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ABSTRACT

We implement support for a cosmological parameter estimation algorithm in Commander and quantify its computational efficiency and
cost. For a semi-realistic simulation similar to Planck LFI 70 GHz, we find that the computational cost of producing one single sample
is about 20 CPU-hours and that the typical Markov chain correlation length is ∼100 samples. The net effective cost per independent
sample is ∼2000 CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours for Planck LFI and WMAP in
Cosmoglobe Data Release 1. Thus, although technically possible to run already in its current state, future work should aim to reduce
the effective cost per independent sample by one order of magnitude to avoid excessive runtimes, for instance through multi-grid
preconditioners and/or derivative-based Markov chain sampling schemes. This work demonstrates the computational feasibility of
true Bayesian cosmological parameter estimation with end-to-end error propagation for high-precision CMB experiments without
likelihood approximations, but it also highlights the need for additional optimizations before it is ready for full production-level
analysis.
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1. Introduction

High-precision cosmic microwave background (CMB) measure-
ments currently provide the strongest constraints on a wide range
of key cosmological parameters (e.g., Planck Collaboration VI
2020). Traditionally, these constraints are derived by first com-
pressing the information contained in the high-dimensional
raw time-ordered data into pixelized sky maps and angular
power spectra (e.g., Bennett et al. 2013; Planck Collaboration II
2020; Planck Collaboration III 2020). This compressed dataset
is typically summarized in terms of a low-dimensional power
spectrum-based likelihood from which cosmological parameters
are derived through Markov chain Monte Carlo (MCMC) sam-
pling (Lewis & Bridle 2002; Planck Collaboration V 2020).

A key element in this pipeline procedure is the so-called
likelihood function, L(C`), where C` denotes the angular CMB
power spectrum (e.g., Planck Collaboration V 2020). This func-
tion summarizes both the best-fit values of all power spectrum
coefficients and their covariances and correlations. The accu-
racy of the resulting cosmological parameters, both in terms

of best-fit values and their uncertainties, corresponds directly
to the accuracy of this likelihood function. As such, this func-
tion must account for both low-level instrumental effects (such
as correlated noise and calibration uncertainties) and high-
level data selection and component separation effects. In gen-
eral, this function is neither factorizable nor Gaussian, and,
except for a few well known special cases, it has no analyt-
ical exact and closed form. Unsurprisingly, significant efforts
have therefore been devoted to establishing computationally effi-
cient and accurate approximations. Perhaps the most well known
example of this is a standard multivariate Gaussian distribu-
tion in units of the angular power spectrum of the sky sig-
nal, C`, with a covariance matrix tuned by end-to-end simula-
tions (e.g., Planck Collaboration V 2020). A second widely used
case is that of a low-resolution multivariate Gaussian defined
in pixel space with a dense pixel-pixel noise covariance matrix
(Hinshaw et al. 2013; Planck Collaboration V 2020). Yet other
examples include log-normal or Gaussian-plus-lognormal distri-
butions (e.g., Verde et al. 2003), as well as various hybrid com-
binations (e.g., Gjerløw et al. 2013).
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However, as the signal-to-noise ratios of modern CMB data
sets continue to increase, the relative importance of system-
atic uncertainties grows, and they are often highly nontrivial
to describe through low-dimensional and simplified likeli-
hood approximations, both in terms of computational expense
and accuracy. These difficulties were anticipated more than
two decades ago, and an alternative end-to-end Bayesian
approach was proposed independently by Jewell et al. (2004)
and Wandelt et al. (2004). The key aspect of this framework is
that the analysis is global, meaning all aspects of the data are
modeled and fitted simultaneously, as opposed to compartmen-
talized, which is the more traditional CMB pipeline approach.
Technically speaking, this is implemented in the form of an
MCMC sampler in a process that is statistically analogous to the
very last cosmological parameter estimation step in a traditional
pipeline, such as CosmoMC (Lewis & Bridle 2002) or Cobaya
(Torrado & Lewis 2021), with the one fundamental difference
that all parameters in the entire analysis pipeline are sampled
over jointly within the MCMC sampler. Thus, while a standard
cosmological parameter code typically handles a few dozen, or
perhaps a hundred, free parameters, the global approach handles
billions of free parameters. One practical method of dealing with
such a large number of parameters of different types is Gibbs
sampling, which draws samples from a joint distribution by iter-
ating over all relevant conditional distributions.

In principle, a global approach is preferable, since bet-
ter results are in general obtained by fitting correlated param-
eters jointly rather than separately. However, and equally
clearly, this approach is also organizationally and technically
more complicated to implement in practice, simply because
all aspects of the analysis have to be accounted for simul-
taneously within one framework. One example of this type
of approach is Commander3 (Galloway et al. 2023), which
is an end-to-end CMB Gibbs sampler developed by the
BeyondPlanck Collaboration (2023) to reanalyze the Planck
Low Frequency Instrument (LFI) observations. To date, using
Gibbs sampling within this framework is the only way to sam-
ple over the entire joint distribution of low-level instrumen-
tal parameters, component maps, and cosmological parameters.
This work was subsequently superseded by the Cosmoglobe
project1, which is a community-wide open science collabora-
tion that ultimately aims to perform the same type of analy-
sis for all available state-of-the-art large-scale radio, microwave,
and submillimeter experiments to then use the resulting analy-
sis to derive one global model of the astrophysical sky. The first
Cosmoglobe Data Release (DR1) was made public in March
2023 (Watts et al. 2023), and included the first joint end-to-
end analysis of both Planck LFI and the Wilkinson Microwave
Anisotropy Probe (WMAP; Bennett et al. 2013), resulting in
lower systematic residuals in both experiments.

