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Abstract
The Crab Nebula is an astrophysical system that exhibits complex morphological patterns at
different observing frequencies. We carry out a systematic investigation of the structural
complexity of the nebula using publicly available imaging data at radio frequency. For the analysis,
we use the well-known multifractal detrended fluctuation analysis in two dimensions. We find that
radio data exhibit long-range correlations, as expected from the underlying physics of the
supernova explosion and evolution. The correlations follow a power-law scaling with length scales.
The structural complexity is found to be multifractal in nature, as evidenced by the dependence of
the generalized Hurst exponent on the order of the moments of the detrended fluctuation
function. By repeating the analysis on shuffled data, we further probe the origin of the
multifractality in the radio imaging data. For the radio data, we find that the probability density
function is close to a Gaussian form. Hence, the multifractal behavior is due to the differing nature
of long-range correlations of the large and small detrended fluctuation field values. We investigate
the multifractal parameters across different partitions of the radio image and find that the
structures across the image are highly heterogeneous, making the Crab Nebula a structurally
complex astrophysical system. Our analysis thus provides a fresh perspective on the morphology of
the Crab Nebula from a complexity science viewpoint.

1. Introduction

Natural systems are generally complex, consisting of a large number of interlinked/integrated components of
heterogenous properties [1]. The individual components of such complex systems have non-linear character
[2, 3]. Their interaction can give rise to emergent behaviors at different scales. An important property of
complex systems is self-organization [4], which can be captured by fractals or multifractals. The notion of
multifractality originated in the study of turbulence in fluid mechanics [5, 6]. Classically, multifractals are
analyzed using two approaches: structure-function [7] and partition function [8]. While the
structure-function approach is based on moments of increment distribution, the partition-function
approach mainly adopts the box-counting formalism to determine the multifractal spectrum (α, f). Other
approaches to analyzing multifractals in time-series data include the wavelet transform approach, fluctuation
analysis approach, and detrended fluctuation approach. We refer interested readers to the excellent review [9]
for details of these approaches. The well-established multifractal formalism is used across a wide variety of
fields. It is used to study long-term persistence in river precipitation (earth sciences) [10], dynamics of stock
markets (econophysics) [9], anomalies in the dynamics of brain (neuroscience) [11], social media activities
(social dynamics) [12] and species abundance distributions (ecology) [13]. Kantelhardt et al [14] developed
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a numerical method known as the multifractal detrended fluctuation analysis (MFDFA) to calculate various
multifractal parameters for characterizing multifractal scaling properties and detecting long-range
correlations in noisy, non-stationary time series data of complex systems. The method is based on a
generalization of the DFA initially given by Peng et al [15]. Gu and Zhou [16] extended the conventional
MFDFA to the two-dimensional MFDFA (2D-MFDFA) to analyze higher dimensional fractals and
multifractals.

The multifractal theoretical framework has long been studied by theoretical physicists and
mathematicians. The multifractal spectrum, f(α), also known as Hölder spectrum, associates with each
positive α the Hausdorff dimension of the set [17]. For instance, in the case of fully developed turbulence,
the Hölder spectrum is determined for the velocity of the fluid [18]. The formalism of fractal or multifractal
analysis [19] runs parallel to mathematical frameworks, such as multifractal decomposition of Moran
fractals [20], and digraph recursive fractals [21], maximal measure [22], discrete measures [23], the theory of
large deviations [24], Minkowski measurability [25], self-similar functions [26, 27], etc. The present paper
aims to introduce and explore a fractal theory and a multifractal analysis in the context of a complex
astrophysical system, namely, the Crab Nebula. Astrophysics provides a multitude of examples of complex
systems owing to the different physical interactions and evolution time scales involved. Examples of complex
astrophysical systems include turbulent plasma, such as stellar flares and accretion discs, supernova
remnants, spatial structures in the interstellar medium, galaxies, and the large-scale structure of the Universe
[28–30]. To measure the complexity of their dynamics or morphological structures from observational data
is an intriguing and active research topic. Supernova remnants are particularly interesting for questions
related to complexity because of their complicated morphological patterns that evolve with time. In this
paper, we focus our attention on the Crab Nebula, a well-known remnant of a supernova recorded in 1054
AD [31]. It is located about 6500 light-years from the earth [32] and has been well-studied using
multi-wavelength observations from radio frequencies to gamma rays (see reviews [33, 34]). We choose to
study the Crab Nebula from the viewpoint of complex systems because of its historical importance and
availability of imaging data with good spatial resolution in several frequency bands. Several studies have been
carried out to investigate the morphological variation of the Crab Nebula across different frequencies (see
e.g. [35–37]). However, a quantitative analysis of the morphological complexity of the Crab Nebula is lacking
in the literature.

