Please use this identifier to cite or link to this item: http://hdl.handle.net/2248/6761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinger, L. P-
dc.contributor.authorKasliwal, M. M-
dc.contributor.authorCenko, S. B-
dc.contributor.authorPerley, D. A-
dc.contributor.authorAnderson, G. E-
dc.contributor.authorAnupama, G. C-
dc.contributor.authorArcavi, I-
dc.contributor.authorBhalerao, V-
dc.contributor.authorBue, B. D-
dc.contributor.authorCao, Y-
dc.contributor.authorConnaughton, V-
dc.contributor.authorCorsi, A-
dc.contributor.authorCucchiara, A-
dc.contributor.authorFender, R. P-
dc.contributor.authorFox, D. B-
dc.contributor.authorGehrels, N-
dc.contributor.authorGoldstein, A-
dc.contributor.authorGorosabel, J-
dc.contributor.authorHoresh, A-
dc.contributor.authorHurley, K-
dc.contributor.authorJohansson, J-
dc.contributor.authorKann, D. A-
dc.contributor.authorKouveliotou, C-
dc.contributor.authorHuang, K-
dc.contributor.authorKulkarni, S. R-
dc.contributor.authorMasci, F-
dc.contributor.authorNugent, P-
dc.contributor.authorRau, A-
dc.contributor.authorRebbapragada, U. D-
dc.contributor.authorStaley, T. D-
dc.contributor.authorSvinkin, D-
dc.contributor.authorThöne, C. C-
dc.contributor.authorde Ugarte Postigo, A-
dc.contributor.authorUrata, Y-
dc.contributor.authorWeinstein, A-
dc.date.accessioned2015-07-14T10:28:37Z-
dc.date.available2015-07-14T10:28:37Z-
dc.date.issued2015-06-10-
dc.identifier.citationThe Astrophysical Journal, Vol. 806, No. 1, 52en_US
dc.identifier.issn0004-637X-
dc.identifier.urihttp://hdl.handle.net/2248/6761-
dc.descriptionRestricted Accessen_US
dc.description.abstractThe Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts' host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo.en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.relation.urihttp://dx.doi.org/10.1088/0004-637X/806/1/52-
dc.rights© IOP Publishing-
dc.subjectGamma-ray bursten_US
dc.subjectIndividual (GRB 130702A, GRB 140606B) – gravitational waves – methodsen_US
dc.subjectObservational – supernovaeen_US
dc.subjectGeneral – surveysen_US
dc.titleThe needle in the 100 deg2 haystack: uncovering afterglows of FERMI GRBs with the palomar transient factoryen_US
dc.typeArticleen_US
Appears in Collections:Publications based on data from IAO, Hanle
IIAP Publications



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.