There are many other methods of Bayesian inference that can
be used to estimate cosmological parameters from CMB maps.
For example, Anderes et al. (2015) show how to efficiently sam-
ple the joint-posterior of the CMB lensing potential and sky map
using Hamiltonian Monte Carlo techniques, and Carron (2019)
created a framework to measure the tensor-to-scalar ratio using
an approximate, analytic marginalization of lensed CMB maps.
The marginal unbiased score expansion method has also been
shown to be a powerful algorithm for high-dimensional CMB
analyses (Millea & Seljak 2022).

The numerical challenges involved in implementing cos-
mological parameter estimation without likelihood approxima-

1 https://cosmoglobe.uio.no

tions in Gibbs sampling were originally explored and partially
resolved by Jewell et al. (2009) and Racine et al. (2016). A sim-
ilar approach was taken by Millea et al. (2020), who derived a
re-parameterization of the unlensed sky map and the lensing
potential to improve the runtime of Gibbs sampling, similar to
the method of Racine et al. (2016). This framework was later
enhanced in Millea et al. (2021) to included several systematic
parameters and was applied to SPTpol data.

In principle, each of the aforementioned methods could be
used as the CMB map-to-parameter sampling step within a larger
time-ordered-data-to-parameter end-to-end Gibbs sampler. The
goal of this work is to focus on the algorithm of Racine et al.
(2016) and implement it in Commander3. We will apply it to
simulations with realistic noise and sky coverages, validate the
implementation and evaluate its performance. Until now, the
highest-level output from Commander3 has been the angular
CMB power spectrum. With the code development that led to
this paper, it is now technically able to also directly output cos-
mological parameters.

The rest of the paper is organized as follows. In Sect. 2 we
provide a brief review of both the Cosmoglobe Gibbs sampler
method in general and the specific cosmological parameter sam-
pler described by Racine et al. (2016). In Sect. 3 we validate our
implementation by comparing it to two special cases, namely
(i) Cobaya coupled to a uniform and (ii) full-sky case and a
special-purpose Python sampler for a case with uniform noise
but a constant latitude Galactic mask. We also characterize the
computational costs of the new sampling step for various data
configurations. Finally, we summarize and conclude in Sect. 4.

2. Algorithms

We start by briefly reviewing the Bayesian framework
for global end-to-end analysis as described by the
BeyondPlanck Collaboration (2023) and Watts et al. (2023)
and the cosmological parameter estimation algorithm proposed
by Racine et al. (2016), and discuss how these can be combined
in Commander3 (Galloway et al. 2023).

2.1. Bayesian end-to-end CMB analysis

The main algorithmic goal of the Cosmoglobe framework is
to derive a numerical representation of the full posterior distri-
bution P(ω | d), where ω is the set of all free parameters and
d represents all available data. In this notation, ω simultane-
ously accounts for instrumental, astrophysical, and cosmologi-
cal parameters, which are typically explicitly defined by writing
down a signal model, for instance taking the form

d = s(ω) + n, (1)

where d is the data vector; s(ω) represents some general data
model with free parameters ω; and n is instrumental noise. In
practice, one typically assumes that the noise is Gaussian dis-
tributed with a covariance matrix N, and the likelihood can there-
fore be written as

L(ω) = P(d | ω) ∝ e−
1
2 (d−s(ω))T N−1(d−s(ω)). (2)

The full posterior distribution reads P(ω | d) ∝ L(ω)P(ω),
where P(ω) represents some set of user-defined priors.

As a concrete example, Cosmoglobe Data Release 1
(Watts et al. 2023) adopted the following data model for the
time-ordered data to describe Planck LFI and WMAP,

d = GPBMa + sorb + sfsl + sinst + ncorr + nw, (3)
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where G is a time-dependent gain factor; P is a pointing matrix;
B denotes instrumental beam convolution; M is a mixing matrix
that describes the amplitude of a given sky component at a given
frequency; a describes the amplitude of each component at each
point in the sky; sorb is the orbital CMB dipole; sfsl is a far sidelobe
contribution; sinst is an instrument-specific correction term; ncorr

denotes correlated noise; and nw denotes white noise. This expres-
sion directly connects important instrumental effects (e.g., gains,
beams, and correlated noise) with the astrophysical sky (e.g., M
and a), and provides a well-defined model for the data at the low-
est level; this approach is what enables global modeling.

For our purposes, the most important sky signal compo-
nent is the CMB anisotropy field, aCMB. The covariance of
this component reads S = 〈aT

CMBaCMB〉. Under the assumption
of a statistically isotropic universe, this matrix is diagonal in
harmonic space, 〈a`ma∗`′m′〉 = C`(θ)δ``′δmm′ , where aCMB(n̂) =∑
`,m a`mY`m(n̂) is the usual spherical harmonics expansion and

C` is called the angular power spectrum. This power spectrum
depends directly on a small set of cosmological parameters, θ,
and for most universe models can be computed efficiently by
Boltzmann solvers such as CAMB (Lewis et al. 2000) or CLASS
(Lesgourgues 2011).