The intricate morphology of the Crab Nebula that can be easily discerned by the eye from
high-resolution images naturally leads to the question of its structural complexity. A complex systems
approach to the Crab Nebula views the physical system as one system of inter-connected components with
their organization exhibiting emergent behaviors instead of studying the dynamics of the individual
components. To investigate the structural complexity of the complex system of the Crab Nebula, we adopt a
multi-scale multifractal approach. A multifractal approach is very well-suited to study and analyze the
structural properties of the Crab Nebula since it provides a framework for detecting and identifying complex
local structures and describing local singularities. In astrophysics, multifractal formalism is applied to study
the large scale structure of the Universe [38, 39], the behavior of galaxy clustering on large scales [40], the
interstellar medium [41], Gamma-ray bursts [42, 43], flux correlations of pulsars [44], flux variability in the
quasar 3C 273 [45], gravitational wave signals detected by LIGO [46], to name a few. The well-established
one-dimensional MFDFA is used to study sunspot number fluctuations [47], investigate the statistical
properties of the cosmic microwave background radiation [48], and analyze the pseudorapidity distribution
of ring-like events of charged mesons [49]. We systematically investigate the structural complexity of the
Crab Nebula observed at radio frequency using publicly available data with the 2D-MFDFA method. Our
findings provide the local scaling behavior, nature of correlations, the origin of multifractality, heterogeneous
properties, and organization in the structural system of the Crab Nebula. Our results deepen our
understanding of the multi-scale physics operating in the Crab Nebula.

This paper is organized as follows. Section 2 outlines the methodology used in our analysis. We briefly
introduce the concept of multifractality and describe the 2D-MFDFA algorithm and the associated physical
interpretations. Section 3 describes the physics of the Crab Nebula and the imaging data used in our analysis.
In section 4, we present our main analysis and results. We conclude with a summary and discuss the
implications of our results in section 5.

2. Methodology

In this section, we briefly review multifractality and complexity measures, then present the 2D-MFDFA
algorithm and its associated physical interpretations.
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2.1. Complexity andmultifractality
Given y(0) = 0, a random process {y(t)} is said to be a self-affine process if it obeys the following scaling
relation [50]

y(ct)

y(t)
= cD ; ∀ c> 0, (1)

where c is the scale factor. The scaling exponent D> 0 represents the self-affine process’s fractal or
self-similarity dimension. A uni-fractal or uniscaling process is characterized by a single scaling law at any
scale. Data generated by various complex systems exhibit fluctuations on a broad range of scales. Such
fluctuations often follow a scaling relation of the type (1) over several orders of magnitude in both
equilibrium and non-equilibrium situations [14].

The theory of multifractals studies a more general relation of the type

y(ct)

y(t)
= Γ(c) ;∀t, 0< c⩽ 1, (2)

where y(t) and Γ(c) are independent random functions. If the random process {y(t)} is multifractal, then the
scaling function Γ(c) satisfies [50]

Γ(c1c2 . . . cn) = Γ1 (c1) Γ2 (c2) . . .Γn (cn) ; 0< c1, c2, . . . , cn ⩽ 1, (3)

where Γ1, Γ2, . . .Γn are n independent copies of Γ for various local scales c1, c2, . . . , cn. Using equations (1)
and (2), each local scale cκ of equation (3) has the local fractal dimension Dκ and hence the local scaling
function follows the relation

Γκ (cκ)∼ cDκ
κ . (4)

The multifractal process becomes a monofractal when c1 = c2 = · · ·= cn = c in equation (3). Using
equation (4), we can write the scaling function Γ of equation (3) as Γ = cD1+D2+···+Dn = cD, where
D= D1 +D2 + . . .+Dn, which is exactly equation (1). Thus, for a uni-fractal system, the scaling function Γ
characterizes a homogenous fractal structure/behavior with a single scaling exponent D at all scales c.
Multifractality, on the other hand, can provide a richer variety of structures/behaviors. A multifractal
analysis thus can be used to describe the fluctuations-driven local patterns/clusters of a data field represented
by a set of scaling exponents corresponding to the local patterns.

2.2. Review of 2D-MFDFA
We briefly review here the algorithm and physical interpretations of the two-dimensional MFDFA method,
following [14, 16].

2.2.1. 2D-MFDFA algorithm
Consider a two-dimensional compact space S, which is a subset of flat two-dimensional space. For our
purpose, S is a rectangular region that is subdivided intoM×N equal-area square pixels. Let d denote the
data field, a function on S. The d is thus a two-dimensionalM×N array.

The algorithm for the 2D-MFDFA involves the following steps.

1. Partition S intoMs ×Ns disjoint square subsets, with each subset containing s2 pixels. We refer to s as the
scale size. Let us call each subset a superpixel. Let each superpixel be indexed by I, J, such that
I= 1,2, . . . ,Ms and J= 1,2, . . . ,Ns. We assume thatM,N are multiples of s so thatMs =M/s and
Ns = N/s are positive integers. We then carry out the partitioning for different values of s. For a given s,
all superpixels contain the same number of pixels.

2. Let dI,J denote the s× s data array within each superpixel I, J. The cumulative sum UI,J of the data for each
superpixel is defined by

UI,J (i, j) =
i∑

k1=1

j∑
k2=1

dI,J (k1,k2) , (5)

where i, j = 1, . . . , s are indices for the pixels within the superpixel.

