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A B S T R A C T 

In a stellar atmosphere, the resonance line polarization arises from scattering of limb-darkened radiation field by atoms. This 
spectral line polarization gets affected particularly in the wings, when the line photons suffer scattering on electrons in thermal 
motion. Scattering of line photons by atoms and electrons are, respectively, described by the atomic and Thomson electron 

scattering redistribution functions, which in general depend on both the frequencies and directions of incident and scattered 

photons. In this paper, we consider the polarized spectral line formation in spherically symmetric extended and expanding media 
accounting for the angle-dependent partial frequency redistribution (AD-PRD) in scattering on both atoms and electrons. We 
solve this computationally demanding polarized transfer problem using an accelerated lambda iteration method and a method 

based on orders of scattering approach. In the case of expanding spherical medium, the concerned transfer problem is solved 

in the comoving frame. Because of the computational limitations, we consider optically thin isothermal spherically symmetric 
media of different extensions for the static case as well as when the velocity fields are present. For the considered model, we 
show that the AD-PRD effects on the linear polarization profiles are significant and have to be accounted for. 
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 I N T RO D U C T I O N  

n a scattering event, frequencies and directions of incident and
cattered photons in general get intertwined with each other. This
ngle and frequency coupling is conveniently described by the
ngle-dependent partial frequency redistribution (AD-PRD) func-
ions (Hummer 1962 ; Mihalas 1978 ; Hubeny & Mihalas 2015 ) in
he unpolarized case and by AD-PRD matrices in the polarized
ase (Domke & Hubeny 1988 ; Stenflo 1994 ; Bommier 1997a , b ).
umerical solution of the polarized transfer equation including AD-
RD is, ho we ver, kno wn to be computationally challenging because
f the difficulty involved in evaluating the scattering terms. Despite
his complexity, there have been several polarized transfer studies
n the literature that included AD-PRD effects (see e.g. Dumont
t al. 1977 ; Faurobert 1987 , 1988 ; Nagendra, Frisch & Faurobert
002 ; Sampoorna, Nagendra & Stenflo 2008 , 2017 ; Nagendra &
ampoorna 2011 ; Sampoorna, Nagendra & Frisch 2011 ; Anusha &
agendra 2012 ; Nagendra & Sampoorna 2012 ; Supriya et al. 2012 ,
013a , b ; Sampoorna & Nagendra 2015a , b ; del Pino Alem ́an et al.
020 ; Nagendra et al. 2020 ; Janett et al. 2021 ; Benedusi et al. 2022 ,
023 ; Anusha 2023 ). These studies considered either one-, two-,
r three-dimensional atmospheres defined in a Cartesian coordinate
ystem. While these are a good representation of stellar atmospheres,
hey generally do not account for sphericity effects that are partic-
 E-mail: sampoorna@iiap.res.in 
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larly important in highly extended atmospheres such as the ones
ound in early-type hot stars (Hubeny & Mihalas 2015 ). On the other
and, to a good approximation, highly extended atmospheres are
ell represented by a spherically symmetric medium. In Sampoorna,
egha & Supriya ( 2022 ), we considered scattering on both atoms

nd electrons along with the polarized resonance line transfer in a
pherically symmetric extended as well as expanding atmosphere.
o we ver, the scattering computations were done for a simpler case
f angle-averaged partial frequency redistribution (AA-PRD). In this
tudy, we investigate the above-said problem by including AD-PRD
nd highlight its impact on the linear polarization signals. 

The outline of this paper is as follows. In Section 2 , we present the
asic equations. The numerical methods of solution are described
n Section 3 . Numerical results are presented in Section 4 , where
he AD-PRD effects on the linear polarization profiles are discussed.
oncluding remarks are given in Section 5 . 

 BA SIC  E QUAT I O N S  

n this paper, we consider a one-dimensional spherically symmetric
 xtended and e xpanding medium. We account for resonance line
cattering on a two-level atom and Thomson scattering of line
hotons by electrons. For both type of scatterings we use the exact
D-PRD matrices. We solve the spherically symmetric polarized

ransfer equation by the tangent-ray method (Hummer & Rybicki
971 ). In this method, the transfer equation is solved along a set of
angent rays defined in the ( p , z) coordinate system, where p is the
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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mpact parameter of the ray and z is distance along it (see fig. 1 of
egha et al. 2019 ). Furthermore, we consider the comoving frame 

CMF) formulation of the transfer equation (Hubeny & Mihalas 
015 ). This allows us to take into account the presence of a non-
ero non-relativistic radial velocity v r in the medium. In Section 2.1 ,
e present the CMF transfer equation in the Stokes vector basis and

hen in Section 2.2 , the irreducible spherical tensorial representation, 
hich is well suited for devising efficient numerical schemes (Frisch 
009 , 2010 ). 

.1 Stok es v ector r epr esentation 

he CMF polarized transfer equation in the ( p , z) coordinate system
nd in the non-relativistic limit is given by 

± ∂ I ±( z, p, ν) 

∂τ ( z, ν) 
= I ±( z, p, ν) − S ( z, p, ν) − ˜ S ( z, p, ν) , (1) 

here I ± = ( I ±, Q 

±) T denotes the Stokes vector for the incoming
 −’ and the outgoing ‘ + ’ tangent rays, with I representing the specific
ntensity and Q the linear polarization. The reference direction for 
ositive Q is defined to be perpendicular to the radius vector. The
onochromatic optical depth along the tangent ray is given by 
 τ ( z, ν) = −χ ( r , ν)d z , where ν is the frequency, r is the radius,
nd χ ( r , ν) = χ l ( r ) ϕ( ν) + χ c ( r ) + χ e ( r ) is the total absorption
oefficient. The line-integrated absorption coefficient χ l ( r ), contin- 
um absorption coefficient χ c ( r ), and the electron scattering opacity 
e ( r ) are assumed to vary as 1/ r 2 (namely, the inverse square law
pacity distribution). The line absorption profile ϕ( ν) is given by the
ormalized Voigt function. The total source vector is given by 

S ( z, p, ν) = 

ϕ( ν) S l ( z, p, ν) + βc S c + βe S e ( z, p, ν) 