With this notation, the goal is now to compute P(ω | d),
where ω = {G, ncorr,M, a, θ, . . .}. Unfortunately, directly evalu-
ating or sampling from this distribution is unfeasible. In prac-
tice, we therefore resort to MCMC sampling in general, and
Gibbs sampling in particular, which is a well-established method
for sampling from a complicated multivariate distribution by
iterating over all conditional distributions. For the data model
described in Eq. (3), this process can be described schematically
in the form of a Gibbs chain,

G ← P(G | d, ncorr,M, a, θ) (4)
ncorr ← P(ncorr | d,G, M, a, θ) (5)

M ← P(M | d,G, ncorr, , a, θ) (6)
a ← P(a | d,G, ncorr,M, θ) (7)
θ ← P(θ | d,G, ncorr,M, a, ), (8)

where← indicates replacing the parameter on the left-hand side
with a random sample from the distribution on the right-hand
side.

As described by the BeyondPlanck Collaboration (2023)
and Watts et al. (2023), this process has been implemented in
Commander3 by BeyondPlanck and Cosmoglobe. However,
in the code described there, the last step only supports a power
spectrum estimation (i.e., θ = C`). In this work, we did not sam-
ple any instrumental or foreground parameters, and we assumed
a foreground-cleaned map of the CMB as a starting point.
Rather, the goal of the paper is to replace the last step, Eq. (8),
with actual cosmological parameter estimation of a CMB map,
in which θ takes on the usual form of the dark matter density Ωc,
the Hubble constant H0, the spectral index of scalar perturbations
ns, etc.

2.2. Joint sampling of CMB sky signal and cosmological
parameters

Cosmological parameter estimation through end-to-end CMB
Gibbs sampling has been discussed in the literature for almost
two decades, starting with Jewell et al. (2004) and Wandelt et al.
(2004). However, as pointed out by Eriksen et al. (2004), a major
difficulty regarding this method is a very long correlation length
in the low signal-to-noise regime, i.e., at high multipoles. Intu-
itively, the origin of this problem lies in the fundamental Gibbs

sampling algorithm itself, namely that it only allows for parame-
ter variations parallel or orthogonal to the coordinate axes of each
parameter in question, and not diagonal moves. For highly degen-
erate distributions, this makes it very expensive to move from one
tail of the distribution to the other. A solution to this problem was
proposed by Jewell et al. (2009), who introduced a joint CMB sky
signal and C` move. This idea was further refined by Racine et al.
(2016), who noted that faster convergence could be obtained by
only rescaling the low signal-to-noise multipoles. In the follow-
ing, we give a brief summary of these ideas, both standard Gibbs
sampling in Sect. 2.2.1 and joint sampling in Sect. 2.2.2.

2.2.1. Standard CMB Gibbs sampling

Starting with the standard Gibbs sampling algorithm (Jewell
et al. 2004; Wandelt et al. 2004), we first note that as far as cos-
mological parameter estimation with CMB data is concerned,
only the CMB map, aCMB (which we for brevity denote a in the
rest of this section), is directly relevant. All other parameters in
Eq. (3) only serve to produce the cleanest possible estimate of
a and to propagate the corresponding uncertainties. From now
on, we therefore consider a greatly simplified data model of
the form,

r = Ba + n, (9)

where r now represents a foreground-cleaned CMB map (or
residual) obtained by subtracting all other nuisance terms from
the raw data, and our goal is to estimate cosmological parameters
from this map. Under the assumption that the CMB is a Gaussian
random field, this could in principle be done simply by mapping
out the exact marginal posterior distribution by brute force,

P(θ | r) ∝ L(θ)P(θ) ∝
e−

1
2 rT (BT S(θ)B+N)−1 r√∣∣∣BT S(θ)B + N

∣∣∣ , (10)

where BT S(θ)B is the beam-convolved CMB signal covariance
matrix and N is the corresponding noise covariance matrix, and
we have assumed uniform priors, P(θ) = 1. This, however,
becomes intractable for modern CMB experiments as the com-
putational expense scales as O(N3

p ), where Np is the number of
pixels, and nowadays typical CMB maps include millions of
pixels.

In the special (and unrealistic) case of uniform noise and
no Galactic mask, this likelihood can be simplified in harmonic
space, in which it does become computationally tractable. Let
us define the observed angular CMB power spectrum (includ-
ing beam convolution and noise) to be Ĉo

` = 1
2`+1

∑
m r`mr∗`m

and the corresponding white noise spectrum to be defined by
N`m`′m′ = N`δ``′δmm′ . In that case, the likelihood in Eq. (10) for
temperature-only observations simplifies to

ln P(θ | r) =
∑
`

−
2` + 1

2

 Ĉo
`

b2
`
C`(θ) + N`

− ln

 Ĉo
`

b2
`
C`(θ) + N`

 ,
(11)

where b` is the beam response function and we have removed
constant terms; a similar expression for polarization is available
in, for example, Larson et al. (2007) and Hamimeche & Lewis
(2008). This expression is used later to validate the production
code.