3
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3. To subtract the trend in each superpixel, we first fit UI,J(i, j) with a linear bivariate polynomial function
U fit

I,J(i, j), given by

U fit
I,J (i, j) = Ai+Bj+C, (6)

where A,B,C are parameters determined by the fitting process. In general, one can also use higher-order
polynomials for the fitting function. The detrended fluctuation function that is defined in the steps below
will differ based on the order of the fitting function. We have chosen a linear form since it is the simplest.
Even though the numerical values of our derived quantities are affected by the order of the fitting
polynomial, the overall conclusions of our results remain the same. We then calculate the residual

∆UI,J (i, j) = UI,J (i, j)−U fit
I,J (i, j) . (7)

Then, for a given s, the detrended fluctuation function of each superpixel, which we denote by G(I, J, s), is
calculated as

G2 (I, J, s) =
1

s2

s∑
i=1

s∑
j=1

∆UI,J (i, j)
2
. (8)

4. Let q be a non-zero real number. The detrended fluctuation function of order q, denoted by Fq(s), is
calculated by averaging over all the superpixels as

Fq (s) =

{
1

MsNs

Ms∑
I=1

Ns∑
J=1

[G(I, J, s)]q
}1/q

. (9)

For positive integer values of q, this expression reduces to the usual definition of the qth order moment of
G(I, J, s).
For the case of q= 0, equation (9) cannot be used since it diverges. Instead, we use the following
expression for F0(s)

F0 (s) = exp

{
1

MsNs

Ms∑
I=1

Ns∑
J=1

ln [G(I, J, s)]

}
. (10)

Since we use the positive square root of equation (8), Fq(s) is always real.
5. For different values of q, the scaling relation between Fq(s) and the scale size s can be expressed as

Fq (s)∼ sh(q), (11)

where the scaling exponent h(q) is the generalized Hurst exponent. The h(q) is a measure of self-similarity
symmetry and correlation present in the data field. We restrict our attention here to data for which Fq(s)
are increasing functions of s, or positive values of h(q). This means that the data of interest contains
positive correlations.

Mathematically, there is a-priori no restriction on the range of q values. However, the physical
information that can be obtained may saturate beyond some range of q values, such as what we will find
when h(q) asymptotes to constant values as q increases.

2.2.2. Physical interpretations
As described above the 2D-MFDFA algorithm determines the scaling relation between Fq(s) and s, from
which we can calculate h(q). For a general data field, h can depend on both q and s. From the behaviour of
h(q), we can infer the following:

• If the data contains long-range power-law correlations, then the dependence of Fq(s) on s has a power-law
form, and h(q) is independent of s.

• If h(q) remains the same for varying q, then the data field has monofractal scaling property. This means
that the data or physical system contains one structural element or pattern that is invariant under size scale
transformations. Then only one scaling exponent, namely h describes the self-similar scaling behavior of
the system.

4
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• If, however, h has a dependence on q, then the data hasmultifractal scaling behaviour. This implies that the
data contains more than one structural element, which is invariant under size scale transformations. This
further shows that small and large fluctuations scale differently with s.

• For positive values of q, the dominant contributions to the sum on the right-hand side of equation (9)
will come from superpixels containing large fluctuations (or equivalently large deviations from the fitting
function Ufit

I,J given in step 3 in the previous subsection). So, for q> 0, h(q) effectively describes the scal-
ing behavior of large fluctuations. In contrast, for negative values of q, the dominant contribution for the
averaging in equation (9) will come from superpixels containing small values of fluctuations. Hence in the
region q< 0, h(q) effectively describes the scaling behavior of small fluctuations.

• Furthermore, given some data having multifractal properties, the value of h(q) is usually larger for q< 0,
compared to q> 0. This can be explained by the fact that the contributions to the averaging in equation (9)
from small fluctuations typically vary more across the scale s, compared to large fluctuations.

We next relate h(q) to other measures of complexity used in the literature. From the standard partition
function-based multifractal formalism, the classical multifractal scaling exponent τ is related to h(q) as [14]

τ (q) = qh(q)−Df, (12)

where Df is the fractal dimension of the geometric support of the object. We take Df = 2 for a
two-dimensional (2D) image [16]. If h is independent of q, then τ is a linear function of q. Therefore, a
nonlinear shape of τ(q) is an indication of the multifractality of the system.

The Hölder exponent (also known as singularity strength), denoted by α, is calculated by taking the
Legendre transformation of equation (12) as

α(q) = τ ′ (q) , (13)

where the prime denotes derivative with respect to q. We get

α(q) = h(q)+ qh ′ (q) . (14)

α is a measure of the shape of h(q) since it is a function of h ′(q). Different values of α characterize different
parts of the system roughly since small, intermediate or large values of the fluctuation field will contribute to
different values of α. From equation (14) we can see that α can take both positive and negative real values
depending on the sign of the second term and its relative value with respect to the first term. Note that for a
monofractal system, we have h ′(q) = 0 since h is a constant, and as a consequence, α has only one value
given by α= h. Therefore, a variation of α with q signifies multifractality, and the range over which it varies
quantifies the strength of multifractality.

The last quantity we use is themultifractal spectrum (also called the singularity spectrum) f(α), defined by

f(α) = qα− τ (q) . (15)

This quantity is useful in extracting information about the symmetry between small and large fluctuations.
In order to gain an intuitive understanding of the quantities we have defined so far, let us consider two

toy examples of multifractal complex systems whose h(q) are given below.

Example A. Let h(q) be given by

h(q) = 2.2− 0.08tan−1
(q
2

)
. (16)

Example B. Let h(q) be given by

h(q) = 2.2− 0.08tan−1
(q
2

)
+ 0.04e−(q+1)2/2. (17)

These examples have been chosen so as to capture the essence of our results in section 4. Figure 1 shows
h, h, τ and α versus q, and f versus α for the two examples. We have chosen Df = 2 for both examples. If h(q)
is a well-behaved monotonic function of q, such as in example A, then all the other quantities are
single-valued. However, if h(q) is not monotonic, such as in example B, then h and α become multi-valued.
As a consequence, the multifractal spectrum f(α) is not a well-behaved function.

5
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Figure 1. h, h ′, τ, α are plotted versus q, and f is plotted versus α, for the toy examples given by equations (16) and (17).