ϕ( ν) + βc + βe 

, (2) 

here βc = χ c / χ l and βe = χ e / χ l . For scattering on a two-level
tom, the line source vector has the form 

S l ( z, p, ν) = εB ν0 U 

+ 

∫ ∞ 

0 
d ν ′ 

∮ 
d 
′ 

4 π

R a ( ν, 
, ν ′ , 
′ ) 
ϕ( ν) 

I ( z, μ′ , ν ′ ) . (3) 

cattering of an incoming ray with frequency ν ′ and direction �′ ( θ ′ , 
′ ) by a two-level atom into an outgoing ray with frequency ν
nd direction � ( θ , φ) is described by the AD-PRD matrix R a (see
omke & Hubeny 1988 ; Bommier 1997a ). The explicit form of this
atrix is given in equations (1) and (2) of Sampoorna ( 2014 ). The

ay direction � ( θ , φ) with θ the inclination and φ the azimuth is
efined about the local radius vector. In the abo v e equations, μ =
os θ . In the ( p , z) coordinate system, μ varies along a given impact
arameter ray and is given by μ( r, p) = 

√ 

1 − ( p/r) 2 . Because we
o not consider any external magnetic fields and work in the CMF,
he polarized radiation field is azimuthally symmetric, so that the 
tokes vector depends only on μ. In the abo v e equation, ε denotes

he thermalization parameter, B ν0 the Planck function at the line 
entre, and U = (1 , 0) T . Since this paper aims to study the effects
f AD-PRD on linear polarization profiles formed in spherically 
ymmetric medium, we assume the background continuum to be 
npolarized. Consequently, the continuum source vector is of the 
orm S c = B ν0 U . 

The electron scattering source vector is given by 

S e ( z, p, ν) = 

∫ ∞ 

0 
d ν ′ 

∮ 
d 
′ 

4 π
R e ( ν, 
, ν ′ , 
′ ) I ( z, μ′ , ν ′ ) . (4) 

he AD-PRD matrix for electron scattering is given by 

 e ( ν, 
, ν ′ , 
′ ) = P R ( 
, 
′ ) R e ( ν, ν ′ , � ) . (5) 
ere, P R denotes the Rayleigh phase matrix (see Chandrasekhar 
950 ) and R e ( ν, ν ′ , � ) the AD-PRD function for scattering of line
hotons on electrons (see the un-numbered equation in p. 420 of
ihalas 1978 , see also equation (38) of Supriya et al. 2012 ), with �

epresenting the scattering angle between the incoming and outgoing 
ays. 

The CMF term represented by ˜ S has the following form : 

˜ S ( z, p, ν) = γ ( r, p, ν) 
∂ I ±( z, p, ν) 

∂ν
, (6) 

here 

( r, p, ν) = 

ν0 v th 

c χ ( r, ν) 

[
(1 − μ2 ) 

V 

r 
+ μ2 dV 

dr 

]
. (7) 

ere, ν0 is the line-centre frequency, c is the speed of light, v th is the
hermal velocity of the atom, and V = v r / v th . We have assumed v th 
o be constant throughout the spherical medium. 

.2 Irreducible spherical tensorial representation 

olution of the Stokes vector transfer equation including AD-PRD 

s known to be computationally very demanding. Therefore, to 
elatively reduce the computational costs involved, Frisch ( 2009 , 
010 ) devised a Stokes vector decomposition technique. In this 
echnique, the Stokes and source vectors are decomposed into their 
rreducible components using the spherical or geometrical tensors 
Landi Degl’Innocenti & Landolfi 2004 ) and an azimuthal Fourier 
xpansion of the AD-PRD functions (Domke & Hubeny 1988 ). The
osine Fourier series expansion of these functions over the azimuth 
ifference ( φ − φ′ ) consists of azimuthal Fourier coefficients of 
ifferent order k , which in general takes values k = 0, 1, 2, ···, ∞
see e.g. equation 13 of Frisch 2009 ). Ho we ver, in the non-magnetic
ase, because of the azimuthal symmetry of the radiation field, the
zimuthal Fourier coefficients get limited to orders 0, 1, and 2 (see
quation 14 of Frisch 2010 ). This technique originally devised for
ransfer in planar medium is applied here for transfer in spherical

edium. 
F or conv enience, here we consider the component form of the

tokes vector, namely I ±i with i = 0, 1 representing the specific
ntensity I ± and linear polarization Q 

±, respectiv ely. F ollowing
risch ( 2010 ), the decomposition of the Stokes vector component
 

±
i into its four irreducible components I K, ±

Q 

can be written as 

 

±
i ( z, p, ν) = 

∑ 

K= 0 , 2 

K ∑ 

Q � 0 

˜ T K 

Q 

( i, μ) I K, ±
Q 

( z, p, ν) , i = 0 , 1 , (8) 

here ˜ T K 

Q 

( i, μ) are the irreducible spherical tensors (Frisch 2010 ).
imilarly, the components of the source vectors S i , S l , i , S c , i , and S e , i ,

he CMF term 

˜ S i , and U i can also be decomposed into their respective
rreducible components S 

K 

Q 

, S 

K 

l,Q 

, S 

K 

c,Q 

, S 

K 

e,Q 

, ˜ S 

K 

Q 

, and U 

K 

Q 

. Clearly,
 

K 

c,Q 

= δK0 δQ 0 B ν0 and U 

K 

Q 

= δK0 δQ 0 . The CMF polarized transfer
quation in the irreducible spherical tensor representation can be 
ritten as 

± ∂ I 

±( z, p, ν) 

∂τ ( z, ν) 
= I 

±( z, p, ν) − S ( z, p, ν) − ˜ S ( z, p, ν) , (9) 

here the four-component vectors I 

± = 

[ 
I 0 , ±0 , I 2 , ±0 , I 2 , ±1 , I 2 , ±2 

] T 
, 

 = 

[
S 

0 
0 , S 

2 
0 , S 

2 
1 , S 

2 
2 

]T 
, and ˜ S = 

[
˜ S 

0 
0 , 

˜ S 

2 
0 , 

˜ S 

2 
1 , 

˜ S 

2 
2 

]T 
. Following 

upriya et al. ( 2012 ), we combine line and electron source vectors
nto a single source vector S L given by 

 L ( z, p, ν) = εB ν U + J ( z, p, ν) , (10) 
MNRAS 526, 6004–6014 (2023) 
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here U = [1 , 0 , 0 , 0] T , and the scattering integral has the form 

 ( z, p, ν) = 

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R ( ν, μ, ν ′ , μ′ ) 
ϕ( ν) 

˜ � ( μ′ ) I ( z, μ′ , ν ′ ) . 

