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Abstract

Parity Non-Conservation (PNC) is caused by weak electron-nucleon interaction, as
predicted by electroweak unification theory. In 1974 Bouchiat and Bouchiat pointed
that this interaction is strongly enhanced in heavy atoms. Since then PNC has been
observed in heavy atoms like Cs, Tl, Pb etc., The accuracy of atomic experiments
has reached a level, which in combination with atomic many body theory can be
an important probe of physics beyond Standard Model. Latest measurements on
cesium has yielded a result of unprecedented accuracy (0.35%) and has lead to the
discovery of the nuclear anapole moment. Fortson (N. Fortson, Phys. Rev. Lett. 70,
2383 (1993)) has proposed an experiment to measure PNC in 65y, — 5ds3/, using
the techniques of laser cooling and ion trapping. In this work, three different many
body methods are applied to compute parity non-conserving electric dipole transition
amplitude (E1PNC) in Ba* for the 6s1/o — 5d3/ transition.

We have computed E1PNC for the above transition which is sensitive to both Nuclear
Spin Independent (NSI) and Nuclear Spin Dependent (NSD) interactions using the
configuration interaction (CI) method. Preliminary calculations for this transition
by Malhotra et al. points to the importance of the many-body effects from the
low lying levels. We have improved this result by adding more configuration state
functions (CSFs) obtained by the excitations from 5s and 5p core orbitals to various
higher virtual orbitals. The NSI E1PNC reduced matrix element with about 2000
relativistic CSFs converged to 0.5264 x 1072qoQw. It may also be possible to
perform a similar PNC experiment on the 65,/ — 5ds/, transition in Ba' and 75172 —
6ds/> in Ra*. These transitions are found to have an important advantage; it is only
sensitive to NSD effect and is therefore a very direct way of measuring the nuclear
anapole moment.

Many-Body Perturbation Theory (MBPT) with one order in Couloumb and one or-
der in PNC has been studied in detail. We categorize the corresponding Goldstone
diagrams depending on the physical effects into three classes; viz., Coupled Perturbed
Hartree Fock (CPHF), Random Phase Approximation (RPA) and Double Perturba-
tion (CPHF-RPA). Few of the E1PNC pair correlation diagrams are also considered
and the results shows that CPHF contributes ~ 3.8% and RPA contributes ~ 0.5%
to F1PNC. The first order calculations shows that CPHF-RPA and pair correla-
tion diagrams contributes ~ 0.5% and ~ 8% respectively to E1PNC. The total NSI
E1PNC contributing from CPHF, RPA, CPHF-RPA and pair correlation effects is
found to be 2.18 ieag(—Qw/N) x 107''. Dzuba et al. (V.A. Dzuba, V.V. Flambaum



and J.S.M. Ginges, Phys. Rev. A 63 62101 (2001)) using a mixed parity approach
obtained 2.17 ieao(—Qw/N) x 107L

The formulation of relativistic Coupled Cluster Singles and Doubles (CCSD) applied
to atomic systems, with and without the PNC interaction is studied in detail. We have
used the CC amplitudes with partial triples, for the calculation of Ionization Potential
(IP) and Excitation Energy (EE) for different low lying levels of Ba*. Orbitals that
are part analytical and part numerical have been considered as the Dirac-Fock single
particle basis. Accuracies of the IPs and EEs hence obtained are approximately 0.2
and 1% respectively. We find that the inclusion of triple excitations were crucial to
achieve this degree of precision. The reliability of computed values of E1PNC using
sum over intermediate states have been ensured by applying the same methodology
to Ba™, where experimental quantities like electric dipole, hyperfine constant and
lifetime are available. The formulation of mixed parity approach for the computation
of F1PNC is discussed in detail. The total contribution to E1PNC by sum over
intermediate bound states for 6p,7p,8p(1/2,3/2) states using all order CCSD and DF
contribution from bound core and continuum virtuals is 2.35 ieap(—Qw /N) x 10~
respectively. This in comparison with Dzuba et al. (V.A. Dzuba, V.V. Flambaum
and J.S.M. Ginges, Phys. Rev. A 63 62101 (2001)) is 2.34 ieao(—Qw/N) x 10~
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Chapter 1

Introduction

1.1 Symmetry: An Introduction

Symmetry or invariance of the equations of motion describing a physical system is an
important concept in physics. In general, a symmetry of a particular kind exists when
a certain operation leaves certain properties unchanged. With each symmetry there
is an associated transformation and it obeys certain characteristic group structures.
If a particular process remains the same after it is transformed by an operation, then
it is said to be invariant under the symmetry associated with that transformation. A
remarkable theorem discovered early in this century by the German mathematician

Emmy Noether states that
Every conservation principle corresponds to a symmetry in nature.

For example, invariance under rotational symmetry leads to conservation of angu-
lar momentum and invariance under translational symmetry leads to conservation of
linear momentum. A particular theory in general obeys several conservation laws,
wherein the invariance restricts possible forms of the interactions involved. The con-
cept of parity has been of fundamental importance to the development of theories
which unify forces observed in nature.

The symmetries exhibited by physical systems can be classified as continuous and
discrete. Continuous symmetries are associated with transformations which have the
concept of infinitesimal transformation, and a finite transformation can be achieved
by applying a sequence of infinitesimal transformations. In discrete symmetries in-
stead, there is no concept of infinitesimal transformations. Instead the transformation
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takes the physical system from one state to another. The three important discrete
symmetries of interest in physical studies are charge conjugation (C), parity (P) and
time-reversal (T). According to the Charge Parity Time-reversal (CPT) theorem [1]
all physical systems described in local field theories are invariant under the combined
CPT transformations. A physical system/process can violate each of these symme-

tries individually as long as the combined CPT is conserved.

1.2 Parity as a Symmetry Transformation

The parity operation, as applied to transformation on the co-ordinate system, changes
a right-handed (RH) system to a left-handed (LH) system [2]. However, one considers
a transformation on the state kets rather than on the co-ordinate system. Given
|W (7)), we consider a space-inverted state, assumed to be obtained by applying a
unitary operator P known as the parity operator, which is as follows:

(W(r) = PI¥(F) = |¥(=7)). (1.1)

Since the space inversion operation is defined as a transformation in which each point
of space 7 goes to —7, we require the expectation value of position operator X taken

with respect to the space inverted state to be opposite in sign given by
(U(7)|PTX P|¥() = —(¥(7)|X|¥(7), (1.2)

which is possible if PFXP = —X, and X P = —PX, where we have used the fact that
P is unitary[PT = P~!]. It can be shown that P is also Hermitian with eigenvalues
+1. A system described by a Hamiltonian H then under the parity transformation
takes the form Hp = PHP . The system is invariant under parity transformation if
Hp =H or PHP ! = H and therefore [H, P] = 0. As P commutes with H, ¥(7) is
a simultaneous eigenfunction of P and H. This clearly implies that the condition for
parity non-conservation/violation in a physical system is that, it’s Hamiltonian does
not commute with the parity operator and at the same time the eigenfunctions of H
are not simultaneous eigenfunctions of P.

Operators in general have parity transformation properties; they can be even or
odd under P. One can categorise these operators with respect to the effect of the
parity transformation on them as vector, axial vector, scalar and pseudo scalar. A
vector (V) quantity is one that transforms in the same way as 7 under parity, so in
general for a vector da,

P:d— —a (1.3)
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An axial vector (A) is defined by the product of two such vectors, e.g., L=7xp,

which transforms under parity like
P:ixb—+ixb (1.4)

Hence it is also known as pseudo vector. Two other quantities which have definite
parity properties are
b (1.5)

Ql

P:adb— +

and
P:a(bxd) — —a.(bx?) (1.6)

where the operator defined in Eq. 1.5 is a Scalar (S) which does not change sign under
parity and the one defined in Eq. 1.6 is a Pseudo scalar (P) that changes sign under
parity.

1.3 Conservation and Non-Conservation of Parity:

Examples

The discussion below draws heavily on a review article on atomic parity Non-Conservation
(PNC) by M.A.Bouchiat and C.Bouchiat [3]. PNC does not belong to our everyday
experience and there are large domains of physics where the question of parity conser-
vation is never addressed although it concerns one of the most elementary symmetry
properties i.e., mirror symmetry - symmetry with respect to a plane. For any ob-
ject, we can talk about left handed and right handed configurations. All the objects
with such handedness are said to be chiral. One example is the chiral molecule. The
right and left handed molecules differ by the geometrical arrangement of the atoms
inside the molecule. Such molecules share identical physical properties but they dif-
fer in properties involving handedness, for instance the rotatory power i.e., rotation
of a plane of polarisation of light transmitted through a gas or a solution of these
molecules. If we observe a left-handed molecule and measure its optical rotation in a
mirror we see a right-handed molecule which has an opposite optical rotation, hence
it has the same optical rotation as a right-handed molecule in the real world. The
optical rotation of a chiral molecule is a property which preserves mirror symmetry
and we say that it is parity conserving. In the context of an atom, we are considering
a physical system whose chiral property arises not from the spatial arrangement of
the constituents, but from the interactions between the constituents which favour one
orientation of the physical space with respect to the other.
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In the absence of external field, left and right circularly polarised photons interact
identically with unoriented atoms. But the results of careful experiments suggest
that the process of emission and absorption of photons by atoms manifests a slight
preference for left or right circularly polarised photons or in more general preference
to a particular orientation in space. These observed effects are very small. This
actually reveals the existence of a new type of interaction which was ignored before
1970’s. Until then an atom was regarded as a system governed only by the electro

magnetic interaction, which is known to conserve parity.

1.4 Parity Non-Conservation in Physical Systems:

Brief Remarks

The first hint of PNC came in 1956 while solving the puzzle that the K meson was
observed to decay sometimes into 2 pions and sometimes into 3 pions i.e., into two
different final states of opposite parity. It was T.D.Lee and C.N.Yang [4], who pro-
posed that either parity is not conserved in the decay, or the K meson is a parity
doublet i.e., a two component state of opposite parities. They noted that there was
no experimental evidence then available for parity conservation in transitions which,
like the K decay, were induced by weak interactions [5]. They devised new rules to
test parity conservation in processes where the initial and final states do not have
necessarily well defined parities. Going by their suggestions, the basic principle for
such experiments is to compare the rate of a given transition between two states, A
and B, with the transition rate between the mirror states, A and B. The experimental
outcome is conveniently characterised by the difference between these rates divided
by their sum, the so-called left-right asymmetry, Apr. The measurement of a non-
zero value of Apg constitutes an unambiguous evidence for PNC in the transition.
We note that Apg is a pseudo scalar quantity. In 1957, C.S.Wu and her collabora-
tors [6] performed the first successful experiment to observe parity non-conservation
in the S-decay. This experiment was performed on °Co nuclei whose spins I were
oriented. In S decay of this nuclei it was observed that the probability for an electron
to be emitted with a given momentum p involves a larger contribution proportional
to the scalar product fﬁ In simpler terms, the electrons are found to be emitted
preferentially in the direction opposite to the orientation of the ®°Co nuclei. Since I
is an angular momentum, i.e., an axial vector, the quantity f.ﬁ is a pseudo scalar and
this manifests the PNC. Earlier, in 1950, Purcell and Ramsey [7] had also questioned
parity conservation on a fundamental level by pointing out that the possible evidence
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of an electric dipole moment of a neutron, although violating parity conservation,

remained purely an experimental question.

Until the early 1970s, it was believed that all processes observed involving weak
interactions were accompanied by an exchange of electric charge between the inter-
acting particles and hence the modification of their identities. This was thought to
be so since 3 decay, where it was first discovered, is accompanied by a change in the
electric charge of the decaying neutron [n — p + e~ + 7. ]. These transformations
are brought about by the particles which mediate weak interaction; they are called
gauge bosons and are analogous to the photons that mediate the electro magnetic in-
teraction. Unlike the photon, the gauge bosons W and W~ that mediate the weak
interaction carry a unit of electric charge. It was therefore misunderstood that the
weak interaction and its associated PNC were not relevant to physics of the stable

atom.

A complete theoretical understanding of weak interactions emerged only in late
1960s. Glashow [8], Weinberg [9] and Salam [10] suggested independently that the
weak interaction and the electro magnetic interaction could be understood as different
manifestations of a single underlying interaction: the electroweak interaction [11].
This unified electroweak theory was subsequently shown by G.’t Hooft to be amenable
to a perturbation treatment in the same way as Quantum Electrodynamics [12]. The
calculation of higher order terms lead to the evaluation of the top quark mass even
before its direct observation at Fermi Lab. An important prediction of the theory
which has given a new dimension to atomic physics was the existence of a new gauge
boson, the Z° that mediates a new kind of weak interaction. Both the W= and Z°
bosons are results of the unification of electro magnetic and weak forces in Standard
Model. The W* mediates the charged current interactions such as nuclear 3 decay,
muon decay etc., and the Z° mediates a new type of interaction called the neutral
weak current interaction. These interactions are schematically represented in Fig.
1.1. Because of this union, the Z° is expected to exhibit a chiral behaviour wherein
it’s coupling to the electron is proportional to the electron helicity (h.), a pseudo
scalar quantity [he = .0, where &, is the spin of the electron and %, is the velocity]
which is odd under space reflection. This contribution turns out to play a dominant
role in atoms. By analogy with the nuclear electric charge, one is led to introduce
the weak charge of the nucleus @ [3]. Unlike the Coulomb potential, the chiral
electron-nucleus interaction has a very short range compared to atomic size. As a
consequence, the strength of this interaction is proportional to the electron density
inside the nucleus. Thus weak charge @y plays the role of a fundamental constant of
the atomic electroweak chiral interaction. Another PNC mechanism exists, in which
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Figure 1.1: Types of Interaction in Electroweak theory: (i) Photon exchange, (ii) W~
exchange, (iii) W exchange and (iv) Z° exchange

PNC inside the nucleus is communicated electro magnetically to the atomic electrons.
Nuclear PNC here is parameterised in terms of an odd-parity vector moment called

anapole moment [13].

From a theoretical view point, weak interaction in an atom leads to atomic eigen-
states which no longer have a definite parity, but contain admixtures of states of
opposite parity. Atomic Hamiltonian is the sum of kinetic energy parts of the elec-
tron, electron-nucleus interaction, electron-electron Coulomb interaction and the par-
ity non-conserving interaction. Theoretical computations are done by treating PNC
Hamiltonian as a perturbation. Due to this admixture one looks for electric dipole
transition amplitudes induced by PNC interaction (E1IPNC) between states having
the same nominal parity. This is parameterised in terms of @)y the weak charge,
which in comparison with the experiments is a test of existing value in the Stan-
dard Model of Particle Physics [14]. Existence of any discrepancy of the weak charge
between the theory and the Standard model could lead to new physics beyond the
Standard Model. This will also add significant constraints on models that suggest
new types of contact interaction or the possible observation of leptoquarks in the

events that were observed a few years ago at the HERA collider [15].

In atomic physics experiments, a small E'1 transition takes place between states
originally of the same parity because PNC admixes the states as described above. E1
amplitude will interfere with an allowed electro magnetic amplitude, giving rise to an
observable PNC effect. Experimental techniques related to laser cooling and trapping
proposed for Ba™ ion [16] for doing PNC experiments will be discussed in the next
chapter.
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1.5 Motivation

Main objective of this thesis is to develop relativistic many-body methods which can
be used to calculate reliable values of F1PNC' for heavy atomic ions, which can be
combined with experimental values to test the validity of the Standard Model. The
Standard Model has a steadily growing weight of evidence in its favour [17], so that
one often now speaks of “testing the standard model” [18]; but one has to realise
that it is only a model. It is a renormalisable gauge theory, and any more complete
theory will surely remain of this type; but the way nature actually behaves within
this framework has to be established by experiment. Atomic physics experiments are
of course much less direct than those at high energies. However, they are sensitive to
certain types of physics beyond the Standard Model, and are potentially useful in a
field in which it is difficult and expensive to make accurate measurements. There is
a factor of about 10'° [19] in the square of the momentum transfer between the high
energy and atomic PNC experiments. Hence a model of such kind links the results of
different experiments with theoretical values which in turn allows one to determine
values of the parameters and the consistency of it provides a test of the model. They
also place severe constraints on possible alternative models. For example, super string
inspired grand-unification models predict the existence of additional light particles
and additional neutral currents mediated by another neutral gauge boson Z . Also it
can be shown that the combination of PNC and M3 gives a check on the Standard
Model which is independent of uncertainties introduced by m;, my and sin?6y, [20],
where M is the mass of the Z; boson, m; is the mass of the top quark, mpy is the

Higgs mass and 6y is the Weinberg mixing angle.

In the early days of this field, when it was still a very open question as to whether
parity was conserved in atoms or not, the experiments and the atomic theory were not
reliable enough to give a clear message. In recent years the reliability and precision
have improved enormously. The precision needed to make useful contributions has
also increased, thereby demanding a better understanding of atomic many-body the-
ories and experimental techniques. A determination of @y will therefore depend on
the combined accuracy of theory plus experiment which needs to be better than 1%
to compete with high energy experimental results. In this thesis we have tried to eval-
uate electric dipole transition amplitude induced by PNC (E1PNC) in singly ionised
barium for which experiments are done at Seattle [16] using three different atomic
many-body theories viz., Configuration Interaction (CI), Many-Body Perturbation
Theory (MBPT) and the Coupled Cluster Method (CCM).
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1.6 Outline of the Chapters

First chapter of this thesis discusses some general aspects of PNC. A brief history of
PNC starting from the work by Lee and Yang [4] and an introduction to electroweak
theory of particle physics is described. The PNC observable related to atomic physics
experiments/theory is then discussed. Towards the end, the motivation for doing the

theory work which we have undertaken is mentioned.

In second chapter, “Parity Non-Conservation in Atomic Systems”, possible sources
for atomic PNC are discussed and the effective form of the Hamiltonian and the cor-
responding matrix elements are derived. The extraction of @y and its implications
for physics beyond the Standard Model are then described with the present status of
Nuclear Spin Independent PNC in various ions and atoms. Since any prediction be-
yond the Standard Model of particle physics requires both high precision calculations
and techniques, we discuss the experimental techniques related to laser cooling and

trapping which are proposed for singly ionised barium.

In third chapter, “Application of the Configuration Interaction method to Par-
ity Non-Conservation in atoms”, we start with a brief introduction to Independent
Particle Method (IPM). The Configuration Interaction method is then described. It
is followed by the evaluation of E1PNC in singly ionised barium for the transition
5p%6s1/2 — 5p°5ds)o for the Nuclear Spin Independent (NSI) and Nuclear Spin De-
pendent (NSD) PNC as the continuation work by our group [21]. The basis and the
various Configuration State Functions (CSFs) used are described. PNC in atom arises
from two sources- neutral weak current and nuclear anapole moment. Although it
is not possible to experimentally distinguish between these two effects, it is known
from theoretical considerations that the contribution of the latter to PNC in heavy
atoms is much larger than that of the former. We have identified a transition which
is sensitive only to the NSD effect and thereby leads to an observation of the nuclear
anapole moment. The transition from 5p°6s;/o — 5p®5ds,- for singly ionised barium
and 6p°®7s; /o — 6p°6dss in singly ionised radium are sensitive only to NSD effect and
are therefore a direct way of measuring the nuclear anapole moment. Instead of doing
intermediate summation of the odd parity states in the above transition we compute

them as a linear equation which will be discussed in this chapter.

In fourth chapter, “Many-Body Perturbation Theory applied on PNC in atoms”,
a very general expression for the effective electric dipole transition amplitude (D)
operator starting from Bloch equation is derived. From the general expression for
E1PNC various orders of expressions like first order (one order in PNC and one or-
der in Dipole(D)), second order (one order in PNC, one order in D and one order
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in Coulomb), and third order (one order in PNC, one order in D and two orders of
Coulomb) are derived. In the next section, we combine the first and second order
diagrams and group them in three categories, viz. Coupled Perturbed Hartree Fock
(CPHF), RPA (Random Phase Approximation) and CPHF-RPA (Double Perturba-
tion). The MBPT(3) diagrams involving at least one double excitation which are
called the pair correlation diagrams are categorised in two classes. For solving these
huge number of diagrams, we have defined pairs which are stored in file and later
used for the computation of pair diagrams of a certain kind discussed in this chapter.
Contributions from above MBPT diagrams are compared with Flambaum and oth-
ers [22], where the computation is done using the mixed parity approach. The basis
generation using finite basis set expansion (FBSE) [23] followed by the new method
of generation is discussed. A comparison of the above mentioned new basis with the
FBSE is done by computing Ionisation Potential (IP) and Excitation Energy (EE)
using Coupled Cluster Method which is described in Chapter 5.

In chapter 5, “Coupled Cluster Method applied to PNC in atoms”, we start with
a very general introduction to the subject by comparing with previously described
methods using physical arguments. The exponential form of the wave function start-
ing from the Dirac Fock reference state is derived. It is then followed by a brief history
of Coupled Cluster method starting from the linked cluster theorem. In next section,
Coupled Cluster method applied to closed shell system is described. Here we present
the equations and also the corresponding terms/diagrams for the single and double
cluster amplitudes preceded by the derivation of the linear equation to be computed.
Same procedure is then applied to an open shell system and we describe the method
of solving it to obtain IPs and EEs for bound orbitals. For closed and open shell
system with PNC in the Hamiltonian, one obtains similar linear equations which can
be solved to obtain perturbed closed and open shell cluster amplitudes. This is then
followed by the formulation for obtaining the typical EIPNC diagrams/terms using
these perturbed and unperturbed cluster amplitudes. In next section, we describe the
selection rules and the form of the Couloumb matrix elements. Validity of these cluster
amplitudes are checked in next section by computing known experimental quantities
like electric dipole transition probability, lifetime and hyperfine constant (A) which in
turn limit the accuracy of the PNC numbers computed. We have also computed the
NSI PNC and dipole matrix elements using unperturbed T and S cluster amplitudes,
which has been used for the computation of EIPNC using intermediate summation
approach. This method is compared with that of Dzuba et al. [22]. By comparing
the IPs and EEs computed using FBSE and new basis described in Chapter 4, we
show the advantage of the new basis approach. At the end of this chapter we give a
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theoretical formalism for Unitary Coupled Cluster method applied to PNC and the
reduction of it to the MBPT diagrams described in Chapter 4.

The last chapter of the thesis, “Conclusions and Future Directions”, gives in
brief the shortcomings in our theoretical approach applied to PNC and discusses
the possible ways in which they can be improved. We summarise here the percentage
of accuracy, which we have got for various properties using CCM and extrapolate to

our PNC calculations.
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Chapter 2

Parity Non-Conservation in

Atomic Systems

2.1 Introduction

In 1958, Zeldovich [1] first discussed the possibility of Parity Non-Conservation (PNC)
in atomic physics long before any theory or experiment required the existence of
neutral currents. He estimated the rotation of the plane of polarisation of visible
light propagating in optically inactive matter to be 107'3 rad/m and concluded that
such an effect will be difficult to be observed in atomic experiments. A similar much
more detailed investigation was performed later by Michel [2]in 1965. The predicted
effects were also not very encouraging. So, it was concluded that PNC effects in
atoms would be far too small to observe, although the effect would be enhanced by
the near degeneracy of states of the same quantum number, J and S but of opposite
parity P. The first evidence for neutral weak interaction was in neutrino physics
by the Gargamelle collaboration in CERN [3] and it was then confirmed by the two
Fermi-lab experiments [4]. Since neutrinos were particles belonging to single state of
helicity, it was not possible to perform two-mirror-experiments to compare the results
and to check whether symmetry is conserved in neutral weak current interactions. It
was concluded that the test about parity non-conservation in weak neutral currents
must be done with electrons. The first experiment which demonstrated that the Z°
exchange is parity non-conserving was performed at SLAC in 1979 [5]. This provided
the first empirical evidence for a chiral electron-quark interaction. In 1974, Bouchiat
and Bouchiat [6] took a vital step towards the detection of PNC in atoms by pointing

13
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out that the effect is proportional to Z3, and could therefore be observed in heavy
atoms. They also showed how a measurement of the PNC effect could lead to a
measurement of sin?@y in the low momentum transfer region not previously probed
by the high energy physics experiments. This lead to different PNC experiments in
heavy atoms in the hope that its measurement might play a role in choosing between
different models of the neutral weak current interactions. In next section, we talk

about possible sources of PNC in atoms and derive their respective matrix elements.

2.2 Possible Sources of Parity Non-Conservation

in Atoms

There are two possible sources of PNC in atoms:

(i) The neutral weak current interaction between the nucleus and the electrons me-
diated by the intermediate vector boson Z°.

(ii) The electro magnetic interaction between the nuclear anapole moment (NAM)
and the electrons of the atoms. This will be discussed in detail towards the end of
this chapter.

2.2.1 PNC Hamiltonian Arising from Neutral Weak Current

Interaction

Any interaction can be written as the interaction of currents which can be constructed
using the bilinear covariants [7]. The PNC interaction Hamiltonian can be written as

Hpne =) ﬁ2J"J“, (2.1)

v avE

where G is the Fermi coupling constant (Gr = 2.22 x 107* a.u.) which gives a
measure of the 'weakness’ of the interaction, NV is the sum over nucleons (protons and
neutrons), Jj; and J are the nucleon and electron currents respectively. Since neu-
tral weak currents are mediated by Z° bosons, which are massive, the interaction is
point-like on the atomic scale. Thus, two particles can only exchange Z°, if their wave
functions overlap in the nuclear region. Expressions for the electron-nucleon interac-
tion are given by many authors [8, 9, 10, 11]. Here we discuss the non-relativistic limit
of the PNC interaction Hamiltonian. Since the interaction is parity non-conserving,
and occurs between the nucleus and the electrons, it could have two forms.They are:
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(i) V™. A® i.e., Vector nucleus . Axial vector electron
(ii)Ve.A™ i.e., Vector electron . Axial vector nucleus.

The bilinear covariant form for vector and axial vector are given by

V = Uy, ¥

and
A= ‘i’%ﬁf)‘l’a

where U = T, and v, 7 and <5 are the Dirac matrices. An axial vector is one
which doesn’t change sign under parity and a vector is one which changes sign under
parity. Therefore a quantity like V-A changes sign under parity. Substituting the

vector and axial vector form in the Eq. 2.1, we get

// Z 2[011'Vn.Ae —+ CQZ‘/eAn](S(TZ - Te)dTedTi (22)

Gr
Hpne = W) 2z
where i can be either proton (p) or neutron (n) and Cj;, Cy; are the appropriate
electron-nucleon coupling coefficients. The interaction takes place within the nucleus
and hence the point-like nature gives rise to the delta function.
Thus the total Hamiltonian can be split up into two parts. One is the Nuclear
Spin Independent (NSI) term and the other is the nuclear spin dependent (NSD)
term. First part of the Eq. 2.2 leads to the nuclear spin independent Hamiltonian

which takes the form
Hpye = 2G—\/—F2 //izzpmQ[Clz“f’zv%‘l’zv-\T’e%%‘l’e]é(n — 1e)dT.dT;. (2.3)
Substituting for ¥ we get
HYSL = % / i_zp:n2[011-\1;;%%%.\11370%75\1!8]5(“ —r)drdr. (2.4)

Considering only the diagonal terms(x = 0) and neglecting the off-diagonal terms the

Hamiltonian reduces to
G
HPNEIIC = —F/\IJ:'YS‘I]e Z 2011‘\1’;‘111'5(7’1‘ — T¢)dTedT;. (2.5)
2\/5 i=p,n

Summation over 7 gives terms like ) ‘1!1;,F U, and 3 U, ¥, . These summations over the
nuclear wave functions yield the number densities of protons and neutrons, which, in

simple nuclear models are proportional to the nuclear density [9] given by

Z‘I’;‘I’p = ZpN(T)v
Z\I/;L\Ifn = Npn(r),
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where Z and N denote the number of protons and neutrons respectively and py(r)

is the nucleon number density normalised so that

/pN(T)47TT2d7“ =1 (2.6)

Writing the terms separately for contribution from protons and neutrons, we get
NSI GF + +
HYe = s [ [ W2 |Gy X Wi, - rdrdr, 2.7)
2v/2 -
+ Cin > Ur,5(r, — Te)d'red'rn] :
which over the nuclear integration gives
NSI Gr +
o= 57 / UF s, 2[C1pZ + Cranlp (r)dre, (2.8)

where we define 2(C1,Z + Ci,n) = Qw and Qw is called the weak charge of the
nucleus. Using the first quantisation procedure, we can rewrite the above equation as
Gr
HYSL = —— 7). 2.9
PNC 2\/§QW%PN( ) ( )
Since the parity operator is represented as [ it can be shown that [5,v;5] # 0 and
hence HYRY is a parity non-conserving Hamiltonian.

Second part of the Eq. 2.2 leads to the nuclear spin dependent Hamiltonian given
by
FNSD _
Hpxe = / / > 205 Ve Apd(r; — re)dridre (2.10)
i
which on substitution for vector and axial vector and explicitly writing for different
components leads to

HPNl\SIg = // Z 2021 e’)’o\If \1117075‘1’ (2.11)

i=p,n

+ ‘I’e%‘l’e‘l’ﬂo%%q’i] §(r; — re)drdre.

Substituting for U and using the properties of Dirac matrices the above equation
reduces to

Hpxe = / / > 205 |00, Uins T, (2.12)

i=p,n

+ \I!:ar\lfellli ar%\I’i] §(r; — re)dridTe.
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Since 75 is a diagonal operator, the contribution scales as v/c and can be neglected

from the above equation which reduces to

G
HpNo = ﬁ // Z 205V, U VU oV,6(r; — 1e)dride, (2.13)

i=p,n
where we have used the identity o, = 0. Integral over the nuclear wave functions
produces a quantity proportional to the spin of the nucleus I and the nuclear density

pn (7). A constant of proportionality is defined such that

Z 202i0-i5(ri — Te) = RWpN(T) = RTWpN(T), (214)

i=p,n
where Ryy is called the 'weak magnetic moment’ of the nucleus, just as Qy is the 'weak
charge’. This gives a final form for the NSD PNC contribution to the Hamiltonian
given by
Hpye = i113W04e-f,0N(7°)- (2.15)
2v/21

2.2.1.1 NSI and NSD PNC Matrix Elements

Before computing the matrix elements of the NSI and NSD PNC Hamiltonian, we
introduce the relativistic notation of the two component single-particle orbitals. A
relativistic orbital |[nkm) is an eigenfunction of the angular momentum operators 72

and j, with

72Inkm) = j(j + 1)[nkm),

J2Inkm) = m|nkm),
and the parity operator P which acts on the orbital to give
Plnkm) = (—=1)!nkm), (2.16)
where n is the principal quantum number, [ is the azimuthal quantum number and s
is the relativistic angular quantum number given by

= — (j + %) . (2.17)

where a = +1 when [ = j — % and

a=—1 Whenlzj—i-%.

Each of these orbitals with the same (n, k) but differing m quantum number are
assumed to have the same radial form. Using the conventions of [12], an explicit

representation of the single-particle orbitals is given by

B 1 Pnn(r) Xn,m(07 ¢)
(rlnsem) = {iQm(r) X—r,m (0, 0) } ’

r

(2.18)
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where P,.(r) and Q,.(r) are the large and small component radial wave functions

respectively. X, m (0, ) are the spinor spherical harmonics given by

Xem(0:8) = 3 (im — 0 50lLg jm)V" (6,6)6"" (219

S §
o==%3

Here, (Im —o30|l5jm) is a Clebsch-Gordan coefficient, ¥;™~7 is a spherical harmonic
and ¢ is a spinor basis function. Using above definitions, one can compute the matrix
elements of the NSI and NSD PNC Hamiltonian at single-particle level.

Using Wigner Eckart theorem [13], the single-particle matrix element can be writ-

ten as _
NSI _ Ga—ma) [ Ja O

(¢al Hpxclon) = (—1)

mg, 0

While computing the matrix element only the z component is considered. Substitut-

2 )olimtlon. @20
b

ing for the Hamiltonian and the orbitals, the actual matrix element takes the form

. 0 -1 PXnm
b1 = [ (Pt ~1@utun) (5 ) (1o ) ovt)Quaras,
_I 0 /LQbX*K,bmb
(2.21)

where df) denotes the integration over the angular coordinates. One can show that
the angular factors obey the selection rule given by

/ Xwma Xy, 02 = Oy =1, Ormg - (2:22)

The selection rule kK, = —k; implies that j, = 7, but of opposite symmetry. Substi-
tuting these we get the matrix element of NSI PNC Hamiltonian as

(0al HYSEI90) = i [ (FiQa — Qo) (r) Qurdr. (2.23)

Reduced matrix elements can be got by using Eq.2.20.
Single-particle matrix elements for NSD PNC can be written as
Jo 1

(Gal HERI $0) = (—1)0e ™) (
mg, 0

P )olimsRlo). @2
b

Here the rank of the NSD PNC is 1, whereas for NSI PNC the rank is 0. As in the
case of NSI PNC, only the z component is considered while computing the matrix
element. Substituting for the Hamiltonian and the orbitals, the actual matrix element
takes the form

. 0 Oz PbXnm

R0 = [ (P, i0en) () (g™ ) ox(rymwdras:
Oy 0 ZQbenbmb

(2.25)
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where df) denotes the integration over the angular co-ordinates. On further reduction,
the matrix element of NSD PNC Hamiltonian takes the form

(¢a| Hpxolos) = / (PyQa — %QbPa)pN(r)uwdT. (2.26)

To get the reduced matrix element we need to divide the above matrix element by
a phase factor and the 3j-symbol [13] available as a table. The radial integration for
the NSI and NSD PNC has limits from 0 to oo, though the value of it will be zero
outside the nuclear region, where py(r) is zero. A fairly accurate model of the nuclear
density which agrees quite well with the experimental results is the Fermi-nucleus. In

the this model, the nuclear density is given by

Po

pn(r) = — =5 (2.27)
l1+e

where pg is a constant, b is the half density radius as pn(r) = po/2 and a is related

to the skin thickness t as t/a = 4in3.

2.2.2 Properties of Hpnc

.\ 77NSI,NSD : : . :
(i)Hpxn¢ - matrix elements are non-zero only for electron wave functions with finite

FNSLNSD

value at the nucleus; thus Hpyd ~ connects only s;/, and p; /o orbitals having differ-

ent parity.

(ii) While defining weak charge Qu and weak moment Ry, for heavy atoms we sum
over all the nucleons coherently. Hence Qv is proportional to Z. However, Ry, comes
from the sum over nucleon spin. These cancel in pairs over the nucleus, leaving just
the unpaired spins. Thus, there is no Z enhancement for Ry, and the NSD effects are

a factor Z—! smaller than the NSI ones.

(iii)Making a Foldy-Wouthuyson transformation [14] to the lowest order, we can write
for a point-like nucleus and non-relativistic electron: [15]

GrQw 1
NSsI _ YFYW
HPNC = 2\/5 QmC[O-e-pe:(S(r)]-H (2'28)

and
PNC 2\/51— 2mc
where the + sign indicates an anticommutator. From the above form, it is easy to

[0eDe, 0. IV 6(7)]4, (2.29)

derive the well known result, pointed out by Bouchiat and Bouchiat [6], that matrix
elements of Hpxg for heavy atoms are proportional to Z3. This factor arises from
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(i) Qw «x N and N « 3Z/2 for heavy atoms.
(ii) The matrix element is proportional to the density of the electronic wave func-
tions at the origin, |¥(0)|?, which is proportional to Z for heavy atoms.