In case, f(α) has a well-defined peak located at α= α0, then we can quantify its symmetry about α0. Let
αmin be the smallest value of α, and αmax denote the value of α where f(αmax) = f(αmin). Then, let χ denote
the skewness parameter, given by

χ ≡ |αmax −α0|
|αmin −α0|

. (18)

The f(α) is right-skewed if χ> 1, left-skewed if χ< 1, and symmetrical if χ= 1. If χ< 1, then it shows that
the scaling of the system is dominated by large fluctuations (smaller generalized Hurst exponents). However,
if χ> 1, then it shows the dominance of scaling by small fluctuations (higher generalized Hurst exponents).

3. The Crab Nebula—physical processes and observed data

In this section, we present a brief description of the physical processes that are relevant to understanding the
Crab Nebula. Then we give details of the imaging data that we use for our analysis.

3.1. Physics of the Crab Nebula
The Crab Nebula belongs to the class of supernova remnants known as pulsar wind nebulae (PWN). Such a
nebula inherits its morphology and spectrum from the following factors.

1. During the supernova explosion of the progenitor star, the stellar material gets ejected (known as ejecta).
The ejecta sweeps up the interstellar medium, creates a heated shock front, slows down, and eventually
freely expands into the interstellar regions beyond the confines of the nebula.

2. The collapse of the core of the progenitor star results in a rotating magnetized neutron star, known as the
Crab pulsar. The magnetic field causes the charged ejecta particles to accelerate and emit synchrotron
radiation.

3. The Crab pulsar spins at the rate of 33 ms [51]. The pulsar emits non-thermal plasma, known as pulsar
wind, which gets accelerated to high velocities by the magnetic field. The plasma pushes into the
surrounding ejecta in the nebula and undergoes turbulent mixing. This leads to Rayleigh–Taylor
instabilities [52] that give shape to the Crab Nebula’s filamentary network and wispy structures.

The Crab Nebula appears like a bubble whose shell expands radially over time as the ejected material
moves outward, while the interior structure consists of an expanding network of filaments and wispy
structures when viewed across a wide range of frequencies. Freely expanding ejecta is also expected to be
present beyond the visible Crab. Here we focus on radio observation of the Crab Nebula. The origin of radio
emission is described below.

Radio frequencies: The emission in radio frequencies is primarily the non-thermal synchrotron radiation
from the shocked pulsar wind; charged particles are accelerated due to the magnetic field of the pulsar.

6
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Figure 2. VLA image of Crab Nebula at 4.76 GHz.

Visually, one can see the expanding network of filaments and fine-scale wispy features (figure 2). The source
of most of the thermal emission from the filaments is understood to be the photo-ionization by the hard
continuum from the synchrotron PWN emission [53, see, e.g.]. In addition, radiative cooling behind the
shock driven by the PWN into the freely expanding ejecta also gives rise to radio emission [54].

3.2. Observational data of the Crab Nebula
We focus on the data of the Crab Nebula observed at radio frequency by the very large array (VLA)6. We use
publicly available radio imaging data of the Crab Nebula at 4.76GHz with an angular resolution of
0.7 arcseconds from the VLA image archive7. These data have undergone full calibration and reduction.

The image we analyze is shown in figure 2. The surface brightness in the image is given in units of
Jy beam−1. The data has undergone full calibration and reduction. Hence we can directly apply the
2D-MFDFA algorithm to this imaging data and analyze its structural complexity.

4. Analysis and results

We apply the 2D-MFDFA algorithm to the radio imaging data of the Crab Nebula and study its multifractal
properties. Using the intensity or field value at each pixel, we first calculate the fluctuation functions Fq
defined by equations (9) and (10), and from them, we obtain the generalized Hurst exponents h(q). Then,
from h(q), we obtain the derived quantities—the classical scaling exponents τ(q), the Hölder exponents α,
the multifractal spectra f(α) and the skewness parameter χ.

The multifractal analysis using the 2D-MFDFA algorithm was performed using the MATLAB_R2018a
platform. The 2D-MFDFA algorithm calculates h(q) by the method of linear fitting using the inbuilt
regression statistics regstats of MATLAB. In particular, it uses the inbuilt routine tstat based on
Student’s t-distribution. The code also calculates the error bars for h as the standard errors from tstat.

In order to study the spatial scaling behaviors of the multifractal variables over different spatial regions of
the Crab Nebula, we repeat the 2D-MFDFA analysis on smaller partitions of the image for both radio and IR
data. This is carried out by dividing the images into Na ≡ 2a equal-area portions, where a⩾ 0 is an even
integer that determines the number of partitions. We refer to a as the partition scale parameter (so as not to
confuse with the size scale s). We use values a= 0,2,4 since the number of pixels in each partition becomes
too small beyond that. The spatial scaling behavior will reveal whether the same morphological rules are
followed or not at different parts of the system. It will also enable us to identify the presence of heterogeneous
properties at different length scales.

The regions on the top left and bottom right of the image in figure 2 are predominantly noise. Since our
calculations require a uniform size of spatial regions, we retain these regions and perform all multifractal
analyses. We present the corresponding results in sections 4.1 and 4.2. In section 4.3, we analyze the effect of

6 VLA is operated by the National Radio Astronomy Observatory (NRAO), USA. The National Radio Astronomy Observatory is a facility
of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.
7 https://archive.nrao.edu/archive/archiveimage.html.
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Figure 3. Radio data of Crab Nebula at 4.76 GHz—The fluctuation function Fq is plotted versus scale size s, for different values of
q, and different partitions of the radio image corresponding to a= 0,2,4.

the noise on the multifractal parameters by adopting a masking procedure (described therein the section) on
the radio image of figure 2. We then compare the results for the original (unmasked) and masked radio data.