(11) 

he elements of the 4 × 4 matrix ˜ � is given in appendix of
risch ( 2010 ). The 4 × 4 matrix ˜ R is diagonal, namely, ˜ R =
iag 

[
˜ R 

0 
0 , 

˜ R 

2 
0 , 

˜ R 

2 
1 , 

˜ R 

2 
2 

]
, where the diagonal elements are of the form

˜ 
 

0 
0 = α ˜ r (0) 

II + 

[
β (0) − α

]
˜ r (0) 
III + βe ̃  r 

(0) 
e , (12) 

˜ 
 

2 
Q 

= W 2 

{ 

α ˜ r ( Q ) 
II + 

[
β (2) − α

]
˜ r ( Q ) 
III 

} 

+ βe ̃  r 
( Q ) 
e , Q = 0 , 1 , 2 , (13) 

here W 2 is the atomic polarizability factor (which is unity for a
ormal Zeeman triplet considered here). The symbol ˜ r ( Q ) 

X with X =
I, III, or e , respectively, represent the Q th-order azimuthal Fourier
oefficients of the type-II and type-III AD-PRD functions of Hummer
 1962 ) and of R e ( ν, ν ′ , � ). They are given by 

˜  ( Q ) 
X ( ν, μ, ν ′ , μ′ ) = 

2 − δ0 Q 

2 π

×
∫ 2 π

0 
R X ( ν, μ, ν ′ , μ′ , φ − φ′ ) cos [ Q ( φ − φ′ )] d( φ − φ′ ) . (14) 

he branching ratios α and β ( K ) are of the form (Bommier 1997a ) 

= 

� R 

� R + � I + � E 

, (15) 

( K) = 

� R 

� R + � I + D 

( K) 
, (16) 

here � R is the radiative deexcitation rate, � I and � E are, respec-
iv ely, the inelastic dee xcitation and elastic collisional rates, and D 

( K ) 

he collisional depolarization rate (with D 

(0) = 0). 
In the irreducible spherical tensor representation, the total source

ector takes the following form: 

 ( z, p, ν) = 

ϕ( ν) S L ( z, p, ν) + βc S c 

ϕ( ν) + βc + βe 

, (17) 

here S c = B ν0 U . The CMF term 

˜ S in the irreducible spherical
ensor representation has the same form given in equation ( 6 ), but
ith I 

± in place of I ±. 

 N U M E R I C A L  M E T H O D S  O F  SOLUTION  

n this section, we describe the solution to the CMF polarized transfer
quation ( 9 ) using two different iterative schemes namely, polarized
ccelerated lambda iteration method (see Section 3.1 ) and scattering
xpansion method (see Section 3.2 ). The latter method is preferred
rom a computational point of view. 

.1 The polarized accelerated lambda iteration 

n iterative method begins with a guess value for the unknown,
amely the irreducible source vector S ( z, p, ν), followed by a
all to the formal solver to compute the irreducible Stokes vector
 

±( z, p, ν) and subsequently an updated value of S ( z, p, ν). This
rocess is repeated until the solution converges. It is well-known that
uch an iterative method is prone to very slow or even no convergence
specially for optically thick scattering dominated media (Hubeny &
ihalas 2015 ). This difficulty is o v ercome by accelerating the

onvergence via the so-called operator splitting methods (Cannon
973 ). These methods are known as accelerated lambda iteration
ALI). ALI methods have been applied to a wide variety of problems,
NRAS 526, 6004–6014 (2023) 
oth unpolarized (Hubeny & Mihalas 2015 ) and polarized (see the
e vie ws by Trujillo Bueno 2003 ; Nagendra 2019a , b ). 

Formal solution of the polarized transfer equation ( 9 ) can be
ritten symbolically as 

 

±( p, ν) = � 

±( p, ν)[ S ( p, ν) + 

˜ S ( p, ν)] + T 

±( p, ν) , (18) 

here the directly transmitted part of the four-component Stokes
ector is denoted by T 

±( p, ν). For a given impact parameter p and
requency ν the 4 N d × 4 N d integral operator is denoted by � 

±( p, ν),
here N d is the total number of depth points. The elements of this

ambda operator is determined by the optical distances between the
rid points along the depth. A short-characteristic method (Olson &
unasz 1987 ) modified to treat the CMF term (Hauschildt & Baron
004 ) is used to find the formal solution. For the problem at hand, the
xplicit form of this CMF short-characteristic formal solution can be
ound in Sampoorna, Megha & Supriya ( 2022 , see their section 2). 

An iterative scheme is set up via 

 

n + 1 ( p, ν) = S 

n ( p, ν) + δS 

n ( p, ν) , (19) 

here n is the index of iteration and δS 

n is the source vector
orrection. A similar expression can be written for the combined
ource vector S L . As for the CMF term 

˜ S , since it is e v aluated
ithin the formal solver at each iteration, an iterative correction is
nnecessary (Megha et al. 2020 ). Now using the operator splitting
echnique, namely, � = � 

∗ + ( � − � 

∗) wherein � 

∗ is a diagonal
pproximate operator (Olson, Auer & Buchler 1986 ), we obtain for
he combined source vector correction the following expression : 

S 

n 
L ( p, ν) −

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R ( ν, μ, ν ′ , μ′ ) 
ϕ( ν) 

˜ � ( μ′ ) 

× χl ( r) ϕ( ν ′ ) 
χ ( r, ν ′ ) 

� 

∗( μ′ , ν ′ ) 
[
δS 

n 
L ( μ

′ , ν ′ ) 
]

