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Abstract

Morphological features in galaxies—like spiral arms, bars, rings, and tidal tails, etc.—carry information about their
structure, origin, and evolution. It is therefore important to catalog and study such features and to correlate them
with other basic galaxy properties, the environments in which the galaxies are located, and their interactions with
other galaxies. The volume of present and future data on galaxies is so large that traditional methods, which
involve expert astronomers identifying morphological features through visual inspection, are no longer sufficient. It
is therefore necessary to use AI-based techniques like machine learning and deep learning to find morphological
structures quickly and efficiently. We report in this study the application of deep learning for finding ring-like
structures in galaxy images from the Sloan Digital Sky Survey (SDSS) DR18. We use a catalog by R. J. Buta of
ringed galaxies from SDSS to train the network, reaching good accuracy and recall, and generate a catalog of
29,420 galaxies, of which 4855 have ring-like structures with prediction confidence exceeding 90%. Using a
catalog of barred galaxy images identified by S. Abraham et. al. with deep-learning techniques, we identify a set of
2087 galaxies with bars as well as rings. The catalog should be very useful in understanding the origin of these
important morphological structures. As an example of the usefulness of the catalog, we explore the environments
and star formation characteristics of the ring galaxies in our sample.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Astronomy image processing (2306);
Catalogs (205); Galaxies (573)

Materials only available in the online version of record: machine-readable table

1. Introduction

Galaxies display a wide variety of forms as a consequence of
the differences in their intrinsic structure, interaction with other
galaxies, as well as observational biases. Efforts to make sense
of galaxy morphology with its multitude of forms have a long
history, dating back to Edwin Hubble and others. The Hubble
classification system (E. P. Hubble 1926) arranged galaxies
into a sequence, ranging from ellipticals to lenticulars to spirals
to irregular-shaped objects. Galaxies other than ellipticals were
further classified into those with bar-like structures and those
without such structures, resulting in a tuning-fork-like diagram.
Other more detailed classification systems have been developed
(see, e.g., S. Van den Bergh 1998), taking into account further
morphological features.

In recent decades, the availability of many millions of
higher-resolution multiwavelength images from large deep-
field surveys with modern instrumentation have made possible
detailed morphological studies (R. J. Buta 2011). Galaxy
morphology plays a key role in bettering our understanding of
the secular processes that underlie galaxy evolution. Several
important questions concerning the formation and evolution of

galaxies can be addressed from the observed changes in
morphology with epoch.
A fairly common feature of disk galaxies is the presence of a

ring-shaped pattern in their light distribution (R. Buta &
F. Combes 1996). These rings in galaxies have come to be
considered an integral part of galaxy morphology (J. Kormendy
1979). Recognizing their importance, the de Vaucouleurs
revised Hubble–Sandage classification system (VRHS; G. De
Vaucouleurs 1959) added rings as another dimension to the
two-dimensional Hubble tuning fork, turning it into a
classification volume. Rings in galaxies can fundamentally be
divided into normal rings, also called “resonance rings,” and
“catastrophic rings,” which are a result of galaxy collisions
(R. Buta & F. Combes 1996). Although different subclasses
exist within the catastrophic rings, such as polar, accretion, and
collisional rings, they constitute a very small minority of all
observed rings. B. F. Madore et al. (2009) have estimated the
abundance of collisional rings to be only about one in 1000.
Several theories have been put forward to explain the different
ring structures that are observed, with the resonance inter-
pretation being the most popular. The “Manifold Theory” that
has been proposed E. Athanassoula et al. (2009) has also had
considerable success in explaining several aspects of ring
morphology.
Several catalogs that contain the visual morphology classifica-

tion of galaxies are available today. Notable among them are
P. B. Nair & R. G. Abraham (2010) and M. Fukugita et al. (2007),
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with the former containing the detailed classifications of 14,034
galaxies. Crowd-sourcing efforts such as the Galaxy Zoo citizen
science project (C. Lintott et al. 2011) have managed to ramp up
the number of galaxy morphology classifications to nearly
900,000, by involving volunteers. This vast database has
motivated others to pick specific subtypes of galaxies for detailed
classifications. For example, R. J. Buta (2017) has exhaustively
classified 3962 ringed galaxies taken from this set. However, all
these efforts involve a human in the loop for classifying galaxy
morphologies.