(iii) o.p o velocity of the electron at the origin which is proportional to Z.

2.2.3 PNC Hamiltonian arising from NAM.

The parity non-conserving weak interaction between the nucleons can lead to NAM
[16, 17] which in turn can interact with the atomic electrons via the electro magnetic
interaction. The possible existence of an anapole moment was first predicted by
Zeldovich in 1958 [18]. In order to understand the physical concepts underlying this
unusual moment, we consider a current distribution with density j(7). The total

magnetic field due to this current distribution is
B = B, + By, (2.30)

where B; and B,,; are the magnetic fields inside and outside the current distribution

respectively. The local vector potential /fl related to él by the following relations
B =V x A, (2.31)

The electro magnetic interaction energy of an external current distribution with
A is given by
W == [ 7). Adr. (2.32)

71 = 7(0) + (FV)7(0) + ... (2.33)

Considering just the first term i.e., assuming that the extent of the external current

distribution is small and that ;" is essentially uniform, we get
]_ - - 1 -
W =——j(0) / Adr = —=ji(0).@ (2.34)

where @ = [ /_fldT is known as the anapole moment of the current distribution. Note
that A, = @ (7). The anapole moment is clearly a vector and is therefore odd under

parity. A multipole expansion of A, yields [19]
A / 25 (F)dr. (2.35)

One could consider the anapole moment being associated with a toroidal current
distribution.
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2.2.3.1 Nuclear Anapole Moment

General features of the anapole moment of the nucleus have been discussed by Flam-
baum and Khriplovich [20]. They use the shell model and assume a nucleus-nucleus

parity non-conserving interaction of the type

ana — GFg
PNC 2\/§m

where & and p are the spin and momentum operators of valence nucleon, m is the

(@.p+ P.5)pn(r), (2.36)

mass of the proton and others as described previously. The dimensionless constant g
characterises the parity odd interaction of the valence nucleon with the nucleon core.
It is estimated that g, ~ 4 for an external proton and g, <1 for a neutron.

ana

Treating H3YG as a first-order perturbation, it can be shown that the NAM arises

only from the spin part of the current density and it can be expressed as [19]

. Gpl2K, I
Ny = ——— -, 2.37
N ovRe(I+1)1 (237)
where
x = (I+1/2)(=1) 72, (2.38)
and 9
K, = —(2402ugA?3). (2.39)

10
Here [ is the orbital angular momentum of the valence electron. The contribution

of the core excitations to the NAM has been found to be small [21]. Note that the
quantity K, contains information about g, the parity non-conserving nucleon-meson
coupling constants. Indeed an accurate determination of K, can lead to accurate
values of g. The NAM therefore can be a valuable source of information about

nuclear parity non-conservation.

2.2.3.2 Interaction of the NAM with Atomic Electrons

A peculiar feature of the NAM is that it cannot be probed by real photons. It can
be observed in processes where virtual photons are exchanged with some interacting
particle, such as an atomic electron. Therefore in order to detect the NAM one has to
perform an experiment on an atom. The Hamiltonian describing the electro magnetic
interaction of the NAM with an atomic electron
1. -

Han = —E]e.AN, (240)

where j_; is the electron current density and Ay is the nuclear vector potential and

-

Je = —ecal. (2.41)
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Here, @ represents three Dirac matrices. Using an earlier result, we write

N = ano(7). (2.42)
One can therefore write
GF 2X f
NG = K, Y. —0(7). 2.43
We define )
X
Sw = K,——. 2.44
v (I+1) (244)
Hence the PNC Hamiltonian arising due to anapole moment takes the form
Gr T
HEYy = —=Swa.=i(7). 2.45
PNCT 5 5 wa-T (7) ( )

It is interesting to note that H&Y% has the same form as Hige arising from neutral
weak current interaction so that they both lead to the same observable effects. How-
ever, in the case of heavy atoms, the contributions of H&%%, is larger than the HYSo
arising from neutral weak current interactions [16]. The reason can be attributed
to the scaling of anapole moment Hamiltonian as A%°. The total NSD parity non-
conserving interaction which arises from the NAM and the neutral current can be

written as

G T
HpRe = ﬁﬂwa-fs(?ﬁ)a (2.46)

where
Mw = RW + SW (247)

However, an atomic parity non-conservation experiment cannot distinguish between
these two interactions. Together the two interactions can be separated from the
nuclear spin independent interaction by measuring the difference in the parity non-
conserving observable corresponding to two different transitions between hyperfine
states [19]. More detailed study on anapole moment is given by Boston [15]. The

present status and the future prospects are given in the paper by Das et al. [22].

2.3 Parity Non-Conserving Electric Dipole Tran-
sition Amplitude F1PNC

Accurate calculations of E1PNC' are essential if we have to connect experimental
results to electro-weak theory. In this section, we discuss in brief how this quantity in
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combination with PNC experiments can yield important information about physics
beyond the Standard Model. As the NSI PNC term is proportional to Z3, most
experiments and theory to date have concentrated on heavy atoms.

The atomic Hamiltonian of the system will contain in addition the PNC Hamil-
tonian Hpnc and hence the eigenfunctions will become states of mixed parity given
by

95) = (W) + [, (2.48)

where |\Il§1)) is given by perturbation theory in terms of the zeroth-order unperturbed

eigenfunctions as
(" | Henc| 25"

i) = ; G (2.49)

The perturbed wave function \‘111(1) ) and the unperturbed wave function \\Ilz(o)) are of
opposite parity. For example, an s;/; function will contain admixtures which have
p1/2 angular characteristics and vice versa. These PNC ad mixtures allow non-zero

E1 matrix elements between states originally of the same parity given by
EIPNC = (¥;|D|¥,) (2.50)
(W DIw) + (v D),
where the other terms disappear because they have same parity. The general PNC

matrix element can now be written in terms of parity eigenstates as

0 0 0 0
(T DO (TP Hoxe [ 1V)

E1PNC = 2.51
; BB (2.51)
v g IOy g @ g g0
o 3 (P ) (8 el 8 .
I£f By — Ex

A variety of ab initio and semi-empirical methods have been employed to calculate
this quantity [23]. Many-Body Perturbation Theory (MBPT) is the most widely used
method for such calculations. Apart from the parity non-conserving interaction, the
residual interaction (difference of the two-electron Couloumb interaction and the one-
electron Hartree-Fock potential) is also treated as a perturbation. In this approach,
the wave function is computed order-by-order. Using Coupled Cluster (CC) method
one can compute the wave function to all orders for particular types of excitations
(singles, doubles etc.,). For atoms with strongly interacting configuration, it would be
appropriate to use a hybrid approach consisting of the Configuration Interaction (CI)
and MBPT or CC approaches. Examples of such atoms are bismuth and ytterbium.

Quantity that is measured in experiment depends on the interference of E1PNC
and an allowed electro magnetic transition amplitude [24]. Experiments that have
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been successful so far are based on fluorescence and optical rotation [25, 26]. In the
former case the interference is between E1PNC' and a Stark-induced electric dipole
transition amplitude. In the latter it is between E1PNC' and an allowed magnetic
dipole transition amplitude.

By combining the results of atomic parity non-conservation experiments and calcu-
lations, it is possible to extract @y and quantities characterising the NSD interaction.
The extraction of @y has important implications for physics beyond the Standard
Model. One can express the deviation of this quantity from its Standard Model value

as
AQw = Qw — Q" (2.53)

where the Standard Model value of @)y, is given by
Qw = Z(1 — 4sin®0) — N. (2.54)

Here, Z is the atomic number, N is the number of neutrons and sin?6y; is the Weinberg
mixing angle. The present value of sin?fy, estimated from the relative rates of the
charged and neutral weak current interactions is 0.23 [27]. One can deduce the atomic
physics value of sin?fy, by knowing the theoretical and experimental E1PNC matrix
element and simply equating them to get QJy,. One can check the experimental values
of E1PNC by taking the present value of sin®fy, thereby deducing Qy and using
this in the theoretical matrix element. After the inclusion of radiative corrections

QM = (0.9793 — 3.8968sin’0y ) Z — 0.9793N. (2.55)

It is possible to parameterise @y and hence AQy in terms of the isospin conserving
and breaking parameters, S and T [28] given by

Qw = (0.9857 £ 0.0004)p(—N + Z[1 — 4.012 + —0.010)z]), (2.56)

where
p=140.00782T

and
T = 0.2323 + 0.00365S — 0.002617".

If S ~ 1 as predicted by certain model [29], then @y clearly must be determined to
at least an accuracy of one percent. It may be shown that @y is sensitive to new
physics where weak isospin is conserved [30]. In other words the combined accuracy
of atomic PNC experiment and the theory has to be at least a percent to test physics
beyond the Standard Model. Other related implications to particle physics are given
in the paper by Sandars [31] and the references therein. The uncertainty arising
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from atomic calculations can be circumvented by measuring the fractional difference
of Qw, but that could lead to nuclear structure uncertainties [32]. The value of K,
defined earlier can give quantitative information about the nuclear anapole moment.

The present status of PNC experiments and theory is given below.

2.4 Present Status of NSI PNC in Atoms/Ions

The present status of NSI atomic parity non-conservation is summarised in the Ta-
ble 2.1: Tt is clear that one can only use the results for caesium at this stage to make

Table 2.1: Present status of NSI PNC in various atoms/ions.

Atom Transition Accuracy of Accuracy of

Experiment Theory
Caesium 5p66s% — 5p67s% 0.35% ~ 1%
Thallium 6526p% — 6826})% ~ 1% ~ 3%
Thallium 6526p% — 6527p% ~ 15% ~ 5%
Lead 6p%,J=0—=6p?,J =1 ~ 1%  ~10-15%
Bismuth 6p®,J =3 —6p?, J =2 ~ 2% ~ 10%
Bismuth  6p3,J =3 —6p®, J=2 ~ 2% ~ 10%
Barium + 5p665% — 5p65d% ~ 10%
Ytterbium 6s 2 — 6s5d,J =1 ~ 15%
Francium 6p67s% — 6p685% ~ 1%

predictions about physics beyond the Standard Model. Using the results of the latest

experiment and theory for that atom, we find that
Qw = (—72.41 +0.25 + 0.80). (2.57)

If we assume that there can be physics beyond the Standard Model, i.e. AQw # 0,

then we deduce the following limit
S +0.0067 = (—1.3 £ 0.3+ 1.1). (2.58)

Recently Bennett and Wieman [33] have measured certain spectroscopic properties
of caesium relevant to PNC, and have arrived at the conclusion that for Cs'33

Qw = (= 72.06 + 0.28 + 0.3). (2.59)
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This differs from the prediction of the Standard Model by 2.50. For all the quantities
which have been extracted above, the first and second errors correspond to exper-
imental and theoretical errors respectively. The latter must clearly be improved in
order to make definitive predictions about physics beyond the Standard Model. In the
next section, the proposed experiment on Ba™ ion using laser cooling and trapping is
discussed.

2.5 PNC in Laser Cooled Ion

The last two decades have witnessed remarkable advances in trapping and laser cool-
ing of ions and atoms [34]. Application of strong electro magnetic fields has made the
trapping of ions possible [35]. Trapped ions can be cooled in various ways [36]. Here
we discuss how some of the techniques of trapping and laser cooling can be applied to
the study of symmetry violations in atomic systems. A novel approach to the mea-
surement of atomic parity non-conservation exploiting some of these advances was
proposed by Fortson in 1993 [37]. The accuracy of this approach would most likely
be sufficient to test the Standard Model.

An experiment to observe parity non-conservation in Ba™ is currently under way
at the University of Washington, Seattle. Ba™ has been trapped by a potential well
50 eV depth created by RF fields of frequency 25 MHz and cooled to an orbital
radius < 0.1 gm by Dehmelt and co-workers [38]. This ensures that the wavelength
of the 6s,/ — 5d3/o transition which has been proposed for observing parity non-
conservation (A = 2.05 pm) is much larger than the radius of the ion after it has
been trapped and cooled. This requirement known as the Lamb-Dicke condition is
necessary to overcome the first-order Doppler shift. Physical quantity that has been
proposed to be measured in the afore mentioned experiment is a parity non-conserving
light shift (AC Stark Shift) arising from the interference of the parity non-conserving
electric dipole transition amplitude (E1PNC) and the electric quadrupole transition
amplitude (E2).

Electric field of the laser inducing the parity non-conserving transition is given by

E(7,t) = = [E(fe ™' + C.C] (2.60)

N | —

where w is the frequency of laser and C.C refers to complex conjugate. Parity non-

conserving and electric quadrupole Rabi frequencies are

m/m

1
QPNC = _ﬁ Z(ElPNCm’m)zEz(o) (2'61)
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and . OF
(B2 )ij —

d
Qqua — i —
7 8.Tj

1y = ——— , 2.62
m'm 2% ” |0 ( )

where m and m’ are the magnetic quantum numbers of initial and final states re-
spectively. E;(0) and 2E |, are the components of the electric field of laser and its
gradient at the p031t10n of the ion.

The parity non-conserving effects are related to

| Qm’m ‘2 — | Qquad + QPNC |2 (263)
= | QUM +2Re(Qe Qlid).

Light shift of the m'™ sub level of initial state is given by [39].

By, = A2 > )

where Q,, = Y. | Qo |2 and wy is the resonant frequency. Since contribution
to the light shift comes from the parity non-conserving electric dipole and electric

quadrupole transitions, we get

AWy, = RAWENC + hAwIv, (2.65)
where
AwPNC Re (QPNC*Qquad)/Qquad (2.66)
and
Awuad w — Quuad, (2.67)
Here, (Qq““d) | Quad 12 AGPNC changes sign when the sign of m changes, from
+ to —3, but Awq““d does not. This is exploited to measure the difference of the

hght shlft for the magnetic quantum numbers m = 5 and m = —%

— Aw,,__1 = AwPNG — AwPRC . (2.68)

2 -2 - 2

For the 651/ — 5ds/, transition in Ba*, this difference is approximately 1.2 Hz
for an electric field equal to about 2 x10*V/cm. Statistical accuracy of this kind of
a PNC experiment is given by

EfNC EPNC E
OETNC

fV/Nrt, (2.69)

where f is the efficiency factor, 7 is the coherence time determined by the decay of
the final state, ¢ is the total time available for the measurement and N = 1 is the
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number of ions. For f = 0.2, EYNC can, in principle, be measured to 1 part in a 1000
in about a day. It is clear from the above expression that competitive accuracy of
the single ion experiment is due to the possibility of applying a large electric field to
the ion and the long coherence time associated with the decay of the final state (the
lifetime of the 5ds/, = 79.8 sec) [40].
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Chapter 3

Configuration Interaction Method
Applied to Parity

Non-Conservation in Atoms

3.1 Introduction

Liquids and solids, atoms and molecules, and nuclei all these clearly are interacting
many-body systems. Even a nucleon may be regarded as a many-particle system not
just because it is now known to consist of three quarks interacting via gluons, but be-
cause of the possibility in quantum field theory of virtual excitation of many particles
from vacuum. So one defines many-body physics as a branch of theoretical physics
that studies new phenomena or “emergent properties” that arise from the interactions
among “elementary” constituents of a many-particle system. This provides the means
and the methods for carrying out precise calculations of characteristic properties of
these systems as compared with experimental results to verify the hypotheses about
the nature of the constituents and their interactions. In the beginning of this chapter
we give a brief overview of independent-particle model for the wave function of a
many-body system, then describe the Configuration Interaction (CI) method and it’s
applications to PNC in atoms.

32
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3.2 Independent Particle Model

The Independent Particle Model (IPM) has played a central role in electronic struc-
ture calculations ever since its introduction for the treatment of many-electron atoms
by Slater in 1929 [1]. The term IPM refers to the formalism in which a many-particle
wave function is based on a product of single-particle functions. Each single-particle
function is often called a spin-orbital. Each of these single-particle orbitals is deter-
mined by methods that consider the effect of all the other single-particle orbitals, so
that the “independence” is formal rather than physical. Hartree-Fock (HF) model
is the most widely used method in deriving the single-particle orbitals for atoms. It
is an approximation which yields a very good starting point from which we apply a
variety of techniques for improving electronic-structure description.
We discuss a system containing N electrons characterised by a Hamiltonian of the
form,
H = Hy+ V., (3.1)

where Hj and V,, are the single and two electron operators. In the HF approximation,
it is given by

1 A
Hy=Y" -3 V41 —i—; + u;(r;) (3.2)
and .
Ves = =D ui(rs) + > —. (3.3)
i i<j Tij

The exact two-body interaction between the electrons is approximated in the Hamil-
tonian H, by an average one-electron interaction. V,,; causes departures from the
single-particle description and is treated as a perturbation. In order to satisfy Pauli’s
exclusion principle, the wave function of a many-electron system must be antisym-
metric with respect to the interchange of electrons. Hence the many-electron IPM

wave function using the single-particle orbitals is written as a determinant given by

on(1) on(2) dn(3).. dNn(N)

We determine single-particle orbitals ¢ by the criterion that the expectation value
of the Hamiltonian, (®|H|®), is minimum subject to the constraint that ¢’s are

orthonormal. This leads to the HF equation given by

Hy|gi) = €|ds), (3.4)
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where

ui(r)|6i(r)) = 385 (r)|w(r, )15 (r))di(r)) — (5 () [w(r, )15 (r))di(r)). (3.5)
j j

This interaction consists of two parts of which first is the Couloumb part which is
simply the electrostatic interaction of the i** electron with the charge density of all
other electrons. This is normally called the direct part and the remaining is called
the exchange part, which has no classical analog and is due to the antisymmetry
requirement on many-electron wave function. It should be noted that Eq. 3.4. does
not define a typical linear eigenvalue problem, because the potential u;(r) contains
the eigenfunctions ¢. Hence an iterative solution is needed with an input set of ¢’s
which is used to define the potential and based on it a new set of ¢’s is obtained.
This procedure is repeated till self-consistency is reached and it is for this reason that
the HF method is also known as the self-consistent field (SCF) method.

Even though each ¢ is determined from an equation that includes interaction with
all other electrons, the function ® cannot be an exact solution to the many-electron
Schrodinger equation. It is deficient in that it ignores the fact, that the probability
distribution of each electron as a function of positions of all other electrons, and
not merely dependent upon their distributions as a whole. In other words, the true
probability of electron 7 being in any particular volume element must correlate with
the probabilities that other electrons are individually in particular volume elements.
It is customary to refer to this deficiency of the HF wave function as lack of electron
correlation.

The IPM often yields qualitatively correct results for quantities such as total
energy. However, there are many physically important properties for which the IPM
is inadequate. In this chapter, we introduce the CI approach in order to go beyond the

IPM in the computation of parity non-conserving electric dipole transition amplitude.

3.3 Overview of CI Method

The CI method is more appropriately referred to as the method of superposition of
configurations. This involves the expansion of the many-electron wave function as a
linear combination of determinantal functions, with the coefficient of various deter-
minants found by the application of variation principle. Given an orthonormal set of
single-particle functions (¢;), the most general fully antisymmetric CI wave functions
generally referred as Configuration State Functions (CSFs) can be constructed as a
linear combination of determinants. These determinants are made of ¢;s identified
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by total angular momentum J, total magnetic quantum number M and the 7 which
is an additional quantum number required to define the CSF uniquely. The atomic
state function (ASF) can then be obtained as a linear combination of these CSFs.
An ASF is defined by same J and M as the CSFs but with a different additional

quantum number [, and is given by

W(CLTM)) = 3 Oyl (3,7 M)). (3.6)

ASFs are eigenfunctions of the atomic Hamiltonian and satisfy the Schrodinger equa-
tion
HI(TIM)) = B[ W(T,IM), (3.7)

where E; is the energy eigenvalue of the ASF. While computing matrix elements of
operators it is summed over M and effectively it is the quantum numbers ' and J that
identify an ASF. H commutes with parity operator P defined earlier in Chapter 2,
hence CSFs and ASFs are parity eigenstates.

The possible determinants in a CSF include the reference HF |®g), the singly
excited determinants |®7) (which differ from |®,) in having the orbital ¢, replaced
by ¢,), the doubly excited determinant |®7%), etc., including N-tuply excited deter-
minants. Using these many-electron wave functions as basis, the exact many-electron

wave function can be written as

1\? 1\?
W) = co|Bo) + (—,) AL AEDS (—,) T (3.8)
L ar abrs 2!
Considering the above as the trial wave function, the problem of finding the optimum
coefficients ¢'s can be reduced to that of a matrix diagonalisation. The matrix repre-
sentation of the Hamiltonian operator in the basis |®;) is an N x N matrix H with

elements given by
(H)ij = (i H|®;). (3.9)

Since the Hamiltonian is Hermitian and the basis are real, H is symmetric, ie., H;; =
Hj;. The trial function is normalised, so that

] %

The expectation value

%)

tj
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is a function of the expansion coefficients. We find the parameters ¢’s for which

(Uo|H|¥p) is a minimum given by

AL (@H[3) = 0,k = 1,2,..V. (3.12)

This leads to
ZHijcj — ECi = 0. (313)
J

By introducing a column vector ¢ with elements ¢;, this set of equations can be written

in matrix notation as
Hc = Ec, (3.14)

which is the standard eigenvalue problem for the matrix H. Since H is symmetric, the
above equation can be solved to yield /V orthonormal eigenvectors ¢; and correspond-
ing eigenvalues F;, which for convenience are arranged so that Fy < E; < ... < Ey_;.
This is called full CI matrix, and the method is referred to as full CI. The lowest
eigenvalue will be an upper bound to the ground state energy of the system. Eq. 3.8

can be conveniently rewritten as
“110> :C()‘(I)0>+Cs‘S>+CD‘D>+CQ‘Q>+..., (315)

where |S) represents the terms involving single excitations, | D) represents the double
excitations, and so on. The criteria for choosing the configurations for the computa-

tion are summerised below:

(i) There is no coupling between the HF ground state and singly excited state i.e.,
(®o|H|S) = 0. This is the consequence of Brillouin’s theorem [2].

(ii) There is no coupling between the HF ground state, triples and quadruples. This
is the consequence of Slater Condon Rule [2] due to which elements between states
which differ by the quantum numbers of two orbitals are zero.

(iii) Single excitations do not mix directly with HF ground state, but they can be
expected to have a very small effect because they mix indirectly with doubles which

in turn interact with HF state.

(iv) Since double excitation mix directly, they play an important role in determining
the correlation energy. It turns out that quadruple excitations are more important
than the triple or single excitations [2].

In next section we discuss how we compute E1PNC' using the CI method.
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3.4 Expression for F1PNC

If Hy is the unperturbed atomic Hamiltonian and |¥,) is the atomic state function,
then
Ho|Wo) = Eo|Wp). (3.16)

Treating the NSI/NSD parity non-conserving interaction as a first order perturbation

results in changing a state of definite parity to a state of mixed parity
[03) — [97) + [2;), (3.17)
[09) — [TG) + [ T)). (3.18)
Using first order perturbation theory, the perturbed wave function can be written as

[0 ) (W7 Hpne 0| )
oy =3 o 7. (3.19)
i f 1

I

The electric dipole transition amplitude corresponding to the mixed parity initial and

final states is given by

NSI/NSD NSI/NSD
(W9 D[ WO (W9 Hpnh P | W) ZW}WPN({ (W9 (W9 D[ ?)
E? — E? EY - E? '

ElPNcNSI/NSD — Z

1 I

(3.20)

3.4.1 CI Wave functions

The form of Hﬁﬁi{NSD Hamiltonian is given in Chapter 2. The parity of ¥; is oppo-
site to that of ¥; and ¥y as Hpnc and D are odd under parity. The atomic states
¥;, ¥y and ¥; can be expressed as a linear combination of configuration state func-
tions (CSF’s) of the same angular momentum and parity, which are built out of an
appropriate set of single-particle orbitals. This in terms of CSFs with appropriate CI
coefficients takes the form

(b D (b @ HNSI/NSD @
ElPNCNSI/NSD: Z CiaCIbCIchd< a‘ ‘ b>< C‘ PNC | d>

+ece. (3.21)
Tabcd E" - EI

The diagonalisation of the atomic Hamiltonian in the space spanned by all the con-
figurations yields its eigenvalues and eigenvectors, which are respectively the energies
and the configuration mixing coefficients of the atomic states. This approach requires
two diagonalisations, one each in the two opposite parity CSF sub-spaces. When the
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number of CSF’s are large the diagonalisation approach is less desirable in terms of
computational efficiency and memory requirement. This approach was improved in
terms of the computational efficiency using perturbed CI method which is described

below.

3.4.2 Perturbed CI Wave functions

Electric dipole transition amplitude between states of mixed parity is given by Eq.

3.20. In this method, we define the states of mixed parity as

W) — )+ [eP) (3.22)
neven nodd

= > C |<I>+>+Z im| P
k=1
and

W) = (W) 4 |wENeY (3.23)
neven nodd

= Y Cil®h)+ > G,
n=1

k=1

where we have used the notation of + for even and — for odd parities. The perturbed

wave functions are defined as

U W(U7 | D)
TP | 3.24
=3 Ef—EI (3.24)

and N
_ 0
T i

Using the above definitions, F1PNC' takes the form
E1PNC = (U}|D|W;N7) + (¥} |Hpxe| PP 7). (3.26)
In terms of C's we get

E1PNC = ZC}L,CC;”(CI)HDM) + ZC’ (O} |Hpxc| D}, )- (3.27)
km
|W ;) satisfies the Schrodinger equation, hence by diagonalising the Hamiltonian the
coefficient C;’k can be obtained. The odd parity coefficients can be obtained by the
following way:
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(i) To find out C;,

Operating Eq. 3.24 by (E; — Hy), we get

(EBy = Ho)[W™) = 3 [Ur ¥y | D|¥). (3.28)

T
By making use of the completeness theorem given by

odd even

NN =1 =3 [T, (3.29)
T J
the above equation reduces to a linear equation of the form
(Ho — Ey)|¥77) = —D|¥7). (3.30)

In matrix notation, the above linear equation using the coefficients can be rewritten
as

(Hy~ — EI)C; = —-D *Cj. (3.31)

(i) To find out C,,,

Operating Eq. 3.25 by (E; — Hy) we get

(Ei — Ho)|9;7C7) = 2}: (W) (V- |[Hpxe| Vi) (3.32)

Using the completeness theorem as before, we get
(Ho — E;)|W; ") = —Hpxc| Wiy ). (3.33)
In matrix notation, the above linear equation using the coefficients reduces to
(Hy —EIC; = —HpicCy (3.34)

Solving these matrix equations gives the required coefficients for the opposite parity
CSFs given by C;. The E1PNC can then be computed using the perturbed CI
method given by Eq. 3.27. The advantage of the above method over the previous one
is due to the formalism in which one needs to do the diagonalisation only in the even
parity states. The odd parity states are got by solving the linear equation which is

less processor intensive.
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3.5 Reduced Matrix Elements of E1PNCN! and
E1PN(CNSD

The reduced matrix element of E1PNCNSI is of the form

GrQw . Jp Fr 1 Sk
ElNSI— F -1 I+Ji+Jp+1 E F 1/2Tk: 3.35
red 2\/§ ( ) E Jz 1 [ 3 f] (faz) ( )
where
Z[J -} (U || D| |9 || HPRE || ¥s)
E, — E;
1 (U HER | W1) (¥4 || D)
+[Js] 72 E—E ) (3.36)
The reduced matrix element of E1PNCNSP is of the form
- 1
I I||T ~
Eli‘e%D—iF}W ( f)[k F;, Fy, LRI Ty ko T*(f.9) (3.37)
F, Fy 1
where
—_— o [T B (WD) (8 HSR )
Tk — _ 1)kt )3 f PNCII*4
U || HSSRI U ) (U | | DT,
P VARV IDIIY o
f I

Here, |¥) refers to atomic state functions. The detailed derivation of the above

expression has been carried out by Singh [3].

3.6 Computation of E1PNC: [5p%6s)1/, — |5p°5d)s/s

Transition in Ba™

The observable which we are interested in, is the electric dipole transition amplitude
(E1PNC) induced by NSI/NSD PNC Hamiltonian between states of same nominal
parity. The ion which we are interested in is a 55 electron system. In singly ionised
barium, one looks for such transition between |5p°6s)i/ and |5p°5d)3/. This is
forbidden according to spectroscopic selection rules, but becomes allowed due to the
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mixing of opposite parity states which in turn leads to
WD) (0 Hpnd ™ 05) | g~ (| Hpnd ™| 91 (01| DI
(Ei — Er) 7 (Ey — EI) ’
(3.39)
where |U;) are CSFs of odd parity. Before going into the actual computation of the

EIPNC =Y <
I

above quantity we first describe the basis and the generation of CSF’s using the same.

3.6.1 Basis

For any problem in atomic many-body theory, basis plays an important role in the
computation of atomic properties. The single-particle orbitals used in such theory
can be of any form, but they should satisfy the completeness condition. If ¢ denotes

the single-particle orbitals, the completeness condition can be expressed as
Z |¢i)(di] = 1. (3.40)

These conditions are satisfied by a set of orbitals generated using the single-particle
Hamiltonian like the Hartree-Fock potential. Also a set of orbitals generated using the
VN=1 [4] potential satisfy this condition. Since the property which we are interested
in has a Z3 dependence [5], heavy atoms/ions are considered and hence relativistic
theory is employed. We have made use of Dirac-Fock (DF) V¥~ potential for our
calculations. The Dirac-Couloumb Hamiltonian of an atom is given by

Z 1
H=) (caipi+(B-1)c—=)+> —. (3.41)
i Tio s T
Defining Upr as the independent central field DF potential, the atomic Hamiltonian

takes the form

H= Z(tz + Upr) + Ves = Hy + Vs, (3.42)
where .
‘/;s = Z - - UDF
i>j i
and
2_ 2

ti = caipi + (Bi — 1) -
I3

The completeness criterion of the orbital space is determined by the convergence
of the property like F1PNC which we are interested in.

Ground state configuration of singly ionised barium is given by |15%2s%..5p%6s').
Hence one starts the generation of occupied orbitals with singly ionised barium de-
noted as Ba™, using the direct and exchange potentials that are due to N —1 occupied



42 Chapter3: CI method applied to PNC in Atoms

Table 3.1: Single-particle orbital energies of Bat generated with the starting potential
as Ba™ using GRASP DF code.

Orbital | Energy(au) | Orbital | Energy(au) | Orbital | Energy(au)
1s —1384.03387 6px —0.26165 3dx —30.49721
2s —222.77665 Tp* —0.13803 4dx —4.11229
3s —48.85071 8px —0.08600 ddx* —0.31451
4s —10.45578 9p* —0.05883 6dx —0.15214
s —1.79929 10px —0.04281 Tdx —0.09250
6s —0.34517 2p —195.20960 8dx —0.06242
7s —0.16836 3p —40.36659 9dx —0.04500
8s —0.06693 4p —7.71210 3d —29.91125
9s —0.04777 op —1.06860 4d —4.01134
10s —0.03582 6p —0.25522 5d —0.31232

2p % —209.28741 p —0.13554 6d —0.15134
3p * —43.15589 8p —0.084761 7d —0.09211
4p * —8.29803 9p —0.05813 8d —0.06220
op * —1.15264 10p —0.04237 9d —0.04487

electrons. The other virtual orbitals are then obtained by replacing the valence or-
bital 65 with the i virtual orbital, keeping the core orbitals frozen. We make use of
the GRASP multi-configuration Dirac-Fock code [6] to generate the numerical core
and virtual orbitals used in our calculation. Since the above mentioned code gener-
ates only bound orbitals, for the present calculation using CI we haven’t included the
effects of the continuum. We have used both bound and continuum orbitals for other
methods like Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC),
where we have generated the basis using finite basis set expansion method (FBSE)
[7]. These calculations are described in subsequent chapters.

The numerical single-particle energies of the bound orbitals are given in Table 3.1.
Here the single-particle orbital with j = — s is denoted with a suffix x and j =1+ s
without the x. Completeness of the bound orbitals is checked with respect to the
addition of CSF’s generated by physical considerations applicable to the property of

our interest.
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3.6.2 CSFs Considered

The configurations are generated by considering single and double excitations from
the occupied orbitals to the bound virtual orbitals in all possible ways such that it
gives the required angular momentum. The ground state reference for Ba™ is |5p%6s).
In the present calculation which is the continuation of the work by Malhotra et al.
(8], we treat 152s....5s, 2p * 3p * ...5pk, 2p, 3p, ...5p, 3d * 4d*, 3d4d as the (N — 1) oc-
cupied electrons and the outermost orbital 6s is considered as the valence orbital.
The virtual orbitals for each symmetry are 7s,8s,9s,10s, 6px, Tpx, 8px, Ipx, 10px,
6p, 7p, 8p, Ip, 10p, Hdx, 6d*, Tdx, 8d*, 9dx and bd, 6d, 7d, 8d,9d. Writing each atomic
state as a sum of CSFs, we incorporate contributions to ¥;, ¥; and ¥ from different
configurations. Here we generate different CSF’s from a given set of occupied and
valence orbitals taking into consideration certain types of correlation effects. CSF's

generated hence are summerised in the Table 3.2.

3.6.3 Results and Discussion

It is reasonable to expect that the major contribution to the above transition in Ba™
would come from configurations built from the core as well as 6s,5d and 6p orbitals
[8]. This is verified by comparing the lowest order result with the odd intermediate
configuration |5p®6p), and adding the configuration |5p%7p) which changes the result
by only 3%. In this work we have tried to increase the configurations by consider-
ing excitations from the core 5s and 5p to various high lying virtual orbitals. The
contribution to E1PNC with NSI Hamiltonian is tabulated in Table 3.3. The values
are given in units of ieay X Qw 1072, Addition of |5p°6s5d) is negligible and the
reason for this can be attributed to the strong cancellation between core polarisation
contributions arising from |5p1/25p§/2685d3/2) and |5pf/25p§/26s5d3/2> configurations.
Addition of the configuration |5p°5d6p) has more important effect compared to the
configurations |5p°6s5d). The contribution using CI calculation done with 179 con-
figurations [8] for NSI is 0.518 x 1072ieaqQy . Examining the final result given in the
Table 3.3. and comparing with the previous calculations by Malhotra et al. [8], which
is repeated again here (till the 7th run in Table 3.3.), the total correlation from the
high lying levels is about 1.6% which is worthwhile to get better accuracy. One can
determine the contribution due to addition of each shell (i.e., an increase in principal
quantum number) in the virtual orbitals for the five symmetries which we have taken
for the present calculation. All the comparisons are performed with respect to the
result obtained by Malhotra et al. [8] using the low lying bound orbitals. The contri-
bution from 7s, 8s, Tp, 8p, 6d and 7d virtuals calculated by considering all possible
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Table 3.2: Generation of Configuration.