= r n ( p, ν) , (20) 

here the residual vector r n ( p, ν) = εB ν0 U + J 

n 
( p, ν) −

 

n 
L ( p, ν). The scattering integral J 

n 
at the n th iterate is obtained

rom the formal solver using the n th iterate source vector. The linear
ystem of equations ( 20 ) for the combined source vector corrections
an be recast in the following form : 

 δS 

n 
L = r n , (21) 

here at each depth point, r n and δS 

n 
L are vectors of length 4 N ν2 N μ

nd A is a matrix of size 4 N ν2 N μ × 4 N ν2 N μ. The total number of
requency points is denoted by N ν , while N μ denotes the number of
ngle points in the range [0 < μ � 1]. We solve this linear system
f equations using a frequency-angle by frequency-angle method
escribed in Sampoorna, Nagendra & Frisch ( 2011 , see also Supriya
t al. 2012 ). In the case of spherical transfer in ( p , z) coordinate
ystem, not all the impact parameter rays intersect a given spherical
hell. While all the rays intersect the outermost spherical shell, only
he core rays intersect the innermost spherical shell. This is expected
ecause impact parameter rays are defined to be tangent to spherical
hells (see fig. 1 of Megha et al. 2019 ). Thus the number of rays
ntersecting a given spherical shell varies with the depth point. In
ther words N μ varies with the depth point. For example, if N c 

enotes the number of core rays, then N μ = N c for the innermost
pherical shell, while N μ = N c + N d for the outermost spherical
hell. Therefore, the size of linear system of equations ( 21 ) changes
rom one depth point to the other and is much larger than that
n the corresponding planar case. As a result, the computational
osts involved in solving equation ( 21 ) using the frequency-angle
y frequency-angle method is significantly larger than in the planar
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ase. To somewhat reduce the computational costs, in the following 
ubsection we present the so-called scattering expansion method. 

.2 The scattering expansion method 

his iterative method was originally proposed in Frisch et al. ( 2009 )
or polarized transfer in planar medium with complete frequency 
edistrib ution and turb ulent magnetic fields. Here, a Neumann series
xpansion of the polarized component of the source vector in the 
ean number of scattering events allows to include the contribution 

f multiple scatterings iteratively. The intensity component of the 
ource vector is computed with an ALI method neglecting its cou- 
ling with the linear polarization. This scattering expansion method 
as been generalized to both AA-PRD and AD-PRD problems with 
nd without weak magnetic fields in a planar medium (see the 
e vie ws by Nagendra 2019a , b ). More recently, this method has been
xtended to polarized transfer in arbitrary magnetic fields with AA- 
RD (Sampoorna et al. 2019 ) and AD-PRD (Nagendra et al. 2020 ).
ere, we apply this iterative method to polarized line transfer in a

pherical medium with AD-PRD. 
In the component form, the combined source v ector giv en in

quation ( 10 ) can be re-written as 

 

K 

L,Q 

( z, p, ν) = εB ν0 U 

K 

Q 

+ J 

K 

Q 

( z, p, ν) , (22) 

here 

 

K 

Q 

( z, p, ν) = 

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R 

K 

Q 

( ν, μ, ν ′ , μ′ ) 

ϕ( ν) 

×
∑ 

K 

′ = 0 , 2 

K 

′ ∑ 

Q 

′ � 0 

˜ � 

K K 

′ 
QQ 

′ ( μ′ ) I K 

′ 
Q 

′ ( z, μ′ , ν ′ ) . (23) 

s already mentioned, we first compute the intensity I ±( z, p , ν)
y neglecting its coupling to linear polarization. In other words 
e assume the Stokes I ±( z, p , ν) to be given by the compo-
ent I 0 , ±0 ( z, p, ν). The corresponding combined source function 

 

0 
L, 0 ( z, p, ν) = εB ν0 + J 

0 
0 ( z, p, ν), where 

 

0 
0 ( z, p, ν) = 

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R 

0 
0 ( ν, μ, ν ′ , μ′ ) 

ϕ( ν) 
I 0 0 ( z, μ

′ , ν ′ ) . (24) 

n the abo v e equation, we have neglected the coupling to other I 2 Q 

omponents and used ˜ � 

00 
00 ( μ

′ ) = 1 (see appendix of Frisch 2010 ). The
omponent I 0 , ±0 ( z, p, ν) and S 

0 
L, 0 ( z, p, ν) are obtained by solving

he scalar version of the transfer equation ( 9 ) using the CMF ALI
ethod described in Section 3.1 . In this case, for a given depth point

he size of the vectors r n and δS 

n 
L reduces to N ν2 N μ and that of

atrix A to N ν2 N μ × N ν2 N μ. Clearly, solving this scalar version
f the linear system of equations is computationally less demanding 
han the vector version. 

Once the I 0 , ±0 ( z, p, ν) and S 

0 
L, 0 ( z, p, ν) are available, the other

 = 2 and Q = 0, 1, 2 components are computed iteratively as
escribed below. In the first iteration, since only K = 0 and Q = 0
omponents are known, equation ( 23 ) for K = 2 and Q = 0, 1, 2
educes to 
[ 
J 

2 
Q 

] (1) 
( z, p, ν) � 

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R 

2 
Q 

( ν, μ, ν ′ , μ′ ) 

ϕ( ν) 

× ˜ � 

20 
Q 0 ( μ

′ ) I 0 0 ( z, μ
′ , ν ′ ) . (25) 

he abo v e equation basically represents the single scattering contri- 
ution to the scattering integral, which is indicated with a superscript
1). A call to the CMF formal solver would then provide the
adiation field 
[ 
I 2 , ±Q 

] (1) 
corresponding to 

[
S 

2 
Q 

](1) 
. Clearly, in the 

econd iteration all the ( K , Q ) components of Stokes and source
ectors are available. Thus, all the terms on the right hand side of
quation ( 23 ) for K = 2 can be determined. This process is repeated
o derive an iterative sequence, where, in each iteration higher orders
f scattering are included. This iterative sequence for the n th iteration
or scattering) can be written as 
[ 
J 

2 
Q 

] ( n ) 
( z, p, ν) � 

[ 
J 

2 
Q 

] (1) 
( z, p, ν) 

+ 

∫ ∞ 

0 
d ν ′ 

∫ + 1 

−1 

d μ′ 

2 

˜ R 

2 
Q 

( ν, μ, ν ′ , μ′ ) 

ϕ( ν) 

×
2 ∑ 

Q 

′ � 0 

˜ � 

22 
QQ 

′ ( μ′ ) 
[
I 2 Q 

′ 
]( n −1) 

( z, μ′ , ν ′ ) . (26) 

terations are stopped when the solution conv erges. F or our compu-
ations, we adopt the same convergence criteria defined in section 5
f Sampoorna, Nagendra & Frisch ( 2011 ). 