While it is difficult to evaluate Eq. (10) directly, it is in fact pos-
sible to sample from it using Gibbs sampling (Jewell et al. 2004;
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â`m

f̂`m

â`m + f̂`m

-400 400µK

Fig. 1. Example of a constrained CMB sky map realization produced
during traditional Gibbs sampling. From top to bottom, the three pan-
els show the mean field map (â), the fluctuation map ( f̂ ), and the full
constrained realization (a = â + f̂ ). This example is generated with the
data configuration discussed in Sect. 3, which corresponds to Planck
LFI 70 GHz noise properties and a realistic Galactic mask.

Wandelt et al. 2004). First, we note that the joint posterior distri-
bution P(θ, a | r) can be written as

P(θ, a | r) =
P(θ, a, r)

P(r)
= P(r | a)P(a | θ)

P(θ)
P(r)

∝
e−

1
2 (r−Ba)T N−1(r−Ba)

√
|N|

e−
1
2 aT S−1 a
√
|S|

P(θ)
P(r)

, (12)

and drawing samples from this distribution can be achieved
through Gibbs sampling,

ai+1 ← P(a | θi, r), (13)

θi+1 ← P(θ | ai+1, r). (14)

With these joint samples in hand, a numerical representation of
P(θ | r) can be obtained simply by marginalizing over a, which
is equivalent to simply making histograms of the θ samples.

For this algorithm to work, we need to be able to sam-
ple from each of the two conditional distributions in Eqs. (13)
and (14). Starting with the cosmological parameter distribution
in Eq. (14), we note that P(θ | ai+1, r) = P(θ | ai+1), which
is equivalent to the distribution in Eq. (11) with no beam and
noise. This can be coupled to a standard Boltzmann solver and
Metropolis-Hastings sampler, similar to CAMB and CosmoMC. We
return to this step in the next section.

Next, for the amplitude distribution in Eq. (13), one can show
by “completing the square” of a in Eq. (12) that

P(a | θ, r) ∝ e−
1
2 (a−â)T (S−1+BT N−1B)(a−â), (15)

where we have defined the so-called mean field map,

â ≡
[
S−1 + BT N−1B

]−1
BT N−1r. (16)

This is a multivariate Gaussian distribution with mean â and
a covariance matrix

[
S−1 + BT N−1B

]−1
that can be sampled

from solving the following equation using conjugate gradients
(Shewchuk 1994; Seljebotn et al. 2019),[
S−1 + BT N−1B

]
a = BT N−1r + S−

1
2w0 + BT N−

1
2w1, (17)

where w0 and w1 are randomly drawn Gaussian maps with
unit variance and zero mean. The resulting sample is typically
referred to as a “constrained realization”.

For the purposes of the next section, it is useful to decom-
pose the full constrained realization into two separate compo-
nents, namely the mean field map defined by Eq. (16) and the
fluctuation map,

f̂ ≡
[
S−1 + BT N−1B

]−1 (
S−

1
2w0 + BT N−

1
2w1

)
(18)

such that a = â + f̂ . For a data configuration with uniform
noise and full-sky temperature data, these equations can be
solved exactly in spherical harmonics space, fully analogously
to Eq. (11),

â`m = r`m
b`C`

N` + b2
`
C`

, (19)

f̂`m = w0`m
N`

√
C`

N` + b2
`
C`

+ w1`m

√
N`b`C`

N` + b2
`
C`

. (20)

As summarized in Appendix A, we can find a closed-form
expression for N−1

`m`′m′ for a constant latitude mask with isotropic
noise which greatly simplifies solving Eq. (17), and we have
made a Python script that performs these calculations in order
to validate the main Commander3 code discussed below.

To build intuition, these maps are illustrated for one random
sample with semi-realistic instrument characteristics in Fig. 1.
The top panel shows the mean field map (or “Wiener filter
map”); this map summarizes all significant information in r,
and each mode is weighted according to its own specific signal-
to-noise ratio taking into account both instrumental noise and
masking. As a result, all small scales in the Galactic plane are
suppressed, and only the largest scales are retained, which are
constrained by the high-latitude observations in conjunction with
the assumptions of both Gaussianity and statistical isotropy. The
second panel shows the fluctuation map, which essentially serves
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Fig. 2. Angular power spectra for each of the constrained realization
maps shown in Fig. 1. The ΛCDM cosmological model correspond-
ing to θ is shown as a dashed black line, while the colored curves
show (from dark to light) spectra for the fluctuation map, the mean
field map, and the full constrained realization. Note that in the fully
noise-dominated cases, such as the entire B-mode power spectrum and
all high multipoles, the fluctuation term f̂`m and the CMB estimate a`m
have nearly identical power spectra by design.

to replace the lost power in â with a completely random fluctua-
tion. The sum of the two terms, shown in the bottom panel, rep-
resents one possible full-sky realization that is consistent with
both the data and the assumed cosmological parameters, θ. If we
were to produce a second such constrained realization, it would
look almost identical at high Galactic latitudes, where the data
are highly constraining, while the Galactic plane would exhibit
different structures on small and intermediate scales.