No. Type of CSF Limits of Principal Angular momentum Parity of the CSF

quantum number

1 |5pSks) k=6,7,8,9,10 3 even
2 |5pPkd) k=5.6,7.8,9 3 even
3 |5p8kp) k=6,7,8,9,10 z.3 odd
4 |5p°ksk'p) k=6,7,8,9,10

k'=6,7,8,9, 10 1,3 even
5  |5p°kpk'd) k=6,7,8,9,10

k'=5,6,7,8,9 3.3 even
6 |5pPksk'd) k=6,7,8,9,10

k'=5,6,7,8,9 1,3 odd
7 |5p°ksk's) k=6,7,8,9,10

k'=6,7,8,9,10 3,3 odd
8  [5pSkpk'p) k=6,7,8,9,10

k'=6,7,8,9,10 3,3 odd
9 [5p°kdk'd) k=5,6,7,8,9

k'=5,6,7,8,9 1,3 odd
10  |5s'5pSks?)  k=6,7,8,9,10 : even
11 |5s'5p%kp?)  k=6,7,8,9,10 3,3 even
12 |5s'5p°kd?)  k=5,6,7,8,9 3,3 even

CSF's generated by the single and double excitations from 5p and 6s is about 1.1%.
The addition of CSFs generated by taking one electron from 5s reduces it by 0.2%.
This makes the contribution from n < 8 for s and p and n < 7 for d symmetry to be
about 0.9%. Similarly the addition of CSF’s generated from excitations of the core
5p ton = 9 for s and p and n = 8 for d symmetry is about 0.46% comparing with
the previous calculation. Addition of CSF’s from the core 5s to the above mentioned
virtuals has no effect on total contribution. Contribution from the shell n=10 for
s and p and n = 9 for d symmetry increases by about 0.3%. CSFs generated from
excitations of the core 5s have negligible effect as in the previous case. Percentage
of contribution from various shells are shown schematically by plotting the contribu-
tion from each shell with respect to the principal quantum numbers of the various
shells. This provides a check of convergence with respect to the finite basis used. As
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Table 3.3: CIresults for the reduced matrix elements of the NSI E1PNC (5p®6s)1 /5 —

5p®5d)3/5) in Bat in units of teaqQw x 10712,
/

No. | Configurations E1PNC (NSI) || No. | Configurations E1PNC (NSI)
1 |5p66$)1/2, |5p65d)3/2, 34 pre + |5p5885d)1/2’3/2 0.5316
|5p66p)1/273/2 0.58363
2 pre + |5p5655d)1/2,3/2 0.5839 35 pre + |5p5886d)1/2’3/2 0.5316
3 pre + |5p5686p)1/2,3/2 0.5783 36 pre + |5p5886p)1/273/2 0.5322
4 | pre + |5p°5d6p)1 /2,32 0.5045 37 | pre + |5p°8s7p)1/2,3/2 0.5322
5 | pre + |5p°65%)1/2,3/2 0.5284 38 | pre + |5p°658s)1/2,3/2 0.5319
6 | pre + |5p°5d?)1/2,3/2 0.5177 39 | pre + |5p°8s)1 /s,
7 | pre + |5p°6p?)1/2,3/2 0.5185 40 | pre + [5p°8p)1/2,3/2 0.5358
8 | pre + |5p°7s)1/2,|5p%6d)s /o 0.522 41 | pre + |5p°8s8p)1/2,3/2 0.5358
9 | pre + |5p°7p)1 /2,32 0.535 42 | pre + [5p°6p7d)1/2,3/2 0.5343
10 | pre + |5p°6s6d)1/2,3/2 0.5384 43 | pre + [5p°Tpbd)1/2,3/2 0.5239
11 | pre + |5p°6s7p)1/2,3/2 0.5379 44 | pre + [5p°TpTd)1/2,3/2 0.5237
12 pre + |5p5735d)1/2,3/2 0.5330 45 pre + |5p58p7d)1/2’3/2 0.5236
13 pre + |5p5736d)1/2,3/2 0.5333 46 pre + |5p5857d)1/2’3/2 0.5236
14 | pre + |5p°7s6p)1/2,3/2 0.5356 47 | pre + |5p°7s8s)1/2,3/2 0.5236
15 | pre + |5p°7sTp)1/2,3/2 0.5354 48 | pre + |5p°85%)1/2,3/2 0.5236
16 | pre + |5p°657s)1/2,3/2 0.5369 49 | pre + [5p°8p*)1/2,3/2 0.5236
17 | pre + |5p°6pTp)1 /2,3/2 0.5368 50 | pre + [5p°7d?)1/2,3/2 0.5237
18 | pre + |5p°6p6d); 2,3/2 0.5325 51 | pre + [55*5p°65%)1 /2,32 0.5235
19 | pre + |5p°7p6d)1/2.3/2 0.5319 52 | pre + |55'5p%6s%)1 o,
|55 5p875%)1 /2, 0.5235
20 | pre + [5p°75%)1/2,3/2 0.5319 53 | pre + |55'5p®8s%)1 s,
|55 5p%6p%)1 /2 0.5248
21 | pre + |5p°6d*)1/2,3/2 0.5319 54 | pre + |5s'5p®7p?)y s,
|55'5p%8p?)1 /2 0.5248
22 | pre + [5p°Tp?)1/2,3/2 0.5320 55 | pre + |55'5p®5d?)1 2,3/ 0.5269
23 | pre + |5p°5d6d)1 2,3/ 0.5320 56 | pre + |55'5p®6d?)1/2,3/2 0.5269
24 pre + |5p5657d)1/2,3/2 0.5337 57 pre + |5515p67d2)1/2,3/2 0.5268
25 | pre + [5p°7s7d)1/2,3/2 0.5339 58 | pre + |5s'5p%6p?)32,
|55 5p87p%)3 /2 0.5226
26 | pre + |5p°5d7d)1 /2,3 0.5345 59 | pre + |5s'5p®8p?)3s,
|5p698)1/2 0.5228
27 | pre + |5p°6d7d)1/2,3/2 0.5346 60 | pre + |5p%8d)s /s
15p%9p)1 /2 0.5251
28 | pre + |5p°658p)1/2,3/2 0.5344 61 | pre + [5p%9p)3/2,
[5p°659p)1 /2.
from the core 5p and 5s 0.5250
29 | pre + [5p°7s8p)1/2.3/2 0.5344 62 | pre + 5p®10p)1 /2,32,
|5p%10s)1 /..
from the core 5p 0.5264
30 | pre + |5p°6p8p)1 /2,32 0.5343 63 | pre + from the core 5s 0.5264
31 | pre + [5p°7p8p)1 /2,32 0.5343
32 pre + |5p55d8p)1/2,3/2 0.5319
33 | pre + |5p°6d8p)1/2,3/2 0.5317
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inferred from the Fig. 3.1, addition of higher shells (n > 10 for s, n > 9 for p, d) will
have substantial contribution to the E1PNC. As the next step of calculation, one
can consider increasing the configurations arising from excitations, to higher shells
and also the addition of continuum orbitals which we haven’t included in the present
calculation. In the Fig. 3.1, the contribution of E1PNC starting from the lowest
order to the complete CI is plotted and the steep fall in the graph shows the addition
of |5p°6p5d) which leads to large cancellations. In the present calculation, the total
NSI E1PNC reduced matrix element converged to 0.5264 x 10~ 2ieayQyw with about
2000 relativistic configurations.
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Figure 3.1: Contribution of E1PNC NSI with the addition of CSFs which are gen-
erated by the virtual orbitals represented by n and the symmetry.

The atomic states and hence F1PNC' can be expressed in terms of the angu-
lar momentum quantum numbers (J, M, or F, Mr). The total angular momentum
F =1+ J and Mp = My + Mj. Using the similar configurations the contribution to
E1PNC (NSI) (F;, Fy) is found to be 0.696 x 10~ 2ieaqQw for F; = 2 to Fy = 3.

For the same transition, E1PNC NSD calculations were done and the results are
tabulated in Table 3.4. The value of E1PNC with about 2000 relativistic configura-
tions converged to 0.621 x 10~ 2ieaquyy .
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Table 3.4: CI results for the reduced matrix elements of the NSD E1PNC
(5p%6s)1/2 — |5p®5d)s/2) in Bat in units of teapupw x 10712,

No. | Configurations E1PNC (NSD)
1 | [5p%6s)1/2, [5p%5d) 32, [5p°6D)1/2,3/2 0.762
2 | previous + |5p°655d)1/2,3/2 0.786
3 | previous + |5p°6s6p)1/2,3/2 0.751
4 | previous + |5p°5d6p)1/2,3/2 0.659
5 | previous + |5p°65%)1/2.3/2 0.629
6 | previous + |5p°5d?)1/9,3/2 0.614
7 | previous + [5p°6p?)1/2,3/2 0.616
8 | previous + |5p°7s)1/2, |5p°6d)s )2 0.621
9 | previous + |5p°7p)1/2,3/2 0.638
10 | previous + |5p°656d)1 /2,32 0.641
11 | previous + |5p°657p)1/2,3/2 0.640
12 | previous + |5p°7s5d)1/9,3/2 0.639
13 | previous + |5p°7s6d)1/9,3/2 0.639
14 | previous + [5p°7s6p)1/2,3/2 0.637
15 | previous + |5p° 75Tp)1/2,3/2 0.636
16 | previous + |5p°657s)1/2,3/2 0.633
17 | previous + |5p°6pTp)1/2,3/2 0.633
18 | previous + |5p°6p6d)1/2.3/2 0.629
19 | previous + |5p°Tp6d)1/2,3/2 0.628
20 | previous + [5p°75%)1/2,3/2 0.628
21 | previous + [5p°6d?)1/2,3/2 0.628
22 | previous + [5p°7p?)1/9,3/2 0.628
23 | previous + [5p°5d6d)1/,3/2 0.629
24 | previous + |5p56's7d)1/2,3/2 0.630
25 | previous + [5p°7s7d)1/23/2 0.630
26 | previous + [5p°5d7d)1 2.3/ 0.631
27 | previous + [5p°6d7d); 3/ 0.631
28 | previous + [5p°658p)1/2.3/2 0.631
29 | previous + all the CSF’s got using 7s,8s,

7p,8p,6d and 7d with 5p and 5s as core 0.617

29 | previous + all the CSF’s got using 9s,9p,

and 8d with 5p and 5s as core 0.620
30 | previous + all the CSF’s got using 10s,10p,
and 9d with 5p and 5s as core 0.621
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3.7 Computation of E1PNC:[5p%s);/s — |5p°5d)s/s
in Ba™ and [6p®7s);/» — |6p°6d)5/2 in Ra™

3.7.1 Introduction

PNC arising from the NSI neutral weak current interaction has been observed in
several experiments conducted in atoms during the last two decades [9]. However,
the observation of the PNC induced NSD interaction is rather recent. The importance
of this work is that, the first definitive measurement of the nuclear anapole moment
[10] was carried out for the 6s — 7s transition in atomic caesium. Experiments of
this type based on sophisticated optical techniques in combination with atomic PNC
calculations induced by the NSD interactions can provide an unique opportunity for
studying hardronic weak interactions which can give rise to nuclear PNC [11]. It is
therefore important to consider atomic systems which can be used for carrying out
PNC experiments to observe NSD effects.

Fortson has proposed an experiment to measure PNC in the 65 — 5d3/, transition
in Ba' using the techniques of laser cooling and trapping [12], which is sensitive to
both the NSI and NSD interactions. It may also be possible to do a similar PNC
experiment on the 6s — 5ds5/, transition in Bat. This transition has an important
advantage; it is only sensitive to the NSD effect and is therefore a direct way of
measuring the nuclear anapole moment. The reason why the NSI effect is zero is
explained at the end of this chapter. In this approach, one does not have to disentangle
the NSD effect from its much larger NSI counterpart. Preceeding remarks also apply
to the 7s — 6ds/o transition in Ra™. Lasers required for these two experiments
are available (see Fig. 3.2). Several high precision experiments on laser cooled and
trapped Ba™ have been carried out [13] and a PNC experiment for the 65 — 5d3/,
transition is presently underway [12]. The possibility of performing a similar PNC
experiment for the 7s — 6ds/, transition in Ra™ is being presently explored [14]. In
this section, we calculate the parity non-conserving NSD electric dipole transition
amplitudes for the afore mentioned transition in *"Bat and ??"Rat.

3.7.2 Basis

In the present calculation, we treat 1s°2s®...5p% as the (N — 1) occupied electrons
and the outermost orbital 6s is considered as the valence orbital.The virtuals con-
sidered for the calculation are 7s,8s,6d,7d,6p, 7p and 8p. In the case of Ra™, we
treat 1s°2s%....6p% as the (N — 1) occupied electrons and the outermost orbital 7s
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Figure 3.2: Energy Levels for Ba™ and Ra™.

is considered as valence orbital. The virtual orbitals considered for the calculation
are 8s, 9s, 7d, 8d, 7p, 8p and 9p. The GRASP (General Relativistic Atomic Struc-
ture Programe) multi-cofiguration Dirac-Fock code [6] was used to generate virtual
Vi _1 orbitals as in the previous case. The single-particle orbital energies for Ra™ is
tabulated in Table 3.5.

3.7.3 CSFs Considered

We have taken into consideration the core-valence correlation wherein the 5p and
6s orbitals for Ba® are excited to other virtual orbitals. In the case of Ra®, 6p
and 7s orbitals are excited to other virtual orbitals. We have also considered single
excitations from the core and the valence orbitals; such excitations having odd parity
are extremely important for PNC. The core-core correlation and excitation of two
core orbitals to valence and/or virtual orbitals are not taken into consideration. The

generation of CSF's is given in Table 3.6.

3.7.4 Results and Discussion

Contributions from the low lying configurations of Ba™ i.e. the configurations arising
out of single and double excitations from 5p and 6s to 6p and 5d are tabulated in Table
3.7. The addition of \5p66p>3/2 alone as the intermediate CSF does not contribute
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Table 3.5: Single-particle orbital energies of Ra™ generated with the starting potential
as Ra™ using GRASP DF code.

Orbital | Energy(au) | Orbital | Energy(au) | Orbital | Energy(au)
1s —3846.10603 6px —1.17231 4d* —23.23720
2s —712.96883 Tp* —0.26044 5dx —3.08801
3s —179.99787 8px —0.13736 6dx —0.28743
4s —45.95157 I9px —0.08563 Tdx —0.14439
s —10.21918 2p —572.24565 8dx —0.08883
6s —1.82345 3p —141.49562 3d —116.18028
7s —0.349068 4p —33.66010 4d* —23.23720
8s —0.10056 op —6.58530 ad —3.08801
9s —0.04775 6p —0.93719 6d —0.28406

2p* —685.40599 p —0.24200 7d —0.14266
3p* —167.5469 8p —0.13019 8d —0.08795
4p* —40.38511 9p —0.08206 Afx —11.27521
5p* —8.05943 3dx —121.54581 Af —10.96559

to the parity non-conserving E1 reduced matrix element because of the vanishing
PNC matrix elements. But due to the addition of |5p°6s5d)3/, the contribution
becomes non-zero due to the mixing between these two CSFs. Also from the table it
is clear that CSF |5p°6s6p)1/2,5/2 and |5p°5d6p)1/2,5/2 make important contributions.
By adding excitations from the 5s core to the above, the value turns out to be
—0.070 jeapuw x 10712, This is tabulated in Table 3.7.

An important reason for the difference between the values for the above two
cases for Bat given in Table 3.7 is the non-vanishing PNC and electric dipole matrix
elements between the valence-core correlation CSF |5s5p°6p?) and the intermediate
CSF |5s5p°6s6p)s/2. The interplay between other correlation and electric dipole/PNC
effects involving configuration with 5d orbitals also contribute to this difference.

Contributions from the low lying configurations of Ra™ i.e. the configurations
arising out of single and double excitations from 6s, 6p and 7s orbitals to 7p and 6d
orbitals are tabulated in Table 3.7. The contributions due to the excitations from the
6s core in Ra* follows the same trend as in the case of Ba™. This is also tabulated
in Table 3.7. From the calculation using the low lying configurations, it is clear that
the mixing of the CSFs |6p®7p)s/» and |6p°7s6d)s/2 leads to a non-zero contribution.
From the table it can be seen that (|6p°7s7p), |6p°6dTp), |6s6p°7p®)) (1/2,5/2) and
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Table 3.6: Generation of Configuration for Ba*t and Ra® for NSD PNC.

No. CSF Limits of n Limits of n  Angular  Parity of the CSF
for Ba™ for Ra*t Momentum
1 |5pSks) k=6,7,8 k=7,8,9 : even
2 |5pbkd) k=5,6,7 k=6,7,8 5 even
3 |5p8kp) k=6,7,8 k=7,8,9 3 odd
4 |5p°ksk'p) k=6,7,8 k=7,8,9
k'=6,7,8 k'=7.8,9 3,2 even
5  |5p°kpk'd) k=6,7,8 k=7,8,9
k'=56,7  k'=6,78 52 even
6 |5p°ksk’'d) k=6,7,8 k=7,8,9
k'=5,6,7  k'=6,7,8 3 odd
7 |5pPksk's) k=6,7,8 k=7,8,9
k'=6,7,8 k'=7.8,9 % odd
8  |5p°kpk'p) k=6,7,8 k=7.8,9
k'=6,7,8 k'=78,9 % odd
9  |5pSkdk'd) k=5,6,7 k=6,7,8
k'=5,6,7 k'=6,7,8 % odd
10 |5s'5pBks?) k=6,7,8 k=7,8,9 : even
11 |5s'5pSkp?) k=6,7,8 k=7,8,9 3,2 even
12 |5s'5pSkd?) k=5,6,7 k=6,7,8 3,2 even
13 |5s'5p®kstk’p) k=6,7,8 k=789
kK=6,7,8 kK =789 %, s even
14 |5s'5pPks'k'd) k=6,7,8 k=7,89
k'=5,6,7 k'=6,7,8 3,2 even

13 |5s'5pSkptk'd) k=6,7,8 k=7.8,9
K =5,67 k=678 3 odd
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Table 3.7: E1Y5D for Ba®™ and Ra* in units of ieaguw x 1072 Note: 1=3/2.

red

Ion | Configurations Ff=3t0 Ff=2to Ff=2to Fr=1to Fr=1to
F,=2 F,=2 F;=1 F;=2 F;=1

|5P663)1/2> |5P65d>5/27

[5p%6p)3/2, |5p°655d)3 /2 —0.080 —0.045 —0.045 —0.013 —0.029
+|5p5656p)1 /2, |5p°656p)s /o -0.068  —0.038  -0.038  -0.011  —0.025
+|5p55d6p)1 /2, |5p>5d6p)s /o —-0.055  —0.031 —0.031 -0.010  —0.020
Bat || +[5p°65%)3)2, [5p°5d%) 32,
|5p°6p%)3 /2 —0.052  —0.029  —0.029  —0.009  —0.019
+1555p9652)1 /2, |555p°5d?)1 /2
|555p55d2)s /2 —-0.046  -0.026  -0.026  —0.008  —0.017
+(555p%6p?)1 /2, |555p°6p?)5 /2,
|5s5p95d6p)3 )2, |555p°656p)3 /2 | —0.070  —0.039  —0.039  —0.011  —0.0255

[6p°75)1 2, 6p96d)5 2,

[6p57D)3/2, |6p°756d)3 2 —0.989 —0.553 —0.553 —0.161 —0.362

+16p°75Tp)1 /2, |6P° TSTD)5 2 —0.57 —0.319 —0.319 —0.093 —0.209
Ra‘t || +[6p°6d7p)1 /2, |6p°6d7D)5 /2 —0.45 —0.233 —0.233 —0.070 —0.166

+|6p°75%)3/2, [6p°6d%) 32,

|6p°7D%) 32 —0.417 —0.233 —0.233 —0.068 —0.153

+(656p°752), /2, |656p°6d?)1 /2,

|656p56d2)5 /> —0.378 —0.211 —0.211 —0.062 —0.138

+656p°7p?)1 /2, |656p5Tp%)5 2,

|656p°6d7p) 3,2, [6s6p°TsTp)3/2 | —0.615 —0.344 —0.344 —0.100 —0.225

(|6s6p°6d7p), |6s6p°7sTp)) (3/2) make important contributions. Contributions from
the configurations arising out of single and double excitations from 5s, 5p and 6s to
7s, 8s, 5d, 6d ,7d, 6p, Tp and 8p for Ba™ and 6s, 6p and 7s to 8s, 9s, 6d, 7d, 8d, 7p,
8p and 9p for Ra™ are tabulated in Table 3.8. Calculations using the above orbitals
leads to 774 relativistic configurations. Comparing with the result in Table 3.7, we

find that the dominant contributions come from the low lying configurations.

The final results given in Table 3.8 for the NSD contribution to PNC for the
transitions [5p%6s)1/2 — [5p°5d)s5/o and |6p°7s)is — [5p°6d)s/ in Ba™ and Rat
respectively can now be compared with our earlier calculation [8] for NSD contribution
for Ba™, for the transition [5p%6s)1/2 — |5p®5d)s/s for the case Fy = 3 to F; = 2. The
NSD contribution for s;/, — ds/2 transition in Ba™ is 8 times smaller than that for
the s1/o — d3/o transition, but it is worth pursuing experimental studies since it is
only sensitive to the NSD effect. For Ra™, the NSD contribution for s,/ — ds/,
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Table 3.8: F1NSP for Ba™ and Ra™ in units of ieaguw x 10712 for the complete

calculation.

Ions | Ff=3to Fr=2to Ff=2to Fy=1to F;=1to
F,=2 F,=2 F,=1 F,=2 F,=1

Bat | —0.082 —0.046 —0.046 —0.0134  —0.030
Ra® | —0.635 —0.355 —0.355 —0.104 —0.232

transition is about the same as the NSD contribution in Ba™ for the S172 — d3)o
transition. This makes Ra™ an attractive choice for a clean measurement of nuclear
anapole moment. Comparing the present results with those of the NSD calculation
computed for C's for the transition |5p%6s)1/ — |5p°7s)1s for Fy =4 to F; = 3 we
find that while the NSD contribution in Ba* is roughly 10 times smaller, for Ra™ it

is only one and half times smaller [15].

3.7.5 Explanation for Zero NSI Effect in 5p66sl/2 — 5p65d5/2

According to Wigner Eckart theorem,

. . . J k1 j;
(UGG, mp)|OF W) (s ma)) = (=1) f){ f } (3.43)
—my Mg My

(PFGAOTH w3 (o))

Here O¥! is any tensor of rank k1 and |¥;) and | ;) are the initial and final angular
momentum states. The third term in the right hand side is referred to as the reduced
matrix element. This reduced matrix element is independent of my, m;,my;. The
3-j symbol and the phase factor contains the geometric contribution and the reduced

element contains the physical contribution. Conditions for non-zero 3j symbol are:

Jr+Ji > k1> |55 — jil (3.44)
mys+mg +m; =0 (345)

The first and second conditions are due to vector addition and magnetic moment

conservation. In this case the Dipole operator D, HRY2 are of rank k¥ = 1 and HJL

is of rank k£ = 0.
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We consider below each case in detail:

Case I: NSI

Initial state =[5p°6s)1 2
Final state = |5p°5d)s 2

(i) Intermediate state = |5p°6p)1

E1PNC=(—1)5/2_1/2<5d5/2HD1||kp1/2>{—51//22 (1] 1;3}

1/2 0 1/2

(—1)1/2_1/2<kp1/2||Hch||651/2>{_1/2 0 1/2

} +C.C. (3.46)

5/2+1/2>k>[5/2—-1/2|

so, k=2,3
1/2+1/2>k>|1/2—-1/2]
so, k=0,1

(3.47)

So, the transition is not possible between s;/o and ds/» with intermediate state j val-
ues as 1/2.

(ii) Intermediate state = |5p%6p)3 /o

ElPNC:(—1)5/23/2(5d5/2HD1||kp3/2>{ 5/2 1 3/2}

-1/2 0 1/2
(—=1)¥2 12 (kp3/2||H3xc||651/2) { _31//22 8 1;; } +C.C. (3.48)

5/2+3/2>k>1[5/2—3/2|

so,k=1,23,4
3/24+1/2>k >13/2—-1/2
so,k=1,2

(3.49)
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Table 3.9: Summary of the allowed NSI and NSD transitions in Bat and Ra* for

S1/2 — d5/2-

Intermediate state D1/2 P3/2 D12 D3/2
Interactions (NSI) (NSI) (NSD) (NSD)

not allowed not allowed | not allowed allowed

So, the transition is not possible between si/; and ds/; with intermediate state j
values as 3/2.

Case II: NSD

Initial state :\5p668>1/2
Final state = |5p°5d)s o

(i) Intermediate state = [5p%6p)1 2

F1PNC = (_1)5/2_1/2<5d5/2"D1||kp1/2> { 5/2 1 1/2 }

-1/2 0 1/2
(=1)'2712(kp1/2|| Hi x| 1651/2) { _11//22 é 1;; } +C.C. (3.50)

5/2+1/2>k>1[5/2—-1/2|

so, k=23
1/2+1/2>k>|1/2—-1/2]
so,k=0,1

(3.51)

So, the transition is not possible between s;/o and ds/2 with intermediate state j val-
ues as 1/2.

(ii) Intermediate state = |5p%6p)3/o

ElPNC=(—1)5/2_3/2<5d5/2HD1||kp3/2>{—51//22 (1) ?g}
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3/2 1 1/2

(—1)3/2_1/2<kp3/2||H}1>Nc||651/2>{_1/2 0 1/2

} +C.C. (3.52)

5/2+3/2> k> 1|5/2—3/2|

so,k=1,2,3,4
3/2+1/2>k>3/2—-1/2|
so,k=1,2

(3.53)

So, the transition is possible between s,/ and ds/; only with intermediate state j

values as 3/2. The above result is summerised in the Table 3.9.
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Chapter 4

Many Body Perturbation Theory
applied to Parity

Non-Conservation in Atoms

4.1 General Considerations

In the previous chapter, we considered the most straight forward and widely used
technique for going beyond the independent-particle model for a many-electron sys-
tem; the Configuration Interaction (CI) expansion. The upper-bound character of
the CI method (due to the variational procedure) have made it popular for atomic
and molecular calculations. But this method possesses shortcomings that makes it
unsuitable for macroscopic systems which suggests a need for alternative approaches.
The most well known drawback of the CI method is the lack of size-extensivity (i.e.,
the failure of the energy to scale properly with the number of particles in the system).

In this chapter, we analyse another approach to the many-electron problem Many-
Body Perturbation Theory (MBPT). In this method, different orders of the pertur-
bation are introduced in a systematic way unlike different orders of excitations in the
case of CI method. This has an advantage when basis-set expansions are used, since
the number of terms in each order of perturbation doesn’t change with the increase
in the single-particle basis, but has an effect on the amount of time needed for the
computation at each order. Whereas in the case of CI method the many-particle
basis (corresponding to the possible number of configurations in a CI expansion) in-
creases far more rapidly with the increase in single-particle basis, and for most of

o8
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the problems it is impractical to use the complete set of configuration due to the
large memory needed to store the matrix for diagonalisation. But in terms of the
physics involved, MBPT will only have contributions from terms up to a given order,
whereas in CI by the addition of all possible configurations to certain excitations
one can include effects to all orders in the sub-space spanned by the configuration
state functions. Another important advantage of this method is the size-extensivity
through the linked diagram expansion [1, 2|.

Perturbation theory however, also has some drawbacks for energy calculations. In
its basic structure, the wave function and energy are expanded in terms of a pertur-
bation parameter that should be small enough to yield converged results. In many
problems of interest this assumption may not be valid, and converged results are ob-
tained only if certain types of perturbative contributions are summed to infinite order.
In some problems, individual low order contributions diverge and infinite order sum-
mations are needed to obtain finite results. This behaviour very clearly indicates that
order-by-order summation will generally not be a useful way to evaluate perturbation
expansions. Nevertheless, the study of perturbation theory is important, partly be-
cause it can be applied to a wide range of problems, and partly because it facilitates
the comparison with other approaches like the Coupled Cluster Method (CCM), since
the latter can easily be reduced to the former by suitable approximations.

4.2 Partitioning of the Hamiltonian

In the perturbative approach the Hamiltonian of the system (H) is split into two
parts, a model Hamiltonian (H,) and a perturbation (V) so that

H - H() + V,
where the zeroth-order part Hy has known eigenfunctions and eigenvalues given by

0 0 0
Ho|v"y = EQ|w?). (4.1)

If the perturbation is assumed to be small, the zeroth-order solution |\Il,(co)) and E,(CO)
approximate the exact solutions |¥;) and Ej to an acceptable accuracy. If the set
{\Il,(co)} is complete, the exact wave function ¥ can be expanded as

0y = 5" C[u). (4.2)

Here, the complete set of zeroth-order eigenfunctions are assumed to be known. The
coefficient for the zeroth-order ground state is often chosen to be Cy = 1 which can
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be achieved by appropriate renormalisation of |¥). By this choice, Eq. 4.2 becomes

@) = [wf) + 3= Cile), (4.3)
k0
It follows from Eq. 4.3 that
(o) =1 (4.4)

which is termed as intermediate normalisation. If the zeroth-order wave function
|\If80)) is a good approximation to |¥), the coefficients C} are expected to be small
and can be expanded in perturbation series as:

o0

Cr=> CcY, (4.5)

A=1

where C,g)‘) is the Ath-order contribution to C. Similarly, the exact energy E can be
expanded in a perturbation series as:

E=EY+E" + B + .. (4.6)

The most well-known perturbation schemes are the Rayleigh-Schrédinger (RS) and
the Brillouin-Wigner (BW) expansions [3]. The BW expansion is formally simple, but
it contains the unknown energy of the system, which means that the contributions
due to the perturbation have to be computed in a self-consistent way. The other
disadvantage is that it is not a size consistent expansion. RS expansion, on the other
hand, is given in terms of the known eigenvalues of the Hamiltonian Hj, but it has
instead a number of additional terms not appearing in the BW case.

The aim of perturbation theory is to derive expressions for 0,9) and EX. The
expressions for these quantities contain the eigenvalues of Hy and matrix elements of
the perturbation between the eigenfunctions of Hy. Terms that involve products of n
such matrix elements are grouped together to constitute the n'*-order perturbation
theory. If we choose Hj judiciously, then V' would be small and the perturbation
expansion would converge quickly. The choice of Hy in principle is arbitrary, but care
should be taken so that it yields convergent (true or asymptotic) series. The most
widely used form of Hj is the Dirac-Fock (DF) operator given by

N
Hy=F = > ho(d) =) e ai, (4.7)

where index 7 runs over the N particles of the system. The basis functions are single

determinants constructed out of single-particle orbitals given by

|®0) = det{1(1)$2(2).--on(N)}, (4.8)
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with
holdi) = €ilds).

From the above it is clear that
Hy|®,) = Ej|®,) (4.9)

with
Eg' = Z €y
%

where |¢;) and ¢; are the single-particle orbital and its energy respectively. This
choice of Hamiltonian with the application to N electron system was first done by
C. Mgller and M.S. Plesset. By this choice, the perturbation operator V' describes the
electron correlation (physical effects beyond the DF approximation) and the aim of
the perturbation calculation is to improve the DF energy towards the exact solution
of the Schrodinger equation using the same basis set. This is the so-called Mgller-
Plesset partitioning [4, 5]. The correlation energy can be calculated perturbatively
also in the Epstein-Nesbet partitioning [6] in which the zeroth-order is defined by the
diagonal elements of the CI matrix.

In modern perturbation theory the space for the wave functions is separated into two
parts; a model space and an orthogonal space (complementary space). The basic
idea here is to find an “effective operator” which acts only on limited space called
“model space” but generates the same result as do the original operators acting on
the entire functional space. The model space represents all functions associated with
one or several configurations. The reason for including several configurations in the
model space is that it is possible in this way to take into account strongly interacting
configurations to all orders and treat the weakly interacting ones by means of a
lower order expansion. A larger model space chosen properly is therefore expected to
lead to a better first-order approximation but at the expense of the intruder states
which disrupts the perturbative convergence at higher orders [7, 8, 9, 10]. Above all
the model space should be complete if standard BW or RS perturbation theory is
invoked. The proper choice of the model space may therefore be of vital importance

for the success of the perturbation calculation.

4.3 Diagrammatic Representation of Perturbations

It is convenient to separate the single-particle orbitals into following three categories:
(a) core orbitals, defined as orbitals occupied in all determinants of the model and
virtual space,
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(b) valence or open-shell orbitals, defined as orbitals occupied in some but not all
determinants of the model space,

(¢) excited or virtual orbitals, defined as orbitals not occupied in any determinant
of the model space.

In the diagrammatic representation the following convention is used: A core orbital
is represented by a vertical line with an arrow pointing downwards and a virtual
orbital by a vertical line with an arrow pointing upwards. For valence orbitals we
use Sandars’ notation with a double arrow, normally pointing upwards. We use
vertical time axis instead of horizontal time axis. The one-particle operator of the
perturbation is drawn with a horizontal line with a circle and the two-particle with
broken lines. The other perturbations like dipole is represented by a horizontal line
with a square and PNC interactions by a circle with a cross inside. Each of the
vertex has an associated matrix element. The creation operators are associated with
outgoing orbital lines and annihilation operators with incoming orbital lines with
respect to the interaction vertex. We use standard rules for the evaluation of a
Goldstone diagrams [3]. Here, indices a, b, ¢, ... denote core orbitals, p, q, r, ...
stand for virtual orbitals and v refers to the valence orbitals. Indices i, j, k, ... denote

general orbitals.

4.4 General Form of the Effective Operator

With PNC Hamiltonian as the perturbation, the total Hamiltonian takes the form
H=Hy+ Vg, + )\HPNC (410)

where V., is the residual electrostatic interaction. Due to the presence of Hpyc, an
atomic state function (ASF) (defined in Chapter 3) becomes a state of mixed parity.
For example, if |¥,) and |¥p) are states of even parity in the absence of Hpyc, and

in the presence of Hpyc it becomes

1) = [UFO) + | W (corre)) (4.11)

[0g) = [T + |05 (corre)). (4.12)

Here |¥}©)) and \\Il+(0)) denotes the unperturbed part which i d ity and
z 8 perturbed part which is even under parity an

|W (corre)) and [ (corre)) denotes the correction due to the perturbation which is

odd under parity and/or vice versa. According to the Laporte’s rule [11]

6/\115f\11adT —0 (4.13)
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if U3 and ¥, have the same parity. This selection rule, due to Wigner, is of importance
in discussing radiative transitions between ASFs where e.7 is the dipole operator which
is denoted further in the chapter as D which is odd under parity. But due to the
mixing of parity in the ASF's, one can look for non-zero dipole transition amplitude

between states of same parity induced by PNC denoted as E1PNC. It is given by
E1PNC = (¥4|D|¥,) (4.14)

Here the ASF’s considered have a single valence electron outside the closed shell core.
For example, Ba™
(,) = |15°25°....5p%6512)

and
[Ug) = |15°25°....5p%5d3)2).

Let us consider that we have only one parity (in this case even) in the model space

i.e.,

and
w5y = 15).