With an explosion in the number of galaxy images being
produced as part of imaging surveys like the Sloan Digital Sky
Survey (SDSS; D. G. York et al. 2000), Panoramic Survey
Telescope and Rapid Response System (N. Kaiser et al. 2002),
and Dark Energy Survey (Dark Energy Survey Collaboration
2016), etc., automated methods of morphology classification
have become very important. Although traditional image-
processing techniques, many of which are histogram-based,
have had some success (see, e.g., L. Shamir 2020), these are
inappropriate for complex tasks, such as shape recognition from
images. However, the advent of AI techniques like convolutional
neural networks (CNNs; Y. LeCun & Y. Bengio et al. 1995) has
significantly improved the automated efforts for galaxy morph-
ology classification. One of the initial efforts in this area has
been made by M. Banerji et al. (2010). S. Dieleman et al. (2015)
have used CNNs to create a model that can match the combined
consensus of the Galazy Zoo volunteers on all of the questions
regarding galaxy morphology that are part of the survey.
H. Dominguez Sanchez et al. (2018) and S. Abraham et al.
(2018) have used CNNs for the automated classification of
galaxy morphological features such as bars, bulges, and edge-on
morphology, etc. More recently, R. Shimakawa et al. (2024)
have used a deep-learning model to obtain ring classification for
a very large sample of galaxies taken from the Hyper Suprime-
Cam Subaru Strategic Program.

In the present study, we investigate the efficacy of an
automated method based on CNNs for the detection of rings in
galaxies. We use galaxy images from SDSS (D. G. York et al.
2000) for the training and testing of our network. We treat the
problem as a binary classification one, treating all subclasses of
rings as a single ring type and distinguishing them from
galaxies that do not contain any rings, the non-ring type.
The trained network can be used to identify ringed galaxies
from SDSS. We used the network’s predictions to generate a
sample of 4855 ringed galaxies with a classification threshold
of 0.90. Using this sample, we explored the connection
between ring formation and star formation activity considering
the main-sequence, green valley, and quenched galaxy
populations. We also analyzed star formation by examining
their distribution across different environments, categorized by
their local surface densities.

The rest of the paper is organized as follows. In Section 2,
we describe the data used in the analysis, and we introduce the
neural network architecture in Section 3. We describe the data
augmentation techniques and training procedure for the neural
network in Sections 4 and 5, respectively, and in Section 6, we
analyze the results on the trained network. In Section 7, we
present the catalog of ringed galaxies generated using our
trained network, and in Section 8, we present a subset of the
ringed galaxies that have also been identified to have bars. In
Section 9, we provide a discussion regarding the environments

and star formation rates (SFRs) for the ringed galaxies in our
catalog. Finally, in Section 10, we give the concluding remarks.

2. Data

The performance of a supervised machine learning classifier
depends to a large extent on the quality of the labeled data that
are made available to it. For deep-learning models, the quantity
becomes important as well, because of the large number of
trainable or free parameters in the model. Many of the standard
data sets available for galaxy morphology classification do not
contain rings as a class (see, e.g., DECALS10).7 Even with the
Galaxy Zoo 2 (GZ2) data set (K. W. Willett et al. 2013), ringed
galaxies for which at least 50% of zoo volunteers agreed on a
response are relatively small in number.

2.1. Rings and Nonrings

We used the R. J. Buta (2017) catalog as our primary source
for identifying galaxies with rings. The author has provided
detailed visual morphological classifications of 3962 such
galaxies. The classifications are done within the framework of
the comprehensive de Vaucouleurs revised Hubble–Sandage
system (CVRHS; R. J. Buta et al. 2007, 2015). The catalog also
provides the author’s comments, which are useful for creating a
good-quality training set by identifying rare cases of rings,
poorly resolved galaxies, etc. The galaxies used for classifica-
tion by the author were picked from GZ2 (K. W. Willett et al.
2013).
Along with a good-quality training sample for rings, it is

equally important to obtain a good sample of galaxies that do
not have any presence of rings. Since the R. J. Buta (2017)
catalog does not contain such galaxies, we used the P. B. Nair
& R. G. Abraham (2010) catalog, which is one of the largest
catalogs for the visual morphological classification of galaxies.
They used galaxy images from SDSS DR4 (C. Stoughton et al.
2002; J. K. Adelman-McCarthy et al. 2006). Galaxies with
spectroscopic redshifts in the range 0.01< z< 0.1 and
extinction-corrected g’-band magnitude <16 were selected
from the spectroscopic main sample (M. A. Strauss et al. 2002).
This led to their final sample size of 14,034 galaxies.
The classification scheme used in P. B. Nair & R. G. Abraham

(2010) is not the CVRHS. Rather, it is primarily based on the
Carnegie Atlas of Galaxies (A. Sandage & J. Bedke 1994), used
in consultation with the Third Reference Catalog of Bright
Galaxies (G. de Vaucouleurs et al. 1991). In order to use only
galaxies without rings, we selected from the catalog galaxies that
have the ring type and ring flag column set to zero.