4.1. Complexity of Crab Nebula at the radio frequency of 4.76GHz
The Crab Nebula image at the radio frequency of 4.76 GHz (shown in figure 6) consists of 650× 740 number
of pixels.

Figure 3 shows the log-log plots of the fluctuation functions Fq as functions of the scale size s, for
different partition scales a= 0,2,4 (indicated against each panel) for different values of the order of
statistical moments q (shown by different colors). For all the partition scales a, it is observed that Fq has
power law dependence on s and the slopes of Fq vary for different q. This is a signature of the presence of
multiple local fractal behaviors at different local domains s, across all a. The spread of the curves along Fq ,
i.e.,∆Fq for small values of s is much larger than the spread in Fq at large values of s. This shows that the role
of fluctuations is more evident in smaller local patterns/clusters of the system, which provide distinct local
behaviors. However, at large values of s, this spread∆Fq → 0, where the system converges to a single
behavior.

The slopes of the log-log plots of Fq versus s in figure 3 give the values of the generalized Hurst exponent
h as a function of q, as defined by equation (11). The left column of figure 4 shows h versus q, ranging from
−40 to 40 in steps of one. The cases of a= 0,2,4 are shown in the panels from top to bottom. The number of
plots (shown in different colors) in each panel corresponds to the number of partitions of the radio image for
each a. The vertical dashed lines in the panels showing h(q) and τ(q) correspond to q∼ 0. We observe
significant dependence of h on q for all a, indicating distinct local behaviors at various partition scales a. This

8
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Figure 4.Multifractal parameters for the radio image of the Crab Nebula. Column 1: Generalized Hurst exponents h versus q for
a= 0,2,4. Column 2: The classical scaling exponents τ versus q for a= 0,2,4. Column 3:Multifractal spectra f versus the
singular exponents α for a= 0,2,4. Different colours represent Na = 2a partitions for each value of a. The vertical dashed lines in
the panels for h and τ represent the value q∼ 0, where the slopes make a transition.

shows that small and large fluctuations of the emission at the radio frequency have very different scaling
natures.

As described in section 2.2.2, for positive (negative) values of q, h describes the scaling behavior of the
segments with large (small) fluctuations. From the left column of figure 4, we find that the values of h(q) are
larger for q< 0 than that of q> 0 for all partition scales a. Hence, local behaviors of the patterns/clusters at
various a are found to be sensitive to small fluctuations. These small fluctuations drive the local behaviors
significantly different compared to the large fluctuations in the radio data [14]. The significant spread in h as
a function of q, i.e.∆h at each a shows that scaling laws of the patterns/clusters at various a are distinctly
different, which shows a heterogenous distribution of the patterns/clusters in various partitions of the
system. Further, since the values of h(q) for q< 0 are larger than that of q> 0, the correlated memory in the
patterns/clusters/system driven by small fluctuations persists longer as compared to that driven by large
fluctuations [14, 50].

Visually, in the radio image of the Crab Nebula (see figure 2) we can discern that in general large
fluctuation values track the structurally dominant network of filaments and are correlated over large length
scales. In contrast, the smaller fluctuation values track the small-scale wispy structures and are correlated
over shorter length scales. Hence, our finding that h(q> 0)< h(q< 0) is not surprising. It encapsulates the
long-range correlations of the filamentary network and the shorter-range correlations, as well as the stronger
scale dependence of the wispy structures. Further, we observe scale-dependent heterogeneous patterns in the
various partitions, which show different local multifractal scaling laws of the patterns.

In all the plots of h(q), we see that it asymptotes to constant values as |q| →∞. This implies that small
fluctuation values tend towards the same scaling behavior, and so do large fluctuations. Let h± denote the
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Figure 5. Left: PDF of the radio data. The x-axis is in units of Jy beam−1. The other three panels show h(q) (second from left),
τ(q) (third from left) and f(α) (right) of the radio data for the original and shuffled cases.

asymptotic values at q→±∞. We observe that h− varies considerably large across the different partitions
for a⩾ 2, while h+ shows relatively less variations such that h± ≈ h±(a,m), wherem is the partition index.
This means that the structural properties associated with small fluctuations vary considerably large among
the different partitions of the radio image, while large fluctuations are comparable. Further, since the values
of h− > h+, the persistence of the patterns/clusters in each partition driven by small fluctuations has longer
memory as compared to large fluctuations. We thus expect to see more heterogeneous or dissimilar
structures with distinct local scaling laws across the different partitions of the radio image significantly
contributed by small fluctuations. This corroborates what we described in the previous paragraph. We also
find the largest variation of h− across the different partitions for a= 4. A closer look at the values of h± for
different partitions of the radio image will be discussed in section 4.3.

In the middle column of figure 4, we plot the classical scaling exponent τ versus q for different values of
a. In all the plots, we observe that τ does not depend on q linearly. Equation (12) tells us that if h is
independent of q, then τ should be a linear function of q. But h is dependent on q, and it exhibits a step-like
transition around q∼ 0 (see the left column of figure 4). Therefore, we expect that τ will also make a
transition around q∼ 0. This is indeed what we see in the plots of τ , where we observe two linear regimes
with a slope change around q∼ 0 (indicated by the vertical dashed lines). This value marks the transition of
the scaling nature between large and small fluctuations exhibiting multifractal properties.