We can construct a wave operator {2, acting on the unperturbed states to give the

exact state given by

QU0) = [¥y), (4.15)
QW) = W) (4.16)

Using the above two equations the physical observable of interest in PNC can be

written as
E1PNC = (¥;010" DO/ |0 ) (4.17)

Once 2 is known, E1PNC can be computed. We start with the Bloch equation [12]
given by

n—1
QO™ Hy|P = Q[valn—b — 3" om pyqln-m=]p, (4.18)
m=1
where
V = Ves + AHpnc,
P = Z |(I)a><q)a|
aEM
and

Q: 1—P: Z |(D7'><CDT|

r¢M
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with M as the dimension of the model space considered. Since the PNC perturbation
which we are interested scales as G, (Fermi’s constant) we consider terms linear in

A, but containing different orders in the Couloumb interaction. We therefore write

Q' =Qy + AMpne
Q" = Q + M- (4.19)

4.4.1 General Expression for E1IPNC®™
Substituting for 2’ and 2" in Eq. 4.17, and writing D as an effective operator, we get
E1PNC = (U} Dy ) (4.20)

where - -
Do = Y (%™ + ARA]TD D00 + A%
m,n=0 n=0
and m, n are the order of perturbation of Couloumb operator corresponding to the
initial and final states. Here Dg refers to only connected diagrams. From the
effective operator we have to consider different orders of Deg for each order in MBPT.

Hence we write the effective operator to have an effective order as
o~ ()
Deg =Y D,g. (4.21)
n=0

We know Q&?ﬁm =0 and Q(()O) = 1 which can be obtained from the general expression
by putting n = 0; m = 0 which leads to a zero contribution. This clearly tells that we
need at least one order in A in the D.g. Hence, for non-zero contribution to E1PNC,

Eq. 4.21 can be written with new summation given by
S ()
Deg = Z D, (4.22)
n=1

where "
D = 3105 + il DI ™ + o). (4.23)

m=0
Hence EF1PNC' to any order n is given by

E1PNC®™ = (w1 DY w0, (4.24)
For E1IPNC™ with one order in A and zero orders in Couloumb interaction, Déflf)

reduces to

DY) = DR'V,,P + DR HpxcP + (R"V.,P)'D + (R"HpyxcP)' D (4.25)
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A B

Figure 4.1: Diagrams representing one-body operators (Dipole and PNC).

N
A v

Figure 4.2: Form of the diagram for E1PNC.

where R' and R" are the resolvent operators given by

|®4)(®,]
=) =
7¢DE — EJ
D, ) (P,
Z | 7> E7| (4.26)
7¢D

4.4.1.1 Evaluation of E1PNCW Terms

Taking only the term with one order in A, E1IPNC® takes the form using R' and
R" as

(WO D) (W] Hone| W)

E1PNCY =} o>
a— LI

1¢D

+ D < Hpne, Eo & Eg - (4.27)

Considering the ASF’s to be single determinant and using the Slater Condon rules
(3] we get
5 (65 1DI61%) (01" Honel67)

i¢a €a — €&

E1PNCW =

+ c.c., (4.28)

where ¢, € are the single-particle orbitals and their energies respectively. Since dipole
and PNC are one-body operators, they can be represented in the form of a single-
particle operator which can have four forms given as in Fig. 4.1.

Using Wick’s theorem [3] and considering diagrams only of the form given in
Fig. 4.2, we get four diagrams corresponding to zeroth-order E1PNC. These are
represented in Fig. 4.3. From now on we will be considering o and 3 states as i
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Figure 4.3: Diagrams representing zeroth-order E1PNC' terms.

and f which denote the initial and final states. The expressions for the zeroth-order
diagrams are given by

(f|D|p){p|Hpncli)

W (4.29)
(1a) £ (fIDii(aléchz)

2) ; <f|HP;C‘_p>6§7p|D|i>
(2a) 2@: <f\szckL)6§a\D|i)

where the terms (1) and (2) are the contributions from virtual orbital and (1a) and
(2a) are the contributions from the core orbital when the initial and final states are
perturbed.

4.4.1.2 Evaluation of E1PNC® Terms

Similarly, EIPNC® can be obtained by taking D7 which depends on Qf” and
QQ&C. These in turn are related to le) and Qg&c through the Bloch equation as

QP Hy|P = Q[va® — QW pyQO]p. (4.30)

This clearly shows that the wave operator in each order can be obtained by operating
the perturbation on the wave operator of lower order. Substituting for €2 and consid-
ering only same parity states in the P space leading to PHpycP =0 and PDP = 0,
we get eight terms given by

E1IPNC® = (U} |PDR'V,,R'HonoP + PDR' HoxoR'V,s P
— PDR"HpxcPV,,P + PVIR"DR Hpxc P
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A A~ A A 2 A~
+ PVIR'H! -R'DP — PViPH}\R" DP
+ PH}\R'DR'V,,P + PH}\R'"VIR'DP|OF®)  (4.31)

By applying Slater Condon rule, we get various diagrams for the above terms by
contracting single, double, ... lines between the dipole, PNC and the Couloumb opera-
tors. All possible diagrams for the Couloumb operator are given in Appendix A. From
now onwards, we show only the diagrammatic representation of the direct terms that
are contributed from the virtual orbitals. However, in our calculations, we evaluate
both direct and exchange diagrams contributed from the virtual as well as the core or-
bitals. The possible diagrams arising from PDR'V,,R'Hpxc P and PDR'HpxcR'V,, P
are given in Fig. 4.4(a). The set of diagrams given in Fig. 4.4(b) are got by inter-
changing Hpnc and V., with respect to the diagrams given in Fig. 4.4(a). The

expressions for each of them are given by

®3 {f |Dlp(>6<api| ‘;)I(Zecﬁ ECILSPNcM)
g GRS
oy b
e
S A
(8)3" UDIp){falVeslia) {pl Hencla)

tra (it € —€p —€g) (€5 + € — €5 — )

, (4.32)

, (4.33)

The possible diagrams from the term PV, R" DR Hpxc P and PV}, R"HjyR'DP are
given in Fig. 4.5 with the expressions

ORI,
e
an CR e
g
Rl s

Y

, (4.35)
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Figure 4.4: Diagrams representing first-order E1PNC terms from PDR'V,,R'Hpxc P
and PDR'HpncR'V,sP.

P - 7:](] a P ® 7®q a
; R i i = i

Figure 4.5: Diagrams representing first-order E1PNC terms from PV R"DR'Hpxc P
and PV R"H}\ R DP.

(fa|Ves|ip){p|Hpxclg){g|D|a)
(14) Z (€r+€a—€ —€p)(€f+ € — € —€g)

pgqa

The diagrams in Fig. 4.5(b) are obtained by interchanging Hpnc and D with re-
spect to the diagrams given in Fig. 4.5(a). The possible diagrams from the term
PH -R"DR'V,,P and PH} -R"ViR"DP are given in Fig. 4.6 with the expres-

sions

~

(a|D|q)(pq|Ves|ia)
€+ € — € — €)
(f|DIp)(pq|Ves|ia)
€+ € — € — €)
(p|D|q)(fq|Ves|ia)
€ +€ —€r—¢€)

(q|Dla)(pa|Ves|iq)
€f + € — € — €)

o s

(16) Z <a|HPNC‘q

pga (6a - GQ)

%
(18) Z <f‘HPNC‘p

pqa (Gf - ep)

, (4.36)

b

~ N ~— —~

~

: (4.37)

—~
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Figure 4.6: Diagrams representing first-order E1PNC terms from lsﬂg,NcR”DR'VCS1S
and PH}oR"VIR'DP.

19 <a|Hch\‘Z_)(p\D\i)(_fqWes‘pa)
pga (€a — €q)(€f — €p)
(al Henclp){a| Dla) (fp|Veslig)
) 1% (€a —€) (€ + € — € — €g)

Y

The set of diagrams given in Fig. 4.6(b) are obtained by interchanging V., and D with
respect to the diagrams given in Fig. 4.6(a). There are two more terms which give
rise to folded diagrams, but on contraction they do not yield diagrams of the form as
given in Fig. 4.2. In the next section we look at various ways in which these first-
order diagrams can be grouped together and effectively summed to all orders to yield
the Coupled Perturbed Hartree Fock (CPHF), Random Phase Approximation (RPA)
and CPHF-RPA terms. We first discuss the CPHF theory [13, 14] which has proved
to be a very useful tool for the ab initio calculation of certain atomic and molecular
properties which correspond to one-electron perturbation operators. In this case, the
parity non-conserving interaction between the nucleus and the core electrons causes
the core orbitals to have a PNC admixture in it, which perturbs all the other core
orbitals through the DF potential. We also discuss about RPA [14, 15, 16] where
due to the application of an oscillating electric field the core electrons get polarised.
By taking these orbital modifications into account in DF potential, leads to coupled
equations for the electric dipole perturbed functions. In the end we discuss the CPHF-
RPA approach in which the core orbitals are perturbed due to the presence of the
PNC operator and of an external electric field. It can be viewed as a particular double
perturbation theory as discussed by Caves and Karplus [17].
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4.5 Coupled Perturbed Hartree Fock

We consider a closed shell 2N electron system with the DF Hamiltonian. According
to DF approximation, we write the exact wave function as a single determinantal
state consisting of single-particle orbitals. We solve the Schrodinger equation by
the variational principle by minimising the energy with respect to the single-particle
orbitals and by imposing orthonormality condition on the single-particle orbitals.
This leads to

(h° +¢° = &)l (r)) =0 (4.38)

where h° and ¢° are the single and two-body operators which together are called the

Fock operator denoted as f°. ¢° can be explicitly written as

9°18i (r)) = (5(r2)[g](r2))[ 67 (1)) — (85(r2) 19|83 (r1)) 15 (r2)).

Here we consider Hpnc as the perturbation and the above equation for one order in

Hpyc reduces to
(f* —e)lei(r)) = (¢ — Henc — g')147), (4.39)

where ¢} = 0 due to the odd parity nature of the Hpxc operator. The perturbed g

can be written as

g'16i(r)) = (85(r2)lgld;(r2))]e5 (1)) — (5 (r2)|g|6i (r))|g5(r2))  (4.40)
+ (85(r2)1g1¢5(r2)) |5 (1)) — (6 (r2) gl (1)) |85 (r2))-

Now we expand each of the perturbed orbitals |¢}(r)) as a linear combination of

the unperturbed virtual orbitals given by

|6i(r)) = >_ Cyildy(r)). (4.41)
P
Substituting the above in Eq. 4.39, we get
2 (f" = &) Childy(r)) = (—Hene — ¢7)[67(r))- (4.42)
P

Acting by (¢)(r)], we get
Criley — &) + > {(palglia) — (palglai)}C;, (4.43)
aq

+ Y {{palglig) — (palglqi)}Ca

+ (p|Hpncli) =0,
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where "
Coa = — (4|Hpxcla) (4.44)
(eq - ea)
and
C’;a = —Cyq (4.45)

since Hpyc is an imaginary operator. Eq. 4.43 is named as PNC HF or as CPHF
equation. Using the above relationship in Eq. 4.43, we get

Cpi(ep - 61’) - Z{<pq‘g‘la’> - <pQ|g|a7’>}an (446)

+ > {(palgliq) — (palg|qi)}Cya

= —(p|Hpncli).
We define
Apiga = —Vpgyia + Vpasig + (Gp - €i)5pq‘5ia (4.47)
and
Byi = (p|Hpncli)- (4.48)

This leads to a linear equation of the form
AX = —B, (4.49)

where the order of matrix A depends on the various combinations of p and ¢ orbitals
which have different parity. Alternatively the same equation can be solved by keeping
the A part of the matrix as the energy difference and the left hand side (B) of the
linear equation as the sum of the PNC and Couloumb matrix element. This can be

represented as
(ep - Gi)(qu(siacpi = Z{<pq\g|m> - <pQ|g‘a’i)}an (450)
aq

— > {(palgliq) — (palglqi)}Cea — (p|Hpncli).

This kind of rearrangement is slower in convergence compared to the previous one
due to the large energy difference in the denominator when one does order-by-order

calculation. The above equation can be rewritten as
(€g — €)0pg0iaCqa = —(p[Hpncli) + z{f/;ﬂq,ia - %a,iq}cqa (4.51)
ag

or
Z{(eq - 6j)épq(siacqa + Vpa,iq - %q,ia}cqa + (p|Hpncli) = 0. (4.52)
a,q
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By solving the linear Eqgs. 4.51 or 4.52 we obtain Cy, amplitudes for excitations from
core-virtual as well as valence to virtual. The electric dipole transition amplitude is

then computed using the following expression

E1PNC = (f|D|i"N°) + (fFN°|Dl3) (4.53)

or
E1PNC = (f|DIp)C;NC + Cpy “*(p|Dli). (4.54)
Thus, we need to evaluate C’PNC and CPNC where ¢ and f in this case are denoted as

the initial and final states. This can be obtained directly using Cy, as

PNC _ _ (p[Hpncl?) Cya _ .
Cpi - Gp Iy + % _(€p _ 61){ pgyia pq,az} Z — 6; pa iq — pa,QZ}

(4.55)

and

<p|HPNc|f> Ca
CPNC _ + Z _q {V;)q,fa - pq,af} Z {V;)a,fq pa,qf}.
€p — €f qa (€p — €7)

(4.56)

Below we discuss some aspects of CPHF formalism and its relation with MBP'T.
First we consider that the residual Couloumb interaction is zero. Then Eq. 4.55

reduces to .
o0 _ {p|Hpxcld)

g (€ — &)

where C’I(,f’y) represents x orders of Couloumb and y orders of Hpxc. Using one order

(4.57)

in PNC, the electric dipole transition amplitude takes the form
E1PNCW® = (f°|D|i*) + (f'|D|i%). (4.58)

Writing the perturbed single-particle orbitals in terms of the C's and the unperturbed

amplitudes, we get

E1PNCW Z f|D|p) (p|Hpncli)

+D < Hch, € = €f- (459)
5 (€p — €)

Similarly taking the Couloumb term to be non-zero, we get

oD (p|Hpnclt) _ {(a|Hpnclq) ({pqlglia) — (pqlglai))

P (€ — €p) qa (€ — €p)(€q — €a)
{g|Hpxcla) ({pblglig) — (pblglgi))

+ qza (e; — €p)(€a — €4) '

(4.60)
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Using this, second-order electric dipole transition amplitude is given by

(f|D|p){p|PNC]i)

E1IPNC? = Y . (4.61)
- U
n Z<f|D|(i>,<fi|g)|(i€q><_Q|fl)\Ic|a) |

where c.c. refers to complex conjugate terms. The first, third and the correspond-
ing complex conjugate terms in the above equation in comparison with the MBPT
diagrams are equivalent to the diagrams designated as MBPT(1), MBPT(3) and its
complex conjugates designated as MBPT(2) and MBPT(19). The second term of the
above equation can be got by adding the MBPT diagrams designated as MBPT(6)
and MBPT(16).

PO S MBFT09) = 3= ")

(f|DIp){a|Hpxclq){pqlglia)
paa (€t € — € —€g)(€a — €)

3 (f|D|p){a|Hpxnclg)(pg|glia)

(4.62)

paa (& — €p)(€a — &)
_ ¥ 'D‘i’i@‘iﬁ??;'?ii?'g‘”)

This can be schematically represented like diagram (A) as in Fig. 4.7 wherein the
sense of the core and virtual particle are different from the accepted convention for
the PNC bubble. This can also be interpreted the following way. In the E1PNC®
expression given by Eq. 4.61, take the (—) sign inside for the second term and this
gives

3 (f|1D|p)(pqlglia){alHpnclq)

pga (i — €)(€a — €)

(4.63)

which is nothing but the diagram (B) given in Fig. 4.7 with the local energy de-
nominator for both the perturbation vertex. Similarly, by adding MBPT(10) and
MBPT(12) we get the conjugate term which can be interpreted the same way as
before.

The diagram we get from the conjugate term is given in Fig. 4.8. Hence, by
solving the CPHF linear equation, we take eight of the MBPT diagrams to all order
out of which two are from zeroth-order and three each from initial and final state
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Figure 4.7: Pseudo diagram (or) diagram with local energy denominator got by adding
the MBPT(6) and MBPT(16) diagrams.
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Figure 4.8: Pseudo diagram (or) diagram with local energy denominator got by adding
the MBPT(10) and MBPT(12) diagrams.
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first ordered perturbed terms. Mathematically, we can interpret CPHF to have got
by considering PNC as the perturbation and Dipole as an operator connecting states
of same parity. In the next section we consider RPA effect, where the application of

an electric field on the system perturbs the single-particle orbitals.

4.6 Random Phase Approximation

The influence by an external oscillating electric field on the single-particle orbitals
of an atom can be obtained by solving the DF equation in an external electric field.
This leads to coupled equation for the electric dipole perturbed functions. By taking
PNC as an operator between these perturbed states gives rise to the electric dipole

transition amplitude which we are interested in. In the lowest order, E1PNC®)

given by
I; (e —€1) I (e —er)
= (f”|Hpxcli) + (f|Hexc|i”),
where we have defined D

61 _61)

and

Z HXIIDIG (4.66)

T ey —er)
To avoid the explicit summation in the above two equations over an infinite number of
states, we use the inhomogeneous differential equation technique first introduced by
Sternheimer for hyperfine structure calculations [18]. Multiply Eq. 4.65 and Eq. 4.66
by (e; — h°) and (e; — h°) on both sides, we get

(fz' _ ho)‘fD> — ; (Ei — ?:Z)|_I>€<I])‘D|f> (467)
= ; [D{IIDIf)
and
(Ef _ hO)|ZD> — Z (ef - h0)|I><I‘D|Z> (4.68)

I (e —€r)

= ZI:UWIDIi),
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where h° is the unperturbed Hamiltonian which acts on any general state to give
RO I) = €;|I). (4.69)

By making use of the closure relation and removing the infinite summation over I,

both the equations take the form

(€7 —w—=h")[f7) =DIf) (4.70)
(€ +w — h?)|i*) = DIi),

where we have used w = €5 — ¢; which is the transition frequency between final and
initial state. From now onwards we define the perturbed function with a superscript

+/— with respect to the sign of w. Let us consider a general orbital denoted as i.

Taking the orbital modifications into account in the DF potential denoted as v, we

get the modified working equation as
(€; £ w — h")[i*) = DIi) + v¥i), (4.71)
where

= 2" [(blo[b*)1é) — (Blofi)|b™) + (b¥[v[B)]i) — (bF[o]3)[B)] (4.72)

b

As we did for CPHF, we write the perturbed orbitals as the linear combination of

unperturbed DF orbitals,

=Y Rlp) (4.73)
p
and substituting this expression we get,
Y (eitw—h)Rylp) = Dliy+ > _{{(blvlg)li) — (bluliya)} Ry, (4.74)
b

P
+ 2Ry, {{alvlb)]i) — (glv]i)b)}.
bq
Let us take the (+) index first and operate it by (p| from the left side, we get

(6 +w—e)Ry; = (p|Dli) + > _{(pblvlig) — (pblv|gi)} Ry (4.75)

bq

+ > Ry {{pglvlib) — (pglv|bi)}.

Using the result,
qu = R (4.76)
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we can write the above equation with rearrangement as

(6i+w—6p)R$i—bZ{<pblv\iq) (pblv|qi)} Ry, Zqu{ (pq|v|ib) —(pg|v|bi) } = (p| DI3).

(4.77)
The above linear equation can be solved in two steps. In the first step, we consider

the general orbital 7 to be the core orbital designated as a. We get

(catw—ep) R Z{ (pblv|ag)—(pblv|qa)} R}, Zqu{ (pg|v|ab)—(pq|v|ba)} = (p|D|a).

(4.78)
We define
Apa,qb - _‘/;)b’a,q + ‘/;)q’ab + (ea + W — Gp)(quéab (479)
and
Byu = (p|D)a). (4.80)
This leads to a linear equation of the form
AX =B, (4.81)
which is solved to self-consistency. Similarly, one solves for R,  using the linear
equation
(€a—w—€p) Ry =D _{(pblv]ag)—(pblv|qa) } Ry~ ZR v{{palv]ab)—(pqlv|ba)} = (p|Dla).

bq

(4.82)
Once the amplitudes for the excitation from core to virtual orbitals designated as R(‘;b
and R, are obtained, we can get the amplitudes for the excitation from valence to

virtual orbital by their substitution on Eq. 4.64 which leads to

E1PNC = (f|Hexc|p) Ryj; + Ry (p|Hpxcl), (4.83)
where
RY - (eﬁﬂf\_i)ep) +%((pb|vl(i€qi>; prfligl’))R;Z (4.84)
N % pqlvlzi)Jripg\ZBﬁ)qu’
R, = (p|D|f) +Z(<pb\v\fq>—<pb\v\qf>)R (4.85)

(ef —w—e) bq (e —w—e)
N Z ((pqlv| fb) — (palv[bf)) Ry

(e —w—e)
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Since R’s are computed self-consistently, it means that we have taken the effects
represented by the Couloumb interaction to all order. We can get order-by-order
equivalence for RPA at each iteration which in turn can be checked with the first-
order MBPT for RPA diagrams. From the all order equation, we show below such an
equivalence. We first assume that the residual Couloumb interaction is zero. Then

Eq. 4.84 reduces to '
REOD _ {p|Dli)

- = 4.86
e (6 tw—¢)’ ( )

where R;ri(w’y) represents x orders of Couloumb and y orders of D. Using one order in

D, the electric dipole transition amplitude takes the form
E1PNCY = (f|Hpxc|i*) + (f |Hpncli). (4.87)

Substituting the R’s we get

f|Hpxc|p){p|D]i)

.C. 4.88
(6 +w—¢) tece ( )

E1PNCY =% <
p

Similarly taking the Couloumb term to be non-zero, we get

oy (pID[y) {pa|vliq){q|D|a)
Rpi - (ei Lo — 6p) azq (ei +w— Ep)(ea +w— €q) (489)
S {pqlv|ib){a|Dlq)

e (6t w—€)(ea—w—¢p)

On taking out a negative sign from the third term, we get

s (PP (palvlig){a|D|b)
R, - (€6 —w —€p) azq (& +w — €p)(€a +w — €g) (4.90)
{pq|v|ia)(a|Dlq)
w7 (EGtw—6)(eg+w— €a)

Using this, second-order electric dipole transition amplitude can be obtained as

@ _ (f|Hpnc|p){p|D|i)
E1PNC® = Epj ot e)

(f|Hpxc|p)(palvliq){q|D|a)
+ 2 (6 +w—6) (et 0 —e)

(4.91)

_ < {f|Hexc|p)(pg|vlia){a|D|q)
% (6itw—ep)(eg+w—€,)

The first, second and its complex conjugate terms in the above equation in compar-
ison with the MBPT diagrams are equivalent to diagrams designated as MBPT(1),
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(because the sense of a and q are different (diagram with local energy
from the accepted convention) denominator)

Figure 4.9: Pseudo diagram (or) diagram with local energy denominator got by adding
the MBPT(7) and MBPT(15) diagrams.

MBPT(18) and its complex conjugate designated as MBPT(2) and MBPT(4). Third
term in the above equation is obtained by adding MBPT diagrams designated as
MBPT(7) and MBPT(15). The expression is given by

MBPT(7) + MBPT(15) = 3 +<{ |}ij0€ >§p)q(|z‘fi<“12 9 - (49)
pga 7 a p q ? a q f
(f|Hpncp)(pq|vlia)(a| D|q)
€+ € — € —€)(ef — &)
f|Hpxcp) (pql|vlia)(a|D|q)
€+ € — € — 6f)(ef — €p)
(f|Hpxcp) (pql|vlia)(a|D|q)
(€i +w—€)(eg +w—€)

_
(

(=)

Y

which is represented diagrammatically in Fig. 4.9. This can also be interpreted
in the same way as we did for CPHF. In the case of pseudo diagrams the sense of
the arrows are opposite to the Goldstone convention and in the case of local energy
denominator again we deviate from the usual rules for energy expression. Similarly
by adding MBPT(13) and MBPT(9) we get the conjugate terms which are illustrated
in Fig. 4.10. Using this method, 4 RPA diagrams which totally adds up to 6 MBPT
diagrams are taken to all order. In order to avoid double counting while computation
the lowest order value is subtracted to get the RPA contribution. The rest correspond
to CPHF-RPA diagrams which we explicitly do in the next section.
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Figure 4.10: Pseudo diagram (or) diagram with local energy denominator got by
adding the MBPT(13) and MBPT(9) diagrams.

4.7 CPHF-RPA: Double Perturbation

In this approach, we take dipole and PNC as the perturbation along with the Couloumb
operator as compared to CPHF and RPA, where the PNC and dipole operators are
considered as perturbation and operator and wice versa. The perturbations are de-

noted in terms of A\’s and the total Hamiltonian is given by
H=h"+V,,+ A\D + MHpxc. (4.93)

Due to these perturbations, the wave function and the DF potential gets perturbed

and it takes the form
17) = A [i%) + Ag|i™NC) 4+ A Ao [iEPNCY, (4.94)
v = V;S + AlUi -+ AQUPNC -+ AlAQUiPNC. (495)

When we consider PNC and Couloumb operator as the perturbation, we get the
coupled equation as

(e, — h0)[i"NCY = (Hpne 4+ 07V [i%), (4.96)

which is nothing but the CPHF equation which we solved in the previous section.

With D and Couloumb operator as perturbation, we get RPA equation given by

(e; £ —h")[i%) = (D 4+ v®)[i%). (4.97)
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Considering both D and PNC as perturbation along with Couloumb operator leads
to an equation given by

(e; £w — AO)|i%) = (Hpnc + v"NO)[i%) + (D + vF)[iFNC) + 0=FNCY5), (4.98)

where

vECl) = Z [(BF0lb™C) i) + (B"NClolp*)]2)
+ <b|v|biPNC>\ ) + (07 [w]b) )
= (O [[a)p"N) — (b7 Cw]i)[b%)
— (Jbloli) [N — BFNCloli) b)) - (4.99)

To solve Eq. 4.98 we need |+£FNC), [i*) and [i"NC) which can be expanded as
[£PNCY Z CEPNC |y
=3 C;
q

|iPNC> — ZCZNCV,).

T

Substituting them we get

Z(ei +w— ho)CpiiPNC|p) = (HPNC + vPNC Z pm\q (4.100)

p

+ (D +v%) > C’ENCV) + vEPNC),

T

Scalar multiplication by (p|, we get

(i tw—e)Co N0 = S (p|(H™C + "N |q)C; (4.101)
q

+ Y {pl(D +v)|r)CHTC + (plv*"NCd).

r

The above equation can be rewritten as
(6i £ w—6)Cp N = X7 + (plv™"NCi), (4.102)
where

X* =" (p|(Hpxc +v")|q)Cy; + Z (p|(D + v*)|r)CENC. (4.103)

q
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Using the expansions for the perturbed functions, Eq. 4.101 takes the form

(6w —)CENC = X* 43 [{(psfvlig) — (ps|v]gi) }CFCRNC
bgs

+ {{pqlvlis) — (pqlv|si) }CNCC

+  {{pblv|ri) — (pb|v|ir) }CENC

+ {(prlvlbi) — (pr|v]ib)}CFHN] . (4.104)
Since CPHF and RPA equations are solved, we know the solutions [:PNC) and [i%).

Using the properties of the solutions we can write the above equation as

(6 tw—6)CH N0 = X 4% [ (pslvlig) — (pslvlgi) }CHOH°

— {(palvlis) = (pqlv|si)}Cgp °C
+  {(pblvlri) — (pblv|ir)}Cr™¢
— {{pr|v|bi) — (pr|v|ib) }CEFNC (4.105)

where we have used CI'NC = —CEINC Cx* = CF% and C5PNC = —CEPNC, The above
equation can be written as a linear equation and can be solved for the C’s which can
be used in the determination of E1PNC'. One can get the contribution for E1PNC

using the perturbed potential taken between the initial and final states as given by
E1PNC = (f|d +v*|[i*N°) + (f|Hpxc + v"NCit) + (flo™FNC)5). (4.106)

Here the first and second terms gives the RPA and the CPHF contribution with the
third term contributing to double perturbation which relates to PNC shielding. Below
we show that from the term (f|v*PNC|i) we get CPHF-RPA terms. Expanding the
potential we get

(Flo=PNCliy = 32 {(FBF [0lib™NC) + (FO™NClo]ib™) + (fBlofib™NC) + (FFNC[olib) }

’ (4.107)

Substituting for [b"NC), [b%) and |b*FNC) as

BPNCY = Z AClg) (4.108)

‘bi Z A5b|

|b:l:PNC> Z A:l:PNC |’/‘),

T

we get

(FtN) = 30 [(Fslvlig) AFARC + (fFalvlis) A NC A3,

sbq
+ (fblulir) AEPNC + (frivfib) ARTNC] .
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The zeroth-order coefficients can be got by taking appropriate approximations in the

CPHF, RPA and CPHF-RPA equations. From the CPHF equation by neglecting the
v terms we get

APNC _ <C]|HPNC‘b)'

qb —

4.109
&= o) (4.109)
From the RPA equation, by neglecting the v terms we get
D|b)
Az = D) 4.110
sb (Gb + —65) ( )
From the CPHF-RPA equation, by neglecting the v terms we get
A;':[;PNC _ Z <7'|HPNC|Q><Q|D‘b> <T|D|q><Q|HPNC|b> . (4_111)
T (etw—¢)leatw—r¢) T (apmw—e)(e—¢)
Expanding the coefficients for 4+ we get
oo (ep —w —€5) (€ — €)

> <fzze|:zsz)<s_|cte|f)>(<i|f:1\£3|q>

R rep e
e s
- Z <{;|;|i>§sg}z§bcq|g>w<q_|i|3>
_ Z<f8|v\ib><8|D|q><QIHch\b)'

or (e&r Fw —€5)(er — €4)

Taking the negative sign inside and rearranging the PNC matrix element and the
dipole we get

ey = 5 U Ny
(fqlvlis)(s|d|b) (b|PNC]g)
+ stq (€r +w —€5) (€ — €)
(fblvlis)(s|Hpnclg){a|D|b)
stq (eptw—€5)(ep Tw—€)
T Z (fblvlis)(s|D|q){q|Hpnc|b)

(ep £ w —€5)(€p — €)

(4.113)

sbq
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Figure 4.11: MBPT diagrams contributing to CPHF (a), RPA (b) and CPHEF-
RPA (c).

(fs|vlib)(q|Hpnc|s)(b| D]q)

szbq (& Fw—€s)(er Fw—€)
(fs|v|ib)(g|D|s){b| Hpxc|q)
+ % (6 Fw—¢€s)(er —€g)

Comparing the above terms with the first-order MBPT diagrams, it can be found
out that in the order given above these terms are equivalent to MBPT(5), MBPT(20),
MBPT(14), MBPT(11), MBPT(8) and MBPT(17).

From the above analysis of the zeroth and first-order MBPT diagrams it is clear
that the diagrams can be classified according to different effects and they can be
taken to all orders by summing each respective groups of diagrams. In Fig. 4.11, all
the MBPT diagrams contributing to each effect are drawn separately. Zeroth-order
contribution will be present in each group and hence only the respective diagram re-
lated to each approximation is given. During computation, zeroth-order contribution

is taken once and subtracted from all other effects in order to avoid double counting.

In the next section we discuss few of the third-order MBPT diagrams which con-
tribute to EF1PNC.
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4.8 Evaluation of E1IPNC®) Terms

Contributions to this order can be got in a similar way in which the second-order
contributions were found. In the previous section the second-order diagrams consid-
ered can be regarded as a first-order modification of the core orbitals, and is therefore
referred to as the first-order core polarisation diagrams. Generally, core polarisation
is defined as the perturbations which in each order can be described by means of
single excitations from the core. The remaining effects which involve at least one
multiple excitation will be referred to as pure correlation effects. So we consider only
the pure correlation diagrams which have one order in dipole, PNC and two orders
of Couloumb which involve at least one double excitation.

Diagrams contributing to pair correlation effects are categorised in two classes
and are drawn in Fig. 4.12 and Fig. 4.13. The exchange counterparts for the above
categories are not drawn but for computation both direct and exchange terms are
considered.

To reduce the time taken for computing each of the pair correlation diagrams
we define a function called pair function which is computed first and stored in fast
memory, which can then be used for the computation of both direct and the exchange
matrix elements. Let us consider the diagram where the PNC and Couloumb operator
are acting as perturbation to the initial state. The expression for the direct diagram

can be written as

dir < (f|D]s)(s|Henc|r)(ralv|pg)(pq|v]ia)
hes S%q (6 —€s)(ei—€)(€i+ € —€p —€g) (4.114)

Define

pUT (3, a) = %q: ( (ejlflipz'iii) 5 (4.115)

Substituting the pair function p(i,a) defined in Eq. 4.115 in the direct diagram, we

get
ir _ 5~ (S1D1s)(s|Henclr) Ypq{ralvlpg) Cid
P1d = 2 ’ -l Te,) . (4.116)

asr

The pair function p(i,a) can also be used for the exchange counterpart of the above
direct diagram which is illustrated below. The expression for the exchange diagram

1s

exc __ <f|D‘S><S|Hch‘T><7‘a|’u‘qp><qp|v|a’i>
he= s%q (i —€s)(€i —€r)(€i +€a—€y—€g) (4.117)
Define |
pemc(i’a) — Z ‘qp><qp|v\az) (4118)

Pq ((€6i +€a— € — eq).
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Figure 4.12: MBPT diagrams contributing to Pair Correlation effects (Class I).
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Figure 4.13: Typical MBPT diagrams contributing to Pair Correlation effects
(Class II).

Substituting the pair function p(7, a) in the exchange diagram and using the symmetry

conditions for Couloumb operator given by

(gplv|ai) = (pq|v|ia),

we get
Plezc — Z <f|D|8><S|HPNC|T> qu(ra|v|qp>czpaq.
asr (62' - 68)(6’5 - 67‘)

In our case the initial state 7 is fixed and the orbital a runs over all the core orbitals.

(4.119)

So for the computation of the pair correlation diagram given in Fig. 4.12, we need
to compute the pair function p(i,a). By examining the diagrams given in Fig. 4.12,
we can see that diagrams numbered (1), (2), (3), (4), (7), (8), (9), (10) can be got
by computing p(7, a) first and then using it to compute both the direct and exchange
counterpart expressions. These pair functions for fixed 7 and a are first computed
and stored in a file. This reduces the time taken for the calculation of complete pair
correlation diagrams tremendously. The expressions for the diagrams which can be

computed using p(i,a) are

P=Y <f|D|8>(8|HPN(:!7‘2[S“;I(\:'|JT1)€; {rajv|gp)]CH
_ v SID]s)(alHpxc|b)[(sblv|pg) — (sblv|gp)]Cig
Py = a%q (€i —€s)(& + € — € — €)

: (4.120)

Y
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-y (f|D]r)(s|Henc|g)[{ralv|ps) — (ralv|sp)]C
arspq (ei - Gr)(éi +€q — € — ep) ’
(f|D[s){r|Henc|p)[{salv|rq) — (sa|v|gr)]Ci/
Fa= Mzqu (€; — €5)(€i + € — € — €) ’
P, = arzqu <f|HPNC|8><8|ZZ~|T—>[$L(|2MJ—CI>65 (ralv|gp)]CH, ’
_ (f[Hpnc|r){a|D|b)[{rblvIpg) — (rblvigp)|CH
= a%,q (e —€)ert e —e—€) ’
_ (f|Henc|r)(s|D|g)[{ralv|ps) — (ralv|sp)]Ci
B T el ta—g—a)
_ (f[Hpxc|r)(s|D|p)[(ralv|sq) — (ralv|gs)|Cid
Pro = agq (€ —€)(€f + € — €5 — €) ’
where v (paltlia

Pq _ . 4.121
v (€ + € — € — €g) ( )

Using similar arguments we can find that pair correlation diagrams (6), (12), (13),
(14), (15), (16), (17) and (18) drawn in Fig. 4.12 can be computed by knowing p( f, a)
defined as

p(fra) =3 pa){pa|v|fa) (4.122)

o7 (er+€a—6—¢€)
Examining Fig. 4.12 the diagram (5) in the similar way and writing down the direct

matrix elements we get

dir _ (f|D|s)(r|Hpncli)(sa|v|pg)(pq|v|ra)
= s%;a (i —€ )6 —€s)(€ + € — € —€g) (4.123)
Define |
#r (i a) = Y Ipq) (pq|v|ra)(r|Hexc|i) i

pqr ((62 + € — €p — 6(1)(61’ - 67") .
Substituting the pair function p(7, a) in the exchange diagram and using the symmetry

conditions for Couloumb operator given by

(gp|v|ar) = (pq|v|ra),

we get
D P4
P;zc — Z <f| |5><SCL|’U|qp)Cm . (4125)
srpqa (Ei - 6s)
Adding the direct and exchange counterparts we get
D - g
P5 — Z <f| |S>[<Sa|v|pq) <Sa'|lu‘qp>:|cza . (4.126)

srpga (ei - 65)
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Similar to p(i,a) one can compute p(f,a) which can be stored in memory for the
computation of diagram (11) (Fig. 4.12). Rest of the diagrams drawn in Fig. 4.12
require both the pair functions p(i,a) and p(f,a). The other class of diagrams in
Fig. 4.13 can also be computed the same way by defining a particular kind of pair

functions which are not taken for study in this thesis.