2.2. Selection Criteria

The images used for the GZ2 survey come from SDSS DR7
(K. N. Abazajian et al. 2009). GZ2 includes galaxies with
extinction-corrected Petrosian half-light magnitude in the r
band <17.0, Petrosian radius petroR90r> 3″, and spectro-
scopic redshift in the range 0.0005< z< 0.25, when it is
known. Finally, galaxies that have SDSS flags that are either
SATURATED, BRIGHT, or BLENDED without an accom-
panying NODEBLEND were removed. We further selected
galaxies that have an extinction-corrected g’-band magnitude
<16 based on the selection criteria used for the nonring

7 https://astro.utoronto.ca/~hleung/shared/Galaxy10/Galaxy10_
DECals.h5
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galaxies. The spectroscopic redshift was also limited to be in
the same range as that of the nonring galaxies, specifically
0.01< z< 0.1. By visual inspection, we removed 37 ringed
and 797 nonringed galaxies that contained artifacts and those
that were not clearly distinguishable. After the selection criteria
were applied and following the manual removal, the number of
ringed galaxies obtained was 1122 and the number of galaxies
without rings came out to be 10,639. Figure 1 shows the
distribution of redshift and extinction-corrected g-magnitude
for the ringed and nonringed galaxies in our training set.

2.3. SDSS Image Cutouts

We modified a Python library8 that exists in the public
domain for downloading the images we needed for training as
well as catalog preparation. We incorporated multithreaded
parallel downloading using the Concurrent9 Python module
in the script to speed up the downloading process. Figure 2

Figure 1. The normalized distribution of redshifts and extinction-corrected g-magnitude for the ringed galaxies (left) and nonringed galaxies (right).

8 https://pypi.org/project/panstamps/
9 https://docs.python.org/3/library/concurrent.futures.html
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shows a sample of the galaxies with and without rings in our
training set.

3. Network Design

AlexNet (A. Krizhevsky et al. 2012) is one of the earliest
CNN architectures that was designed and yet one of the most
reliable. Having a smaller size than most modern architectures
results in a lesser training time and also the requirement for a
lesser amount of training data for this network. The original
AlexNet architecture was designed for the ImageNet challenge
(J. Deng et al. 2009). The network has eight layers, with the
first five being convolutional layers and the remaining three
being fully connected. The first convolutional layer filters the
224× 224× 3 input image with 96 kernels of size 11× 11× 3
with a stride of four pixels. All of the convolution and fully
connected layers are immediately followed by a block
consisting of a Rectified Linear Unit activation (V. Nair &
G. E. Hinton 2010) and a batch normalization (NORM) layer.
The first, second, and final convolution layers are each
followed by a max-pooling layer, which leads to 50%
downsampling of the convolution feature maps. These layers
also contribute to the rotational invariance of the learnt model
weights (Y.-L. Boureau et al. 2010). The max-pooling layers of
the first two convolutions are followed by dropout layers
(N. Srivastava et al. 2014), having a dropout fraction of 0.25.
These prevent overfitting of the model by randomly dropping
25% of the weights during each training iteration.

We left the input layer size unchanged, since it was suitable
for our purposes. However, galactic rings are features that are
harder to distinguish in comparison to the classes in the
ImageNet challenge. We therefore used a smaller size of 5 for
the kernels in the first convolutional layer. This seemed to have
a considerable impact on the accuracy of the network. Thus, in
our network, the first convolution layer has 96 kernels of size
5× 5× 3 and the output is fed to the second layer of
convolution with 256 kernels each of size 5× 5× 48. The
third, fourth, and fifth convolutional layers have respectively
384, 384, and 256 kernels of size 3× 3× 256, 3× 3× 192,
and 3× 3× 192, respectively. These learn more complex
features and their final output is fed into another max-pooling
layer. The output of the final pooling layer is then fed into a
series of fully connected layers of size 4096. These layers are
connected by dropout layers, which have 0.50 dropout fraction.
The final layer is the sigmoid activation function layer, which
outputs a value that can be interpreted as the probability of the
input belonging to the positive class. The architecture of our
network is shown as a table and schematic diagram in Figure 3.

3.1. Selection of Hyperparameters

Hyperparameters are those parameters that are not learnt or
updated during the learning process and hence need to be
manually set by the programmer. These can include the
network architecture itself and several other parameters, like
the batch size used for the stochastic gradient descent or the

Figure 2. A sample of galaxies with and without rings from our training set.
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Figure 3. A tabular description of the AlexNet model architecture that we have used, generated with the Keras package (above) and a visual representation of the
same (below). The code for generating the figure was adapted from H. Iqbal (2018).
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number of epochs of training, etc. Hyperparameter tuning is an
important part of a deep-learning project, since these
parameters have a direct bearing on the performance and
accuracy of the model.

The loss function, which specifies the error and how much
weightage should be given to individual errors, is an important
hyperparameter to tune. We have used categorical
crossentropy,10 which is a standard loss function suitable
for binary classification problems. The optimizer function has
an effect on how the network weights are updated in order to
minimize this loss. We used the Adam optimizer with a
learning rate of 0.003. Regularization techniques are a set of
safeguard measures that prevent the model from overfitting on
the training data and thus losing its ability to generalize. We
have used L2 weight regularization with a factor of 0.0002 to
penalize the weights from growing too much during training.
The batch size controls how many input samples are
considered together for evaluating the loss function. This leads
to a trade-off between accuracy and speed. A batch size of 16
was seen to be sufficient in our case. The number of epochs (or
num epochs) decides how many times the network gets to see

the complete training data. We trained the network for num
epochs without early stopping.

