:; = ) (6=71)
Ros A C;
Qé;q ra g
and
[ Pel=j+ DT +(P-0TT - ' (6~72)
See also equation (6~60). Similarly the normalization on
the curvature matrices is given by
+ -
¢ (N.~A )=03 h=t2,------ T - (6-73)
b:i“ (l\éh :n) 03 g

The boundary conditions we have employed for the finite
atmosphere of optical thickness T can be written expli-

citely as



+
~ 1

=0 Py =0
(6=74)

—

=0 o =T
N+1

that is, no radiation is incident on either side of the
medium. The continuum source function (the Planck function)
1s always set equal to 1. In semi-infinte atmospheres,

however one has to use the conventional boundary condition

-+
W, =0 5 abf T=0
W = (6=75)
“Nf1-B ) Gi' (B"—'-T

Further details on the line transfer in spherical or
moving media can be obtained from Peraiah (1984). We
describe our parametrized study of resonance line tran-

sfer in the section 6.3.

6.3 Limiting forms of the resonance line polarization

transfer problem and their solutions

in this section we shall compare the solutions obta-
ined by our method with the accurate solutions of Rees
énd Saliba (1982) on some test cases, and discuss some
advantages as well as difficulties of our approach in

comparison with the standard Feautrier's method which



has been used by these authors and is widely used as

well, We have considered only finite atmospheres with

a scaled Planck function B = 100.We always use angle-
averaged partial redistribution function 'Rna in the

PRD calculations. We use a 3 point Gaussian angle qua-
drature on O <MK < 1, and a trapezoidal frequency qua=-
drature on 0< X<, The parameters of the study are: T,
the optical thickness of the line forming region; a, the
dimensionless damping parameter; € , the thermalization
parameter (or the probability of photon destruction during
scattering); ‘F . the parameter which represents the amount
of coupling of the line to the continuum levels of atom.
Other free parameter which we have nowset equal to zero is
the depolarization factor 4 = (1-Ey ) which represents

the amount of mixing of the dipole like and isotropic radi-
ation fields. This choice represents the case of maximum
polarization attainable under a given set of conditions.
The transfer problem is solved using the procedure des-—

cribed in the section 6.2.

Complete redistribution approximation:- The complete re-
distribution is quite a good approximation in the line
core. It is very easy to handle in the transfer problems
and economical in terms of computing efforts., Major part
0of the work in the theory of resonance line polarization
has been done using this assumption of CRD. The definition

of CRD is given in the eguation (6-15).
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In the following, we shall show the results of our test
case with CRD, for the sake of discussion. The behaviour
Of CRD profiles in resonance line polarization has however
been, well studied by Dumont et al.(1977) and Rees and
Saliba (1982). For radiation in the normal direction

( PF=1 ), symmetry cf the problem demands that the
intensity components satisfy Il = Ir and hence the linear
polarization be identically zero at all the freguencies,
for any redistribution function. The polarization is lar-
gest for the smallest values of }L, i.e.near the limb of
the stellar atmosphere. For CRD, the line source function
§TL(‘X; riw Y> (see equation (6~13)) is independent

of frmguency x. In Figure 1 we have shown the specific
intensities and the polarizations in the line for these
values of opbserving angles f& . It is clearly seen that
the polarization is nearly frequency independent for the
Optically thin medium. However the CRD polarization pro-
files develop a peak at the line centre for optically thick
media. The large increase of linear polarization in the
line, for smaller values of rLis clearly seen in the‘line tra-
nsfer calculation’also (See section 3,.,4,where we have shown
the behaviour of intensity and polarization for the coherent
scattering of the continuum radiation in a non-magnetic
Thomson scattering medium). This angular behaviour of in-

tensity and polarization has actually been observed in the
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Solar atmosphere. In the case of stars, the integrated
flux also shows a qualitatively same behaviour. This is
the reason why CRD computations have been successfully
used in the theoretical interpretation of observed reso-
nance line polarizations. It has also been shown by Rees
and Saliba (1982), that the difference between the line
profiles and polarizations computed using CRD and PRD
approximations is indeed very small in the line core region
( X' <1). As is expected, the PRD effects are dominant in
the line wings, and a careful treatment of PRD effects
needs a finer frequency grid than what is normally needed
tor CRD computations. This point, we will also show through
our model example of PRD. In table 1 we compare our solu=-
tions with those of Rees and Saliba (1982). We have compu-
ted this solution (which is the same one shown in Figure