4.9 Computation of EF1PNC

In this section, we give the results of the computation of electric dipole transition
amplitude in Ba™ ion using MBPT. In the previous chapter we used numerical bound
orbitals as the single-particle basis for the computation of F1PNC and for MBPT
we use analytical bound and continuum orbitals got by solving DF equation using
Finite Basis Set Expansion (FBSE) method [19]. Before going into the results and
discussion related to Ba® E1PNC we first discuss about the generation of the basis
using FBSE method developed by our group. At the end of this section, we discuss
about a new method of generation of the basis in which we combine the analytical

orbitals with the numerical orbitals.

4.9.1 Relativistic Basis Generation for Atoms

Since we are dealing with large Z atoms, we consider Dirac Hamiltonian

2
Hp =Y lcaip; + (B = 1) = Voue(r)] + Y — (4.127)
i i>5 Tig

as the starting point for the self-consistent procedure where «; and f3; are Dirac matri-

ces, r; and p; are respectively, the position with respect to the nucleus and momentum

vectors of the 5™ electron. r;; represents the distance between electrons i and j. Since

wave function and energy cannot be solved exactly, we take the perturbation proce-

dure in which one starts with the eigenfunction ®, of an approximate Hamiltonian
H, satisfying the equation

Hy®q = Ey®,. (4.128)

For the zeroth-order Hamiltonian H,, V¥~! approximation has been found to be
most convenient for the study of atomic properties. The relativistic form of H, in

this approximation is given by

Ho = Y [eaip; + (B = 1) = Vie(rs) + VIV V)L (4.129)
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The matrix element of the V¥~ potential over single-particle states is given by

N—1

VY H3) = Y {Gial o)~ Gial—ag) }, (4130)

a=1 T12 T12

where the summation over a being taken over all the occupied states of the atom
except the valence orbital. In the case of singly ionised barium 6s is the valence
orbital and all other orbitals below it are considered core orbitals. This is equivalent
to considering Ba™* as the starting potential of our calculation. For the construction
of unperturbed and perturbed many electron states for the evaluation of MBPT
matrix elements, one needs to obtain the complete set of one-electron states which
are the solutions of the one-electron Dirac equation. The form of the single-particle

orbitals ¢, and the related details are explained in the previous chapter.

4.9.1.1 Numerical Basis Functions

The DF equation is solved numerically using the GRASP DF code [20]. The single-
particle wave functions and the respective energies of the core and the virtual orbitals
can be generated by doing a step by step procedure as given below with reference to
singly ionised barium. The core orbitals are first generated by considering a potential
from [1522s?.....5p%). This is then kept fixed and the valence orbital 6s is obtained
by considering a configuration |1s?2s?.....5p%6s), and virtual orbitals nr’s are ob-
tained by replacing the valence orbital by the i orbital resulting in a configuration
|1525%.....5p°nr) where n is the principal quantum number and 7 is the azimuthal
quantum number. Hence the core, valence and the virtual orbitals see a potential
from all the core electrons uniformly. Since the boundary conditions allows one to
get only bound orbitals from GRASP [20], we get a very good description of core and
virtual numerical bound orbitals defined on a grid. But for some atoms it has been
found out that there is a convergence problem when we solve the above equation for
high lying orbitals. Since any basis is not complete without the continuum, the above
method of generation of the basis should be supplemented by another method where
one can solve for both bound and continuum orbitals. For getting both bound and
continuum orbitals we have used the FBSE method [19] which is described below.

4.9.1.2 Analytical Basis Functions

The DF equation in this case is solved through a pseudo eigenvalue [19] approach
where basis functions are defined on grid and one- and two-electron radial integrals are
evaluated numerically. Like the traditional analytical basis set expansion approach,
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the large and small components of the radial wave functions are expressed as linear

combinations of basis functions, i.e.,
chpgnp (4.131)

and

Qui(r) = 3_ Cpgiep(r), (4.132)

where the summation index p runs over the number of basis function N, g% (r) and
g,fp(r) are basis functions belonging to the large and small components, respectively,
and C,fp and C,fp are the corresponding expansion coefficients. Though any basis
functions can be used, here Gaussian-Type Orbitals (GTOs) that have the following
form for the large component is used:

Gupiry = NETe™ 0 (4.133)

with
o, = Bl (4.134)

where o, [ are user defined constants, n, specifies the orbital symmetry (1 for s, 2
for p, etc.,) and le is the normalisation factor for the large component. The small
component part of the basis function is obtained by imposing the kinetic balance and
has the form

d K
95,(r) = NS (o + D)gb (), (1135)
where
S — ap 2 _
N, \/an — [4(k? 4+ Kk +ny) — 1]. (4.136)

The kinetic balance condition allows us to use the same exponents for the large and
small components which reduces the computational costs. To obtain a basis which
is accurate at small and large radial distances one adjusts the parameters N, oy and
B to get the bound orbitals as close to the numerical orbitals obtained previously.
As a first-order check the convergence of analytical DF energy with the numerical
DF energy for varying N, o and (3 is performed. But in order to check the validity
of the wave functions one needs to check the accuracy of the radial distribution of
the small and large components for each orbitals using these exponents. It should
be noted that Mark [21] reported relativistic basis sets for H through Ne obtained
by least-squares fitting to numerical DF wave functions. We have tried these checks
to find out the accuracy of the wave functions at each of the grid points for singly
ionised barium and calcium. This kind of exponent wherein we have the same « and
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B for all symmetries is referred to be the Universal Basis (UB) generation as tried by
various groups [22, 23]. We can consider two other categories, one in which we have
same « and [ for all the symmetries but with more parameters like v and ¢ as given
by

a4 = a1+ (%), (4.137)
This leads to well tempered (WT) condition [24, 25]. In another approach one makes
use of only two parameters just as in UB but different for different symmetry which
is referred to as Even Tempered (ET) condition.Large basis sets can be efficiently
generated by utilising the concept of an ET Gaussian basis set [26]. For the present
calculation, we have made use of UB condition. By using numerical bound core
orbitals [20] in this approach for the computation of the one and two electron integrals,
the N(N + 1)/2 operations are reduced to N, operations where N is the number of
basis and N, is the number of core orbitals.

The numerical DF energy obtained from the GRASP code for Ca* is —679.5206070
Hartrees. The analytical DF energy got for o = 0.00725 and 8 = 2.73 for a basis
30s25p25d20 f is given by -679.1363561 Hartrees. The numerical and analytical bound
single-particle energies for the particular basis set for which better convergence was
obtained is tabulated in Table 4.1. The analytical continuum orbital energies are
tabulated in Table 4.2. As a check for the wave functions at each grid point we have
plotted the absolute difference between the numerical and analytical wave function
for the large and small components for few of the orbitals from each symmetry. Ex-
amining the plots, one can come to a conclusion that for the particular parameter,
the analytical wave functions near the nuclear region (small radial distances) shows
better agreement with the numerical wave functions compared to the agreement at
large radial distances for both large and small components of the wave function. Also
the parameters for each symmetry is found to be giving different fits. Hence an even
tempered condition with a and S different for each symmetry will be most appropriate
for getting very good single-particle wave functions.

In this case, we adjusted the parameters like N,  and [ for generating the basis.
It is then checked with the single-particle orbital energies, radial matrix elements and
also the overlap of the analytical and numerical wave functions.

Same checks were performed on the single-particle wave function for Ba™t ion
taking @ = 0.00725 and # = 2.73. With a basis 32528p25d20 f15¢g10h the analytical
DF energy is found to be —8135.8883754 Hartrees as compared to the numerical DF
energy obtained from GRASP as —8135.1429542 Hartrees. The bound and continuum
single-particle energies of Bat are given in Tables 4.3 and 4.4.

The comparisons of the wave functions at each grid points as shown in Figs. 4.14
and 4.15 shows very clearly that we need ET exponents to get basis matching at each
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Table 4.1: Comparison of analytical and numerical single-particle orbital energies for
Cat.

orbital analytical numerical orbital analytical numerical
1s —150.74645 —150.71745 3dx  —0.33109 —0.33087
2s —17.52251  —17.51578 4dx  —0.16853 —0.16874
3s —2.79829 —2.79675
4s —0.41666 —0.41663 3d —0.33098 —0.307596
4d —0.16846 —0.168664
2px  —14.28327  —14.28280
3px  —1.88758 —1.87185 4fx —0.125055  —0.12517
4px  —0.30991 —0.30909 5fx —0.07958 —0.08014
2p —14.14477  —14.14362 4f —0.1250552 —0.12518
3p —1.87219 —1.87185 of —0.079580  —0.08014
4p —0.30901 —0.30909

point for different symmetry. This is a laborious process, which mainly relies on the
accuracy of the numerical orbitals. This resulted in a new idea of completely replacing
all the bound orbitals which can be solved using the GRASP code and then using
the continuum from the analytical approach. But it was found out that the bound
numerical orbitals were not orthogonal to the analytical continuum orbitals, which in
principle can be orthogonalised using some known orthogonalisation procedure. This
new method of generation of basis wherein we have part numerical orbitals and part

analytical orbitals is described in the next section.

4.9.1.3 Partly Analytical and Partly Numerical Basis Functions

For a system with n. closed shell occupied orbitals, we generate Gaussian basis using
DF equations for closed shell core by expanding the single-particle basis in terms of

Gaussian as

|¢i) = Zk:cz'k\Gk>
and this satisfy the equation
ti) + ;<¢c\v|¢0>|¢i> — {(@elv|i)|de) = €l di)- (4.138)
This produces occupied and unoccupied orbitals as given below

{¢1: ¢2: B ¢nc, ¢nc—|—1, ) ¢NB}5
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Figure 4.14: Deviation of the GRASP and Gaussian single-particle wave function

(large (P) and small (Q) components)for Ca™.
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Figure 4.15: Deviation of the GRASP and Gaussian single-particle wave function

(large (P) and small (Q) components)for Ba*.
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Table 4.2: Analytical continuum single-particle orbital energies for Ca™.

orbital orbital energy || orbital orbital energy || orbital orbital energy
7s 0.10574 p 0.11249 Tt 0.24128
8s 1.81710 8p 1.50596 8fx 1.12414
9s 11.31845 9p 7.92705 9fx  3.51412
Tpx  0.11046 7dx  0.29286 7t 0.24125
8px  1.49416 8dx  1.59409 8f 1.12398
9px  7.87450 9dx  5.73838 9f 3.51451

where NB is the total number of basis as combined for all symmetry. In this present
method we obtain the occupied and the low lying unoccupied orbitals of each sym-
metry as numerical orbitals generated from multi configuration Dirac Fock GRASP

[20] code. The numerical orbitals are denoted as

{wla 1/121 ey wnc’ i) wn}a

where 7 is the number of numerical (GRASP) orbitals used. Since part of the orbitals
are numerical and part are analytical obtained using two different methods the orbitals
will not be orthogonal. So one obtains new unoccupied orbitals {¥,1,...,¥np} by
the Schmidt orthogonalisation procedure defined as

n+k—1

W]n—Hc) = |¢n—|—k> - Z ‘wm><wm|¢n+k>a (4139)

m=1
where k£ goes from 1 to NB —n. By this procedure the new virtual orbitals are made
orthogonal to the numerical orbitals and among each other. It is not possible to use
this basis as such since the new virtual orbitals are not got by diagonalisation of DF
Hamiltonian and hence not Hartree-Fock (HF) orbitals. One can use non-HF orbitals
for further calculations by proper use of the potential seen by them. But HF orbitals
are more preferred due to the reduction of Fock potential to single-particle energies
on acting on same symmetry orbitals.

Hence, in order to generate HF orbitals from the non-HF but Schmidt orthogo-
nalised orbitals the Hamiltonian given in Eq. 4.129 is diagonalised only in the un-
occupied space {{n1,.....,¢0np}. Here, the unoccupied orbitals {4, ,,...,9/yz} are
expressed as a linear combination of the Schmidt orthogonalised unoccupied orbitals
as given below.

NB
k) = Y brlt)

I=n+1
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Table 4.3: Comparison of analytical and numerical single-particle orbital energies for
Bat.

orbital analytical numerical orbital analytical numerical
1s —1385.03575 —1384.27674 3dx  —30.77503 —30.73944
2s —223.26693  —223.01882 4dx  —4.35773  —4.35308
3s —49.19932 —49.09236 5dx  —0.31052  —0.31046
4s —10.72994 —10.69610 6dx  —0.15137  —0.15157
5s —2.03962 —2.03365
6s —0.34383 —0.34327 3d —30.19184 —30.15348
. 4d —4.25719  —4.25210
2px  —209.58638  —209.52994 5d —0.30837  —0.30830
3px  —43.43683 —43.39804 6d —0.15059  —0.15078
dpx  —8.54028 —8.53916
bpx  —1.38712 —1.38773 4f —0.12853  —0.12859
6px  —0.26077 —0.26092 5f —0.08308 —0.06612
2p —195.52599  —195.45214 bgx  —0.07974  —0.08001
3p —40.65130 —40.60875 6gx  —0.05192  —0.0556
4p —7.95588 —17.95320 .
5p —1.30294 —1.30310 og —-0.07974  —0.08001
6p —0.25444 —0.25458 6g —0.05192  —0.05557

Table 4.4: Analytical continuum single-particle orbital energies for Ba*.

orbital orbital energy || orbital orbital energy | orbital orbital energy
9s 0.30213 11p  25.41013 Tt 0.05494
10s  3.73696 8fx  0.34993
11s  37.36571 9dx  0.58096
10dx  0.05655 7t 0.05655
9px  0.29468 11dx  18.12937 8f 0.35221
10px  2.98004
11px  23.34434 9d 0.59368 Tgx  0.04180
10d  3.50602 8gx  0.41192
9p 0.32929 11d  18.43325 7g 0.041787
10p  3.23349 8g 0.41169
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The coeflicients by; got using diagonalisation is used for the generation of the new
unoccupied HF single-particle orbitals which are orthogonal to the numerical orbitals
and to themselves. This method has been extended to the open shell atoms by starting
with an open shell Gaussian code developed by our group and then using a potential
which has a closed part and and an open shell part. An elaborate checking of the
wave functions by computing Excitation Energy (EE) and Ionisation Potential (IP)

for Ba™ and lifetimes for Ca* and Ba™ using CCM are explained in the next chapter.

4.9.2 Zeroth-Order Contribution to NSI F1PNC

We have used the new basis approach to generate basis for Ba™. The numerical bound
orbitals are generated using GRASP [20] and the analytical basis using the FBSE [19]
method. For the generation of the analytical basis we have used oy = 0.00725 and
B = 2.73 and the single-particle orbital energies are tabulated in Table 4.3. The
number of Gaussian type orbitals used in our calculation for orbitals of different
symmetry is given in Table 4.5. We take the core and some of the low lying virtual

orbitals as numerical orbitals and these are tabulated in Table 4.6. As discussed in

Table 4.5: Number of Gaussian basis functions used for the computation of orbitals

of each symmetry for Ba™.

S1/2 P2 P3j2 dajp dspp fspp fre gre 9oj2 hese by
32 28 28 25 25 20 20 15 15 10 10

second chapter, due to the presence of the nuclear density, the PNC matrix element
is non-zero only when they are connected between single-particle orbitals s and p1s.
If the bound orbital lie deep in the core it will have larger overlap inside the nucleus
and hence an enhancement of the PNC matrix elements. In the case of continuum
orbitals due to their high kinetic energy, the matrix element between a continuum and
a bound orbital will also get enhanced due to its overlap inside the nucleus. But the
large energy denominator suppresses the contribution to the E1PNC'. In the case
of singly ionised barium, we look for electric dipole transition amplitude between
5p%65)1/2 and |5p®5d)s/2 connected through NSI PNC Hamiltonian. The CSFs which
connect the above two states will have to be opposite in parity and also on reduction
from CSF's to single-particle level will have to have the matrix element for PNC to
be between s and p;/;. The expression for the lowest order E1PNC' in terms of
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Table 4.6: Orbital generation.

Symmetry No.of orbitals in Numerical orbitals used Gaussian orbitals
- each symmetry in the calculation used in the calculation
S 32 1s,2s,...8s 9s,....32s
p(1/2) 28 2p,3p,...8p 9p,....29p
p(3/2) 28 2p,3p,...8p 9p,....29p
d(3/2) 25 3d,4d,...7d 8d,....27d
d(5/2) 25 3d,4d,...7d 8d,....27d
f(5/2) 20 4f 5f 6f,....23f
f(7/2) 20 4f 5f 6f,....23f
g(7/2) 15 - 5g,....19g
g(9/2) 15 - 5g,....19g
h(9/2) 10 - 6h,....15f
h(11/2) 10 - 6h,....15f

single-particle orbitals and energies will be

b

5 (5ds3/2| D|npyj2) (np1 /2| HpRc|651/2) s (5ds/2| HERG [np1j2) (np1 /2| D|[651/2)

n (6651/2 - 6np1/2) (€5d3/2 - 6”1"1/2)

(4.140)
where the first term represents PNC admixtures into the initial state and the sec-
ond term admixtures into the final state. Dipole operator is a rank 1 tensor which
scales linearly on r and the selection rule for the z component is AJ = 0,41 and
AM = 0. The zeroth-order contribution from the bound virtual p;/, orbitals are
tabulated in Table 4.7. From the Table 4.7 it is clear that the core 5px and the
lowest virtual 6px orbital contributes the maximum to the lowest order E1PNC cal-
culation. Even though the PNC matrix elements between the core px and 6s are
larger the small dipole matrix element and the large energy denominator makes the
contribution smaller. There is a sign change in the total E1PNC due to the change
in the sign of dipole matrix element where we have the intermediate state as 5px For
the 6px the sign again changes but due to the denominator becoming negative and
hence the contribution becomes additive. For the other bound virtual orbitals the
dipole as well as the PNC matrix elements shows a fall and this with the increasing
energy difference makes the whole contribution smaller. From the total contribution,
one can deduce that the contribution to E1PNC from core orbitals is ~ 13% out of

which maximum contribution comes from 5px orbital. The bound virtuals contribute
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Table 4.7: Lowest order contribution to E1PNC from bound core and virtual orbitals.
The PNC matrix elements are multiplied by the factor f\—g(—N ). E1IPNC is given
in the units ieag(—Qw/N) x 10 '

npx  (5d|Dinpx) (npxHpnc|6s) € — €npx E1PNC;  Total
2px  0.002192 4.824848 209.186672 —0.000051 —0.00005
3px  0.007098 2.284567 43.0564771  —0.000377 —0.00043
4px  0.003044 1.038440 8.195888 —0.000386 —0.00081
opx —0.792167 0.377718 1.044456 0.286478 0.28566
6px 1.529071 0.100839 —0.082351 1.872333 2.15800
Tpx 0.143415 0.063114 —0.205488  0.044049 2.20205
8px 0.079867 0.044501 —0.257395 0.013808 2.21586

to the rest with the 6px contributing to ~ 97% compared to the contribution from all
the bound virtual orbitals. The contribution of the bound virtual orbitals to E1PNC

with respect to the intermediate px orbitals is represented in Fig. 4.16.

-15

05 -

Contribution to EIPNC NSI

0

2p*  3p* 4p* 5p* 6p* 7p* 8p*

0 2 4 6
single particle orbitals

Figure 4.16: Contribution of E1PNC with respect to the intermediate bound single-

particle orbitals designated as npx.

The zeroth-order contribution from the continuum px orbitals are tabulated in
Table 4.8. Examining the Table 4.8 and comparing with the Table 4.7, we find
that the contribution from continuum 9px is larger than the contribution from bound
Tpx orbital. This very well clarifies the importance of the continuum orbitals in the
E1PNC calculation. Comparing with the total contribution coming from continuum
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Table 4.8: Lowest order contribution to EF1PNC from continuum virtual orbitals.
The PNC matrix elements are multiplied by the factor

in the units ieag(—Qw /N) x 107! Notation: (-x)=1077.

2v2

9r (~N). E1PNC is given

npx  (bd|D|npx) (npx|Hpnc|6s) € — €npx E1PNC; Total

9px —0.192071 —0.241880 —0.642638 0.722930(—1) 0.722930(—1)
10px  —0.545593(—1) —0.658162 —0.333825(1) 0.107568(—1)  0.830498(—1)
11px 0.911818(—2)  0.195205(1)  —0.238369(2) 0.746706(—3)  0.837965(—1)
12px  0.320675(—3)  —0.493804(1) —0.158680(3) —0.102593(—4) 0.837862(—1)
13px  —0.364446(—3) —0.113059(2) —0.721973(3) 0.570714(=5)  0.837920(—1)
ldpx  0.143602(—3)  —0.258440(2) —0.245373(4) —0.151249(—5)  0.837904(—1)
15pk  0.709504(—4)  0.647487(2)  —0.681122(4) 0.674467(—6)  0.837911(—1)
16px  —0.352165(—4) 0.146320(3)  —0.160907(5) —0.320240(—6)  0.837908(—1)
17px  —0.180975(—4) —0.343266(3) —0.335240(5) 0.185308(—6)  0.837910(—1)
18px  0.949640(—5)  —0.707185(3)  —0.639890(5) —0.104951(—6)  0.837909(—1)
19px  0.507861(—5)  0.153835(4)  —0.115480(6) 0.676538(—7)  0.837910(—1)
20px  —0.275052(—5) 0.299262(4)  —0.201385(6) —0.408732(—7)  0.837909(—1)
21px  —0.150204(—5) —0.616310(4)  —0.344191(6) 0.268957(—7)  0.837909(—1)
22px  0.823969(—6)  —0.112476(5) —0.581989(6) —0.159241(—7)  0.837910(—1)
23px  —0.452519(—6) —0.211546(5) —0.980470(6) 0.976354(—8)  0.837910(—1)
2px  —0.247704(—6) 0.319629(5)  —0.165608(7) —0.478075(—8)  0.837909(—1)
2pk  —0.134317(—6) —0.392045(5)  —0.281494(7) 0.187497(—8)  0.837909(—1)
2px  0.717006(—7)  —0.157073(4)  —0.482253(7) —0.233533(—10) 0.837909(—1)
27px  —0.382509(—7) 0.650709(4)  —0.827590(7) —0.300755(—10) 0.837909(—1)
28px  0.205134(—7)  —0.233139(4)  —0.141729(8) —0.337438(—11) 0.837909(—1)
20px  0.108042(—7)  —0.762522(3)  —0.246153(8) —0.334691(—12) 0.837909(—1)
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Figure 4.17: Contribution of F1PNC' with respect to the intermediate continuum
single-particle orbitals designated as npx.

orbitals starting from 9px to 29px, 99% of contribution to E1PNC comes from 9px
and 10px and the rest contributing to minimum. Hence the total contribution from
lowest order to E1PNC is 2.299646 x 10 'ieaoQw/(—N) with 96.36% coming from
bound orbitals and the rest from the continuum orbitals. The complex conjugate term
connecting the initial state 6s through dipole to the intermediate px and then through
the PNC to the final state is zero due to PNC matrix element becoming zero due to
the final state being j=3/2. The contribution to E1PNC from continuum p* orbitals
are represented in Fig. 4.17.

4.9.3 CPHF/PNCHF Contribution to NSI E1PNC

Due to HDR% operator being a tensor of rank 0 and odd under parity, angular momen-
tum considerations puts the individual direct terms and the lowest order energy e(!)
to be zero in the PNCHF Eq. 4.43. This is discussed elaborately by Sandar [27]. The
feature of the PNCHF equations is the presence of potential due to the admixture in
the core orbitals which can be called the PNC core polarisation. The PNCHF poten-
tial is also equivalent to including RPA corrections to Hpyc [28]. This approach has
been used by several groups and for a historical perspective one is referred to Blundell
et al. [29]. The first complete calculations were done by members of the Novosibirsk
group [30, 31]. This method applied to caesium atom by different groups has been
checked extensively and it shows that PNCHF leads to 25% correlation correction.
This method is applied to singly ionised barium and the results of first-order and all
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order effects due to CPHF are tabulated in Table 4.9.

Table 4.9: Contributions from zeroth-order, first-order and all order CPHF'.

(5d|D[6s*NC)  (5d"NC|D|6s) Total

Zeroth-order core 0.285665 0.00 0.285665

virtual 2.013981 0.00 2.013981
Total 2.299646 0.00 2.299646
CPHF/PNCHF
First-order core 0.105404 0.005555 0.110958
in Couloumb virtual 0.332454 —0.305494 0.026959
Total 0.437858 —0.299939 0.137919
All order core 0.149187 0.009892 0.159079
in Couloumb virtual 0.419800 —0.492354 —0.072554
Total 0.568987 —0.482462 0.086525
Total CPHF
(all orders) 2.868633 —0.482462 2.386172

4.9.4 RPA Contribution to NSI F1PNC

A detailed description of the RPA with the classical discussion is given by Sandars [32].
When an atom is placed in a static electric field, interaction between the electrons and
the potential due to the field polarises the atom. This leads to an induced potential
which tends to cancel the potential due to an external field. Hence this effect is often
called the shielding of the electric field. This in other words is also called the RPA
correction to the dipole operator. In comparison with CPHF where we had PNC as
the perturbation and Dipole as an operator, here we consider Dipole as a kind of
perturbation and PNC is taken as an operator which connects the perturbed wave

functions. The PNC transition element can be evaluated as
E1PNC = (f|Hpxclpi ) + (pj [ Hpxcli). (4.141)

The same effect can be calculated using Time Dependent Hartree-Fock (TDHF)
method [33, 34] with PNC added and one can show that it is equivalent to the former
method with additional approximations [32]. The zeroth-order will be the same as

described above and to avoid double counting should be omitted. The first-order and
all order effects due to RPA are tabulated in Table 4.10.
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Table 4.10: Contributions from first-order and all order RPA.

(5d|HYRE|65T)  (5d~|HDRL|6s) Total
RPA/TDHF
First-order core 0.00 —0.093587 —0.093587
in Couloumb | virtual 0.00 —0.003835 —0.003835
Total 0.00 —0.097421 —0.097421
All order core 0.00 —0.115389 —0.115389
in Couloumb | virtual 0.00 0.104712 0.104712
Total 0.00 —0.010676 —0.010676
Total RPA
(all orders) 0.00 —0.010676 —0.010676

4.9.5 CPHF-RPA Contribution to NSI F1PNC

One can consider parity admixtures also in the electric dipole excitations which leads
to double perturbation analysis wherein we consider both the dipole and PNC as
perturbations. Since the contribution due to such terms are very less as shown for
Cs by Martensson-Pendril [14], we have done only a first-order calculation for CPHF-
RPA term. Here the potential is perturbed due to the simultaneous action of PNC
and the electric field of the photon. Hence E1PNC can be evaluated either as the
overlap between (5d| and the right-hand side of the equation for [6sPNC) j.e.

E1PNC = (5d|D + v |[i*N) + (5d| Hp%e + vPNClit) + (5d[vPNC|6s)  (4.142)
or as an overlap between |6s) and the right hand side of the equation for {f~FNC|.
Only the exchange terms contribute due to angular-momentum restrictions when

summing over closed shells. The first-order contribution to the above expression is
tabulated in Table 4.11.

Table 4.11: Contributions from first-order CPHF-RPA.

core contribution | virtual contribution Total

First-order in Couloumb —0.001847 —0.009533 —0.011380
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Table 4.12: Contribution to NSI E1PNC from pair correlation effects.

Pair | Pair correlation effects | Contribution Total
p(i,a) Bruckner effect 0.145382
Structural Radiation 0.049088
others —0.010496 0.18397
o(f,a) Bruckner effect —0.297338
Structural Radiation —0.046477
others 0.078664 —0.26515
Total —0.08118

4.9.6 Pair Correlation Contribution to NSI F1PNC

As discussed in the formulation for the evaluation of E1PNC® terms, we have taken
only diagrams designated as class I for the computation. These diagrams are given in
Fig. 4.12. As a first step the pairs p(i,a), p(f,a) and p(i,a) are computed and stored
in a file. In the case of singly ionised barium, p(f,a) is zero due to the restriction
of PNC matrix element becoming zero for j = 3/2. Examining the diagrams in Fig.
4.12 we can find out that, using p(i,a) (8 direct + 8 exchange), p(f,a) (8 direct
+ 8 exchange) and p(i,a) (1 direct + 1 exchange) can be computed. Using both
p(i,a) and p(f,a) one can compute the rest of the diagrams which are designated by
numbers from 19-30. These diagrams are also not included in the present calculation.
Contribution from pair correlation diagrams got using p(i,a), p(f,a) and using a
restricted basis given by 11s10p9d9f are tabulated in Table 4.12. For the above
calculation we have taken core correlation from all the core orbitals which in this case
is till 5p°.

The contribution from p(z, a) is found to diverge due to the denominator becoming
small and at the same time the numerator which has the two Couloumb matrix

elements becoming large. The expression for the diagram (5) in Fig. 4.12 is given by

3 (f|D|s)(salv|pg)(pg|v|ra){r|PNC]i)

spqar (61' - 67’)(62' - 68)(6i t € — € — 6‘1) '

(4.143)

Here 7 and f are fixed to be 6s1/o and 5d3/5. Since PNC can connect only s;/, and
P12 symmetries, r will be p;/5. The Couloumb vertex preserves symmetry, hence
s will again be pijo. So in the denominator we get (egs,,, — €6p,/,)° Which is ~
0.006 a.u. This on multiplication with (ess + €, — €, — €,) is of the order 1073, The
Couloumb matrix elements (65;/25d5/2|v|6p1/25p3/2) in the numerator is of the order
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107! due to the close lying nature of the orbitals considered. Hence the above term
diverges leading to the total contribution larger than the zeroth-order. For such
atomic systems with very close lying levels one needs to avail different theories like
multi-reference perturbation theory or a theory combined with CI and MBPT wherein
one takes the close lying ones using CI and the others through MBPT. In this case,
contribution from core-valence correlation involving 5p and 6s which is responsible
for the divergence is taken out from MBPT(5) diagram, and the effect is computed to
all order using Coupled Electron Pair Approximation CEPA. The contribution from
all the other core states till 5s are obtained using first-order MBPT and is found to
be 0.295 ieag(—Qw/N) x 107'. A very detailed study of CEPA is given in the
thesis by Angom [36]. The contribution from p(f,a) will be zero due to the property
of PNC operator.

4.10 Coupled Electron Pair Approximation

Here for computation Epstein-Nesbet(EN) partitioning [6] is used. Defining
H = Hy+ Vs + AHpnc (4.144)
the unperturbed Hamiltonian and the residual interaction takes the form
Hy = ) (®:H[D;)[ ;)P

Ves = D (D[ H|D;)|®:)(Dy].
177
In the similar manner Hpync can be written as
Hpne = ) {(®i|Henc|®;)| i) (D], (4.145)
tj
where i € P,j € Q and ®; denotes the opposite parity to ®;. From RSPT we know
Q|®g) = |¥y). This is equal to

o) = [®o) + D) + ., (4.146)
which in terms of unperturbed CSF's can be written as

(W) = @) + Y CV|@n) + > CP|®,). (4.147)
n#0 n#0
Combining in terms of the order of perturbation the above equation reduces to

[To) = 3 O 18:)(Do| Do), (4.148)
n,17#0
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where n refers to the order of perturbation and i refers to the index of the CSF.

Below we analyse the MBPT(5) diagram. PNC perturbation acting on the initial

state can be mathematically represented as Q(-%)|5p%6s) where the first and second
index in the superscript defines the order of PNC and Couloumb perturbation. The

wave operator can be obtained from Bloch equation as

dy). (4.149)

Q(l’o)f): RHchp = ZC}E}’O)
k

Since PNC is odd under parity and the initial CSF is |5p®6s) the resulting CSF will
be of different parity and this case it is |5p%kp). Hence

(5p°kp| Hpxc|5p%6s)

Ci|5p°6s) = RHpnc P =
H ) e (Espses — Esporp)

(4.150)

The next perturbation is Couloumb which is restricted to have double excitation with

one electron from 6s and the other from 5p. Physically it can be written as

QWY 5p%kp) — |5p°kpk's)k' # 6. (4.151)
Using Bloch equation we can write

QY = RVOMO 4 RHpNcQOY, (4.152)

Here the second term will be neglected since at present we consider only pair corre-
lation diagrams of the kind like MBPT(5). We define the @ space to be

Q=>_15p°pqa)(5p°py| (4.153)
pq

and hence the resolvent operator

5 5
R=Y [50°Pa) (5p°pa| (4.154)

pq (E5p668 - E5p5pq)

Since Q space is restricted to the type give above and only the specific diagram is taken
into account, the unlinked terms will not arise in the first term. Hence renormalisation
terms which cancels these terms are not needed for the above calculation. Also it can
be shown that due to EN partitioning scheme the renormalisation terms goes to zero

by itself. Hence,

QtYPp = RvO®D|5p%s)
3 5p°pq) (5p°pq|v|5p°kp) Cy,
p (5p56s — 5p°pq)
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The above vertex is iterated to all order using the Bloch equation given by
QUM p = RyQn-p, (4.155)
The next step is to define a particular Couloumb vertex and resolvent operator given
by
V= [i)ilv]5) (| = 15p°r)(5p°pa| (5p°r |v]5p°pg) (4.156)
ij
and

15p°7) (5p°7 |

R = .
T (E5p665 - E5p6r)

(4.157)
The Bloch equation to be solved is
QUnH p = Ryt (4.158)

Once QU+ P is found out, we can get

(| DD 0;)

F1PNC = .
VW0 ([ )

(4.159)

In this case, we have taken a basis consisting of seven symmetries viz., s, px, p, dx, d,
f* and f by restricting the virtual single-particle orbitals below 100 a.u., The basis
which we have considered is given by 11s10p9d9f. Using the above basis the possible
singley and doubley excited CSFs are |5p®6s)., |5p%5d)., [5p®kp), (where k =6, 7, ...,
11) and |5p°kpk’ f), (where k =6, 7, ..., 11 and k' = 4, 5, ..., 12), |5p°ksk'd), (where
k=6,7, .., 11 and k' = 5, 6, ..., 11), |5p°kpk'p), (where k and k' = 6, 7, ..., 11),
|5p°ksk’s), (where k and k' = 6, 7, ..., 11), |5p°kdk'd), (where k and k' = 5, 6, ..., 11)
and |5p°kfk'f), (where k and k' = 4, 5, ..., 12). Comparing the coefficients of the
singly excited determinants with Hpnc, we find that the CSF |5p®6p) contributes the
most. Similarly, for doubly excited CSFs with Couloumb interaction to all order the
coefficient is larger for the CSF given by [5p°5d3,5d5,,). The application of one order
in Couloumb interaction leads to singly excited CSFs of the kind given by |5p°kp),
where £ = 6 has the maximum contribution which is connected to the final state CSF
through dipole. The all order contribution to NSI F1PNC' taking double excitations
from 5p and 6s is found to be —0.39899 ieag(—Qw/N) x 10 ''. Hence adding the
contribution from the other core orbitals 1s, 2s, 2p...5s with the above we get the NSI
FE1PNC to be —0.10399 ieay(—Qw/N) x 107L
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Table 4.13: Total contribution to NSI EF1PNC from various effects in units of
10_11iea0(—QW/N).