 N U M E R I C A L  RESULTS  

n this section, we illustrate the AD-PRD effects on the linear polar-
zation profiles emerging from a spherically symmetric isothermal 

edium. We parametrize this medium by a set of input parameters,
amely, R , T , a , ε, βc , and βe . The extension of the spherical medium
s specified via an outer radius R that is measured in units of the
ore radius R core . Here, we consider low ( R = 2), mid ( R = 20),
nd highly ( R = 200) extended spherical media. Furthermore, the
xtended spherical medium is characterized by a frequency integrated 
otal radial line optical thickness of T . We recall that the underlying
ine-integrated absorption coefficient is assumed to fall off like 1/ r 2 ,
hich is also the case for the continuum absorption coefficient as
ell as the electron scattering opacity. Because of the computational 

imitations, here we consider only optically thin cases of T = 10
nd T = 100. For the same reason, here we do not consider the
ffects of a depolarizing elastic collisions, namely, D 

(2) = 0 and
lso � E = 0. In other words, we consider only type-II AD-PRD
unction. We take the damping width of the Voigt profile to be
 = 10 −3 . As in Sampoorna, Megha & Supriya ( 2022 ), the ratio
f electron to atomic Doppler width is taken to be 43. For the
ptically thin cases considered here, we use a reflecting boundary 
ondition, namely, I 

+ ( τ = T , p, ν) = I 

−( τ = T , p, ν) for all the
ays. For the rays that intersect the core, namely the core rays,
his condition is applied at r = R core , while for all the other rays,
alled lobe rays, this condition is applied at the spherical shell where
he ray is tangent to it. The reflecting boundary for the core rays
mplies that the central core is hollow and non-emitting. This is
qui v alent to a finite planar slab that is symmetric about its mid-
lane. Furthermore, we assume that there is no radiation incident on
he top boundary , namely , I 

−( τ = 0 , p, ν) = 0. Finally, we recall
hat in the tangent-ray method the direction cosine μ depends on p
nd r , namely μ = μ( r , p ) (see the discussion below equation 3 ). In
ll the figures presented in this paper, the line-of-sight μlos at which
he emergent Stokes profiles are illustrated corresponds to μ at r =
 . Since each of the impact parameter ray p emerges at r = R with a
nique value of μ, the μlos = μ( R , p ) corresponds to a unique p . 
Figs 1 and 2 show the behaviour of emergent I and Q / I profiles as

 function of the logarithm of non-dimensional frequency x (which 
s defined as x = ( ν − ν0 )/ �νD , with ν0 and �νD , respectively,
epresenting the line-centre frequency and atomic Doppler width). 
he profiles computed using the AD-PRD are shown as black solid
MNRAS 526, 6004–6014 (2023) 
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Figure 1. A comparison of the emergent Stokes I and fractional linear polarization Q / I profiles at μlos = 0.1 computed using AD-PRD (black solid and dotted 
lines) and AA-PRD (pink dashed and dot–dashed lines) functions. Bottom row displays the error � ( Q / I ) in percentage (see equation 27 ) when electron scattering 
is included. A spherically symmetric static medium with line integrated radial optical thickness of T = 10 is considered. Panels (a), (b), and (c) correspond, 
respectively, to R = 2, 20, and 200. Other model parameters are βc = 0, ε = 10 −4 , a = 10 −3 , and � E = 0. Electron scattering opacity βe = 0 for black solid 
and pink dashed lines, while it is 10 −5 for black dotted and pink dot–dashed lines. Black solid and dotted lines coincide in the line core (namely, log ( x ) < 0.5) 
and near wing (namely, 0.5 < log ( x ) < 1) regions of Q / I (middle row). This is also the case for pink dashed and dot–dashed lines. As for the I profiles (upper 
row), all the different lines coincide in panels (b) and (c), while black solid and pink dashed, and black dotted and pink dot–dashed lines coincide in panel (a). 

Figure 2. Same as Fig. 1 , but for T = 100. 
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nd dotted lines, while those computed using AA-PRD are shown
s pink dashed and dot–dashed lines. These line sets in-turn also
ighlight the effects of including (black dotted and pink dot–dashed
ines) and neglecting (black solid and pink dashed lines) electron
cattering. A spherically symmetric static media with outer radius
 = 2 (panel (a)), R = 20 (panel (b)), and R = 200 (panel (c)) are
onsidered. In this case, the Stokes profiles are symmetric about the
ine centre, and hence only the profiles corresponding to x > 0 are
hown. In Figs 1 and 2 , the line integrated radial optical thickness
 is 10 and 100, respectively. The AD-PRD solutions are computed
sing the scattering expansion method presented in Section 3.2 , as
t is computationally less demanding than the polarized ALI method
iscussed in Section 3.1 , although both the methods give identical
esults. The AA-PRD solutions are computed using the polarized
NRAS 526, 6004–6014 (2023) 

o  
LI method discussed in Sampoorna, Megha & Supriya ( 2022 ). In
he bottom rows of Figs 1 and 2 , we also plot the error � ( Q / I ) in
ercentage. Following Riva et al. ( 2023 ), we define this error as 

 ( Q/I ) = 

| X / ( max X ) − Y / ( max X) | 
1 + | X / ( max X ) | , (27) 

here X stands for Q / I obtained using AD-PRD and Y stands for Q / I
btained using AA-PRD. 
The effect of electron scattering redistribution on I and Q / I profiles

s morphologically similar for AA-PRD and AD-PRD solutions,
amely it gives rise to a bulge in the wings of the intensity profile
nd a far wing secondary peak in the Q / I profiles (compare black solid
nd dotted lines as well as pink dashed and dot–dashed lines). For an
ptically thin spherical medium considered here, electron scattering
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Figure 3. Centre-to-limb variation of the emergent Stokes I and fractional linear polarization Q / I profiles computed using AD-PRD (panel (a)) and AA-PRD 