A corresponding comparison of angular power spectra is
shown in Fig. 2. The relative signal-to-noise ratio of each multi-
pole moment can be seen as the ratio between the intermediate
and dark-colored lines. In temperature, this value is higher than
unity up to ` . 700, while for EE polarization it is less than
unity everywhere except at the very lowest multipoles. A closely
related way to interpret this figure is that the intermediate curve
shows the total information content of the data. Thus, for the BB
spectrum there is no visually relevant information present at all,
and the full constrained realization is entirely defined by the fluc-
tuation map, which is given by the assumed cosmological model,
θ. This explains why the standard Gibbs sampler works well in
the high signal-to-noise regime but poorly in the low signal-to-
noise limit: When we have high instrumental noise, N → ∞,
then we have no information about a`m from the data r`m, and
the total sky sample only becomes a realization of the assumed
variance, C` (i.e., a`m → f̂`m =

√
C`w0`m). However, since we

have no information of the mean field map â`m → 0, we also
do not know C`. Hence, we get a strong degeneracy between the
C` and a`m. Gibbs sampling is well known to perform poorly for
strongly correlated parameters, as one cannot move diagonally
through the parameter space from one end of the joint posterior
distribution to the other.

2.2.2. Joint sky signal and cosmological parameter sampling

As the Gibbs sampler struggles with long correlation lengths,
a joint sampler was proposed by Jewell et al. (2009) and
Racine et al. (2016) that was designed to establish an efficient
sampling algorithm for the degeneracy between a and θ in the
low signal-to-noise regime. Mathematically, this algorithm is a
standard Metropolis-Hastings sampler with a Gaussian transition
rule for θ,

w(θ | θi) = e−
1
2 (θ−θi)T C−1

θ (θ−θi), (21)

where Cθ is a user-specified (and pre-tuned) proposal covariance
matrix made from a previous chain using a suboptimal, diagonal
proposal matrix. This is followed by a deterministic rescaling of
the fluctuation map in the signal amplitude map,

ai+1
`m = âi+1

`m +
(
Ci+1
`

)1/2 (
Ci
`

)−1/2
f̂ i
`m, (22)

where we have defined the covariance matrix

Ci
` =


CTT
`

(
θi
)

CT E
`

(
θi
)

0
CT E
`

(
θi
)

CEE
`

(
θi
)

0
0 0 CBB

`

(
θi
)
.

 (23)

Here, we have set the parity-odd power spectra to zero as pre-
dicted by Λ cold dark matter (CDM), CEB

` = CT B
` = 0. There-

fore, we defined the rescaled fluctuation map,

f̂ scaled, i+1
`m ≡

(
Ci+1
`

)1/2 (
Ci
`

)−1/2
f̂ i
`m. (24)

As shown by Racine et al. (2016), the acceptance rate for this
joint move is

A = min
[
1,
π(θi+1)
π(θi)

P(θi+1)
P(θi)

]
, (25)

where P(θ) is the prior on θ and

π(θi) = exp
[
−

1
2

(
r − Bâi

)T
N−1

(
r − Bâi

)
−

1
2

ai,T Si,−1 âi −
1
2

f̂ i,T
BT N−1B f̂ i

]
, (26)

where we for brevity have omitted the θi dependence of âi, f̂ i

and Si.
We note that the acceptance rate uses the scaled fluctuation

term, f̂ scaled, i+1
`m , for sample i + 1 instead of the calculated fluc-

tuation term in Eq. (17). Hence, we only need to calculate f i+1
`m

from this equation if the sample is accepted. This allows us to
save roughly half the computational time of discarded samples
as compared to accepted samples.

The full algorithm can now be summarized in terms of the
following steps:
1. We start with an initial guess of the cosmological param-

eters, θ0. From that, we calculate S0 with CAMB; the mean
field map, â0 from Eq. (16); and the fluctuation map, f̂ 0

,
from Eq. (18).

2. We then draw a new cosmological parameter sample from
w(θ | θi), and reevaluate Si+1, âi+1, and the scaled fluctuation
term f̂ scaled, i+1

.
3. We calculate the acceptance term of Eq. (25), and accept or

reject according to the regular Metropolis-Hasting rule.
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Fig. 3. Schematic comparison of the standard Gibbs sampler (top pan-
els) and the joint sampler of Racine et al. (2016), bottom panels. The left
and right columns show high and low signal-to-noise regimes, respec-
tively. The Gibbs sampler performs poorly in the low signal-to-noise
regime as it requires a large number of samples to explore the poste-
rior distribution. The joint sampler in the lower panels performs well
in both regimes as it allows the next sample to move diagonally in the
{a, θ} parameter space.

4. If the sample is accepted, then we calculate f̂ i+1
. In the

next iteration this term becomes f̂ i
, which will appear in the

acceptance probability and the equation for f̂ scaled, i+1
.

5. Iterate 2–4.
The intuition behind this joint move is illustrated in Fig. 3.
The top panel shows the standard Gibbs sampling algorithm, in
which only parameter moves parallel to the axes are allowed.
This works well in the high signal-to-noise regime (left col-
umn), where the joint distribution is close to symmetric. In the
low signal-to-noise regime, however, the distribution is strongly
tilted, because of the tight coupling between f̂ and θ discussed at
the end of Sect. 2.2.1, and many orthogonal moves are required
in order to move from one tail of the distribution to the other.
On the other hand, with the joint algorithm, in the bottom panel,
steps are non-orthogonal, with a slope defined exactly by the
local signal-to-noise ratio of the mode in question. The net result
is a much faster exploration of the full distribution.