1 also) by wusing a very modest frequency grid of 8 trape-
2oidal frequency points with a spacing of 0.5 Doppler
widths, Rees and Saliba (1982) have used 20 trapezoidal

frequency points,the first 15 spaced at intervals of 0.25

Doppler widths and remainder being determined logarithmically.

The good agreement with their exact results is encouraging.
The use of smaller number of frequency points in discrete
Space theory implies that the demand on the computer memory
is less and a drastic reduction in the computing time

-because of a reduction in the size of the matrices appearing
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in the calcultion., We feel that both these are very ad-
vantageous for detailed work in the non-LTE line transfer

computations, at least in the CRD approximation,

Partial redistribution approximation using Ryrp ¢+ Through
another test case, we study the PRD line formation problem
again u;ing a 8 point trepezoidal gquadrature for frequency
integration of the transfer equation. We adopt the simpli=-
fication for Rgp, Suggested by Rees and Saliba (1982) in
order to simplify the transfer problem (see equations (6-8)
to (6-13)). The basic physical nature of Rysfunction is
described in Mihalas (1978). Rees and Saliba have used a
further simplification of Rypp (x,x) redistribution function,
in treating the frequency redistribution. It is the Kneer's
(1975) approximation to Rgp (*,x') function. This composite

formula is written conveniently as

'Rnﬁ(oc) x) = <a>, 8 (x-x) Q) + (1= Ay ») Qe P ,
where

N
<a>, = j &y o P20 dx

and

o, , = 1= exp[~(2-2J/4] 5 T=max(ml, 1)

%,/

For CRD, Q. .,=¢ and for coherent scattering (CS).039551-

xz,x

In this fsrmula, the line core is dominated by CRD profile,

with a gradual transition to CS in the wings.

[
)

(6~76)

(6=-77)

(6-78)
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We have used exact formula for Ryp (¢, X)given by
equation (6-11), instead of the Kneer's approximation
given by equation (6-76). This choice partly accounts for
the difference between our results and the results of Rees
and Saliba (1982) in the values of polarization, parti-
cularly in the wings. In the Figure 2 we show the in-
tensity profile and the polarization across the line. It
can be seen that in the inner line-core, x< 0.5, the diff-
erences between the CRD and PRD profiles are insignificant.
The shape of the intensity profile is also not much diffe-
rent from the CRD profile., Note, however, that for the
particular case of ? =0 (that is the pure line transfer
without the introduction of any continuum processes), the
PRD polarization tends to zero in the wings as opposed |
to a constant non-zero value for CRD, This special be-
haviour of CRD polarization profile arises because in the
CRD case, photons can scatter into the wings from the
core, thereby giving rise to wing polarization ‘'at all
frequencies'. This general conclusion is true only when
the optical depths are very small (say T<1). But, when
the optical depth T is large or an overlapping continuum
radiation field is included, by setting P=F0 , the
polarization is automatically driven to zero as the radi-
ation field merges with the unpolarized background in the

far wings. This natural behaviour of polarization maxima
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in the line core, and zero polarization in the far wings

is correctly predicted even for as small a value of T as

0.1 which we have chosen. Hence PRD offers a better re-
bresentation of resonance line polarization throughout the
line profile. A good analysis of the resonance line polari-
zation by CS, CRD and PRD as well as the effects of varying
T, ¢, p and a has been done by Rees and Saliba (1982). 1In
the Table 2 we have compared our PRD solution with those of
Rees and Saliba. It can be seen that the computation of
intensities is quite exact, but the values of polarization,
differ by large amount in the wings. This is not surprising
because, the PRD effect is strong only in the wings. With
our choice of low order quadrature, using also a rather
large interval of 0.7 Doppler width, it 1s not possible to
reproduce the sensitive polarization information correctly
to a better accuracy. This situation hbwever, can easily