Lastly, in the right column of figure 4, we plot the multifractal spectra f(α) versus the singularity strength
α for different partition scales a. Since h(q) is a monotonous function, α is single-valued. We observe that all
the curves have their maxima, denoted by fmax at roughly α= α0 ∼ 2. Also, visually it is clear that all f curves
are right-skewed around α0, showing a high degree of complexity in the structure of each partition defined
by a [55]. Further, the widths of α for a fixed value of f(α) of all the partitions of each a are significantly
different, which shows heterogeneous structures in the partitions with different scaling behaviors [56]. The
values of the skewness parameters χ for each f are calculated using equation (18). We will discuss χ in detail
in section 4.3.

4.2. Origin of the multifractal nature
We now probe the physical origin of the multifractal nature that is obtained for the radio data. Multifractality
can arise due to two different physical reasons- (1) distribution-induced multifractality caused by a
heavy-tailed probability density function (PDF) of the data, and (2) correlation-induced multifractality
caused by differing nature of correlations for small and large fluctuations, such as linear and nonlinear
correlations [9, 14]. One can analyze the origin of multifractality as follows. Shuffling the data destroys all
the long-range correlations while the PDF remains unchanged. On the other hand, multifractality due to a
heavy-tailed PDF cannot be removed by shuffling [57]. If the multifractality is solely due to correlations, the
shuffled data will show monofractality [57]. If the data contains both heavy-tailed PDF and linear/nonlinear
correlations, then the shuffled data will show multifractality smaller than that of the original data [58]. First,
in order to isolate the effect of correlation, we randomly shuffle the data to destroy all spatial correlations. We
will use superscripts ‘orig’ and ‘shuf ’ to indicate quantities obtained from the original and shuffled data,
respectively. Suppose Forigq and Fshufq are the fluctuation functions corresponding to the original and shuffled

data with their respective generalized Hurst exponents horig and hshuf. Then the ratio
Forigq

Fshufq
∼ sh

corr
, where

hcorr = horig − hshuf. We can analyze the origin of multifractality in the data from hcorr as: (i) if hcorr = 0 such
that horig = hshuf, then the cause of multifractality is the fatness of the PDF, and (ii) if hcorr = hcorr(q) ̸= 0 and
hshuf = hshuf(q), then the origin of multifractality is due to both q-dependent long-range correlations coming
from short and long-range fluctuations as well as a broad PDF in the data, and (iii) if hshuf = 2, then the
multifractality in the data is due to only long-range correlations [14, 59].
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Figure 6. Partitions of the masked VLA image of the Crab Nebula at 4.76 GHz.

In the leftmost panel of figure 5, we show the PDF for the radio data. We find that it is close to Gaussian.
We calculate the multifractal quantities h(q), τ(q) and f(α) for the shuffled data. The second from the left
panel of figure 5 shows h(q) for the two cases of original and shuffled data. We indeed find hshuf(q) has weak
q-dependence with hshuf(q)→ constant→ 2 for the shuffled data. Hence, hcorr → horig(q)− 2. Similarly, we
plot τ(q) and f(α) for the two cases of original and shuffled data, respectively, in the third from left and right
most panels of figure 5. We previously found that the scaling exponents τ(q) at all the considered partition
scales a= 0,2,4 are nonlinear functions of q (see middle panels of figure 4). This non-linearity shows the
presence of intrinsic multifractality [60]. When we shuffled the original field values and repeated the same
multifractal analysis, we found that the τ(q) curve now becomes linear (second from the right panel in
figure 5). This shows that the shuffling process destroys all the intrinsic non-linear correlations.

Since the PDF of the radio data is close to Gaussian, we simulated an uncorrelated Gaussian random field
to have a handle on what to expect of the multifractal parameters for uncorrelated Gaussian data (see
appendix). By repeating the same analysis we performed with Crab Nebula data, we have calculated
h(q), τ(q) and f(α) for one realization of an uncorrelated Gaussian random field. We find that for this
uncorrelated field, τ(q) curves show monofractal behavior. From this result in appendix, we expect the
shuffled radio data to behave close to a monofractal and hence to find h(q) to be almost constant with value
2. This is in agreement with what we observe in the panels of column 2 in figure 5, where we find τ(q) curves
to be linear thereby indicating monofractal behavior. We show the breaking of intrinsic non-linear
correlations responsible for intrinsic multifractality by the shuffling process. Therefore we conclude that the
multifractality of the Crab Nebula radio data originates from long-range non-linear correlations of large and
small fluctuations in the data.

4.3. Heterogeneity in the spatial structures
We now study the heterogeneity in the structures of the Crab Nebula observed at the radio frequency of
4.76GHz by examining integrated quantities obtained from h, τ and χ as functions of the scale parameter.

To address the effect of noise present in the top left and bottom right regions of the image in figure 2, we
repeat the calculations of the quantities h, τ and χ after masking these regions. We construct an elliptical
mask of appropriate dimensions [61] and assign zero values to the regions outside the ellipse while retaining
the original field values inside the ellipse (see figure 6). The partitions in the image are numbered for the
cases of a= 2 (orange) and a= 4 (yellow). In the latter case, the partitions are numbered in a nested manner
so that sequential groups of four are mapped hierarchically to the corresponding larger partition of a= 2. All
calculations are then repeated for the masked image.