Different effects Contribution  Total
Zeroth-order 2.29965 2.29965
CPHF (all order) 0.08653 2.38617
RPA (all order) —0.01068 2.37550
CPHF-RPA ((first-order) —0.01138  2.36412
Pair correlation(first-order)(p(7, a)

p(f,a)) —0.08118  2.28294
Pair correlation(p(i,a)(upto 5s core first

order and 5p all order using CEPA) —0.10399  2.17894

4.11 Total Contribution to NSI F1PNC through
MBPT

The total contribution to E1PNC from different effects are given in Table 4.13. All
the numbers are given in the units 107 '"ieay(—Qw/N). By comparing the contri-
butions from various effects it is clear that CPHF contributes ~ 3.8% with RPA
and CPHF-RPA effect < 1%. The contribution from few of the pair correlation di-
agrams is ~ 3%. In case of CPHF, the PNC perturbed initial state and final state
contributions are 0.568987 10~ ieay(—Qw /N) and —0.482462 10~ ieaq(—Qw /N)
respectively leading to the total contribution to all order CPHF to be

0.086525 10~ " ieay(—Qw/N). Whereas in the case of RPA, the Dipole perturbed ini-
tial state is zero for the lowest and all order due to the presence of PNC in the final ver-
tex. The contribution from the Dipole perturbed final state to RPA is ~ 0.5%. For Cs
CPHF results contributes to the 25% whereas for Ba* it is ~ 4%. Since the contribu-
tion from CPHF-RPA in the case of Cs is small we did only a first-order calculation of
the above mentioned effect and it contributes ~ 0.5% to the total E1IPNC. The total
contribution to NSI E1PNC' through pair correlation effects from p(i,a) and p(f, a)
are given by 0.081 107 ''ieaq(—Qw/N) which in comparison with the other effects
is ~ 3%. Dzuba et al. [35] have computed the NSI E1PNC using the mixed parity
approach in which fitted Bruckner orbitals are used as the starting point of the calcula-
tion. In this approach, the CPHF, RPA and CPHF-RPA effects are done to all orders
and the total contribution to NSI E1PNC is found to be 2.17 x 10~ "ieao(—Qw /N).

The contribution from p(7, a) by considering the contribution from the core except 5p
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using lowest order is found to be 0.295 x 10~''ieao(—Qw /N). The contribution from
5p using CEPA is ~ —0.399 x 107 jeag(—Qw/N). Hence the total contribution
from p(i,a) is ~ —0.104 x 10~4eao(—Qw /N). The contribution to our all order
CPHF, RPA, first-order CPHF-RPA and pair correlation diagrams are found to be
2.18 x 107'eag(—Qw/N). The results of our calculations on E1PNC NSI agrees
with the calculation by Dzuba et al. [35].
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Chapter 5

Coupled Cluster Method (CCM)
applied to Parity

Non-Conservation in Atoms

5.1 Coupled Cluster Method: An Introduction

5.1.1 General Considerations

We examined and applied Configuration Interaction (CI) [1] and Many-Body Per-
turbation Theory (MBPT) [2] to compute atomic properties like electric dipole and
PNC matrix elements in previous chapters. These approaches are rather different
in terms of the assumptions underlying their practical use, and we have identified
their drawbacks for the computation of various properties. The CI method focuses
on configurations of modest degree of excitations relative to a reference state. Such
configurations enable a correlated description of the particles involved with the re-
maining particles being restricted to their distributions in the reference configuration.
For example, a double excitation CI contains sets of configurations that provide a cor-
related wave function for the corresponding particle pair. Thus a CI with all possible
double excitation yields a wave function containing effects that arise from the correla-
tion of one pair of particle at a time. In other words, a double excitation CI contains
no terms describing the simultaneous correlations of two independent pairs. The lack
of size-extensivity in a truncated CI can be traced to the omission of configurations
describing the simultaneous correlations of two independent pairs [1]. Also the num-

112
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ber of pairs of particles proliferate rapidly as one considers systems of larger size.
However, for systems of smaller size, taking all possible excitations into account is
realisable in state of the art computers, which leads to an exact solution.

The MBPT approach avoids the size-inextensivity problem of the CI method, but
at the cost of an overwhelming proliferation of terms. There are different methods
by which some of these terms can be grouped together and evaluated to all orders.
Individual terms in perturbation theory correspond to fragmented contributions to
the correlation phenomenon, and even to describe the correlation of a single pair
of particles higher order perturbation terms may be necessary. An important pos-
itive feature of MBPT is that it is size-extensive via the Linked Cluster Theorem
(LCT). The disconnected diagrams representing disjoint excitations are cancelled in
the MBPT formulation through LCT.

The CCM is based on an expansion scheme that satisfies the twin criteria of
physical appropriateness or validity and practical realisability. It is well known that
in many-electronic structure calculations the dominant correlation effects are from
the interactions of individual pairs of electrons, and that other electrons influence
this interaction mainly in an average sense. This pairwise interaction is not small.
Moreover in a many-electron problem, terms involving the simultaneous description of
two or more such pairs occur, and their combined effect is not small relative to terms
describing single electron pairs. This clearly points to the need for an expansion
scheme which depends on a physically relevant parameter of the system which in
this case is the degree of excitation of particles whose detailed correlation we are
interested in. Once the size of the “cluster” of such particles has been specified,
the wave function must be permitted to include arbitrary numbers of such correlated
clusters. Expansions of this type may be called cluster expansions. In this chapter we
will be discussing in detail the properties of the cluster operator and the application
of CCM to closed and open-shell atoms with the aim of finding the Electric Dipole

Transition amplitude induced by PNC for singly ionised barium.

5.1.2 Form of Coupled Cluster Wave Function

Consider the problem of obtaining the ground-state wave function |¥) and energy E
of a system of NV interacting electrons described by the Hamiltonian operator H. In

other words, we wish to solve the time-independent Schrodinger equation
H|¥) = E|U). (5.1)

If the electrons in a many-body system do not interact with one another, the only con-
straint on the many-particle wave function is the Pauli’s exclusion principle, which
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Figure 5.1: Schematic representation of the filled Fermi sea state |®).

requires each electron to be in a different single-particle eigenstate. The N-body
ground state in this simple case is obtained by filling the N lowest single-particle
states as shown in Fig. 5.1. This wave function is a sum of products of the one-body
wave functions of the “occupied states”. This is most compactly expressed in the
determinantal form and is called the “Slater determinant”. The set of occupied levels
is often referred to as the “filled Fermi sea”. In the Dirac-Fock (DF) approximation,
the interacting many-particle system is replaced by an effective non-interacting one,
in which each particle moves independently in a potential well that is determined
self-consistently by the average motion of all the particles. Once the single-particle
basis functions are obtained as mentioned in the Chapter 3 of this thesis, the ground
state wave function and energy can be obtained as outlined above. Now consider
how the correlations induced by interactions modify this picture of the ground state.
The first thing one can consider is that two-particles interact and lift themselves out
of the Fermi sea, so that after interaction both particles are in orbitals which were
unoccupied previously. This process can be described by a quantum mechanical op-
erator T,, which acts on the Fermi sea wave function or the DF wave function to
produce the wave function T5|®), which describes two-particles outside the Fermi sea
and remaining N — 2 particles in their previous orbitals. The same phenomena can
happen independently and the operator representation for that can be obtained by
applying the operator 75 twice, with the provision to include statistical weighting fac-
tor of 1/2 to avoid counting the pairs twice. Hence, the contribution to the resulting
wave function is 1/27%|®). This kind of independent excitation of pairs out of the
Fermi sea may be continued to obtain a contribution (1/m!)T3"|®) for the amplitude
describing the excitation of m independent pairs. By the principle of linear superpo-
sition, the total amplitude for the excitation of an arbitrary number (including zero)
of independent pairs is

i %Tgﬂ\@) = e[ D). (5.2)

m=0
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Figure 5.2: Coupled Cluster (CC) wave function for singles, doubles and higher order

excitations.

Similarly, we can consider processes involving excitation of one and three-particles
and simultaneous excitation of one and two-particles and so on with respect to the
Fermi sea. Wave function representing independent singles, doubles and simultaneous

singles & doubles can be represented as

Z T"\(I)o + Z Tm|<1>0 +Z Z T”Tm|<I>> N2 Bg). (5.3)

nOmO

Schematically such excitations can be represented as given in Fig. 5.2. Proceeding in
this way with the excitation of clusters of 4, 5, - - -, N particles we arrive at the exact

wave function
[T) = T2 |Bg) = T | D). (5.4)

The exponential representation of the wave function of a quantum many-body system
can be regarded as the cluster decomposition of quantum mechanical amplitudes for
exciting finite number of particles. This form of the many-particle wave function is
a direct consequence of the law of probability theory that states that the probability
of the statistically independent processes is a product of the probabilities of the
individual processes. We now briefly discuss about the origin of CCM from the
famous LCT.

Historically, the papers which led to the CCM appear to be those of Hugenholtz [4]
and Hubbard [5] in 1957. It was Goldstone [6] and Hubbard who proved the existence
of the now-famous LCT for interacting electron systems. The theorem, in effect, states
that the perturbation corrections to the wave function and total energy beyond the
independent-particle approximation can be represented by linked Feynman graphs.
Earlier to that Bruckner [7] had pointed out that this holds for a few orders of
interaction by explicitly demonstrating the cancellation of unlinked terms in the first
few orders of the Rayleigh- Schrodinger perturbation theory. Goldstone together with
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Hubbard and Hugenholtz introduced the mathematical techniques of quantum field
theory to all orders. The main significance of the LCT is the direct proportionality
of the energy corrections for a system like crystal or electrons at a given density with
the number of particles. But the proofs used an interaction representation, thereby
introducing time dependence in an intrinsically time-independent physical problem.
The importance of the LCT from a wave function point of view is its recognition of
the fast convergence of the linked-cluster type terms beyond the independent-particle
approximation. However, the overall emphasis remained on the connection with the
quantum-electrodynamical methods of Feynman, leading to the order-by-order view
of many-body effects and scattering pictures. In other words the LCT was based on a
perturbative argument. In 1960’s Kelly [8] used diagrammatic Goldstone perturbation
theory to study the correlation effects in closed-shell atoms and proposed several very

successful approximation schemes.

The idea of cluster ansatz originated in statistical mechanics [9]. It’s usefulness
for the expansion of the exact many-electron wave function, in contrast to the linear
expansions characteristic of variational approaches, was first inferred from the struc-
ture of the many-body perturbation theory by Hubbard. The use of such expansions
in quantum many-body theory was first introduced by Coester and Kummel [10] in
the context of nuclear physics as early as 1957, but it remained obscure for a con-
siderable period. This had much to do with the fact that the sort of high-precision
calculations that the CCM allows one to perform were neither fashionable nor con-
sidered necessary at that time, because our understanding of nuclear forces was then
rather rudimentary. The development of the many-electron correlation problem in
the early sixties was very much influenced by a series of papers by Sinanoglu [11],
who proposed a theory based on the cluster expansion and an approximate treatment
of pair clusters. Similar ideas were later pursued by Nesbet [12]. The need of pre-
cise determination of molecular structures and binding energies from a microscopic
quantum mechanical calculation has been a problem of utmost importance for many
quantum chemists since the development of quantum theory of the chemical bond.
The first application of CCM to electronic structure problems were by the quantum
chemists, Cizek and Paldus [13]. Later, this led to the development of a general tech-
nique enabling a simple and systematic generation of the explicit CC equations for
the components of the cluster operator. Further development of the theory to the
present form can be obtained from the review paper by Bartlett [14].
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5.1.3 Properties of Cluster Operator

5.1.3.1 Size-Extensivity

This term is borrowed from thermodynamics, where an extensive property is one
that is proportional to the size of a homogeneous system. Pople et al. [15] proposed
the term “size-consistency” for a closely related property. A method is considered
size-consistent if the energy of a system made up of two subsystems A and B far
apart is equal to the sum of the energies A and B computed separately by the same
method. The maintenance of size-consistency is more rigorous than size-extensivity.
The method is automatically size-extensive if it is size-consistent. However a size-
extensive method may not be size-consistent. The idea of size-extension is implicit in
the work of Brueckner, Goldstone, and co-workers, although Primas was one of the
first to emphasize the concept [16]. Size-extensivity is guaranteed by the evaluation of
terms that the many-body development identifies as linked diagrams, hence theorem
based on this, like MBPT/CCM are size-extensive. In simpler words, size-extensivity
means that the wave function and energy scale properly with molecular size.

This is usually illustrated by the N non-interacting Hs molecules. Assuming lo-

calised orbitals, the correct wave function for the super molecule is
V(NH,) = [‘I’(Hz)]N (5.5)

with energy
E(NH,) = NE(H,). (5.6)

Describing each Hy molecule with localised orbitals and using CCM, we can write the

exact wave function as
\I’CC(NHQ) — eT(1)+T(2)+....—|—T(N)\IIO(NHQ) (57)

where
Uo(NHy) = 0,(1)D,(2)....2, (V).

On further simplification and using multiplicative separability, we get

Uoo(NHy) = e"Wd,(1)e?@d,(2)....eT ™M@, (N)
= W,(1)(Hz2) Vo (2)(Hy)....Wo(N)(Hz).

Since [T'(1),7(2)] = 0, the total energy using additive separability becomes

E(NH,) = EQ)(H,) + E2)(Hy)..... + E(N)(H,) (5.8)
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Even though the above property is explained with respect to a non-interacting sys-
tem, size-extensivity of any method imposes the absence of unlinked diagrams too.
Hence non-interacting limit is a necessary but not a sufficient condition that a method
be extensive. The exponential wave function guarantees extensivity even in the in-
teracting case, provided that T itself is separable. Multiplicative separability of the
wave function is guaranteed in CCM, even if the 7" operator is truncated. Thus CCM

obeys size-extensivity at each level of approximation.

5.1.3.2 Equivalence with CI

The CI form of the perturbed wave function |¥,) constructed with respect to the
unperturbed wave function |®,) written using intermediate normalisation ((®,|¥,) =
(®,|P,) = 1) is as follows.

9,) = (1+ X C)[,) (5.9)

>1
where C] is an operator creating a fixed linear combination of the l-excited configura-
tions or states. In CCM, the perturbed wave function is written using the exponential

operator acting on the unperturbed wave function, as
|B,) = e[ ®,) (5.10)
Expanding T operator as 11 + 15 + 15 + ..., we get
9) = [8) + T3 @) + (Ty + 5T} + (T3 + Ty + TP @) + o (5.11)
Comparing the right hand sides of equation we get

Cl == Tl, (512)

1
Cy = T2+§T12a

1
03 = T3 +T1T2 =+ §T13

Paldus [17] suggested that single terms can be called connected and the terms ex-
pressed as the product of the connected terms can be called disconnected. One can
solve the system of equations for the cluster operator from the Eq. 5.12. The relative
importance of exponential to CI for the correlation energy calculations can be well
understood by looking at the full CI calculations [18] and intuition [19], tells clearly
that the largest part of the correlation effects is accounted for by the first few cluster
operators 11, Ty, Ty, T5Ts etc., and the remaining ones may be omitted. Also in CI,
there is an inbuilt arbitrariness about the configurations which are added, whereas in
CCM we solve directly for the cluster operators in a given basis. Considering the same
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example of two non-interacting H, molecule the exact wave function is described by
the product of single H, wave functions. But the product of the simultaneous dou-
ble excitations on each Hy molecule corresponds to quadruple excitations, if the two
molecules are treated as a super molecule in CI. Since the number of configurations
is proportional to (n)!, where n is the number of basis functions and [ is the level
of excitation, a prohibitive ~ 10® configurations would be necessary for n = 100 to
include just the quadruple excitations [20]. But in CCM, from the beginning we can
include only the dominant terms that are responsible for the main part of the corre-
lations. The relative importance of each of the individual cluster operators depends
in particular, upon

(i) whether the system studied is closed-shell or open-shell type,

(ii) the size of the system (Z),

(iii) the type of the single-particle basis used (numerical/analytical) and

(iv) the type of correlation effects which are to be accounted for (this decides the
number of orbitals (core and virtuals) in the calculation.

The rest of the sections will be devoted to studying about the application of CCM to

closed and open-shell type atoms.

5.2 Application of CCM to Closed-Shell Atoms

5.2.1 Form of the Cluster Operator (7)
The fundamental idea of CCM is the exponential wave function ansatz,
“IICC’> = €T|(I)O> (513)

where, |®,) is considered to be the independent-particle reference state such as the
DF and T operator takes excitations from it. One can choose non-DF reference state
instead of the usual approximations and for a multi-reference method it is replaced

by a linear combinations of determinants. In the single reference case, the operator

is given by
T=>1, (5.14)
where Z
T, = ) tala,, (5.15)
a,p
T, = ! > thlalataya, (5.16)

(2!)2 a,b,p,q
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YARVAY,

Figure 5.3: Diagrammatic representation of 7" operator.

and so on. The creation-annihilation operators for orbitals occupied in |®,) (core)
are denoted as af, b', ¢! ... and a, b, ¢, ... and for unoccupied orbitals (virtuals) as
pt, ¢f, rt ... and p, ¢, 7 .... The labels i, j, k, | ... represents either core or virtual

orbitals. These operators act on the reference state functions to give

T|®,) = Y th|®h), (5.17)
b,a
1
Tl®,) = > (,)Qtﬁzz ouh)y = D tleh) (5.18)
p,q,a,b \7° p>q,a>b

and so on, where |®?), |OP}

) are single and double excitations from |®,). Schemati-
cally the T" operator can be represented as given in Fig. 5.3. Restricting 7" to just CC
Doubles (CCD) [13, 21, 22] originally termed Coupled-Pair Many-Electron Theory

(CPMET), [13] we get the CCD wave function as
Weoep) =e[@,) = 1+ T + T3 /24 ....)|®,) (5.19)

where it includes disconnected quadruples given by 7% and other higher excitations
like hextuple. Considering T} and T clusters, the CCSD [23] wave function takes the

form

Woesp) = e H72)(®,). (5.20)

Expanding the exponential part, we get

Weesp) = (M+To+To+T3/2+TiTy +TET, + ...)|®,)
== |\IIC’CD> + (Tl + T12/2 + T1T2 + T12T2/2 + )‘q)o>

Here the wave function now includes the disconnected triple excitations 775 and
also disconnected quadruple excitations 7275 and many other excitations. To include
connected triples we will have to consider CCSDT [24, 25, 26] wave function. If one
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continues till Ty, where N is the number of electrons, we reach the exact or full CI

limit, where
Wrer)=(14+C)|P,)=(1+C1+Cy+ Cs 4+ ...CN)| D). (5.21)

It is clear that at a given truncation of the respective operators defining CCM and
CI, we expect the former to converge more rapidly than the latter due to its much

greater inclusion of higher excitations.

5.2.2 Theoretical Details

5.2.2.1 Evaluation of Working Equations

The objective of a CC calculation is to formulate and compute various properties using
the CC amplitudes #£, 7'}, etc. Let us consider the atomic Hamiltonian H, which
is an exact no-virtual pair Dirac-Couloumb Hamiltonian of the system as discussed
by [27, 28], with the usual one- and two-particle electronic parts. Effects due to
Breit, negative-energy states and radiation corrections are omitted in the present
calculation which will have to be added later. The T amplitude with a superscript
‘0’ is considered to be PNC unperturbed amplitudes. The equation we have to solve

is the Schrodinger equation given by
H,|¥o) = Eo|¥o), (5.22)

where

Ha = ZT; + Z Vij- (523)

1<j

The matrix elements of 7" and v are given by

Tl = [ 6()Tigs(1)dr, (5.24)
Gilolkt) = [ [ 61(2)¢5(2)viz0u(1)6(1)dridrs, (5.25)
where
T, = cappi+(Bi— 1) + Vaueld), (5.26)
vy = % (5.27)

Subtracting (®o|H|Pq) from both sides, we get

(Ha — (o H|®0))[Wo) = (E — (Do| H[®))|Wo)- (5.28)
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We know for any operator O the normal ordered operator Oy is defined as
On = O — (9g|0|Dy). (5.29)
Hence the above equation reduces down to
Hy|¥o) = AE[Ty), (5.30)

where AE = E — Ej is the correlation energy. Substituting the exponential form of

wave function for |¥,) and multiplication by e 7 to the left we get
e T Hye™|®g) = AE|®). (5.31)

Now the left hand side of the above equation can be written as a finite commutation

series as,
_ 1
e " Hye™ = Hy = > —[Hn, O™, (5.32)
—n!
where
[Hy, TO1™ = [Hy, TO]»-1, O], (5.33)

For n=0 the above reduces to
[HN,T(O)](O) = Hy

and for n=1
[HN,T(O)](I) — [HN,T(O)]

and so on. Using the above results Eq. 5.32 reduces to

_ 1 1
Hy = Hy + [Hy, T + 5[[HN,T(°)],T(°)] + oo + = [[[[Hy, T, TO), O], 7O

4 (5.34)
The series terminates after five fold terms since Hy contains at most two-particle
operators. Since at least one operator in each T has to be contracted with one of
the four creation-annihilation operators in the two-particle part of Hy, there can be
only four T’s. Also from the generalised Wicks theorem [2] and LCT [2] one can very
well show that any commutator of two objects [29] (an arbitrary operator containing
the same number of creation and annihilation operators standing inside a normal

product) contains only contracted terms. Applying this idea to [Hy, T®]M) | we get

—— ——
[Hy, TO1Y = [Hy, TO] = {HyTO} — {TOHy}. (5.35)

Here —~~ means that only connected terms are taken into account. Using the form of

© i 0 ince i ins M
T operator, it can be shown that {7 Hy}=0, since it contains a,M and/or a;M
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where M is an arbitrary creation and annihilation operator for p, h € of reference
state. More clearly,

—~
{al M} = (®,]a} M|D,) = 0, (5.36)
since ap|®o) = 0 — (P,[a®99" = 0 and
—~
{a'hM} = <(I)o‘a'hM‘(Do> =0 (537)
since af |B,) = 0 — (®,|a, = 0. Using the above results one can write
———
[Hy, TO1W = [Hy, TO) = {HyTO} (5.38)
and for
——N—
———
[Hy, TO1® = [[Hy, T, TO) = {HyTO T} (5.39)
and so on. In general we can write
——f—
———
[Hy, T]™ = {HyT© .. TO}, (5.40)

.. . . . _7(0) ©)
Generalising these considerations, the expression e~ 7" Hyel

ten in the form of the so-called LCT as

e T Hye = (Hye"™)e. (5.41)

may be formally writ-

Here the subscript C' means that only connected diagrams are taken into account.
Scalar multiplication from the left hand side by (®,| in Eq. 5.31 gives correlation
energy, given by

(@] (Hye™ )| @) = AE. (5.42)

Projecting on the left by singly and doubly excited determinants with 7 approx-
imated to be only singles and doubles gives the corresponding one and two-particle

CC equations as given by
(@2|(Hye™)c|@o) = 0,
(@24 (Hye"")c|®o) = 0,

where the reference, singly and doubly excited determinants are defined as
1

®,) = det{a,b,c...N.}, 5.43
@) = et ) (543)
1
PPy = det{0,b,c,...N., p},
@) = et »)
1

®ef) = ayet{0,0,¢ - Nesp, a}-

Here, N, is the number of core orbitals or doubly occupied orbitals in the DF reference
state.
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5.2.2.2 Linear Approximation

Taking 7© = 7% + 7% and the linear approximation
(Hye™)o = Hy + HyTO), (5.44)
the singles and doubles equation reduces to

(®2|Hy + HyT{” + HyT{"|®,) = 0,
(@24 Hy + HNT” + HyT,"|®) = 0.

On application of T} and T; operators on |®,) we get

(®2|Hy|®,) + (P0|Hy|®p)t: + (B0 Hy|®)t)t, = 0,
OV Hy|®,) + (DVF | Hy | DUty + (B0 | Hy|Plg)ta = 0.

The above two equations reduces to CC equations of the form

Hyty + Higty = —Hyy,
Hoty + Hogty = —Hyy,

and they can be written as linear equation of the form AT® = —B as
H H t H
( 11 12)<1>:_< 10)_ (5.45)
Hyy Hy to Hy

5.2.2.3 Determination of Matrix Elements

In second quantised form, the Hamiltonian H can be written as

H = ZT(O ala; + = Z ij||v||kl)alalara,. (5.46)
zgkl

Using Wick’s theorem, we can write the above Eq. 5.46 as

H = ZTO){a aj}+2 {a a;j} + = ZZ]HUH/CZ {alalara;}

z]lcl
/—’H /—’H
+ —Z ij| v [k [{a! a akal}-l-{a tag a} + {a} dlaya}
zgkl
—— ——

/—H /-M /-’\
+ {ala akal}+{a ak a} +{ala ak a .
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Figure 5.4: Form of the effective diagram which contributes to singles equation.

Using the contraction rules and Eq. 5.29, we get the normal ordered Hamiltonian as
H}=Hy =Y T){a! L ijlolkD) {alal 47
{H} =Hy = Z i i} + Z(’ﬂ”‘ Haiazapar}. (5.47)
ij
Similarly, any one electron operator can be written as
(4]

where 1, 7, k and [ are all general orbitals. Similarly, the cluster operators Tl(o) and

TZ(O) can also be written in normal ordered form as

7" = Y {ala.}, (5.49)
a,p

T(O) _ 1tp,q Tt 5.50

2 - bz Z a,b{apaqaba’a}ﬂ ( : )
a7 7p7q

where a, b are core and p, g are virtual orbitals. The normal ordered atomic Hamilto-
nian Hy can be graphically represented using the Goldstone diagrammatic rules [2].
The diagrammatic representation of single and two-particle part of Hy is given in
Appendix A. Using Wick’s theorem, all possible connected diagrams which are of our
interest are considered. Here let us denote the one-particle operator part of Hy as

H, and the two-particle operator part as V.

(i) Evaluation of effective single-particle diagrams arising from H;, Hy,
We consider connected diagrams of the form as given in Fig. 5.4 which gives

contribution to the singles equation. Hy; term of the matrix equation is
Hll == <(D2‘HN|(I)Z> (551)

This connects the reference state to the singly excited determinant by single and

double contraction of TI(O) and Hy which can be written as

Hy, = <(I)0|a2ap(Ho + VeS)aJsrab‘d’o% (5.52)
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(i) (ii) (iif) (iv)
\
) (vi) VII)
\
Y \@\ % A
(viii) (ix)

Figure 5.5: Diagrams which contribute to singles equation.

H,5 term of the matrix equation is
Hy, = <(I>§|HN|<I>§E>, (5-53)
which can be written as
Hyy = (B,|ala,(H, + Vi,)alalacas|®,). (5.54)

This connects TQ(O) operator with Hy through double and triple contractions. Hig
term in the right hand side of the matrix equation can connect the reference state
with the singly excited state only through the one electron operator Hy. The two
electron operator V,; can give only double excitation when it acts on the reference
state. If the one-body operator of the Hamiltonian is DF operator then Hiq is equal
to zero due to the orthogonal nature of DF orbitals. Considering all possible contrac-
tions and keeping in mind to consider diagrams of the form given above we get 10
diagrams as drawn in Fig. 5.5. Here diagrams (i), (ii), (v) and (vi) are obtained by
the contraction of the one-body operator Hy with the Tl(o) and TQ(O) and the rest by
the contraction with the two-body part given by V.. If we use DF Hamiltonian then
the diagrams (v) and (vi) will be zero due to the orthogonal nature of the DF orbitals.

(ii) Evaluation of effective two-particle diagrams arising from Ho;, Hyo

We consider diagrams of the form as given in Fig. 5.6 which contributes to the
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Figure 5.6: Form of the effective diagram which contributes to doubles equation.

doubles equation. Hy; term is given by
Hy = (25| Hn|2g).- (5.55)
Expanding them, we get
Hy = (®,|alajayay(H, + Ves)atac|®,), (5.56)

which connects the reference state to the doubly excited state through single contrac-
tion of V,, with T(O) The one-body part of Hy does not contribute since it cannot
connect the reference state with the doubly excited state. Hiy term of the matrix
equation is given by

Hy, = (O3] Hy|2%) (5.57)

and can be further simplified as
Hy, = (@o\alazapaq(Ho + Ves)alaiacad@o), (5.58)

which connects the reference state with the doubly excited state through double
contractions between TZ(O) and the one and two-body parts of the Hamiltonian. The
diagrams which contribute to doubles equation through Hy; and Hy terms are given
in Fig. 5.7. Hyy can connect the reference state with the doubly excited state only
with V., since Hy cannot connect the reference state with the doubly excited state.

5.2.2.4 Non-Linear Approximation

Considering only singles and doubles, the non-linear CC amplitude equations take
the form

(24| Hy|®o) =0 (5.59)
(@8 Hy|®o) = 0, (5.60)
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Figure 5.7: Diagrams which contribute to doubles equation.

where Hy is given by the Eq. 5.34. The possible terms from the expansion of Hy,
for each of the terms are

TT = T;+2T,T,+ T3
TTT = T3+3T3T,+ 37,12+ T3
TTTT = T{+AT T +6TATE + 4Ty Ty + Ty

From the following terms only the terms in boldface give contribution. Rest of the
terms will not give connected diagrams of the type given in Fig. 5.4 and Fig. 5.6.
Contraction of above terms in boldface give rise to 54 diagrams which contribute to
non-linear part of CC calculations. The typical diagrams are given in Fig. 5.8. After
the contraction of the operators is carried out, the cluster equation can be written as

a matrix equation of the kind
A+ B(T).T =0, (5.61)

where A is a constant vector which consists of the elements (®*|H|®) and T is a
vector of the excitation amplitudes. The matrix B(T) itself depends on the cluster

amplitude so that the above equation has to be solved in an iterative procedure.
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Figure 5.8: Typical diagrams representing the non-linear terms.

Figure 5.9: Diagrams contributing to correlation energy.

Using the linear and non-linear 7" amplitudes, the correlation energy can be obtained
and the diagrams contributing to this property are given in Fig. 5.9.

5.3 Application of CCM to Open-Shell Atoms

In this case we consider excitations from core and valence to virtual orbitals where
valence orbital is designated as ‘v’. In the single reference case, the operator which

brings in the excitation from core and valence to virtual is given by

S = Z S;, (5.62)
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Figure 5.10: Diagrammatic representation of S operator.

where

Sl = ZS a’l]a

Sy = Zqu 1 Taa%

2 va P q
a,p,q

Schematically the S operator can be represented as given in Fig. 5.10.

5.3.1 Solving S\ and S{” Coupled Equations

In our CC calculations, we use the DF reference state corresponding to N—1 electron
closed-shell configuration, then add one electron to the k* virtual orbital and obtain
the N electron system on which calculations are carried out. The addition of valence

electron to the k' virtual orbital of the reference state can therefore be written as
[®R) = af[d). (5.63)
Any general state can be written in open-shell CCM [2]as
) = {57} o)), (5.64)
Due to normal ordering and the presence of particle annihilation operator
{65750)} =1

Hence
WYY = (14 S2)e™ o).

Carrying out mathematical operations similar to the one used earlier on 7 opera-
tors, we obtain an equation for the Ionisation Potential (IP) and another one for the

CC amplitudes. The equation for the evaluation of IP is

(@F | Hy(1+ S |0y = AE, (5.65)
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Figure 5.11: Form of the effective diagram contributing to singles and doubles equa-

tion.

and the equation for CC amplitudes is obtained by projecting on the singly and
doubly excited determinants which leads to

(@NHy(1+ S |0y = AEN (NS |a)), (5.66)

where AE} is the difference between the energy of the closed-shell state |¥y_;) and
the single valence state |7’ ) and in comparison with the Eq. 5.65 IP is the negative of
AE}. In other words it is the energy which must be given to an electron to promote
it to the k' virtual orbital. Once the IPs are computed, the Excitation Energies
(EE) are obtained by finding the difference between the IPs of the valence (6s) and
appropriate virtual orbitals. The equation for CC amplitudes Eq. 5.66 is non-linear,
since AF), itself depends on the S amplitudes and so an iterative procedure is

needed for its solution. Rearranging the terms in Eq. 5.66 we get

(@ By SO |@N Y = —(@p™ T Hy N +

(@S B (@ T (1 + 57|, (5.67)
- ,_& -
where Hy = Hy + HyT® + ... The diagrams arising from H can be categorised

according to the number and type of open lines. Let us denote H to be the core
type and P to be the virtual type. Then the possible terms which can give rise to
effective single or double dressed Hamiltonian are PP, PH, HP, HH, HH-HH, PP-PP,
PH-PP, HH-HP, PH-PH, PH-HP, PP-HP and PH-HH. The effective diagrams which
contribute to the singles and doubles equation are given in Fig. 5.11. The effective
diagrams of the form given in Fig. 5.11 which contribute to the left hand side of the
Eq. 5.67 are given in Fig. 5.12. We consider the initial guess the same way as it was
done for the closed-shell part by taking Sfo) to be zero and S§°) to be the two electron
matrix elements divided by the energy denominator. Then one constructs a matrix
equation of the form

BS©® = _4, (5.68)
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Figure 5.12: Diagrams contributing to singles and doubles equation (left hand side of
Eq. 5.67).

where BS© = (02" Hy S |0N 1) and A = (@ |Hy|®N ). This is done by
taking the second term in the right hand side as zero. We solve for S from the
above matrix equation and then construct a new A which is the sum of the two terms
in the right hand side of Eq. 5.67. This procedure is repeated untill self consistency
is achieved. Once it is obtained we find the approximate triples got using 75 and Séo)
defined as

VT, + VS,

7
€a+ €+ € — € — €4 — €

pqr __
abk —

(5.69)

where SV represents the amplitudes for the simultaneous excitation of one electron
from orbital a, b, k to p, q, 7, VSO is the contraction of all creation/annihilation
operators and ¢; orbital energy of the i** orbital. This contribution is then added to
the energy obtained using singles and doubles. Typical diagrams which contribute to
such an effect are given in Fig. 5.13. The application on singly ionised barium and
the comparison with experimental numbers for IPs and EEs are described at the end
of this chapter.
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Figure 5.13: Typical diagrams representing the approximate triples diagrams: (i),
(i), (iii) gives the VS contributions and (iv) gives the VT, contributions.