be improved by employing a larger number of frequency points,
This in turn increases the dimensions of the matrices and
consequently the computing time. We also would like to point
out that our method of sclution is direct unlike the iter-
ative procedure of Rees and Saliba (1882). The method

takes arbitray variation of physical variables in the medium,
and can be generaiized to treat the line formation under

any type, of frequency redistribution mechanism or even the

velocity fields in the atmosphere. Such calculations have
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Y additional efforts,in the calculation of emergent

radiati i
tion field. Using the general equations presented

in i
the section 6.2,we can also solve the resonance line
polarization transfer problem with frequency redistri-

bution, in spherically symmetric media.

©.4 Resonance line polarization transfer in planar and

spherical geometries - a comparison of solutions

It is well knowrthat the plane parallel (PP) appro-
ximation is an excellent approximation when the density
scale height in the atmosphere is very small compared to
the radius of the star. It is interesting to stﬁdy, as a
natural generalization of this approximation, the line

transfer problems in spherically symmetric atmospheres.

We shall attempt such a problem now, confining ourselves
to non-extended spherically symmetric atmospheres. How-

ever, the essential characteristics of the so called

'spherical radiative transfer problem' can be demonstrated

even with such a geometrically thin, shell like spherical

atmosphere. Chandrasekhar (1934) and Kosirev (1934) were

the first to examine the radiative transfer equation in
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spheri
P ical Symmetry, In later Yéars, many authors have

a .
ttempted this problem both analytically and numerically.
This difficult problem has been of great importance in

the theory of radiative transfer, Obviously because of

its greater generality and the immediate applications it
finds in the whole area of stellar astrophysics. The
review articles on spherical_ radiative transfer in the
book "Methods in radiative transfer" edited by W.Kalkofen
(1984)provide a good description, and a complete list of
references to earlier work in this field., Our main in-
terest here is to solve the radiative transfer equations
for resonance line polarization, in spherical geometry

and compare them with the plane parallel solutions. In
problems dealihg\ with spherical symmetry, the ray conti-
nuously changes its direction with the radius vector which
amounts agailn to some sort of scattering, which is generally
called the curvature-scattering. This, taken together with
the scattering by free electrons or bound levels of atoms,
greatly complicates the. process of emergence of radiation
from such atmospheres. There have been some attempts
towards these problems in the past (Cassinelli and Hummer,

1971; Schmidt-Burgk,1973,Shapiro and Sutherland, 1982 and

others). Peraiah (1975) has developed a numerical solution

of radiative transfer equation in spherical symmetry when

the spherical medium scatters radiation in accordance with
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Rayleigh phase matrix. He has studied the effects of
sphericity (curvature effects) on the angular distri-
bution of intensity and polarization in such a pure
scattering medium, The method of solution he has used -
is a vector analogue of the Peraiah-Grant method (Peraiah
and Grant,1973)., We have described the method of solution
for the'line transfer with frequency redistribution’in
spherical geometry, in section 6.2. ' These equations can
be used to obtain both SS and PP solutions, for any given

set of physical parameters.

We shall calculate the line profiles in isothermal
homogeneous spherical medium having the rest of the phy-
sical properties same as the PP medium, though it is natural
that the spherical atmospheres should have power-law type
radial distribution of opacities. Nevertheless, for the
non-extended atmospheres,our choice is reasonably good.

Our primary interest is just to see how curvature of the
medium affects the polarized radiation field in a medium,

We study the ‘effects of sphericity' on the polarized line
transfer under all the thrée line scattering mechanisms
already mentioned, namely coherent scattering, complete
redistribution and partial redistribution in frequency.

We have used the same isothermal model atmosphere as mentioned
in Table 1, namely € = 107%, f =0, B = 100; a = 0.01,

T = 0,1. The ratio (B/A) of the outer to the inner radius



&

of the atmosphere is a measure of sphericity of the
medium, §‘= 1 represents the plane parallel atmosphere,
and % # 1 a spherical atmosphere. We have used a spheri=-
cal atmosphere with % = 1.2, a value representative of
normal stellar atmospheres or thin chromospheric emission
regions. We mention that, in the extended atmospheres

of giant stars, this ratio can take values anywhere between
few tens to few hundreds. The boundary condition employed
in all the cases is that, no radiation is incident ex-
ternally on either side of the PP slab or SS shell. The

model actually represents high temperature emitfing region

with a small line optical depth.