4. Image Augmentation

Neural networks are prone to overfitting if the data available
for training are insufficient. In our case, the possibility of
increasing the training data is limited by the availability of
catalogs of ringed galaxies. It is therefore necessary to increase
the training sample size, through data augmentation, by
transforming the available images. We have used operations
such as horizontal and vertical flipping, rotation through
arbitrary angles, and brightness and contrast adjustments for
augmenting our training set. Using rotations also makes the
network invariant to rotations, which is needed because of the
rotational symmetry of the ringed galaxies, The augmentations
that we have used are illustrated in Figure 4 using a random
galaxy.
We implemented image augmentations using the on-the-

fly mode provided by the keras-tensorflow (F. Chollet
et al. 2015) framework. Here, a predefined sequence of
transformations is applied to each image from the training
set, using parameters that are randomized, so that at each
epoch, the network sees a different set of augmented images. In

Figure 4. The different types of image augmentations that are done to each image in our training set.

Figure 5. Top left: the training graph, which shows a plot of the training and validation loss against the number of epochs. Top right: the precision–recall curve, which
shows the plot of precision against recall for ringed galaxies in our test set computed at various thresholds. The dashed line shows the curve expected from a no-skill
classifier. A few thresholds taken at random are annotated on the curve. Bottom: the classification report showing the precision and recall for both rings and nonrings
in our test set.

10 https://www.tensorflow.org/api_docs/python/tf/keras/metrics/
categorical_crossentropy
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Figure 6. Examples of images from our test set that are both correctly and incorrectly classified.
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this way, we avoid generating all the augmented images before
the start of the training and also save disk space.

5. Training

The galaxy image cutouts used for training are three-channel
RGB 256× 256 pixel images, which are are dynamically
resized by the Keras image_data set_from_direc-
tory11 function into the required input shape of 240× 240.
The pixel intensities in the range (0–255) are rescaled to the
range (0, 1) for easier computation. The input size and other
parameters for the network, like num epochs, batch size,
are controlled through a config file that is read at run time. The
images are first resized to the desired input size and then loaded
into memory in nbatches using the Keras image_data
set_from_directory function. A generator avoids the
need for all of the images to be loaded into memory at once.

The data are initially split into a training and testing set using
a ratio of 80:20. During training, the training set is further split
internally into a training and validation set, using the same
ratio. Before augmentations are applied, the number of ringed
galaxies in our training set (including the validation split) is
897 and the number in the testing set is 225. Similarly, the
number of galaxies without rings in our training set is 8511 and
the number in the testing set is 2128. The network was trained
for a total of 140 epochs. The training graph in Figure 5 shows
the variation of the categorical_crossentropy loss
function with increasing epochs for both the training and
validation data. If there is overfitting, the validation loss of the
network increases, whereas the training loss keeps decreasing.
In our case, the training loss and validation loss are seen to
decrease together with each epoch, and therefore there is no
significant overfitting that occurs. There is further scope for
training the network, albeit with minimal returns.

The training was done on the Amazon Web Services platform
on an Intel Xeon workstation with four virtual CPUs and 16GB
RAM, making use of a Tesla (g4dn.xlarge) GPU accelerator

with 16 GB graphics memory. A community Amazon Machine
Image running Arch Linux was modified to function as our base
operating system. The data and model are version-controlled
using Data Version Control (R. Kuprieiev et al. 2022) and stored
on Amazon S3 cloud storage. The code itself is version-
controlled and made available on github (L. Abraham 2024).
The entire training session takes 2.5 hr to run with our hardware
specifications.

6. Results

6.1. Evaluation Metrics for Unbalanced Data Sets

For evaluating the performance of the network in discrimi-
nating between galaxies with rings and those without rings, we
us the three metrics accuracy, precision, and recall. Accuracy is
the number of correct classifications as a fraction of the total
number of classifications made:

=
+

+ + +
Accuracy

TP TN

TP TN FP FN
,

where TP denotes the number of true positives, FP the number
of false positives, and FN the number of false negatives.
Precision and recall are defined as

=
+

Precision
TP

TP FP
,

=
+

Recall
TP

TP FN
.