We first examine the asymptotic values h± for the different partitions indexed by ia (for a given partition
scale a). The plots of h± versus ia are shown in figure 7 for a= 2 (left panel) and a= 4 (right panel). Red
stars indicate values for the unmasked original image, while blue indicates values for the masked images. For
a= 2, there is an increase in h_ for ia = 1 and a slight increase in h_ for ia = 3 after masking. Similarly, for
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Figure 7. Plots of h± for each partition indexed by ia when a= 2,4 for both masked and original radio image. The black dashed
horizontal line shows h= 2 for reference.

a= 4, there is a change in h_ for ia = 1,2,4 and a slight change in ia = 10,11,12 after masking. These
changes are because the mask artificially introduces two distinct regions in each affected region—one that
belongs to the Crab Nebula and another that has predominantly zero values.

From the bottom panels of figure 7, we can see that for a= 2, the radio image (both original and masked)
has larger values of h− and smaller values of h+. This captures the wider variation of scaling behavior
between large and small fluctuation values of the radio data, already discussed earlier. This is corroborated by
visual inspection of the image. If we closely look at the smaller partition scale structures (a= 2) of the Crab
Nebula observed at radio (top panel of figure 7), we can easily see that the radio image has more
heterogenous structures across the partitions in the form of filaments and wisps. Moreover, the filamentary
network of the radio image has longer-range correlations. This can be explained by the fact that the materials
that emit synchrotron radiation at radio frequencies, which are the charged particles of the supernova ejecta
and pulsar wind, are distributed over larger spatial scales. At a= 4, h− for the radio data varies randomly.
This implies that the structures across the different parts of the Crab Nebula are highly heterogeneous when
observed at radio frequency. These highly heterogeneous structures at various length scales make the Crab
Nebula a structurally complex physical system.

Next, we focus on the values of h in the regime around q= 0, where it exhibits a transition. Let the
average of h(q) over q in a suitable regime−qc < q< qc, with qc is a positive variable, be given by

h̄≡ 1´ qc
−qc

dq

ˆ qc

−qc

dqh(q) . (19)

In the limit qc →∞, h̄ will be dominated by the asymptotic values, and we simply get h̄∼ (h− + h+)/2. In
this limit, we lose the information of the variation or shape of h(q) in the intermediate q values. So we focus
on finite qc and choose qc = 40 as the value of q, where h becomes effectively constant for each partition scale
a. This is akin to weighted averaging, where the weight kernel is the top hat function centered at q= 0.
Mathematically there is no restriction on taking large |q|. Since q takes integer values here, we need the
discretized version of equation (19). Let iq = 1, . . . ,Nq index the values of q, where Nq = 81 denotes the total
number of q values considered. Let ia = 1, . . . ,Na index each partition of the image for a given a. Then for
each ia, the discrete form of equation (19) is

h̄ia ≡
1

Nq

Nq∑
iq=1

hia (q) . (20)

For τ , there are no asymptotically constant values. Hence, there is no natural cut-off value of qc to define
the range−qc < q< qc over which to average τ . We will choose the same qc that is defined for h. So we have
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Figure 8. Scaling with respect to a of the averaged quantities ⟨h⟩ (top panel), ⟨τ⟩ (middle panel) and ⟨χ⟩ (bottom panel) for radio
data.

τ̄ia ≡
1

Nq

Nq∑
iq=1

τia (q) . (21)

Let χia denote the skewness parameter χ in each partition ia. Let X̄ia denote either of the three
quantities—h̄ia , τ̄ia or χia . Then we average them over all the partitions for each a, as

⟨X⟩ ≡ 1

Na

Na∑
ia=1

X̄ia . (22)

Figure 8 shows ⟨h⟩ (top panel), ⟨τ⟩ (middle panel) and ⟨χ⟩ (bottom panel) for the radio image as
functions of partition scales a. The error bars shown are the standard errors. We observe that ⟨h⟩ varies with
a for the radio data. This result correlates with the value of (h− + h+)/2 seen in figure 7, with the larger
contributions coming from h−. This implies that the radio image has stronger small-scale scaling behaviors,
showing the presence of fine-scale structures with well-defined local scaling laws in the radio data.

Further, let h0 denote the largest value of ⟨h⟩ chosen from the different a’s. Let us normalize ⟨h⟩ by h0 and
denote

⟨h⟩norm ≡ ⟨h⟩/h0. (23)

If ⟨h⟩norm ∈ (0.5,1), then this implies a strong positive correlation in the system [14], with long memory of
persistence in the states of the system [10, 50]. From the top panel of figure 8, for the radio data, h0 = 2.28,
which is the value of ⟨h⟩ at a= 0. Using this, we find that ⟨h⟩norm lies in the range [0.92,1] for all a for the
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radio data. This value is greater than 0.5 and close to unity. This implies strong positive correlations [14] in
the Crab Nebula structural system. Further, the decrease in ⟨h⟩ as a increases show that finer structures in the
smaller partitions of the system lose their correlations and local structural memories, which is expected. In
the asymptotic limit lim

a→∞
|⟨h⟩| → 2, it shows memoryless structures whose underlying processes are

Brownian motions (see appendix) [10, 14, 50]. Again, the curve of ⟨h⟩ approximately follows a power-law
behavior with a as ⟨h⟩ ∼ a−γ , where γ is the power-law exponent. This shows a hierarchical organization of
the heterogenous structures in the Crab Nebula structural system [62–64]. This behavior is similar to
Carpenter’s law as predicted in astrophysical data analyses [64–66].