3. Results

The main goal of this paper is to implement the joint sampling
algorithm into Commander3 and characterize its performance
both in terms of accuracy and computational cost on simulated
data. All Commander code used in the following is available as
Open Source software in a GitHub repository2. For the current
paper, we focused on a standard six-parameter ΛCDM model
and chose θ = (Ωbh2,ΩCDMh2,H0, τ, As, ns) as our base param-
eters, where Ωb and ΩCDM are the current density of baryonic
and CDM; H0 is the Hubble parameter (and h is the normal-
ized Hubble constant, h =

H0

100 kms−1Mpc−1 ); τ is the optical depth
at reionization; and As and ns are the amplitude and tilt of the

2 https://github.com/Cosmoglobe/Commander

scalar primordial power spectrum. We used CAMB3 (Lewis et al.
2000) to evaluate all ΛCDM power spectra, C`(θ).

In the following we consider three different simulations,
corresponding to increasing levels of complexity and realism.
A natural early target for this algorithm is a reanalysis of
Cosmoglobe DR1; hence, all three cases are similar to the
Planck LFI channels. We use the Planck data release 4 70 GHz
beam transfer functions (Planck Collaboration Int. LVII 2020),
and for the two first cases, the noise level is isotropic with a
value matching twice the mean of the full-sky 70 GHz rms map,
while for the third case is given by one realization of the actual
non-isotropic BeyondPlanck 70 GHz noise rms distribution.

The second difference between the three cases is their sky
coverage. The first case considers full-sky data, for which
the analytical posterior distribution solution is readily avail-
able through Eq. (11). The second case implements a constant-
latitude Galactic mask for which an analytical expression is also
available, albeit more complicated than for the full sky (see
Appendix A for details). The third case uses a realistic Galac-
tic and point-source mask, for which no analytical expression is
available.

To validate the main Commander3 results, we developed a
special-purpose Python program4 that implements the same joint
sampling algorithm described above for the two first cases, and
this serves essentially as a basic bug-check with respect to the
Fortran implementation. In addition, we also implemented a uni-
form, full-sky likelihood module for Cobaya (Torrado & Lewis
2021), an industry-standard cosmological parameter Metropolis
sampler, and this serves as an end-to-end check on the entire
code, including integration with CAMB.

3.1. Accuracy validation

The first main goal of this paper is to demonstrate that the new
Commander3 implementation of the Racine et al. (2016) algo-
rithm performs as expected with respect to accuracy. Thus, we
start our discussion by considering the uniform and full-sky
case discussed above. For each of the three available codes –
Commander3, Python, and Cobaya – we produced 50 000 sam-
ples; we show the full posterior distributions in Fig. 4. The agree-
ment between all three codes is excellent, and the overall varia-
tions are within ∼0.1σ.

Second, Fig. 5 shows a similar comparison between the
Commander3 and Python implementation. The sky mask is in
this case defined by |b| < 5.7◦ where b is the Galactic latitude,
removing 10% of the sky. We also find good agreement in this
case between the two implementations, and the true input val-
ues (marked by vertical dashed lines) all fall well within the full
posterior distributions. However, we do note that the introduc-
tion of a sky mask significantly increases the overall run time of
the algorithm, since one now has to solve for the mean field map
repeatedly at each step with conjugate gradients, rather than with
brute force matrix inversions. In total, we only produce ∼11 000
and 17 000 samples for each of the two codes for this exercise,
at a total cost of O(105) CPU-hours.

Finally, in Fig. 6 we show trace plots for each cosmolog-
ical parameter for the realistic configuration as produced with
Commander3, noting that none of the other codes are technically
able to produce similar estimates. In this case, the computational
cost is even higher, and we only produce a total of 1600 samples.

3 https://github.com/cmbant/CAMB
4 Publicly available at https://github.com/LilleJohs/
COLOCOLA
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accounts for the Markov chain correlation length of the algorithm; the
Monte Carlo uncertainty due to a finite number of samples is therefore
significant.

Still, by comparing these traces with the true input values
(marked as dashed horizontal lines), we do see that the resulting
samples agree well with the expected mean values. The uncer-
tainties are also as expected since they are smaller and on the
order of the noisier 10% constant latitude and isotropic noise
case in Fig. 5.
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3.2. Markov chain correlation length and computational costs

The second main goal of this paper is to quantify the compu-
tational costs involved in this algorithm and identify potential
bottlenecks that could be optimized in future work. The effec-
tive cost per independent Markov chain sample can be written as
the product of the raw sampling cost per sample and the overall
Markov chain correlation length. The latter can be quantified in
terms of the autocorrelation function,