Precision is an indicator of the purity of the classification—that
is, the extent to which a collection of galaxies identified as
ringed are indeed ring galaxies. Recall, on the other hand, is a
measure of the extent of completeness in identifying galaxies
from a sample containing galaxies with and without rings.
Precision and recall are therefore important for astronomers.
Our trained model obtained a classification accuracy of 98%

on the testing set. The threshold used for converting prediction
scores to class labels is 0.50. The classification report shown in
Figure 5 summarizes the precision and recall we have obtained

Figure 7. Cutouts of a single galaxy downloaded at various zoom levels from the SDSS cutouts server and predicted on using the trained network. The prediction
scores obtained for each are shown in red.

11 https://www.tensorflow.org/api_docs/python/tf/keras/utils/image_
dataset_from_directory
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for both the classes. The precision obtained for the rings was
93%. Our model also has a good recall value of 89%. Using the
predicted probabilities of our network, a catalog with higher
purity can be obtained by appropriately selecting the
classification threshold. It is to be kept in mind that higher
purity comes at a cost of reduced completeness. The nature of
the trade-off can be understood using the precision–recall curve
shown in Figure 5. Figure 6 shows galaxies in the test set that
are correctly classified (True Positives and True Negatives) and
failures (False Positives and False Negatives) obtained using
our trained network.

6.2. Predictions at Different Zoom Levels

To get a better insight into what the model has learned, we
downloaded a single galaxy at different zoom levels using the
SDSS image cutout service. This is done by varying the scale
factor and downloading the different images. The trained
network was then used to predict on these images. Figure 7
shows different versions of a particular ringed galaxy along

with the probability score returned by the network. It can be
seen that the probability score goes to zero both when the
images are too zoomed out or too zoomed in, such that the ring
feature is not visible. For other zoom levels, the probability
scores given by the network are comparable to what a human
observer would assign.

6.3. Analysis of Failed Predictions

To get a better idea of the performance of our classifier, we
analyzed the failed predictions. A quantitative way of doing
this is to compute the log-loss for each sample in our test set.
The log-loss is defined by

[ ( ) ( )]= - + - -y p y plogloss ln 1 ln 1 ,i i i i i

where yi is the true value, which is either 0 or 1, and pi is the
predicted probability score for observation i. In our binary
classification problem, with a sigmoid activation for the last
layer, the predicted value is a real-valued number between 0 and
1, which is interpreted as a probability of the sample actually

Figure 8. Top: the normalized distribution of log-loss in our test set. The true negatives are shown separately because of the difference in bin range. Bottom: a sample
of galaxies from the false negatives having the highest log-loss values. The annotations shown in red denote the prediction scores.
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belonging to the positive class. For the negative class, a low
predicted probability implies a high confidence value. Hence, in
this case, we need to take the difference of the value from one in
order to get the real confidence. When analyzing the failures in
our testing set, we can use a loss function that is weighted using
the confidence with which a prediction has been made.

The histogram of these losses can then be used to get an idea
about the overall performance of the model. Figure 8 shows the

histogram of log-loss obtained for our test set. The peak of the
histograms is toward the lower end, which means that there are
a lesser number of wrong predictions made with a high
confidence value and a greater number of correct predictions
made with a high confidence value. That is, it can be seen that
the confidence of the wrong predictions is much lower than that
of the correct predictions. The figure also shows representative
images from our test set corresponding to the false negatives

Figure 9. Ringed galaxies from our training sample predicted using the trained model and with a low log-loss (above) and high log-loss (below). The annotations
shown in red denote the prediction scores.
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and having high log-loss values. The rings in these galaxies are
not very distinct, and one of the galaxies has a high inclination
angle that might have confused the network.

6.4. Model Interpretability

Once the model has been trained, if we use it to make
predictions on the training data themselves, we will be able to
get some idea of what the model has learned, which is known
as the model interpretability. We used the trained model to
predict the probability of each ringed galaxy in the sample
being identified as ringed. The difference (1 – the predicted
probability) can be taken as a measure of the error. This error
can be used for finding subsets of ringed galaxies in our
training sample that are either easy for the network to learn or
difficult to learn. The results for a sample are shown in
Figure 9. It can be seen that among the galaxy images that the

network had trouble in learning, there are many with image
artifacts or the presence of background stars or galaxies. Many
of the galaxies have a zoomed-in view, as well. The galaxy
images that were easily identified by the network had a better
contrast with the background and the galaxies were at a normal
zoom level.