(panel (b)) functions. A spherically symmetric static medium with input parameters R = 2, T = 100, βc = 0, βe = 10 −5 , ε = 10 −4 , a = 10 −3 , and � E = 0 is 
considered. Different lines correspond to a different value of μlos , which is indicated in figure legend. 
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oes not affect the near wing PRD peak (see also Sampoorna, 
egha & Supriya 2022 ), and hence the black solid (pink dashed)

nd black dotted (pink dot–dashed) lines coincide in the line core 
nd near wing regions. Here, the line core region corresponds to 
og ( x ) < 0.5, the near wing region where the near wing PRD peak
s seen corresponds to 0.5 < log ( x ) < 1, and the far wing region
here the secondary peak is seen corresponds to 1 < log ( x ) < 2.5.
he dependence of the I and Q / I profiles on the outer radius R is
lso similar for AD-PRD and AA-PRD cases. We refer the reader 
o Sampoorna, Megha & Supriya ( 2022 ), wherein the nature of this
ependence has been discussed for the T = 100 case (see their
gs 2(a)–4(a) and the related discussions). Unlike the case of T =
00, the Q / I monotonically decreases with increasing R for T = 10
ecause the spherical medium becomes highly dilute. 
Like in the planar case, the differences between AD-PRD and AA- 

RD solutions are mainly seen in the fractional linear polarization 
rofiles. For R = 2, noticeable differences in the shape and amplitude
f Q / I are seen at the near wing PRD peak (compare black solid and
ink dashed lines in panel (a) of Figs 1 and 2 ) and the secondary
eak (compare black dotted and pink dot–dashed lines in panel (a)
f Figs 1 and 2 ). Small differences in amplitude of Q / I near the line
entre are also seen (see the bottom row in panel (a) of Figs 1 and 2 ).
hese differences continue to remain for larger values of R , although

he near wing PRD peak is highly reduced or nearly non-existent for
arger R (see panels (b) and (c) of Figs 1 and 2 ). For T = 10, the
ifference in amplitude of Q / I near the line centre increases with R
see bottom row in Fig. 1 ), while for T = 100 this difference first
ncreases for R = 20 and then decreases when R = 200 (see bottom
ow in Fig. 2 ). 

.1 Centre-to-limb variations 

n Figs 3 and 4 , we show the centre-to-limb variation of emergent I
nd Q / I profiles computed with AD-PRD (panel (a)) and AA-PRD
panel (b)), for T = 100 and R = 2 and R = 20, respectively. The
ifferent lines-of-sight μlos at which these profiles are illustrated 
epresent the cosine of the angle made by the impact parameter
ay p with the outermost spherical shell, namely μlos = μ( R , p ).
learly, dif ferent v alues of μlos basically correspond to dif ferent
alues of the impact parameter p . As expected, when the line of sight
hanges from close to the limb ( μlos = 0.1) to near disc centre
 μlos = 0.9), I profiles exhibit limb-darkening and Q / I profiles show
imb-brightening. The Q / I computed with AA-PRD monotonically 
ecreases towards zero polarization with increasing values of μlos . 
o we ver, the Q / I computed with AD-PRD exhibits this behaviour
nly in a region close to the line centre (namely, for log ( x ) < 0.2),
hile the regions to the left of near wing PRD peak (namely, for 0.2
 log ( x ) < 0.6) and to the left of the secondary peak (namely, for

.1 < log ( x ) < 2.1) e xhibit ne gativ e polarization. Furthermore, the
ear wing PRD peak and the secondary peak themselves are shifted
o larger frequencies (see e.g. green and blue lines in panel (a) of
igs 3 and 4 ). As R increases the μlos at which ne gativ e polarization
tarts to be seen in Q / I also increases. For example, for R = 2 this
ccurs at μlos = 0.5 (see panel (a) of Fig. 3 ), for R = 20 at μlos =
.7 (see panel (a) of Fig. 4 ), while for R = 200 it occurs at μlos =
.8 (figure not illustrated). In other words, the differences in Q / I
omputed with AD-PRD and AA-PRD functions is relatively larger 
or a μlos close to the disc centre than near the limb (e.g. compare
reen and blue lines in panels (a) and (b) of Figs 3 and 4 ). This is
n contrast to the planar medium, wherein the differences between 
D-PRD and AA-PRD solutions decrease with increasing values of 
los (see e.g. fig. 8 of Sampoorna, Nagendra & Frisch 2011 ). This

elatively large difference between AD-PRD and AA-PRD solutions 
an be attributed to the spherical nature of the problem. In a spherical
edium, along a given impact parameter ray, μ( r , p ) changes from
 at an inner spherical shell where the ray is tangent to it to the
orresponding emergent μlos = μ( R , p ) value, thereby enhancing the
D-PRD effects for a lar ger emer gent μlos value than the smaller one.
To better understand the differences between AD-PRD and AA- 

RD solutions, we show in Fig. 5 a comparison of the corresponding
MNRAS 526, 6004–6014 (2023) 
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Figure 4. Same as Fig. 3 , but for R = 20. 