The middle panel of figure 8 shows that the average classical scaling exponent ⟨τ⟩ also varies with a, which
again implies heterogeneity in the structure of the underlying system. From the bottom panel of figure 8,
⟨χ⟩> 2 for all a, which implies the richness of complexity of the Crab Nebula at radio frequency. This shows
the dominance of scaling of small fluctuations or the presence of fine structures in the Crab Nebula. The
random distribution of the ⟨χ⟩ parameter also implies a heterogeneous property of the structure visible in
the Crab Nebula. This can be accounted for by the non-equilibrium dynamics of the underlying system.

5. Conclusions

The Crab Nebula is one of the most studied astrophysical systems across the entire electromagnetic spectrum
from radio wavelengths to ultrahigh-energy γ-rays [67, 68]. In astrophysics, several recent studies confirm
the complexity of the Crab Nebula’s morphology across the different bands of the spectrum [69–74]. In this
paper, we offer a fresh perspective on the complex morphology of Crab Nebula using multifractal analysis
from the vantage point of complex systems science.

We have investigated the structural complexity of the Crab Nebula at the radio frequency of 4.76GHz
using publicly available imaging data. In particular, we have analyzed the data using the 2D-MFDFA
approach. We have investigated the structural system at various length scales for local scaling behaviors. Our
results confirm that the structure of the Crab Nebula has a rich complexity characterized by a multifractal
nature. We have studied the origin of multifractality in the radio data. We have found that the multifractal
property of the radio data arises from the difference in the nature of long-range correlations (and consequent
scaling with the scale parameter s) of large and small field values in the data.

Our results show a strong positive correlation in the radio frequency. The long-range correlations of large
and small values in the data can be traced back to the materials that emit at this frequency. The variations of
the multifractal parameters, namely the generalized Hurst exponents h calculated from the fluctuation
functions Fq, the classical scaling exponents τ and the skewness parameter χ across varying length scales
show heterogeneity in the structure across different parts of the visible Crab Nebula. This can be accounted
to the Crab Nebula being a non-equilibrium, highly dynamic structural system.

What we have done in this paper is essentially quantified how the physics of the evolution of the Crab
Nebula as a supernova remnant manifests in the language of complex systems. The 2D-MFDFA approach we
have used in the study is found to be a good method to characterize the complexity of an astrophysical
system with complex morphological features. Our multifractal results inform us that the rich fine structures
in the Crab Nebula ruled by local scaling behaviors show self-organization at different length scales of the
structural system. Long-range correlations manifest as self-similar fractals and are identified as signatures of
self-organized criticality [75, 76]. Our results thus deepen our understanding of the multi-scale physics that
is operating in the Crab Nebula. An example of a complex system with multifractal characteristics similar to
the Crab Nebula is the human brain. Multifractality captures the heterogeneous and multiscale interaction
rules in the brain networks [77]; for instance, the community structures at different structural levels in the
human brain connectome [78] ruled by scaling behaviors that are signatures of self-organization [79].

This paper represents a proof of concept of the insights that can be obtained from viewing the Crab
Nebula as a complex system. However, it has some limitations. First, our analysis considers the Crab as a
two-dimensional object and ignores its three-dimensional structure. It will be interesting to study the full 3D
structure using reconstructions such as those given by [80]. Secondly, the Crab Nebula is a rapidly evolving
system on astrophysical time scales. The data that we analyze here are observations taken at specific times,
and we do not address the question of the time evolution of the properties related to complexity. In order to
extract the full potential of the method, our work can be extended in the following directions. Given the
wealth of data available for this astrophysical object, an analysis across the full range of frequencies will be
valuable and will be carried out in the future. It opens up a slew of questions that will enhance our
understanding of supernova remnants, and we plan to carry out a systematic investigation in the near future.
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The methodology used in this paper can also be used to understand other astrophysical complex systems
such as the planetary nebula NGC 1514, whose complex kinematics with multiple structures was studied
[81]. As pointed out in the review paper [82], PWN, of which the Crab Nebula is a prototype, show a variety
of properties and morphologies at different evolutionary ages. It will be interesting to extend the present
analysis to study the multifractal properties of a wide variety of PWN and look for their universal properties.
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Appendix. Multifractal parameters for uncorrelated Gaussian random data on two
dimensions

To serve as a standard reference with which to compare the multifractal parameters of the Crab Nebula at
different frequencies it is useful to know the expected behavior of the parameters for an uncorrelated
Gaussian random field. For this purpose, we simulated one realization of such a field having zero mean and
unit variance on a 512× 512 grid. Then we calculated the multifractal parameters using the same
2D-MFDFA algorithm that is used for the Crab Nebula data.

The resulting plots of h(q), τ(q) and f(α) are shown in figure 9. From the left panel, we see that h(q) is
constant∼2, which implies a monofractal behavior as expected from the uncorrelated and Gaussian natures
of the field. The linearity of the plot for τ(q) (middle), and narrow range for f(α) (right), follow immediately
from the plot of h(q). The very slight variation of α on the x−axis of the third panel arises from the statistical
fluctuation of the data since we have used only one realization of the Gaussian random field.
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Figure 9.Multifractal parameters h(q) (left), τ(q) (middle) and f(α) (right) for one realization of an uncorrelated
two-dimensional Gaussian random field having zero mean and unit variance.
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