7. A Catalog of Ringed Galaxies

To prepare a catalog of ringed galaxies from SDSS, we used
the same selection criteria that were used for the training data
preparation. The SDSS data can be queried using the
CASJOBS12 interface. The complete query is given in the
Appendix. The source list obtained from the CASJOBS server
was downloaded using our bulk download script. The trained

Table 1
A Preview of the Catalog of Ringed Galaxies (Above) and of Barred Rings (Below), with the First 20 Rows from Each Catalog Shown

R.A. Decl. Objid gmag deVRad_r deVAB_g Redshift Prediction Label

40.285690 −0.714957 1237645941824356443 15.641980 9.327478 0.339572 0.040287 0.908651 Rings
57.025337 0.208845 1237645942905438473 15.497970 10.815760 0.871453 0.025475 0.598131 NonRings
56.781387 1.000343 1237645943979114582 15.879010 2.804902 0.321389 0.039847 0.250911 NonRings
56.847420 0.875488 1237645943979114622 15.182350 13.953940 0.724238 0.039371 0.865321 NonRings
57.248385 0.925979 1237645943979311221 15.657840 6.806947 0.535690 0.035788 0.818097 NonRings
57.674720 1.040755 1237645943979507954 15.344130 3.541592 0.822157 0.037123 0.516564 NonRings
243.708876 −0.915653 1237648672921485632 15.293520 8.426456 0.640077 0.030767 0.836999 NonRings
246.015172 −0.902869 1237648672922468973 15.979040 15.339940 0.550030 0.046526 0.494671 NonRings
245.367353 −0.457074 1237648673459077169 15.901310 8.323227 0.500005 0.059092 0.534696 NonRings
246.782081 −0.492432 1237648673459667234 15.630960 8.579305 0.437323 0.046192 0.457613 NonRings
189.522249 −0.027031 1237648673971437623 14.639720 18.461840 0.442339 0.012513 0.802063 NonRings
237.945144 −0.105170 1237648673992671592 15.529860 5.215971 0.949471 0.054426 0.630027 NonRings
243.236782 −0.096251 1237648673994965546 14.331720 27.210810 0.723929 0.030867 0.879053 NonRings
243.583196 −0.031564 1237648673995162093 15.782320 5.114430 0.559130 0.030811 0.536166 NonRings
245.381888 −0.072364 1237648673995948107 15.426320 3.416426 0.888818 0.027287 0.904141 Rings
248.064172 −0.049932 1237648673997127724 15.503360 5.104637 0.811834 0.044017 0.924116 Rings
195.644361 0.348565 1237648674510995594 14.989240 7.022532 0.659088 0.067754 0.922850 Rings
242.672630 0.276520 1237648674531639653 15.742830 5.721440 0.605837 0.062059 0.449378 NonRings
243.154609 0.379972 1237648674531836029 15.808500 3.519223 0.956060 0.043145 0.945323 Rings
249.820694 0.410283 1237648674534719840 15.602230 4.794272 0.273508 0.024328 0.069281 NonRings

R.A. Decl. SDSS_Objid Prediction Label

0.013400 −1.113000 1237663275780276407 0.001809 Barred-NonRings
0.019800 0.781700 1237657191978959126 0.650422 Barred-Rings
0.032300 −0.723700 1237663783123681369 0.039325 Barred-NonRings
0.056000 −1.213600 1237663275780276438 0.060768 Barred-NonRings
0.114500 14.962500 1237656495650570466 0.208050 Barred-NonRings
0.117000 14.381200 1237652942638481637 0.183115 Barred-NonRings
0.128700 −1.213000 1237663275780341888 0.532812 Barred-Rings
0.158900 14.623600 1237656495113699423 0.024679 Barred-NonRings
0.166500 −1.191200 1237663275780341936 0.036194 Barred-NonRings
0.228100 15.218700 1237652943712288939 0.000647 Barred-NonRings
0.241000 14.190400 1237656494576894171 0.162884 Barred-NonRings
0.241700 14.864400 1237652943175418025 0.215693 Barred-NonRings
0.261300 −0.257100 1237663783660617841 0.001189 Barred-NonRings
0.297800 15.985900 1237656496724443439 0.000518 Barred-NonRings
0.300100 15.351400 1237652943712288996 0.173043 Barred-NonRings
0.306000 −0.992900 1237657189831606381 0.008202 Barred-NonRings
0.368800 −0.224400 1237663783660683434 0.321357 Barred-NonRings
0.380900 14.407500 1237652942638612625 0.211441 Barred-NonRings
0.388600 −0.730500 1237663783123812523 0.000156 Barred-NonRings
0.398900 −0.395200 1237663783660683462 0.303564 Barred-NonRings

(This table is available in its entirety in machine-readable form in the online article.)

12 https://skyserver.sdss.org/casjobs/default.aspx
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Figure 10. Some good examples of ringed galaxies (above) and barred ring galaxies (below) from our catalog. The annotations shown in red denote the prediction
scores.
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network was then used to predict the ringed or nonringed
nature of these galaxies. A preview of the catalog is included in
Table 1. Figure 10 shows a selection of galaxies with rings
taken from our catalog.