ζθ(∆) ≡
〈

(θi − µ)
σ

(θi+∆ − µ)
σ

〉
, (27)

where µ and σ are the posterior mean and standard deviation
computed from the Markov chain for θ. We define the overall
correlation length to be the first value of ∆ for which ζ < 0.1.
This function is plotted for both Cobaya and Commander3 in
Fig. 7; for the latter, dashed lines show full-sky results and dot-
dashed lines show results for a 10% mask. Overall, we see that
the Commander3 correlation length is 50–60 for the full-sky
case, increasing to 50–100 for the masked case. For comparison,
Cobaya typically has a correlation length of about 10.
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The basic computational cost per sample for Commander3 is
plotted as black points in Fig. 8. Here we see that the overall
cost increases rapidly with decreasing sky coverage, starting at
0.2 CPU-hours for a full-sky sample to about 4 CPU-hours for a
20% constant latitude mask and uniform noise. As the isotropic
noise cases have twice the noise of the mean of the 70 GHz rms
map, the higher signal-to-noise causes an increase in runtime,
and for the realistic LFI 70 GHz scanning pattern and 15% mask,
the cost is 20 CPU-hours/sample. Taking into account that the
overall correlation length is ∼100, the effective cost is therefore
about 2000 CPU-hours per independent sample; the gray dots in
Fig. 8 indicates this total cost for each configuration.

To interpret the implications of these costs, it is useful to
compare with the overall cost of the full end-to-end process-
ing pipeline within which this algorithm is designed to operate.
The most relevant comparison point is therefore the cost of the
Cosmoglobe DR1 processing, which is 812 CPU-hours for the

combination of Planck LFI and WMAP, marked as a red dot
in Fig. 8. In its current state, we find that the new cosmological
parameter step alone is thus about 2.5 times more expensive than
the full end-to-end processing.

4. Summary and discussion

This work had two main goals. The first goal was sim-
ply to implement the cosmological parameter sampling algo-
rithm proposed by Racine et al. (2016) into the state-of-the-art
Commander3 CMB Gibbs sampler and demonstrate that this new
step works in a production environment. A head-to-head com-
parison with both Cobaya and a stand-alone Python implemen-
tation demonstrates the fidelity of the method. We therefore con-
clude that this goal has been met, and as such this work finally
adds true “end-to-end” processing abilities to Commander3.

The second goal was to measure the computational perfor-
mance of the method, assess whether it is already suitable for
large-scale production, and identify potential bottlenecks that
should be resolved in future work. In this case, we find that
the overall cost per independent Gibbs sample for a data set
similar to Cosmoglobe DR1 is about 2000 CPU-hours, which
is more than a factor of two higher than the total cost of all
other steps in the end-to-end algorithm, including low-level cal-
ibration, map-making, and component separation. Therefore,
although the code is technically operational at the current time,
we also conclude that it is still too expensive to be useful in a
full-scale production environment.

At the same time, this analysis has also revealed the under-
lying origin of these high expenses, which can be divided
into two parts. First, the overall cost per sample is domi-
nated by the expense for solving for the mean field (Eq. (16))
and fluctuation maps (Eq. (18)) using conjugate gradients. In
this respect, we note that the current implementation uses a
standard diagonal preconditioner to solve these equations, as
described by Eriksen et al. (2004). However, after more than
two decades of development, far more efficient precondition-
ers have been explored and described in the literature, includ-
ing multi-resolution or multi-grid methods (e.g., Seljebotn et al.
2014, 2019). Implementing one of them can potentially reduce
the basic cost per sample by one or two orders of magnitude. The
second issue is a long correlation length. We note that the cur-
rent algorithm is based on a very basic random-walk Metropolis
sampler, which generally performs poorly for highly correlated
parameters; in the cases considered here, the correlation between
the amplitude of scalar perturbations, As, and the optical depth
of reionization, τ, is a typical example of such a correlation. This
suggests that the correlation length can be greatly reduced in
several ways, for instance either by adding new data sets (such
as weak gravitational lensing constraints) or by implementing a
more sophisticated sampling algorithm that uses derivative infor-
mation, such as a Hamiltonian sampler. Overall, we consider it
very likely that future work will be able to reduce the total cost
by one or two orders of magnitude, as needed for production,
and we hope that the current results can provide inspiration and
motivation for experts in the field to join the effort.

Finally, before concluding this paper, we note that a key
application of the Bayesian end-to-end analysis framework as
pioneered by BeyondPlanck and Cosmoglobe is the analy-
sis of next-generation CMB B-mode experiments, for instance
LiteBIRD. In this case, it is worth noting that the polarization-
based signal-to-noise ratio of the tensor-to-scalar ratio, r, is
much lower than Planck and WMAP’s temperature signal-to-
noise ratio to the ΛCDM parameters, and both the conjugate
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gradient cost and Markov chain correlation length are likely to
be much shorter than for the case considered in this paper. As
such, it is conceivable that the current method already performs
adequately for LiteBIRD, and this will be explored5 in future
work.
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Appendix A: Analytic expression for a constant
latitude mask

The goal of this appendix is to show how we can calcu-
late N−1

`m`′m′ analytically for a constant latitude mask and uni-
form noise. This expression makes the map-making equation, in
Eq. (17), computationally faster to solve as we derive our expres-
sion to be N−1

`m`′m′ ∝ δmm′ . These results are generally known, but
we re-derive them here for completeness.