5.4 Application of CCM to PNC in Atoms

We propose two different approaches to PNC using CCM. They are as follows:

1. Sum over intermediate states approach in which we consider all order contribu-
tions from bound states as well as the lowest order contributions from bound

core and continuum virtual orbitals.

2. Mixed parity approach in which we compute all order CC amplitudes for closed
and open-shell systems with and without PNC as the perturbation and construct
E1PNC with one order in PNC.

In this thesis, we present results using only the first approach. The theoretical de-
tails related to the second approach is also described below. Electric dipole transition

amplitude induced by the NSI and NSD weak interactions can be expressed as
(Uy | D | ¥y)
VG| B/ | )

where | ¥;) and | ¥) are the initial and final atomic states of mixed parity given by

E1PNC =

(5.70)

;) = [0 4 oDy,
i~ 0 1
1Ty = [0P) + Ty,

Here |¥() are the eigenfunctions of the atomic Hamiltonian and [¥()) is the first
order perturbed functions due to NSI/NSD PNC.
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5.4.1 Evaluation of E1PNC(C using the Sum over Intermediate
States

Taking only one order in perturbation and using first order perturbation theory the
expression for F1PNC reduces to

E1PNC = ! >

(Ve o))

(@ D[e®y (e PNCIE)
(E; — Er)

(| Hpne @Oy (0O D1 )
(Ef — E)

Using CCM one can write these states as
| W) = e {e%} | By),
| Up) = e"{e™} | @),
| Tr) = e {e¥} | @),

In the first approach using 7@ and S© cluster amplitudes, one constructs all order
dipole and PNC matrix elements for various intermediate bound p; o3/ orbitals. In
this case, we have 3 bound p virtual orbitals starting from 6p for the basis that we
have choosen. The ASFs are

|\Ilz> = ‘5276631/2),
“I’f> = ‘5p65d3/2>,
;) = ‘517677471/2,3/2), n=2=6,7,8.

5.4.2 Evaluation of E1PNC(C using the Mixed Parity Approach

In the second approach, using 7@ S© T and SM amplitudes one constructs
E1PNC with the constraint that only one order in PNC is allowed. Here we denote
the T and S amplitudes with a superscript ‘1’ to consider them as PNC perturbed.
We present below the details regarding the computation of the PNC CC amplitudes.

5.4.2.1 Solving Tl(l) and TQ(U Coupled Equations

We consider Hpync as the perturbation to the closed-shell atomic Hamiltonian and

hence the total Hamiltonian is

H = H? + \Hpxc, (5.71)
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where the ground state satisfies the equation
Hp|Wo) = Eo|Wy), (5.72)

where Ej is the reference state energy. Using CCM one can write the ground state

wave function as

[Wo) = e[ ®y), (5.73)

where |®g) is the reference state. Due to the presence of Hpxc operator, the wave

function will have perturbed and unperturbed PNC parts given by
|0) =" | @), (5.74)

where T = T© + AT, Since PNC scales as G, we consider terms that are linear in
A. Projection with excited state determinants in the Schrodinger equation with the

above substitutions gives the perturbed cluster amplitudes as
(®* | (H, — E))TW | ®,) = —(®* | Hpne | o), (5.75)
where H? = e*T(O)ngT(O) and Hpne = ¢ T HpnceT™. The diagrams which con-

tribute to the left hand side of the above equation are given in Fig. 5.14.

5.4.2.2 Solving S§1) and Sgl) Coupled Equations

We consider again Hpyc to be the perturbation to the open-shell atomic Hamiltonian
and the procedure is followed as done for the PNC unperturbed part by taking one
order of PNC in the equations. The total Hamiltonian is

H = H, + AHpnc, (5.76)
where the PNC unperturbed part satisfies the equation given by
Ha|\I/k> = Ek“lfk>, (577)

where E}, is the energy of the k" excited state. Considering the perturbation in wave
function we get

| ) = el {5} | ®y) (5.78)
where T = T 4+ AT and S = S© 4+ ASM. Here |®;) is the k** excited reference
state. Applying these on the Schrodinger equation, we get

(Ho+ AHpno) e (14ATD) (1+SO+ASD) | @) = Ee™ (14+4ATD) (1+SO+ASD) | @),
(5.79)
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Figure 5.14: Diagrams contributing to the evaluation of 7™ for singles and doubles
equation.

Taking only one order in PNC we get the equation of the form

(Ho— E)SW | @) = —(Hpne + HpxeS©®) — (H, — EP)T®  (5.80)
= (H= BTS2y,

where

5 _7(0) 7(0)
H, = e Hge

Y

I _7(0) T(0)
Hpxe € Hpnce .

Projection by the single and double excited determinants gives the perturbed ampli-
tudes as

(| (Ha — E)SY [ @) = —(®} | (Hexc + HexeS®) (5.81)
— (A~ EP'TO | &) — (Ho — E)TOSO | @),
The effective diagrams contributing to the right hand side of the above equation is

similar to the diagrams contributing to the PNC unperturbed open-shell part but
with an additional one order in PNC in any of the vertex. The left hand side of
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Figure 5.15: Diagrams contributing to the evaluation of right hand side of the S

determining equations.

the above equation gives rise to 14 diagrams as shown in Fig. 5.12. The diagrams
contributing to the right hand side of the Eq. 5.82 consisting of Hpxc and HpneS©
are given in Fig. 5.15.

5.4.2.3 Evaluation of F1PNC using 7, 7" S© and SV CC amplitudes

Substituting the form of the CC wave function constructed using both PNC perturbed
and unperturbed 7" and S CC amplitudes, E1PNC given in Eq. 5.70 takes the form

@;m |€{3}}ei’f DeT (8 \‘1%(0))
0 0 0 0
IR SN AT AR)

E1PNC = (5.82)

where out of 4 amplitudes (2 pertaining to the initial and 2 to the final state) at
least one of the amplitudes should have one order of PNC, in order to have non-zero

electric dipole transition between the states |¥;) and |¥y). In the case of Ba™,
;) = [5p°6s12) and [¥y) = [5p°5ds o). (5.83)

The T operator produces excitations from the core orbitals which are filled upto
5p® and the S operator produces excitations from the valence and core orbitals. In
the above case 6s and 5d are considered as valence orbitals. Hence for F1PNC,
diagrams of the form given by Fig. 4.2 in Chapter 4 are considered. Some of the
typical diagrams of the form given in Fig. 4.2 are given in Fig. 5.16.
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Figure 5.16: Typical diagrams contributing to E1PNC.

5.5 Computation of all Order Matrix Elements for

Various Properties

In a PNC experiment, measurement of the electric dipole transition between states of
same nominal parity induced by weak interaction is sought after. These amplitudes
are products of two factors: a scale factor and an atomic electric dipole matrix ele-
ment. To determine the weak-interaction scale factor in atomic physics experiments,
one must first have reliable values for the associated electric dipole matrix elements.
Accurate calculations of these matrix elements are difficult for several reasons. The
electric dipole operator samples the atomic wave function at large distances from the
nucleus. Whereas the weak interactions responsible for the non-zero values of the ma-
trix elements are predominant near the nucleus. Therefore wave functions accurate
at both large and small radii are required [30] for an accurate calculation. Hence,
we need to check the accuracy of these all order wave functions at large and small
radii by evaluating properties which mimic such a situation. For example, calculation
of all order electric dipole matrix elements for various bound to bound transitions
using all order CC amplitudes is a good check of these wave functions at large radii
due to it’s ‘r’ dependence. One can also evaluate electric dipole transition amplitude
and lifetime of the states which puts stringent checks on the wave functions at large

radii. Similarly hyperfine matrix elements are very sensitive to small radii and hence
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Figure 5.17: Form of effective O one-body diagrams.

evaluation of magnetic hyperfine constant (A) is a check of the all order wave func-
tions near the nuclear region. Here in this section, we discuss the formulation for
evaluating electric dipole, lifetime and magnetic hyperfine constant matrix elements.
CC formulation has been used to compute some of the properties mentioned above
by various authors and groups [31, 32, 33, 34, 35]. Blundell et al. have computed all
order dipole and PNC matrix elements for caesium using linearised CCSD and ap-
proximate triples which has been used in the computation of E1PNC using sum over
intermediate states [36]. For Ba™ we have used such an approach for the calculation
of F1PNC'. Solving the perturbed 7" and S amplitudes will be done as the next step
of our work and only formulation is given in this thesis. Any general state can be
written in CCM as given in Eq. 5.64 using 7" and S CC amplitudes. Here our aim
is to compute various matrix elements pertaining to different properties sandwiched
between the CC wave functions. If we consider O to be a general single-particle op-
erator, then the all order matrix element of the operator O between an initial and
final state is given by [37]

<q,§co> ‘6{5}}€TT OeT elsi} ‘(550))
= 0 0 0 0 ’
V) )

Here we first evaluate the quantity e’ Oe” = O which can be expanded using

(5.84)

Hausdorff expansion [38]. We consider only effective one-body diagrams of the kind
given in Fig. 5.17, where P refers to virtuals and H refers to core orbitals. Typical
one-body PP diagrams are given in Fig. 5.18. Same kind of diagrams can be drawn for
other types designated as HH, PH and HP. Effective two-body diagrams are not taken
into consideration for the present computation. These effective one-body operators
are stored in a file and later read when they are sandwiched between the S operators.
Depending on the quantity which we are interested in, the initial and final states
can be different like in the case of electric dipole transition amplitude or same as in

the case of the hyperfine constant. In the Eq. 5.84, the numerator consists of terms
(f|Ol3), {f|[STO].|i), (f|[OS].|7) and {f|[STOS].|7). The possible diagrams from the
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Figure 5.18: Typical effective one-body diagrams (O)for a one-body operator.

above terms are given in Fig. 5.19. The denominator in the Eq. 5.84 takes the form
N? = (®olap{1 + S A+ TT+ [TTT]. + ..) {1 + Sk }al|®,), (5.85)

where ‘c’ denotes completely connected diagrams. The effect of this denominator is
to cancel disconnected terms from the numerator. This cancellation is complete for
closed-shells and it has been shown by Blundell et al. [39] that for the single valence
states there is a residual normalisation factor given by

1

(L4 /(T[T ) (1 + /(T3] 03))

Hence, we multiply the above factor by the contribution from various other terms

—1]. (5.86)

which will be described when we discuss the application on various different prop-
erties. The possible diagrams given in Fig. 5.19 can be classified according to their
effects as lowest order, RPA correction, Bruckner correction, structural radiation cor-
rection and the correction due to the normalisation in the denominator. A very
elaborate description of the above types of corrections with the associated diagrams
are given in the paper by Blundell et al. [40].

The T part of Eq. 5.85 gives rise to possible diagrams of the type PP, HP, PH
and HP as shown in Fig. 5.17. This on further connecting with the S operator leads
to the same kind of diagrams shown in Fig. 5.19 with the open lines denoted by v
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Figure 5.19: Diagrams contributing to the numerator of Eq. 5.84 where O is sand-

wiched between the S operators.

and v’ being same and with the 0 interchanged by the connected effective one-body

T part.

5.5.1 Electric Dipole/Quadrapole Matrix Elements

The single-particle matrix elements in length form is calculated in atomic units as

Upn, = C(m, n) /drrL[Pm(r)Pn(r) + Qu(7)Qn(1)], (5.87)
where _ ,
Ct(m,n) = (—1)jm+1/2\/2jm + 1\/2jn +1 (‘T {; ﬁ) : (5.88)

Here L = 1 for dipole and L = 2 for quadrapole transitions.

5.5.2 Lifetime of the States

The following formulae [41] are used for calculation of the transition probabilities:

(2.0261 x 10'8)Sg,
grA3

and
(1.1199 x 10'®)Sgy

[N ’
where ) is the transition wavelength in AA, g is the (2J+1) degeneracy of the upper

level, Sg; and Sgo are the E1 and E2 line strength in atomic units ea, and eag. This
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gives the transition probability in the units of sec™!. Hence, lifetime of the upper level
is the sum of the inverse of the transition probabilities to all possible lower levels in

seconds.

5.5.3 Hyperfine Constant (A)

Hyperfine interaction is located in the vicinity of the nucleus, just as the weak in-
teraction. Therefore hyperfine constant calculations could give an indication of the
accuracy of the parity-violating effects. The relativistic hyperfine Hamiltonian is
given by

Hyps =Y M®.T®), (5.91)
k

where M®*) and T™®) are spherical tensor operators of rank k, representing the nuclear
and electronic parts, respectively. The hyperfine matrix element in the single-particle

level is given by
(km|tM|'m'y = —(—km|CV|K'm) (k + &) /r’2(PKQ,§I + Q. P.)dr, (5.92)

where

eIty = (yyn (18 T ey 6y

—m

and the reduced matrix element is given in Eq. 5.88 with rank equal to 1.

5.5.4 FE1PNC(C': Dipole and PNC NSI Matrix Elements

For the determination of E1PNC using sum over intermediate states, we need to have
all order dipole and PNCNSI matrix elements to be computed to very high accuracy.
The single-particle matrix element for Dipole and PNCNSI are described previously
in Chapter 2 of the thesis. Even though PNC matrix elements in single-particle level
are non-zero only between s;/; and p;, orbitals due to correlation one can have non-
zero PNC between any orbital other than j=1/2. For the determination of D and
PNC matrix elements we give appropriate parity considerations and the values are
stored in a file and later read to compute the diagrams given in Fig. 5.19. Here
we compute all order dipole and PNC matrix elements separately and multiply them
with the appropriate energy denominator and normalisation to get E1PNC' using
sum over the intermediate states method. The contribution from core states and the
continuum states are considered at the DF level. Blundell et.al., [36] have done an all
order calculation for caesium for the intermediate bound virtual orbitals. The details

of our calculation will be described in Section 5.7.5.
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5.6 Computational Details

5.6.1 Angular Reduction and Selection Rules for CC Matrix

Elements

While computing the matrix elements the relativistic notation of the two component
orbitals will be used. The expressions are given in Chapter 2. The presence of spher-
ical symmetry in the atomic many-particle Hamiltonian facilitates the reduction of
the DF and the CC matrix elements solely to radial integrals multiplied by some
constant factors. The reduction of the angular part greatly simplifies the computa-
tional complexity of both the DF and post-DF calculations. Here we make use of
a graphical method of the angular momentum adaptation scheme, popularly known
as the JLV scheme [42]. The angular reduction scheme of the DF equation can be
obtained elsewhere [43].
In the ‘jm’ basis, two-particle Couloumb operator é is expressed as

1 o o
(ablalcd) = 3 XE(Gay b, Jer Ga) (—1)emmetdamma) (5.94)

@:k5Jasbsdesdd Ma,Mp,Me, Mg

( ja k ]c)( jd k ]b)
—My g Mg —Mg —q My ’

where
XEGay oy Jer da) = (=1)F=0(=1)Ua=3+0e+3) (5.95)
Ja k Je N (Ja k o\, . . .1
2 2 2 2
and [L] = 2L + 1. The quantity R*(a,b,c,d) denotes the two-electron radial

integral given by

k

R¥(a,b,c,d) = / / [Po(11) Pe(r1) + Qalr1)Qe(r1)] X % (5.96)
[Py(r2) Py(r2) + Qu(r2)Qa(r2)]dridrs.

The product of 35 terms appearing in Eq. 5.94 represents the angular momentum
diagram for the Couloumb operator [44, 45, 2].
Similarly, the one and the two-body cluster operators 77 and 75, can be expressed

as
(p|T|a) = Z T (p,a )0 (Jas 3p)0 (M, my) (5.97)

]ama
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and

(pq|Tolab) = 3 T5(p, g, a, b)(—1)Up—mwHia=ma)  (5.98)

kajavmavjpampajbambyjq1mq
( gk Ja ) ( Jo kb )
—-my, q My —Mg q My

Here, T¥(p, q, a,b) denotes the radial cluster operator, which is multiplied by a phase
factor and the appropriate Wigner 3j-symbols. In the multi-pole expansion of the
Couloumb matrix element (ab|1/ris|cd), only a subset of the multi-poles k leads to
non-vanishing contributions. Triangular conditions for the angular momenta is given
by

Ja = Jel £k < Ja+Je and |fy — Ja| <k < gy +Ja (5.99)

set the upper and lower limit for the multi-pole moment k. Additionally, the overall
parity selection rule demands that the orbital angular momenta satisfy the relation

(=1)fathtletls = 1, (5.100)

From the angular part of the Couloumb matrix element we can derive additional

constraints
(_1)la+lc+k — 1 and (_1)lb+ld+k — ]_ (5.101)

The selection rules given by Eq. 5.100 and Eq. 5.101 imply that for a given set of or-
bitals a, b, ¢, d, for either even or odd values of &, lead to non-vanishing contributions.
For the T operator, the selection rules given by Eq. 5.99 and Eq. 5.100 are valid
but the selection rule given by Eq. 5.101 leads to the Even Parity Channel (EPC)
[46, 47, 48] approximation. In [46] it has been argued that the EPC approximation
provides the dominant contribution to the CC equations and therefore it might be a
valid approximation to discard the odd-parity pair channels and in this way reduce the
number of cluster amplitudes and the computational effort by a factor of half. Hence

the above approximation in CC is further referred as CCSD-EPC approximation.

5.7 Results and Discussion

5.7.1 Computation of Correlation Energy for Ba™

Using the closed-shell CC one can determine correlation energy from the Eq. 5.30,
which is the difference between the exact energy and the DF energy. Since weak
interactions are limited to the nuclear region, the effect of correlation between core
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and virtual s; and p;/; orbitals with other orbitals must be taken into account
as accurately as possible for a high precision calculation of the E1PNC transition
amplitude. A study on the core correlations for heavy atom like Tt have been
performed by Merlitz et al. [48] and the results show that the third sub-shell (n=3)
contributes almost 20% to the correlation energy of T1™.

Such a study was carried out on singly ionised barium to determine the effect of
core electrons on the correlation energy. The DF ground state for Ba™ was evalu-
ated using the FBSE [49] with a large basis set of (32s28p25d20f15¢10h) Gaussian
functions described in Chapter 4. The single-particle bound and continuum energies
are tabulated in Table 4.3 and Table 4.4. Since the study was focussed on the ef-
fect of core orbitals we have truncated the virtual orbital space to orbitals less than
5 a.u. This implies that orbitals up to n» = 10 sub-shell for s, p, d and f symmetry

were taken for the above mentioned calculation. It has been shown by Merlitz et al.

Table 5.1: Correlation energy for Ba™ using linear CCSD and second order MBPT
with the number of cluster amplitudes for each calculation with the total memory and
the CPU time used. Here we study about the dependence of AFE with core orbitals.

System | Core Cluster AF (CCSD) AFE (MBPT) RAM  time
orbitals amp. (a.u.) (a.u.) (MB) (hours)
Ba(1) | 5sbp 2811 —0.171496 —0.154739 65 0.15
Ba(2) | 4sbsdp5pdd 23627 —0.703348 —0.746042 98 1.67
Ba(3) | 3s4s5s3pdp 64959 —0.771019 —0.827036 149 3.99
op3d4d
Ba(4) | 2s3s4s5s2p
3p4psp3d4d 93952 —0.771975 —0.827993 190 7.07
Ba(b) | 1s2s3s4sbs
9p3pdp5p3dad 102986  —0.771979  —0.827996 206  7.49

[48], that EPC approximation leads to correlation energies which differ from the full
linear CCSD results only by 0.2—0.3% for a heavy atom like thallium. Hence for a
singly ionised barium we have done a CCSD-EPC approximation calculation and it
is tabulated in Table 5.1. We have also done a second order MBPT' calculation and
is tabulated in the same table. The CCSD-EPC approximation reduces the number
of cluster amplitudes by a factor of 1/2, which leads to a very considerable reduction
of the computational effort. Further calculations and the discussions in this thesis
both linear and non-linear CCSD are performed with the EPC approximation only.
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Figure 5.20: Comparison of the effect on correlation energy with the increase in the
number of core orbitals with respect to the number of cluster amplitudes, memory
and execution time. The core orbitals are denoted by principal quantum number and

symmetry.

The increase in the number of cluster amplitudes with respect to the increase in the
core orbitals (or with respect to the sub-shells) denoted by their principal quantum
number 7 is shown in Fig. 5.20(a). This graph clearly shows that a d shell in the core
leads to more number of cluster amplitudes due to the possible angular momenta. In
Fig. 5.20(b), the amount of total memory needed for storing the Couloumb matrix
elements and the index for the cluster amplitudes is also compared with the increase
in the core electrons. This also shows a similar trend as before. As shown in Fig.
5.20(c), the comparison of the time taken for the linear CCSD with the increase in
the number of core orbitals shows large change with the increase in the core orbitals

irrespective of the symmetry of the core orbital.

A study to carry out the effect of the virtual orbitals on correlation energy was also
performed on Ba't. Since the previous study showed that the effect of the inner core
orbitals from the sub-shell n = 2 and n = 1 is ~ 0.1%, we have taken only excitations
from n = 3 sub-shell onwards for further calculations. Hence the n =1 and n = 2
sub-shells are frozen and no electrons are excited from them to higher virtual orbitals.
With the addition of more virtual orbitals in the calculation for correlation energy we
compare the number of cluster amplitudes, total RAM (Random Access Memmory)
used and the time taken for the execution as in the case of core orbitals we studied
previously. The behaviour is shown in Fig. 5.21. Comparing the contribution to
correlation energy from core with the virtual orbitals, the core contribution from
n = 4, 5 sub-shells makes comparable contribution to that of the virtual orbitals.

By comparing the percentage contribution from virtual orbitals to correlation energy,
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Table 5.2: Correlation energy for Ba™ using linear CCSD and second order MBPT
with the number of cluster amplitudes for each calculation with the total fast memory
and the CPU time used. Here we study the dependence of AE with virtual orbitals.

System | Basis Cluster AFE (CCSD) AFE (MBPT) RAM  time
amp. (a.u.) (a.u.) (MB) (hours)

Ba(6) | 8s8p9d7f 64959 —0.771019 —0.827036 121 3.59

Ba(7) | 9s9p10d9f 114384  —1.479034 —1.593130 227 9.15

Ba(8) | 11s11pl0d 126653  —1.533174 —1.651054 263 6.96
9f

Ba(9) | 11s11pl0d 155333  —1.534222 —1.651955 390 12.47
9f4g

Ba(10) | 11s11p10d 171833  —1.534389 —1.651956 296 14.54
9f4g3h

one can infer that the low lying virtual orbitals contribute more than the high lying
ones like g and h symmetries. Hence the above study gives an idea that high lying
core and low lying virtuals gives the maximum contribution to the correlation energy
of a system. Even though the above computation shows convergence of correlation
energy with more basis, one cannot generalise it as a complete basis since different
properties show completely different dependence on the basis. This will be more clear
when we discuss computation of the properties which are very much dependent on
wave functions.

For the non-linear calculation, we have taken only terms 7575, TiT) and 1577 to
reduce the computation time for the evaluation of the 7" amplitudes. This approxima-
tion is justified since 77 cluster amplitudes are small. Using non-linear 7" amplitudes
one can compute the contribution of non-linear terms to correlation energy. Com-
paring the contribution of linear and non-linear 7" amplitudes for a basis given by
11511p10d9f4g, it is inferred that non-linear terms contributes to ~ 0.3% with re-
spect to the linear terms. The time taken for linear and non-linear computation of 7’

amplitudes is shown in Fig. 5.22 and the values are tabulated in Table 5.3.

5.7.2 Computation of IP and EE for Ba*
The Ionisation Potential (IP) of the valence electron is given by

UV H OV (N | H ), (5.102)
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Figure 5.21: Comparison of the effect on correlation energy with the increase in the

number of virtual orbitals with respect to the number of cluster amplitudes, memory

and execution time. The core orbitals are denoted by the principal quantum number

and symmetry.

Table 5.3: Comparison of time taken for the linear with the non-linear computation

of T amplitudes.

No. | CC amp. Time (linear)

Time (non-linear) AFE (linear) AFE(non-linear)

hours hours (a.u.) (a.u.)
1 126653 6.96 20.9 —1.533340 —1.527953
2 155333 12.47 37.4 —1.534389 —1.528926
3 171833 14.54 116.8 —1.534389 —1.528925
4 233988 36.9 193 —1.829326 —1.818049
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where |UV~1) and |¥¥) represent states of the N—1 and N electron systems respec-
tively. In other words it is E(N —1)— E(N) which, using Koopman’s theorem, reduces
to negative of the single-particle orbital energy of the N** electron. With correlations

added, IP of the valence electron becomes

B+ B B Bl =~ ). (09

corre corre

Excitation energy (EE) for the excited state can be obtained from IP’s as
EE(@.’L’C) = IPground - IPewci (5104)

Accurate theoretical prediction of transition energies in heavy atoms requires high-
order inclusion of both relativistic and correlation terms in the Hamiltonian. An
ab initio relativistic CC method incorporating these effects has been applied to series
of heavy atoms, like gold [50], mercury [51], several lanthanides and actinides [52, 53],
and elements 104 [54], 111 [55] and 112 [51]. Several calculations of IPs and EEs of
the barium atom have been reported [56, 57, 58]. For singly ionised barium, a few
literatures are available, with the first being the application of relativistic many-body
perturbation theory by Guet and Johnson [59]. We will be comparing our calculations
in Ba™ mostly with the work by Eliav et al. [60], where IP’s and EE’s are computed
using relativistic CCM.

We have done a series of calculations wherein different basis were used and the
dependency of them to EE’s and IP’s with respect to core and virtual orbitals were
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studied in detail. For all the calculations presented here the analytical basis was
generated with 32528p25d20f159g10h. Using the above analytical basis as the starting
point, we show an improvement using the new basis over the analytical basis. As a
first step in order to find out the dependency on the core orbitals on IP and EE we
performed two different calculations which are tabulated in Table 5.4. For the CC

Table 5.4: IP and EE for the low lying levels of Ba™ using linear CCSD with respect
to the core orbitals included in the calculation.

Basis Core orbitals Cluster  IP of IP of  EE (6s1/2-5d3/2)
amp. 651/2 5d3/2

Expt: 0.36764  0.34543 0.02221

8s,8p,9d,9f | 5(sp)4(spd)3d 61667 0.368374 0.338812 0.029563

9s,9p,10d,9f | 5(sp)4(spd)3(spd) 114384 0.368523 0.339311 0.029212

calculations, we have restricted the basis by imposing lower and upper bounds in
energy for the all single-particle orbitals. This was done to reduce the huge memory
requirement which is needed to store the matrix elements of the dressed operator H
and the two electron Couloumb interaction in the memory. Since the change in IP
and EE is less than 0.1% by the addition of n = 3 shell with respect to n = 4 shell,
for further calculations we have taken the core orbitals only above n = 3 sub-shell
and all the other shells below n = 3 are frozen. Considering n = 1 and above with
a 7 symmetry calculation the IP value obtained for 6s is ~ —0.36861599 which in
comparison with n = 2 and above is —0.3686409. This also very well establishes that
the contribution due to omitted shells less than 3 is 0.01% to IPs. To this we added
more virtual orbitals of different symmetry and the study of the dependence of IP and
EE on the basis is described below. It is clear from calculations by Kaldor [60] that
high lying virtual orbitals contribute very little to the excitation energies. This also
supports the approximation for taking orbitals below a particular cut off in energy.
In Table 5.5, we give the DF values for IP and EE for the low lying levels along with
the experimental values from the Moors catalogue [61, 62] [1 a.u. = 27.21139634 ev,
1 ev = 8065.6 cm™'].

The percentage error in IPs for the low lying bound states due to the addition
of more virtual orbitals is shown in Fig. 5.23. With no g and h symmetry in the
calculation, the IPs for d orbitals are ~ 1.3%. Due to the addition of g and A orbitals
one can find change in the accuracy in the positive direction. The accuracy of s and
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Table 5.5: DF values and experimental values for IPs and EEs for the low lying levels
of Ba™.

Property | state DF value (a.u.) experiment cm™! (a.u.)
6s1/2 0.343827 80686(0.367634)
5d3)2 0.310522 75813(0.345427)
IP | 5ds) 0.308371 75012(0.341777)
6p1/2 0.260767 60425(0.275314)
6p3/2 0.254443 58735(0.267614)
651/2-5d3/2 0.033305 4874(0.022207)
EE 651/2-5d5 /2 0.035456 5675(0.025857)
6s81/2-6p1/2 0.083060 20262(0.092320)
6s1/2-6p3/2 0.089384 21952(0.100020)

p orbitals are very good compared to d orbitals even for the first calculation with the
basis 9s9p10d9 f and this can very well be understood. For an orbital to be described
correctly one needs to have the basis made of a complete set of orbitals. For example,
for any property related to d orbitals one needs to have a basis with a complete set of
s, p, d, f and g orbitals. In this case by the addition of A orbitals in the fourth run
we find that the change in accuracy for all the orbitals considered here are minimum.
Whereas the addition of more ¢ orbitals (5th run) compared to the earlier ones, we
find that the change in the accuracy for d orbitals to be drastic which points to the
importance of the g symmetry in the basis for IP of the particular orbital. At the
same time the reduction in the accuracy of s and p orbitals with the addition of
more g, h orbitals and with less s, p orbitals very well explains the importance of the
completeness of the basis. It is clear that in order to get accurate IPs for different
symmetries one needs to have different single-particle basis. Hence with a very large
basis with 11 symmetries the average percentage error in IPs for the low lying bound
orbitals for singly ionised barium is found to be ~ 0.4%. Comparing the IPs, with and
without non-linear terms in 7' computation, we find that non-linearity in 7" amplitudes
leads to very small change of the order 0.4% for 6s1/2, 0.16% for 5d and 0.03% for
6p orbitals. Whereas the percentage contribution from approximate triples to IPs is
found to be varying between 3-4% for the low lying bound orbitals. The trend is
shown in Fig. 5.24. This very well highlights the importance of triples effect which

is mainly responsible for achieving this accuracy in the present CC calculations.

Similar kind of study is done for EE and the values are tabulated in Table 5.8
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Table 5.6: IP for the low lying levels of Ba™ using linear and non-linear CCSD (with
approximate triples) with respect to the virtual orbitals included in the calculation.

(in parentheses: contribution from triples)

Theory Theory
Basis State || IP (a.u.) IP (a.u.) % error
(linear) (non-linear) (non-linear)

11s,11p,10d,9f
6s1/> | 0.368538 0.368682(0.011789) 0.28
5ds/, || 0.339167 0.339667(0.017070) 1.7
5ds/o || 0.335188 0.335727(0.016456) 1.8
6p1/2 || 0.274985 0.275064(0.009950) 0.1
6ps/2 || 0.267196 0.267270(0.009624) 0.13

11s,11p, 10d,9f, 4¢
6s1/2 | 0.368923 0.368923(0.011754) 0.35
5dgjp | 0.341042  0.341042(0.017041) 1.3
5ds/s | 0.337111  0.337111(0.016430) 1.4
6pi1/2 || 0.275319 0.275319(0.010025) 0.01
6psj2 || 0.267488 0.267488(0.009697) 0.05

11s,11p,10d,9f, 449, 3h
6s1/o | 0.368729 0.368872(0.011746) 0.34
5ds/o || 0.340432 0.340941(0.017032) 1.3
5dsjy || 0.336464 0.337011(0.016421) 1.4
6p1/2 || 0.275195 0.275273(0.010018) 0.03
6ps/2 || 0.267374 0.267448(0.009691) 0.06

and Table 5.9. Similar kind of explanation for IPs holds good for EEs. The trend
is shown in Fig. 5.25. Comparing the values of IPs and EEs using different basis,
the average error in IP and EE for the largest basis considered (9s9p10d9f 9g7h) is
~ 0.4% and 2.7%. Hence using the new basis approach with partly analytical and
partly numerical orbitals, we computed the IPs and EEs and the results showed very
good improvement over the calculations using the analytical basis. Numerical orbitals
used in the above calculation with respect to each symmetry are given in Table 5.10.
The average error in IP and EE for Ba™ using the new basis 9s9p10d9f9¢7h (partly
numerical and partly analytical) is ~ 0.1% and 0.6% as against the analytical basis
with 0.4% and 2.7%. The results of the calculations of our IPs and EEs are given
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Table 5.7: IP for the low lying levels of Ba™ using linear and non-linear CCSD (with
approximate triples) with respect to the virtual orbitals included in the calculation.(in

parentheses: contribution from triples)

Basis State | Theory IP (a.u.) % error

(non-linear) (non-linear)

9s,9p,10d,9f,9¢g
6s1/2 || 0.369495(0.012820) 0.51
5ds/o | 0.344240(0.018856) 0.34
5d5/2 || 0.340143(0.018144) 0.48
6p1/2 || 0.275663(0.011294) 0.13
6ps/2 || 0.267817(0.010930) 0.08

9s,9p,10d,9f,9g,7h
6s1/2 | 0.369905(0.012931) 0.62
5ds/e || 0.347064(0.019016) 0.47
5d5/2 || 0.342935(0.018290) 0.34
6p1/2 || 0.275911(0.010418) 0.22
6ps/2 || 0.268052(0.010071) 0.16

in Table 5.11 and Table 5.12 and compared with the previous calculations by Guet
and Johnson [59] and Eliav et al. [60]. It is clear that our CCSD with partial triples
results are more accurate than the other two calculations. The contribution from
partial triples to IPs is about 4—5% and it is the major reason for the high accuracy
of our calculations. Comparisons with Eliav et al with no triples and our calculations
with triples suggest that the omitted triples will have < 0.1% error in the computation
of IPs and EEs. The choice of our orbital basis has also contributed to the accuracy of
our calculations. By representing the core, valence and the appropriate virtual single-
particle states by numerical DF/VN =1 orbitals, we have been able to obtain the best
physical description for them. The average error in our IPs is about 0.1% except
5d3/, which is 0.23%. The EEs also show the same trend, the average error is about
0.6%; most of them being below 0.7% except 6s — 5ds/, which is 1.4%. Eliav et al.
have used the uncontracted well-tempered basis set of Huzinaga and Klobukowski
[63] with [ up to 5. Only virtual orbitals below 100 a.u. and core orbitals with n=4

and above were considered for this calculation.

In the calculation by Guet and Johnson using the relativistic MBPT to second
order, the IPs were computed to an accuracy of < 2% and EEs ~ 4%. The accuracy
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Table 5.8: EE for the low lying levels of Ba™t using linear and non-linear CCSD (with

approximate triples) with respect to the virtual orbitals included in the calculation.