Figure 5. A comparison of the emergent I 0 0 and I 2 Q 

/ I 0 0 at μlos = 0.1 (panel (a)) and μlos = 0.7 (panel (b)) computed using AD-PRD (solid lines) and AA-PRD 

(dashed lines) functions. A spherically symmetric static medium with input parameters R = 2, T = 100, βc = 0, βe = 10 −5 , ε = 10 −4 , a = 10 −3 , and � E = 0 is 
considered. 
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Figure 6. A comparison of the fractional linear polarization Q / I profiles 
at μlos = 0.1 computed using AD-PRD (panel (a)) and AA-PRD (panel 
(b)) functions for varying values of βe . Panel (c) shows the corresponding 
error � ( Q / I ) in percentage (see equation 27 ). A spherically symmetric static 
medium with input parameters R = 2, T = 100, βc = 0, ε = 10 −4 , a = 10 −3 , 
and � E = 0 is considered. Different lines correspond to a different value of 
βe and are indicated in panel (a), which remain valid for both the panels (b) 
and (c). 
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K 

Q 

components emerging at μlos = 0.1 (panel (a)) and μlos = 0.7 
panel (b)) for R = 2 and T = 100. In the case of AD-PRD, from
quation ( 8 ) one readily obtains the following relation between the
tokes parameters and the irreducible components for the outgoing 
ay : 

 ( z, p, ν) = I 0 0 ( z, p, ν) + 

1 

2 
√ 

2 
(3 μ2 − 1) I 2 0 ( z, p, ν) 

−
√ 

3 

2 
μ
√ 

1 − μ2 I 2 1 ( z, p, ν) 

+ 

√ 

3 

4 
(1 − μ2 ) I 2 2 ( z, p, ν) , (28) 

 ( z, p, ν) = − 3 

2 
√ 

2 
(1 − μ2 ) I 2 0 ( z, p, ν) 

−
√ 

3 

2 
μ
√ 

1 − μ2 I 2 1 ( z, p, ν) 

−
√ 

3 

4 
(1 + μ2 ) I 2 2 ( z, p, ν) . (29) 

or notational simplicity, we have suppressed the superscript ‘ + ’
n the Stokes parameters as well as their irreducible components, 
hich indicates the outgoing ray. Furthermore, the μ in the abo v e

quations represent μ( r , p ) because these equations are valid for all
he spherical shells that a given impact parameter ray p intersects
long its path before it emerges from the outermost shell. In the
ase of AA-PRD, the only non-zero irreducible components are I 0 0 

nd I 2 0 . The component I 0 0 is essentially identical for AD-PRD and
A-PRD, while the other components show a significant difference 

compare solid and dashed lines in Fig. 5 ). Since I 0 0 is the dominant
ontributor to Stokes I (see equation 28 ), the latter is insensitive to
D-PRD or AA-PRD. On the other hand the Stokes Q is composed
f three components I 2 Q 

with Q = 0, 1, 2 (see equation 29 ). When
los = μ( R , p ) is small (namely, close to the limb), only I 2 0 and
 

2 
2 contribute. Ho we ver, the dominant contribution comes from I 2 0 .
n the other hand, when μlos is large I 2 1 also contributes resulting

n relatively larger difference between Q / I computed with AD-PRD 

nd AA-PRD. 

.2 Dependence on electron scattering opacity βe 

n Fig. 6 , we illustrate the dependence of the differences between the
 / I computed with AD-PRD (panel (a)) and AA-PRD (panel (b)) on

he electron scattering opacity parametrized as βe . The corresponding 
rror as defined in equation ( 27 ) is shown in panel (c). Since the
ifferences between AD-PRD and AA-PRD solutions are mainly 
een in the Q / I profiles, we do not present the corresponding intensity
rofiles (also in the next subsection). We have considered R = 2 and
 = 100 for this purpose. As in Sampoorna, Megha & Supriya ( 2022 ),
e have varied βe from 10 −8 to 10 −3 in steps of one dex. The Q / I
rofiles for βe = 0 are also shown. The influence of varying βe on
he Q / I profiles is similar for both AD-PRD and AA-PRD cases,
nd has been described in detail in Sampoorna, Megha & Supriya 
 2022 ). For the optically thin case considered here, the effect of
arying βe is mainly seen in the far wings, namely in and around the
econdary peak. Only for βe as large as 10 −3 the influence of electron
cattering redistribution is seen in the line core and near wing PRD
eak. Thus the differences between AD-PRD and AA-PRD are nearly 
ndependent of βe in the line core and near wing PRD peak, which
s also reflected in the error � ( Q / I ) (see panel (c) of Fig. 6 ), except
or βe = 10 −3 (see the blue line in panel (c) of Fig. 6 ). On the other
and, the differences between AD-PRD and AA-PRD in and around 
he secondary peak in Q / I shows a strong dependence on βe . This
ifference in general increases with βe as also reflected in � ( Q / I )
see panel (c) of Fig. 6 ). F or e xample, while the secondary peak
n Q / I computed with AA-PRD exhibits flat topped profile shape
or βe = 10 −4 , the corresponding AD-PRD case exhibits a more
ounded profile shape (compare purple lines in panels (a) and (b)
f Fig. 6 ). 
MNRAS 526, 6004–6014 (2023) 
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Figure 7. A comparison of the fractional linear polarization Q / I profiles 
at μlos = 0.1 computed using AD-PRD (panel (a)) and AA-PRD (panel 
(b)) functions for varying values of βc . Panel (c) shows the corresponding 
error � ( Q / I ) in percentage (see equation 27 ). A spherically symmetric static 
medium with input parameters R = 2, T = 100, βe = 10 −5 , ε = 10 −4 , a = 

10 −3 , and � E = 0 is considered. Different lines correspond to a different 
value of βc and are indicated in panel (a), which remain valid for both the 
panels (b) and (c). 
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.3 Dependence on continuum parameter βc 

or R = 2 and T = 100, we illustrate in Fig. 7 , the dependence of the
ifferences between the Q / I computed with AD-PRD (panel (a)) and
A-PRD (panel (b)) on the background continuum parameter βc .
he corresponding error (see equation 27 ) is shown in panel (c). We
ave varied βc from 10 −10 to 10 −2 in steps of two dex. The Q / I profiles
or the pure line case ( βc = 0) are also shown. Since the background
ontinuum is assumed to be unpolarized, it drives the polarization
owards zero at frequencies where the continuum opacity dominates
NRAS 526, 6004–6014 (2023) 
 v er the line and electron scattering opacities. As βc increases, this
ccurs at progressively smaller frequency, thereby confining the Q / I
rofiles to smaller frequency bandwidths around the line core region.
herefore, in the far wings (namely, in and around the secondary peak

n Q / I ) the differences between AD-PRD and AA-PRD decreases
ith βc (see panel (c) in Fig. 7 ). Ho we ver, surprisingly in the region

lose to the line centre the differences slightly increase with βc , while
t the near wing PRD peak differences initially increase until βc =
0 −6 and then decreases (see e.g. red and purple coloured lines in
anel (c) of Fig. 7 ). This clearly shows the importance of including
D-PRD ef fects e ven when the background continuum parameter is

s large as βc = 10 −2 . 