In order to conduct a more thorough testing of our network
on real world data, we show in Figure 11 an image mosaic
created from 50 randomly selected galaxies from our prediction
set, along with the machine-generated probability scores. The
galaxies are sorted in descending order of the prediction score.
Based on the natural abundance of ringed galaxies, we may
expect less than 10 of these to be ringed. It can be seen on
visual inspection that most of the galaxies with true rings have
high prediction scores in comparison to the nonrings, and
hence they are clustered toward the top of the image mosaic.
We found 4855 galaxies that are predicted to have rings, using
a classification threshold of 0.90. This corresponds to a ring
galaxy fraction of 16.5%. At a slightly lower threshold of 0.89,
we recover the same ring galaxy fraction of 18.2 as observed
by P. B. Nair & R. G. Abraham (2010). Figure 12 shows how
this fraction varies for all thresholds between 0 and 1. Further,
in Figure 13, we show how the distribution of the extinction-
corrected g-magnitude of the predictions compares with that of
the training sample.

8. A Catalog of Ringed Galaxies with Bars

Bars in galaxies are much more common than rings.
Approximately half of the observed galaxies are seen to have
bars (J. H. Knapen 1999). However, galaxies that contain both
bars and rings are certainly a smaller fraction. Dedicated
catalogs for such galaxies are also quite rare. Here, we use the
S. Abraham et al. (2018) catalog, which is an automated
catalog of galaxies with bars in SDSS, to find galaxies with
both bars and rings. The S. Abraham et al. (2018) catalog
contains 111,838 galaxies that have been predicted as either
barred or unbarred. We selected the barred galaxies, which
came to be 25,781 in number, and used our trained network to
predict which of these galaxies also have rings. Figure 10

shows a random selection of the barred galaxies that have been
predicted to have rings with a probability score of greater than
90%. We found 2087 galaxies that contained both bars and
rings using a classification threshold of 0.5. A preview of the
catalog containing barred galaxies with predictions for the
presence or absence of a ring is shown in Table 1.

9. Discussion

As a demonstration of the usefulness of the catalogs
generated in this paper, in this section, we will explore the
environments and star formation characteristics of the ring
galaxies in our sample. Our goal is to analyze star formation
within the framework of the main sequence of star-forming
galaxies, the transitioning population of green-valley galaxies,
and the quenched galaxies. Additionally, we will examine star
formation in relation to the environmental variations from low

Figure 11. A mosaic of 50 randomly selected images from the prediction set sorted using the predicted probability of having a ring. Visual inspection shows that the
rings have accumulated toward the bottom and the nonrings toward the top.

Figure 12. Plot showing the fraction of ring galaxies predicted at various
thresholds.
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to high densities. For this analysis, we use a sample of 4855
galaxies, with a classification threshold of 0.90, that are
predicted to have rings.

We crossmatched this sample with I. K. Baldry et al. (2006) to
find the local surface density as a measure of the environment. It
is calculated using the relation /pS = N dN N

2 , where dN
represents the distance to the Nth nearest neighbor. These
neighbors fall within the redshift range ±Δzc= 1000 km s−1 for
galaxies with spectroscopic redshifts or within the 95% confidence
interval for galaxies with only photometric redshifts. We use the
best estimate, Σ, which is the average of ΣN for the fourth- and
fifth-nearest neighbors and categorize our sample into low-density
( ( )S < --log Mpc 0.52 ), intermediate-density (−0.5 < Slog
( ) <-Mpc 0.52 ), and high-density ( ( )S >-log Mpc 2 0.5) groups.
Figure 14 presents the histogram of Slog for the sample of

4471 ring galaxies with environment information. We find that

ring galaxies are primarily found in intermediate-density
environments, i.e., in galaxy groups (49.3%) and in low-
density environments, i.e., as isolated galaxies (35.1%). We see
relatively few ring galaxies (15.6%) in high-density environ-
ments, in agreement with D. M. Elmegreen et al. (1992).
Numerical simulations, such as ROMULUS (M. Tremmel et al.
2017), suggest that galaxies within group environments often
undergo interactions or multiple mergers with gas-rich
satellites, evolving into elliptical galaxies. Subsequently, these
galaxies start to accrete gas and redevelop their disks, which
then become unstable, triggering star formation in ring-like
patterns. When galaxies display rejuvenated star-forming rings,
two pathways for gas inflow are identified in numerical
simulations: (a) diffuse cooling gas that feeds the galaxy,
aiding in developing the disk/ring structure; and (b) the
acquisition of ram-pressure-stripped gas streams from gas-rich
satellites (S. L. Jung et al. 2022).
To study the star formation in our sample ring galaxies with

environment information, we utilized the GALEX–SDSS–
WISE Legacy Catalog (GSWLC-X2; S. Salim et al.
2016, 2018), and the crossmatch gave us 4022 ring galaxies
with a stellar mass (log M*) range of 8.8–11.68. To investigate
the influence of the environment on the star formation process
in ring galaxies, we constructed a control sample of nonring
galaxies with a classification threshold of 0.40 for being a ring
galaxy, i.e., a threshold of 0.60 for being a nonring galaxy. This
control sample has a similar r-band magnitude and redshift, and
a crossmatch with the GSWLC-X2 catalog gave ∼5000
nonring galaxies. The GSWLC-X2 catalog integrates ultravio-
let data from GALEX, optical data from SDSS, and infrared
data from the WISE all-sky survey to model the galaxy spectral
energy distribution (SED). During the SED modeling, the
catalog applies flexible dust attenuation laws and emission-line
corrections to ensure accurate measurements of the SFR and
stellar mass (M*), as they might lead to the wrong identification
of galaxies.
We calculated the specific SFR (sSFR) and, following