Theory Theory
Basis State EE (a.u.) EE (a.u.) % error
(linear)  (non-linear) (non-linear)
11s,11p, 10d,9f
6s1/2-5d3/2 || 0.029371 0.029015 30.7
6s1/2-5d52 || 0.033350 0.032955 27.5
6s1/2-6p1/2 || 0.093553 0.093618 1.4
6s1/2-6p3/2 || 0.101342 0.101412 1.4
11s,11p,10d,9f, 49
651/2-5d3/2 || 0.027881 0.027881 25.6
681/2-5d5/2 || 0.031812 0.031812 23.0
681/2-6p1/2 || 0.093604 0.093604 14
651/0-6p3/2 || 0.101435  0.101435 1.4
11s,11p,10d,9f, 449, 3h
6s1/2-5d3/2 || 0.028297 0.027931 25.8
651/2-5d5/2 || 0.032265 0.031861 23.2
6s1/2-6p1/2 || 0.093534  0.093599 14
651/2-6p3 /o || 0.101355  0.101424 14

of their 6s — 5d3/, excitation energy calculation is somewhat misleading, as it is a
consequence of the cancellation of the errors of their 6s and 5d3/, IPs. The accuracies
of their 6s and 5ds/, IPs are 1.5% and 1.8%. The corresponding values for Eliav et al.
are 0.23% and 0.28% and our calculations are 0.14% and 0.23% [64]. The accuracies
of IPs of 6s and 5d3/, obtained by Dzuba et al. [65] using the relativistic correlation
potential method including three series of higher order diagram to all orders is 0.16%
and 0.78%. Comparing the accuracy of IPs and EEs for d states, it is very clear that
the above calculations by different groups show a large error which can be attributed
to the huge correlations in these states. Using the CC method with approximate
triples and a fairly big basis the correlations were taken care and this led to high
accuracy in d states. In order to show the completeness of higher symmetries in
the basis to the accuracy of the states we performed two different calculations. The
results are tabulated in Table 5.13. With the basis 12s13p13d11 f7¢g the accuracy of

s and p orbitals are very good compared to the accuracy in d orbitals which points to
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Table 5.9: EEs for the low lying levels of Ba™ using linear and non-linear CCSD (with
approximate triples) with respect to the virtual orbitals included in the calculation.

(in parentheses: contribution from triples)

Basis State Theory EE (a.u.) % error
(non-linear) (non-linear)
9s,9p,10d,9f,9¢
651/2-5d3/2 0.025255 13.7
651/2-5d5.2 0.029352 13.5
651/2-6p1/2 0.093832 1.6
651/2-6D3 2 0.101678 1.6
9s,9p,10d,9f,9¢, 7h
651/2-5d3 0.022841 2.9
651/2-5d5/2 0.026970 4.3
651/2-6p1 /2 0.093994 1.8
0s1/2-6D3/2 0.101853 1.8

the importance of the completeness of f and g orbitals. The other calculation with
9s9p10d9 f9g7h shows that the correlation for s and p were not very good leading to
reduction in accuracy whereas the presence of more g and h orbitals increased the
accuracy of d orbitals. This is schematically represented in Fig. 5.26. The accuracy
of the IPs of bound orbitals with the new and old basis are given in Fig. 5.27 and
the comparison with the calculations by Kaldor [60], Guet [59] and Dzuba [65]. are
given in Fig. 5.28.

5.7.3 Computation of E1/E2 Transition Probability and Life-

time

Accurate absolute transition probabilities for transitions between eigenstates in atoms,
ions and molecules are important in many applications. They are mainly used as a
sensitive test for calculated wave functions [66], because the transition probability
is related to the matrix element of the electric dipole operator between them. This
operator is proportional to r which is very sensitive to the large radial distances.
Experimentally more accurate data are usually obtained by measuring the lifetime of
the upper level and the branching ratio [67]. Hence a measurement of the transition
probability and thereby the lifetimes of upper levels can be considered as a check of
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Table 5.10: Orbital generation.

each symmetry

Symmetry No of orbitals in numerical orbitals

used in the calculation

Gaussian orbitals

used in calculation

9 3,4...8s
9 3p,..-8p
9 3p,..-8p
10 3d,...7d
10 3d,...7d
9 Af 5f

9 4f 5f

9 -

9 -

7 -

7 -

9s,..11s

Ip,...

Ip,...
8d,...

8d,...
6f....
6f....

og,...

0g,...
6h,...

6h,...
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Table 5.11: IP got using non-linear CCSD in units of (a.u.) (in parentheses: contri-

bution from approximate triples.)

orbital ~Experiment CCSD (T) Kaldor [60] Guet [59] Error (%)
(CCSD)  (MBPT)

6s(1/2) 0.36764 0.36814(—0.0130784) 0.36848 0.37308 0.14
5d(3/2) 0.34543 0.34623(—0.019412)  0.34448 0.35172 0.23
5d(5/2) 0.34178 0.34211(—0.018676)  0.34072 0.34748 0.10
6p(1/2) 0.27534 0.27568(—0.010146)  0.27555 0.27742 0.12
6p(3/2) 0.26762 0.26781(—0.009801)  0.26777 0.26946 0.07
Table 5.12: EE got using non-linear CCSD in units of (a.u.).
orbital Experiment CCSD  Kaldor [60] Guet [59] Error (%)
(CCSD)  (MBPT)
6s(1/2)-5d(3/2) 0.02221 0.02191 0.02400 0.02136 14

0.09230 0.09246 0.09293 0.09566  0.17
0.10002 0.10033 0.10071 0.10033  0.31

(1/2)-5d(3/2)

6s(1/2)-5d(5/2) 0.02586 0.02603 0.02776 0.02561  0.66
(1/2)-6p(1/2)
(1/2)-6p(3/2)




5.7.3: Computation of E1/E2 Transition Probability and Lifetime 159

Table 5.13: Comparison of the IPs and EEs using two different basis which shows the

importance of the completeness of the higher symmetries in the basis.

[h]
Theory
Basis State IP (a.u.) % error % error
(non-linear) (non-linear) (9s9p10d9f9g7h)
12s,13p,13d,11f,7¢g
6s1/2 0.367648 0.002 0.14
5ds /o 0.344080 0.38 0.23
5ds,2 0.340031 0.51 0.1
6p1/2 0.275503 0.06 0.12
6p3/2 0.267656 0.01 0.07
Theory
Basis State EE (a.u.) % error % error
(non-linear) (non-linear) (9s9p10d9f9g7h)
125, 13p, 13d, 11f, 7g
6s1/2-5ds2 || 0.023568 6.1 1.4
631/2-5ds2 || 0.027617 6.8 0.66
631/2-6p1j2 || 0.092145 0.19 0.17
6s1/2-6p3/2 0.099992 0.03 0.31
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the wave functions at the large r regions. Here in this thesis, we have done a pre-
liminary study on the dependence of the basis on the accuracy of the dipole matrix
elements. Comparing the calculations done for Ba™ for electric dipole and quadrapole
transitions and thereby the lifetimes, we have tried to evaluate the accuracy of the
wave functions chosen for further calculations. For the calculations presented below,
we have used the new basis with partly analytical and part numerical orbitals. We
have also done a lifetime calculation for Ca™ as a check for the feasibility of the code

and the results are presented below.

The electric dipole/quadrapole matrix elements using different basis are tabulated
in Table 5.14. Comparing the dipole and quadrapole matrix elements got using the
three different basis, it is clear that to obtain the correlation required to compute
different transitions involving different symmetries one needs to consider different
basis which are to be selected by physical considerations. For example, for a transition
involving p — s one needs to have a very good description of d orbitals and at the
same time a transition involving p — d needs s, p, d and f in the basis. Comparing
with Guet et al. [59] it is clear that using a basis 14514p15d14f the transitions of the
kind p — d are closer due to the better description of s, p, d and f states in the basis
whereas it is poorer in the other cases. But for the s — p transition we find that the
error is more for the particular basis compared to the previous ones where we have
less s orbitals in the basis. For the quadrapole matrix elements we compared the
accuracy by comparing the lifetimes of 5d3/, and 5ds/, states. Using the allowed E1
and E2 transitions we have computed the lifetimes of 6p and 5d states and the values

are compared with the experiment and other literature tabulated in Table 5.16.

In the Table 5.14, the contribution from different matrix elements pertaining to
different physical effects are given separately. By comparing the classification done
by Blundell et al. [40], one finds that the lowest order correction given by (f|D|:),
gives the maximum contribution. The effective one-body corrections namely RPA
contributes to ~ 15% and Bruckner and structural radiation together gives ~ 5% with
the normalisation correction ~ 0.5%.  Using the transition probabilities tabulated
in Table 5.15, we have computed the lifetimes of the upper levels using allowed E1
and E2 transitions. These results are tabulated in Table 5.16. The calculations are
in good agreement with experiment and other literature. Dzuba et al. [65] used M1
and E2 transition for the computation of the lifetime of d states which effectively
decreased it leading to a better result. In our calculation we have taken only E2
transition for the determination of 5d lifetimes. The lifetimes of 6p is also in good
agreement with the other literatures. We have also performed a CC calculation for
Ca™ and the lifetime of the levels 4p and 3d were also computed. The results of it
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Table 5.15: Electric dipole matrix elements in different transitions for Ba™ and the

comparison of transition probabilities with experimental values.

Trans. | ours ours Ag; [59] Ay [59] Ay; [65] Expt. Ay
D (a.u.) x109%sec! | D (aun.) x10 %sec! | x10 9sec ! x10 9sec?
6si2 | 3.3686 0.095137 3.300 0.09178 0.092327 0.09540.009,%
-6p1 /2 0.0955+0.0010,°
0.09540.007¢
6s;/p | 4.75508  0.121148 4.658 0.11625 0.117066 0.106+ 0.009,
-6p3/2 0.11740.004,°
0.11840.008¢
5dsjp | 1.30317  0.004284 1.312 0.00435 0.004492 | 0.00469+ 0.00029,%
-6p3/2 0.0048+0.0005,
0.0048-0.0006 ©
5dsjp | 4.0503 0.033053 4.057 0.03595 0.034453 0.0377+0.0024,
-6p3/2 0.03740.004,
0.03740.004 €
5d3jn | 2.9926 0.035830 3.009 0.03342 0.037033 0.0338+0.00019 @
-6p1 /2 0.033340.008 °

0.033+0.004 ©

@ A. Kastberg, P. Villemoes, et al. J. Opt. Soc. Am. B 10, 1330 (1993).

b J. Reader, et al. Wavelengths and Transition Probabilities for Atoms and Atomic Ions,
Nat. Bur. Stand. Ref. Data Ser., Natl. Bur. Stand.(US) Circ. No. 68. Vol. 10.
¢ A. Gallagher, Phys. Rev. 157,24 (1967).
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Table 5.16: Lifetimes of states of Ba* and Ca® computed using E1 and E2 transition

amplitudes.

Ion | State Ours  Guet [59] Dzuba [65] Expt.
(nsec)  (nsec) (nsec) (nsec)

6p(1/2) | 7.8 7.99 7.89 7.90(10) *

Ba* | 6p(3/2) | 6.20  6.39 6.30 6.32(10)"

ap(1/2) | 702 6.94 7.047  7.098(0.020)"

Ca* | 4p(3/2) | 6.8233  6.75 6.833  6.924(0.019)*
Ion | State Ours  Guet [59] Dzuba [65] Expt.
(sec) (sec) (sec) (sec)

Ba* | 5d(3/2) | 814 837 81.5 79.8(4.6)0
5d(5/2) | 36.5 37.2 30.3 34.5(3.5)4

Ca™ | 3d(3/2) | 1.397 1.080 1.271 1.108+0.160*

3d(5/2) | 1.335  1.045 1.236  1.023+0.104*

e E.H. Pinnington, R.W. Berends and M. Lumsden, J. Phys. B 28 2095 (1995),
* J. Jin and D.A. Church, Phys. Rev. Lett. 70, 3213 (1993),

* M. Knoop, D. Lunney,J. Rocher, M. Vedel and F. Vedel (unpublished),

O N. Yu, W. Nagourney and H. Dehmelt, Phys. Rev. Lett. 78, 4893(1997) and
A A.A. Madej and J.D. Sankey, Phys. Rev. A 41, 2621 (1990).

are quiet encouraging and it is tabulated in the Table 5.16.

The difference in the accuracy of the lifetimes of the levels computed using E1 and
E2 can be understood like this. As pointed out earlier, we have taken only effective
one-body dressed single-particle operator in the present calculation. The effective
two-body operators of the kind shown in Fig. 5.29 are not considered at this moment
for the computation. For the E1 transition with dipole as the operator which is
odd under parity, the two-body diagrams will have very less effect compared to the
E2 operator which is even under parity. Hence the addition of two-body effective
operator will lead to a better accuracy in the lifetime of 3d levels as comparable to

the accuracy obtained for 4p levels.

5.7.4 Computation of Hyperfine Constant (A) for Ba*

Calculations of hyperfine constant A follow the same procedure as the calculations
of the electric dipole matrix elements described above. Since the matrix element
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T T T
—O O + Oin diff. vertex
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Figure 5.29: Typical effective two-body O diagrams which have not been considered
in the present computation.

for A is proportional to 1/r? it can be used as a sensitive test of the wave function
at small distances from the nucleus and hence a check of the PNC matrix element.
Here the dependence of hyperfine constant on basis is done at a very preliminary
level and the results are tabulated in Table 5.17. The physical effects contributing
to hyperfine constant are classified in the usual terminology as direct, exchange core
polarisation and correlation terms. The direct or zeroth order approximation arises
from the unpaired spin valence electron. The exchange core polarisation (ECP) ef-
fect represents the influence of the preferential exchange interaction between valence
electron and the core electrons with spin parallel to the former, leading to a net
density at the nucleus due to the core electrons. Any effect in which two electrons
are simultaneously excited belongs to correlation terms. In the terminology used by
Blundell et al. [39], the first term in the table contributes to the zeroth order and
correlations from 7', the second term refers to RPA correction which is same as the
ECP contribution, and the third and fourth term leads to pair correlation types. Here
Bruckner correction with the perturbation on the valence contributes the maximum
compared to Structural corrections. Looking at the dependence on the basis in the
computation of hyperfine constant, it is very clear that one needs to have a better
description of core symmetries like s, p, d in this case. We observe that for a basis
with a relatively small number of orbitals for the symmetries s, p, d compared to
when compared to a larger basis shows a remarkable difference and this points to
the need for a good description of the occupied orbitals. In Table 5.18, we tabulate
the values of the hyperfine constant A for a basis 14s14p15d14f obtained by a partly
analytical and partly numerical single-particle orbitals. The experimentally available
values and other theoretical calculations are also given in the Table 5.18. Comparing
with the experimental values for 6s, 6p(1/2,3/2) and 5d(3/2) orbitals we find that
the accuracy is ~ 5%. The effective two-body hyperfine matrix elements will have to
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Table 5.18: Hyperfine Constant (A) in MHz for Ba™ as compared with the experi-

mental values.

State Ours (MHz) Expt.(MHz) Other theory (MHz)
6s1/2 4193.02 4018.02¢ 42031200 *
5ds,  198.759 191.2(6)" ;

6p1/2 783.335 742.04¢ -

6psa  134.079 125.9° -

¢ W. Becker, W. Fischer and H. Huhnermann, Z. Physik 299, 93 (1981).

b R.E. Silverans, G. Borghs, G. Dumont, and J.M. Van den Cruyce, Z. Physik A, 295
311 (1980),

*S. Ahmad, J. Andriessen, K. Raghunathan and T.P. Das, Phys. Rev. A 25, 2923
(1982).

be included for better accuracy.

5.7.5 Computation of F1PNC using Sum over Approach for
Ba*

With a knowledge of the error in the dipole and hyperfine matrix elements from the
earlier study using the CC method, we computed E1PNC' by sum over intermediate
states by taking only (6 — 8)p(1/2) states for the direct term and (6 — 8)p(3/2) for
the conjugate term. This approach is similar to the work done by Blundell et al. [36]
for caesium, for which the largest contribution to E1PNC'is from 6p;/2 and 7p; /s
intermediate states. Similar calculation performed on singly ionised barium by Dzuba
et al. [65] clearly points that the dominant contribution comes from the intermediate
6p1/2 state. We have performed all order CCSD calculations for the determination of
dipole and PNC matrix elements.

The results of such calculations with the theoretical energy difference is tabulated
in Table 5.19. We obtain good agreement with the values obtained by Dzuba et al.
[65].

The DF contributions to E1PNC' from the bound core (2p — 5p) and contin-
uum (9p — 29p) virtual p;/» orbitals are found to be 0.28566 ieag(—Qw/N) x 107!
and 0.083791 ieag(—Qw/N) x 10~ respectively. The all order contribution from
6p — 8p(1/2,3/2) intermediate states to E1IPNC is found to be
1.9844 deag(—Qw/N) x 107'". In the paper by Dzuba et al. [65] the contribution
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Table 5.19: Contribution to E1PNC in Ba'™ from the intermediate states
X = 6 — 8p1j2. PNC and the final matrix elements are in units of 107 %5ea,(—Qw/N).

Dipole matrix elements and energy are in a.u. Normalisation = 1.005494.

n  (5dzj2|Dinpija)  (np1/2|PNCl6s12)  Ees — Eyp,,,  Contribution Dzuba
(a.u.) (a.u.)

6 3.0010 —2.510 —0.0925 2.102 2.036

7 0.3065 —1.4551 —0.2257 0.051 0.045

8 0.1110 —0.9372 —0.2803 0.0096 0.012

n  (5ds/2|PNClnpsj2)  (npsj2|D|6s1/2)  Esay, — Enp,,, Contribution Dzuba
(a.u.) (a.u.)

6 —0.1437 —4.7964 —0.10033 —0.1773 —0.264

7 —0.0988 —0.3441 —0.2286 —0.0038 —0.001

8 —0.0611 0.5289 —0.2817 0.0029 0.0

Table 5.20: Contribution to E1PNC in Ba™ in the units 10 " iea,(—Qw /N).

Method intermediate states Contribution Dzuba [65]
DF 2p-5p and 9p-29p  0.3695 -

CC (all order) 6p-8p 1.9844 -

Total 2.35 2.34

from the intermediate states consisting of bound core and bound and continuum vir-
tuals is given as 2.34 ieao(—Qw/N) x 107!, The total contribution to NST E1PNC
by considering contributions from 2p — 5p and 9p — 29p at the DF level and 6p — 8p
to all order is found to be 2.35 ieag(—Qw/N) x 107!, The contribution to E1PNC
using sum over approach is tabulated in Table 5.20.

The error in the computation of dipole matrix element in comparison with the
experimentally available transition probabilities and lifetimes is ~ 2%. This limits the
accuracy of the wave functions at large r regions to be be around this range. Similarly
the average percentage error in the determination of hyperfine constant A for the low
lying levels limits the accuracies of the wavefunctions near the nuclear regions to be
~ 5%. Excitation energies which depend on the electron-electron interaction which
in turn is dependent on the electron density which is larger at the mid r region is

found to be accurate to less than 1%. In order to determine the percentage error in
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the computed F1PNC' using sum over intermediate states one needs to have more
analysis. But the interpolation of accurcies of wave functions at various grid points
puts a limit on the accuracy of the E1PNC computed using sum over intermediate
states.

In the Section 5.8 we compare Unitary Coupled Cluster (UCC) Method with
Many-Body Perturbation Theory (MBPT) described in Chapter 4. It is well known
that CC can be reduced to a particular order in MBPT by suitable deductions. In
the previous chapter we classified the first order MBPT diagrams as CPHF, RPA
and CPHF-RPA. Using the CC method described in this chapter, we find that there
is no one to one correspondence between CC diagrams and the various classes of
MBPT diagrams mentioned above. For example, the CPHF has 2 pseudo and 2
direct diagrams which cannot be directly got from the CC formalism given above.
For the pseudo diagrams one needs to add two of the MBPT diagrams for which the
CC counterparts are available. Here we show that with the new Unitary CC, there is
a one to one correspondence between the CC and these classes of diagrams specified
in Chapter 4. The formulation of UCC is given below and at the end we show how
the CPHF diagrams can be obtained from the CC diagrams generated using UCC
method.

5.8 UCC method in Comparison with MBPT

The many-electron wave function in UCC Method is given by
Bo) = e TN {e}|@y), (5.105)

where |®) is the reference state and 7" and S are the cluster operators which considers

excitations from core orbitals and valence orbitals. We write
10;) = T TD{e5}]®,), (5.106)
[T;) =TT {e51}|®). (5.107)
The Hamiltonian for the above problem is given by
H = H, + MAHpxc (5.108)
hence

T = 7O £ \7O), (5.109)
S = 5O 4 s, (5.110)
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5.8.1 Solving Tl(o) and TQ(O) Coupled Equations

The equation we have to solve is the Schrédinger equation given by

H,| W) = Eo|y), (5.111)
where
H,=Hy+V. (5.112)
We define
Enp = (Po|Hy| Do) (5.113)

Subtract Eypr from both the sides, we get
(Ho — Enr)|[¥o) = (Eo — Enr)| o). (5.114)
We know for any operator O the normal ordered operator Oy is
On = 0 — (9y|0|Dy). (5.115)
Hence the above equation reduces down to
Hy|To) = AE| ), (5.116)

where AE = Ey — Eyp which is the Correlation Energy. Here the many-body wave

function is written as

W) = ™7 |Bg) = €7 @, (5.117)
Substituting for |¥y) and multiplying by e~? to the left, we get
e “Hye’ | Do) = AE|Dy). (5.118)
Baker-Campbell-Hauxdorf expansion is given by

e "Hye” =Y 1/n![Hy,0]™ = Hy. (5.119)

Projection by the reference state and single and double excited determinants leads to

the correlation energy, singles and doubles cluster amplitudes given by

(®,| Hy | ®,) = AE, (5.120)
(®* | Hy | ®,) = 0. (5.121)
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5.8.2 Solving Tl(l) and TQ(I) Coupled Equations

We consider Hpyc as the perturbation to the atomic Hamiltonian and hence the total
Hamiltonian is
H = Ha + )\Hch. (5122)

Due to the addition of Hpnc, the wave function will have a PNC perturbed and PNC
unperturbed part given by
|0 = el | ®y), (5.123)

where T = T© + \TM_ 70©) and T are further defined as
T©) 5 7©) _ 7Ot — 5(0)

and
7O 5 7O _ MWt — (1)

respectively. Since PNC scales as Gy, we consider terms that are linear in A\. Writing

e’ =140 we get

(ﬁa — E())(l + 0'(1)) | @0) = —ﬁch(]_ + O'(l)) ‘ @0) (5124)

Projection with excited state determinants in the Schrodinger equation with the above

substitutions gives the perturbed cluster amplitudes
(®* | (H, — Eo)oW | ®,) = —(®* | Hpne | o), (5.125)

* ) ©) 7 —o© ©)
where H, = e % "H,e? ' and Hpnc = ¢ 7 Hpnce? .

5.8.3 Solving S%O) and 550) Coupled Equations

In this case we consider excitations from both core and valence to virtual orbitals.
The addition of valence electron to the k* virtual orbital of the DF reference state is
given by

BN = af | Do) (5.126)

and it satisfies the equation
H,|®N ) = BN ). (5.127)

The exact state using excitation operators for core and valance orbitals can be rep-

resented as
(VY = T (57} | g+, (5.128)
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Due to normal ordering and the presence of particle annihilation operator the above

equation reduces to

N = 6T(0)(1 +S,E°))\d>fcv+1). (5.129)

Applying the same procedure as in the closed-shell case, and using the substitutions

above the Schrodinger equation reduces to

(@ (H, — E) S9N+ =

= (@ H, BN +
(@S| BN+ (N

H,(1+ S [@N+1y, (5.130)

where H, = e " H,e°.

5.8.4 Solving Sgl) and Sg) Coupled Equations

We consider again Hpyc to be the perturbation and the procedure is followed as de-
rived for the PNC unperturbed part but by taking one order of PNC in the equations.

Considering the perturbation in wave function we get
| 0) = e"{e"} | By), (5.131)

where & = 0@ + X\o® and S = S© + ASM. Applying these on the Schriodinger

equation, we get
(H, + MHpxc)e? (1 + SO £ A8W) | &) = Fre® (14 5@ +ASW) | &), (5.132)
Considering linear terms in PNC, we write ¢? = (1 4+ Ao(")), hence

(Hy+ AHpyo)e”” (14X (14+85O+ASD) | &) = Ee”” (14X D) (14+SO+ASD) | &y,).
(5.133)
Taking only one order in PNC and projecting by single and double excited determi-

nants we get the equation of the form

(@} | (Ha=E)S1 | 04 = —(®f] (Honc(1+ 89) = (H, = E)oVS© - (H, — Eo®) | &)
(5.134)

where H, = e~ Hae”(o) and Hpne = e~ Hche"(O).

After the evaluation of the four CC amplitudes 7@, 7MW SO and SM the wave

functions can be determined and they can be used to calculate the electric dipole

transition amplitudes.
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Figure 5.30: CC diagrams corresponding to CPHF term. CPHF(1) corresponds to
zeroth order diagrams and CPHF(2) corresponds to pseudo diagrams and CPHF(3)
corresponds to real diagrams. Here the superscript on S and 7" operators (x,y) refers
to x orders of PNC and y orders of Couloumb.

5.9 Evaluation of Electric Dipole Transition Am-

plitude

Substituting the form of the CC wave function E1PNC becomes
E1PNC = (3 [el5H e De? (53|50, (5.135)

The terms that give rise to diagrams of the form given in Fig. 4.2 in Chapter 4 are
given by DS;, S}D, DTS;, —DT!'S;, S}TD, —S}TTD and so on. The diagrams which
give rise to equivalent CPHF diagrams having one order in PNC and one order in
Couloumb operator are given in Fig. 5.30. Similarly one can get equivalent diagrams
for all the diagrams in first order MBPT, which corresponds to different physical
effects like CPHF, RPA and CPHF-RPA.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

Parity non-conservation in atoms and ions has emerged as an active area of research
embracing both elementary particle and atomic physics. Over the past years atomic
physics has given rise to many elegant and powerful experimental and theoretical
techniques. This has opened new vistas of looking for physics beyond the Standard
Model. The atom that is currently best suited for this purpose is caesium for which
the combined accuracy of PNC experiment and theory is below 1% [1]. However,
there are other promising proposals to observe PNC in atomic systems. One of these
involves applying the techniques of ion trapping and laser cooling to Ba™ [2]. It has
been pointed out that certain transitions in Ba™ and Ra™ could yield unambiguous
information about NSD PNC [4]. Unlike the S — S transition for caesium, the tran-
sitions involved here are S — D. The PNC calculations of Ba' are more demanding
than those of caesium, as a many-body description of the D states unlike the S states
requires configurations that are relatively complex.

In this thesis we have made an attempt to compute electric dipole transition
amplitude induced by PNC (E1PNC) for singly ionised barium between the states
5p°65)1/2 and [5p°5d)s/s.

To accomplish the above task we have used three different Many-body meth-
ods wiz., Configuration Interaction (CI) Method , Many-Body Perturbation Theory
(MBPT) and Coupled Cluster Method (CCM).

We have computed E1PNC induced by both Nuclear Spin Independent (NSI)
and Nuclear Spin Dependent (NSD) interactions for different transitions using the CI
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method. We have verified the findings of Malhotra et al. [3] that the contributions
from low-lying configurations are important. This was performed by taking a larger
number of CSFs which were generated by exciting inner core orbitals like 5s and
also exciting it into higher virtual orbitals which were not considered in the previous
work [3]. Such a calculation using a large basis with high-lying virtual orbitals lead-
ing to about 2000 relativistic configurations shows that the correlation contribution
changes by about 1.6% with respect to the calculation of Malhotra et al. [3]. The
total NSI E1PNC' reduced matrix element for the above transition is found to be
0.5264 ieagQw x 10712,

Computation of E1IPNC for the NSD effect for Ba®™ and Ra* for the transitions
5p%65)1/2 — |5p®5d)s5/0 and |6p°7s)1/2 — |6p®6d)s/s was also performed using the CI
method. The above transitions has an important advantage; it is sensitive to the
NSD effect and is therefore a direct way of measuring the nuclear anapole moment
[4]. We have done a fairly big calculation for the above mentioned transitions in both
Ba®™ and Ra' by considering configurations arising from single and double excita-
tions from 5s, 5p and 6s to Ts, 8s, 5d, 6d, 6p, 7p and 8p for Ba™ and 6s,6p and 7s to
8s,9s,6d,7d, 8d, 7p,8p and 9p for Ra*. The NSD contribution to PNC for the above
transitions in Bat and Ra™ was compared with the NSD contribution for Ba™ for the
transition |5p%6s1/2) — |5p°®5ds)s) for the case Fy = 3 to F; = 2. This shows that the
NSD contribution for the 25;/,— 2D, transition in Ba™ is eight times smaller than
that of the 25, 5— D3/, transition, but it is worth pursuing since there is no mask-
ing by the NSI contribution. For Ra*, the NSD contribution from the 2S;/o,— D5,
transition is larger than the corresponding transition in Ba™ making it an attractive
choice for a clean measurement of the nuclear anapole moment. It is indeed worth-
while to carry out detailed feasibility studies to measure the nuclear anapole moments
in these two ions. Since the CI method is not suitable due to the requirement of large
memory and it’s size-inextensive property for limited excitations, we have performed
NSI calculations on Ba™ using other size extensive theories like MBPT and CCM.

Using MBPT, the E1PNC was calculated using a part numerical and part an-
alytical basis consisting of bound and continuum orbitals. From the lowest order
MBPT calculation, one can infer that,the bound orbitals contribute 96.36 Terms con-
taining one order in Couloumb interaction are categorised in three groups and done
separately to all orders by expressing them as linear equations. The results show
that, the CPHF largest contribution is the largest ; which is 3.8%. The contribu-
tions from RPA and CPHF-RPA are less than 1%. The CPHF effect has the same
sign as the lowest order making it additive, whereas for RPA it is opposite in sign
which in the physical sense is due to the shielding effect. We have also considered
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lowest order pair correlation effects arising from two orders of Couloumb interaction.
The contributions from core-core correlation diagrams were found to be less than
2% and hence only core-valence diagrams were considered in our calculation. The
Bruckner type diagrams contributed the most followed by the structural radiation
type diagrams. The MBPT(5) diagram with the initial state perturbed by PNC and
then the Couloumb interaction is found to diverge due to the strong correlation be-
tween the valence and the outermost core orbital (5p). Hence the pair correlation
contribution from 5p and 6s alone was computed to all orders using the Coupled
Pair Electron Approximation (CEPA) [5]. The total contribution to E1PNC' using
MBPT is 2.18 jeag(—Qw/N) x 1071, Dzuba et al. [6] using a mixed parity approach
obtained 2.17 ieag(—Qw/N) x 10711,

Relativistic coupled cluster singles and doubles with and without PNC as the per-
turbation for closed and open-shell systems is elaborated in the beginning of the Chap-
ter 5 on CCM applied to PNC. Using this approach, we obtain four cluster amplitudes
designated as T, SO 71 and S® where T and S refers to close and open-shell
coupled cluster amplitudes. The theoretical method for computing E1PNC' using
the sum over intermediate states and mixed parity approaches using the above four
cluster amplitudes are described. It is necessary to compute as many atomic prop-
erties as possible before embarking on an ambitious PNC calculation. With this in
mind, we have carried out non-linear CC calculations of Ionisation Potential (IP) and
Excitation Energy (EE) by considering the terms T2, T1T, and T3 for the non-linear
contribution. We have also included triple excitations partially which were found to
be crucial in achieving the accuracies around 0.2 and 1% for IPs and EEs [7]. On
comparison with other calculations [8, 9] it is clear that the inclusion of triples par-
tially and the choice of the orbital basis in which core, valence and the appropriate
virtual single-particle states generated numerically [10] has led to these high precision
results. As a check of the wave functions far away from the nucleus, properties like
electric dipole, electric quadrapole transition matrix elements were calculated using
various basis and compared with the available experimental data. Similarly for the
wave functions near the nucleus, the hyperfine constant A, which depends on the
region close to the nucleus like the PNC matrix elements was calculated for different
states and compared with experimental data. Computation of the above mentioned
properties using various single-particle basis has led to useful insights about the com-
pleteness of a basis with respect to a particular property. An atomic property like
dipole and quadrapole transition matrix elements between various symmetries require
a complete set of orbitals of a particular symmetry with a very good description of the
polarising orbitals which are diffuse. For the case of the hyperfine interaction which is
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Table 6.1: Comparison of E1PNC for Ba® obtained using three different methods

Method Contribution to E1IPNC  Contribution to EIPNC [6]
ieag(—Qw/N) x 1071 ieag(—Qw /N) x 1071
CI 1.74
MBPT
CC, MBPT | 2.35 (zeroth order core + 2.34
continuum virtual)
mixed parity 2.18 2.17

similar in form to PNC, the occupied orbitals should be very well described. For the
electric dipole matrix elements, the effective single-particle excitations namely RPA,
Bruckner and structural radiation and normalisation correction contributes approxi-
mately ~ 15%, 5% and 0.5% respectively. The lifetimes of the E'1 and E2 transitions
of Ba™ and Ca™ are comparable with the published literature [9] and experimental
data [11, 12]. The accuracy of the hyperfine constant A is found to be around 5%
for the low lying levels. For all the property calculations, we have used only effec-
tive one-body diagrams derived from the ¢7'Oe” term and as a next step of our
calculation we are planning to include the effective two-body terms. Using the same
technique we have calculated the all order PNC and dipole matrix elements which
are used in the calculation of E1PNC' using the sum over states approach. We have
performed a CCSD calculation for the intermediate states from (6 — 8p);/23/2 states.
The contribution from the bound core states 2p — 5p and the tail part consisting of
continuum virtual states 9p — 29p are considered approximately through the DF cal-
culation. The total contribution to E1PNC' using the sum over intermediate states
approach is found to be 2.35 ieag(—Qw /N) x 107! which is in good agreement with
the value obtained by Dzuba et al. [6] tabulated in Table 6.1. Comparisons of the
results obtained using three different approaches for the computation of E1PNC' is

also given in Table 6.1.

Comparing the above results obtained using three different methods, it is clear
that the contribution to Ba™ PNC using the CI method has been underestimated due
to the absence of the f symmetry and continuum orbitals in the basis.
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6.2 Future Directions

The IP and EE values for the low lying bound states of Ba™ obtained using the
CC method shows that the inclusion of approximate triples to the energy term were
responsible for the high degree of precision [7]. Hence the first logical step in our future
Bat PNC work is to include triples at least in an approximate way in the coupled
cluster amplitude calculations. In this thesis we have given only the formulation to
calculate CC PNC using the four cluster amplitudes 7, S© T and S®. This
method includes the contributions from all the opposite parity intermediate states.
Hence the next step will be to implement it and compute E1PNC' using the PNC
perturbed and unperturbed amplitudes. As a next step, we would like to implement,
an all order CC which is capable of considering any arbitrary excitation in the cluster
operator as done by Kallay and Surjan et al. [13]. Considering the Breit interaction
in PNC calculations at all stages for caesium, Kozlov et al. [14] have shown the
accuracy of the calculations to be around 1%. Since the Briet interaction could play
an important role at the level of 1% accuracy, one must consider this effect for high
precision PNC calculations.

A high accuracy calculation of Bat PNC in the not too distant future may be
possible by exploiting the power of all-order many-body methods and the remarkable
advances that have been made in the area of parallel computation in the past few
years. Relativistic many-body calculations of PNC in Ra' have only recently got off
the ground, and there is certainly room for improving the present result. Indeed the
stage is now set for important advances in the relativistic many-body theory of PNC

in heavy ions.
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Appendix:A

Diagrammatic Representaion of
Couloumb Operator
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Figure A.1: Diagrammatic representation of normal ordered Hamiltonian (Hy)
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