For uniform instrumental noise with no mask, the pixel
covariance matrix is Npp′ = σ2δpp′ where σ is the white noise
uncertainty per pixel. Including the constant latitude mask, the
inverse of the noise covariance matrix can be written in pixel
space as(
N−1

)
pp′

=
1
σ2 δpp′H(|θ(p) − π/2| − b).

Here, H is the Heaviside function, meaning that we mask every
pixel p where |θ(p)− π/2| < b for some latitude b in radians. For
a masked pixel, we have

(
N−1

)
pp

= 0, meaning that the noise at
that pixel is infinite, Npp = ∞.

Defining the spherical harmonics functions Y`m (p) =
Y`m (n̂(p)) and n̂(p) = (θ(p), φ(p)) are the spherical coordinates
at pixel p, which we can transform into spherical harmonics
space,(
N−1

)
`m`′m′

=
∑
pp′

(
N−1

)
pp′

Y∗`m(p)Y`′m′ (p′)

=
1
σ2

∑
pp′

Y∗`m(p)Y`′m′ (p′)δpp′H(|θ − π/2| − b)

=
1
σ2

∑
p

Y∗`m(p)Y`′m′ (p)H(|θ − π/2| − b)

=
1
σ2

∑
p

P̃`mP̃`′m′e−i(m−m′)φH(|θ − π/2| − b). (A.1)

Here, we have defined P̃`m = P̃`m(θ) = ∆`mP`m(cos(θ)), where

∆`m = (−1)m
√

2`+1
4π

(`−m)!
(`+m)! and P`m(cos(θ)) are the associated Leg-

endre polynomials. Thus, we write the spherical harmonics func-
tions as Y`m(p) = P̃`meimφ.

We now switch from discrete pixels to continuous space,
meaning that we change the sum to an integration where we
account for the number of pixels, Npix, per area element,∑

p

→
Npix

4π

∫
dΩ =

Npix

4π

∫ 2π

0
dφ

∫ π

0
dθ sin(θ). (A.2)

This gives us(
N−1

)
`m`′m′

=
Npix

4πσ2

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)P̃`mP̃`′m′e−i(m−m′)φ

· H(|θ − π/2| − b)

=
Npix

2σ2 δmm′

∫ π

0
dθ sin(θ)P̃`mP̃`′m′H(|θ − π/2| − b)

=
Npix

2σ2 δmm′

·

(∫ π/2−b

0
dθ sin(θ)P̃`mP̃`′m′ +

∫ π

π/2+b
dθ sin(θ)P̃`mP̃`′m′

)
. (A.3)

Writing x = cos(θ), we know that the associated Legendre
polynomials P`m(x) are either symmetric or antisymmetric in
x → −x. P`m(x) is symmetric in x → −x when ` + m = even
and antisymmetric when ` + m = odd. Since m = m′, we note
that the two integrals in the last line of Eq. (A.3) cancel each
other if ` + `′ = odd. We, therefore, only get nonzero elements
when `+`′ = even, for which the two integrals are equal. Hence,
for ` + `′ = even, we get(
N−1

)
`m`′m′

=
Npix

σ2 δmm′

∫ π/2−b

0
dθ sin(θ)P̃`m(θ)P̃`′m′ (θ)

=
Npix

σ2 δmm′

∫ 1

sin(b)
dx P̃`m(arccos(x))P̃`′m(arccos(x)).

(A.4)

In the full-sky case, b = 0, we find
(
N−1

)
`m`′m′

= δ``′δmm′
Npix

4πσ2

which is equivalent to a diagonal noise power spectrum
N` = 4πσ2

Npix
.

The integral in Eq. (A.4) can be solved numerically by grid-
ding x, and P̃`m can be calculated in Python using the library
pyshtools (Wieczorek & Meschede 2018). The azimuthally sym-
metric Galactic mask used for this work has a sky coverage of
fsky = 0.90, giving sin(b) = 0.1. Therefore, we require many
fewer grid points for x if we use the following identity for `+`′ =
even,

δmm′

∫ 1

sin(b)
dx P̃`m(arccos(x))P̃`′m(arccos(x)) =

(A.5)

1
4π
δ``′δmm′−δmm′

∫ sin(b)

0
dx P̃`m(arccos(x))P̃`′m(arccos(x)),

(A.6)

which comes from the orthonormality condition for spherical
harmonics. We now only need to grid x in the interval 0 ≤ x ≤
sin(b) = 0.1, as opposed to the interval 0.1 ≤ x ≤ 1.

Since N−1
`m`′m′ ∝ δmm′ , we get simplified matrix expressions.

Imagine multiplying the matrix N−1 = N−1
`m`′m′ by the vector b =

b`m:

N−1 · b =
∑
`′m′

(
N−1

)
`m`′m′

b`′m′ =
∑
`′

(
N−1

)
`m`′m

b`′m (A.7)

=
∑
`′

(
N−1

)(m)

`,`′
b(m)
`′
. (A.8)

To solve the map-making equation, Eq. (17), we get a matrix
equation for each 0 ≤ m ≤ `max. This gives us `max +1 number of
matrix equations where the dimensions of the matrices are maxi-
mally (`max +1)× (`max +1). This is numerically much quicker to
invert rather than inverting the full matrix

[
S−1 + BT N−1B

]
once.
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