S. Salim (2014), classified our sample galaxies into three
subclasses as a function of environment, as shown in Figure 15.
The star-forming region is identified with log sSFR� −10.8; the
green valley, which is a transition zone between the star-forming
and quenched regions, is defined as−11.8< log sSFR<−10.8;
and the quenched region is defined by log sSFR � −11.8. In

Figure 13. A comparison of the extinction-corrected g-magnitude distribution between the training and the prediction samples shown for both the ringed galaxies (left)
and galaxies without rings (right).

Figure 14. Histogram of local environmental density ( ( )S -log Mpc 2 ) for our
final sample of galaxies. The dashed lines separate the sample into low
( ( )S < --log Mpc 0.52 ), intermediate (−0.5 < ( )S <-log Mpc 0.52 ), and
high densities ( ( )S >-log Mpc 0.52 ).
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high-density environments, most of the ring galaxies are in the
quenched (42.3%) or green-valley region (33.6%); however, the
control sample of nonring galaxies is almost equally distributed
in the quenched (33.8%) and star-forming regions (47.8%), with
fewer galaxies in the green valley (18.9%). In contrast, low- and
intermediate-density environments are dominated by star-form-
ing ring galaxies (52.4% and 43.2%, respectively), as are the
nonring galaxies from the control sample (86.9% and 76.3%,
respectively). However, the number of ring galaxies in green
valleys increases for intermediate-density environments, though
the number of nonring galaxies increases for high-density
environments. It is apparent that most of the ring galaxies are
located in the star-forming region for low- and intermediate-
density environments, validating the scenario in which the
rejuvenation of star formation happens by accreting gas and
triggering star formation in ring-like features. Our results are
somewhat different from those of J. Fernandez et al. (2024), who
suggest that ringed galaxies exhibit lower star formation activity
in intermediate-density environments, though it is much lower in
high-density environments.

Many ring galaxies from our sample are also part of the
MaNGA survey, and the study of spatially resolved stellar

populations of rings using such integral field units surveys will
provide useful insights into the origin of star-forming rings, and
this can be the subject of future work.

10. Conclusion

We have shown that a relatively simple deep neural network
based on the AlexNet architecture can be used to detect galactic
rings from color-composite galaxy images. The training
required only a modest sample size of 1122 original ringed
galaxy images and about 10,639 original images of galaxies
without rings. To overcome the challenges of training with a
small data set of labeled rings, we used a smaller network and
also increased the total number of images available for training
through realistic image transformations. We also used evalua-
tion metrics suited for the class imbalance that was present in
our data. We have prepared a catalog of candidate ring and
nonring galaxies using the predictions of our trained network.
The probability score provided in the catalog can be used as a
confidence measure of the presence of rings, to obtain smaller
catalogs with the required level of confidence for follow-up
analysis. Additionally, we used the network to generate a
catalog of galaxies with rings as well as bars, which may be of

Figure 15. Dependence of sSFR on stellar mass (sSFR–mass plane) for our sample of ring galaxies and control sample of nonring galaxies (gray dots) as a function of
(a) low-density ( ( )S < --log Mpc 0.52 ), (b) intermediate-density (−0.5 < ( )S <-log Mpc 0.52 ), and (c) high-density ( ( )S >-log Mpc 0.52 ) environments.
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special interest to galaxy morphologists. Finally, we explored
the connection between the environments and star formation
characteristics of the 4855 ringed galaxies in our catalog. We
found that ring galaxies are star-forming and are primarily
found in low- and intermediate-density environments.

Appendix
CASJOBS Query

We provide the CASJOBS query used to create the catalog
of ringed and nonringed galaxies. The query is run in the DR18
context.

SELECT
p.objid,p.ra,p.dec,
(p.u-p.extinction_u) as umag,
(p.g—p.extinction_g) as gmag,
(p.r-p.extinction_r) as rmag,
(p.i-p.extinction_i) as imag,
(p.z—p.extinction_z) as zmag,
(p.deVRad_g) as g_dev, p.deVRad_r, p.deVAB_g,
s.specobjid, s.class,
s.z as redshift into mydb.MyTable
from PhotoObjAll AS p

JOIN SpecObj AS s ON s.bestobjid=p.objid
WHERE

s.class=’GALAXY’
AND s.z BETWEEN 0.01 and 0.1
AND (p.g—extinction_g) < 16
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