.4 Impact of velocity field 

 comparison of emergent Stokes profiles computed with AD-PRD
solid lines) and AA-PRD (dashed lines) in the presence of radial
elocity fields is shown in Figs 8 and 9 for T = 100 and R = 2
panel (a)), 20 (panel (b)), and 200 (panel (c)). Since the velocity
eld introduces asymmetries, the Stokes profiles are shown for both
ositive and negative values of the non-dimensional frequency x .
oth the abo v e-mentioned figures are identical, e xcept for the choice
f frequency range for the abscissa. A larger frequency bandwidth
s used for Fig. 8 to display the far wing region where the electron
cattering dominates, while a smaller frequency bandwidth is used
or Fig. 9 to display the line core and near wing regions where the
tomic scattering dominates. The velocity field is given by an arctan
 elocity la w (see e.g. Mihalas, K unasz & Hummer 1975 , 1976 ) of
he form 

 ( r) = V max 

[
tan −1 ( ar + b) − tan −1 ( a + b) 

]
, (30) 

ith a maximum expansion velocity V max of two mean thermal units.
 ollowing Mihalas, K unasz & Hummer ( 1975 ), we have chosen

he radius r v ( = −b / a ) at which the maximum velocity gradient
ccurs to be at ( R + 1)/2 and the parameter a such that we have
ne characteristic width of the velocity function (namely, a ( r v −
) = 1). 
The effect of the velocity fields on the emergent I and Q / I profiles

re identical to those discussed in section 3.3 of Sampoorna, Megha &
upriya ( 2022 ), and hence we do not repeat them here. Primarily,

he velocity fields give rise to I and Q / I profiles that are asymmetric
bout the line centre. For the optically thin case considered here, the
symmetry in Q / I profiles is more apparent for all the different outer
adius R unlike the I profiles (see Figs 8 and 9 ). Furthermore, the
nfluence of electron scattering on I and Q / I profiles emanating from a

oving spherical medium is similar to the corresponding static case,
amely, an enhancement of the intensity in the wings and generation
f a secondary peak in the Q / I profiles. The secondary peak is,
o we ver, asymmetric for the moving case (see Fig. 8 ). The nature
f the differences between the AA-PRD and AD-PRD solutions is
lso similar to the corresponding static case (compare Figs 2 and 8 ).
o we v er, the o v erall error � ( Q / I ) is somewhat smaller for the moving
edium than the corresponding static spherical medium (compare

he bottom rows of Figs 2 and 8 ). 

 C O N C L U S I O N S  

n this paper, we investigate the impact of AD-PRD on resonance
ine polarization emerging from a spherically symmetric extended
nd expanding medium. We account for both scattering of line
hotons by atoms and electrons. To numerically solve this problem,
e apply an accelerated lambda iteration method (Hauschildt &
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Figure 8. A comparison of the emergent Stokes I and fractional linear polarization Q / I profiles at μlos = 0.1 computed using AD-PRD (solid lines) and AA-PRD 

(dashed lines) functions. Bottom row displays the corresponding error � ( Q / I ) in percentage (see equation 27 ). A spherically symmetric moving medium with 
input parameters T = 100, βc = 0, βe = 10 −5 , ε = 10 −4 , a = 10 −3 , and � E = 0 is considered. Panels (a), (b), and (c) correspond, respectively, to R = 2, 20, 
and 200. For the velocity field we have used an arctan velocity law with a maximum expansion velocity of two mean thermal units. 

Figure 9. Same as Fig. 8 . Ho we ver, the profiles are shown for a shorter frequency range to better resolve the region in and around the line core and near wings. 
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aron 2004 ) as well as a scattering expansion method (Frisch et al.
009 ). These numerical schemes are applied to the CMF polarized 
ransfer equation in the irreducible spherical tensorial representation 
Frisch 2010 ). In this approach, the Stokes and source vectors are
ecomposed into their irreducible components and the AD-PRD 

unctions are expanded over the azimuth difference of the incoming 
nd outgoing radiation using a cosine Fourier series. The scattering 
xpansion method is computationally more advantageous than the 
LI method. This is in particular true for transfer in spherical 
edium, where the spatial and angle grids are coupled as we solve

he concerned transfer problem in the ( p , z) coordinate system
Hummer & Rybicki 1971 ). 

Despite using the scattering expansion method, the heavy com- 
utational requirements have limited us to consider optically thin 
sothermal spherical medium with inverse square law opacity distri- 
ution. For our studies, we have considered different extension R of
he spherical medium with R = 2, 20, and 200, and line integrated
adial optical thickness of T = 10 and 100. In this region of parameter
pace, the linear polarization Q / I is highly sensitive to the choice
f the redistribution function, namely AD-PRD or AA-PRD (see 
igs 1 and 2 ). Significant differences between Q / I computed with
D-PRD and AA-PRD are seen in both amplitude and shape in the
ear wing PRD peak (which arises due to type-II atomic scattering)
nd the secondary peak (which arises due to electron scattering 
edistribution). Noticeable differences in the amplitude of Q / I in
he line core region is also seen. Because of the spherical nature
f the problem, the AD-PRD effects on Q / I are relatively larger
or a line of sight close to the disc centre than near the limb (see
igs 3 and 4 ). We have also shown that when the contribution of
lectron scattering increases, the differences between Q / I computed 
ith AD-PRD and AA-PRD at the secondary peak in general also

ncreases (see Fig. 6 ). Ho we ver, when the contribution from the
ackground continuum is added, these differences decrease since 
he secondary peak significantly decreases with increasing values of 

c (see Fig. 7 ). On the other hand the differences around the line
ore and near wing PRD peak somewhat increases. In the presence
f a non-zero radial velocity field, the effects of AD-PRD on Q / I
re similar to the corresponding static case, but the error � ( Q / I )
s relatively smaller. From these numerical studies, we therefore 
onclude that AD-PRD effects have to be included for modelling 
MNRAS 526, 6004–6014 (2023) 
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alculations are computationally e xpensiv e. 
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