Discussion of results: We adopt a graphical representa-
tion for our discussions. In all the Figures (3), (4)

and (5), the solid line and the dashed line in each frame
represent the intensity and the polarization profile res-
pectively, in a-plane parallel atmosphere ., The dot-dashed
curve and the dotted curve represent the corresponding in-
tensity and polarization profiles respectively, in a spheri-
cally symmetric atmosphere. In all the computations, the
specific intensity in spherical geometry is defined as

U= r2£ where r 1is the radius., In the reduced radial
coordinates the value of r = 1,at the inner boundary of the
spherical shell, and r = (B/A) at the outer boundary. It

takes intermediate values between 1 and (B/A) for other
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shell boundaries in the atmosphere. For instance, in

our present computations emergent vector LI can be ob-
tained as I =='L1/(B/A)2 = U/1.44,since we have selected
(B/A)= 1.2. TFor the sake of comparison, we have actually
plotted the W values itself to represent the spherical
transfer solutions., This we have done for the sake of
comparison with the PP solution vector I in the line
profile, Hence, it should be remembered that the emer-
gent specific intensity values of a S5 solution are
@lways smaller in magnitude, than the corresponding PP
solutions. As expected, the intensity profiles show a
limb darkening for both PP and SS situations. Also,

the polarization is the largest in the tangential dire-
ctions (small values of P ) in both PP and SS situations,
The polarization in the SS media is smaller in magnitude
than the plane parallel media. We note that this behaviour
is characteristic of optically and geometrically thin
emitting shells, In the photospheric type conditions,
with large line optical depths, the multiple scattering
effect coupled with the large sphericity can lead to

the opposite of this behaviour.

We have computed the coherent scattering profiles,
taking the damping parameter a = 10”2,  We have shown
these profiles in Figure 3. The CS intensity profile

matches with the CRD profile upto X=3., 1In the line
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wings however CS produces a damped profile unlike CRD
profiles. The CS profile nearly coincides with the

PRD intensity profile throughout the band width of x.
This is obvious because, for T = 0.1, the line wing
Optical depths are very small and hence the transfer
effects are weak. Exactly for the same reason, the

PRD effects are also weakened in the line wings. Thus
the CS intensity profiles follow the shape of the absor-
ption profile (Voigt profile currently), which is chara-
cteristic of coherent scattering in the line. The degree
of polarization is however, always larger for the CS
mechanism than the CRD or PRD mechanisms, because of a
larger frequency coherence, which preserves the polari-

zation during the act of scattering.

In the Figure 4 we have shown the CRD profiles. The
polarization p is nearly fregquency independent. The diff-
erence between the PP and SS solutions is again maximum
for the large values of M , i.e. in the radial directions
in a S5 medium. The difference between the PP and SS in-
tensity profiles in the line wings, is smaller in the
case of CRD mechanism of line formation than the CS mecha-
nism, CRD profiles are similar to the PRD profiles in the
line core excepting the difference in the polarization

profiles,
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In the Figure 5, the PRD profiles are shown. The
PRD intensity profiles have CRD like behaviour in the
core regions X £ 3,, and have the CS like behaviour in
the far line wings. The polarization profiles are
wider ( Ax = 3) than the coherent scattering polarization
profiles, The difference between the PP and SS polari=-
zations is also larger in this PRD mechanism of line for-
mation, than in either CS or CRD mechanisms. Hence we
feel that, in the resonance lines which are dominated
by the PRD effects, the effects of sphericity of the
medium is also more severe. Hence in the calculation
of such line profiles and polarizations, the spherical
radiative transfer has to be used. We note that the
effects of sphericity of the atmosphere on the lines,
is much larger irrespective‘of the line scattering mecha-
nisms, when the medium is optically thick or it is extended.
We intend to study these interesting effects in detail,

in our future calculations.
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