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We explore an interesting connection between black hole shadow parameters and the acceleration
bounds for radial linear uniformly accelerated (LUA) trajectories in static spherically symmetric black hole
spacetime geometries of the Schwarzschild type. For an incoming radial LUA trajectory to escape back to
infinity, there exists a bound on its magnitude of acceleration and the distance of closest approach from the
event horizon of the black hole. We calculate these bounds and the shadow parameters, namely, the photon
sphere radius and the shadow radius, explicitly for specific black hole solutions in d-dimensional Einstein's
theory of gravity, in pure Lovelock theory of gravity and in the F ðRÞ theory of gravity. We find that for a
particular boundary data, the photon sphere radius rph is equal to the bound on radius of closest approach rb
of the incoming radial LUA trajectory while the shadow radius rsh is equal to the inverse magnitude of the
acceleration bound jajb for the LUA trajectory to turn back to infinity. Using the effective potential
technique, we further show that the same relations are valid in any theory of gravity for static spherically
symmetric black hole geometries of the Schwarzschild type. Investigating the trajectories in a more general
class of static spherically symmetric black hole spacetimes, we find that the two relations are valid separately
for two different choices of boundary data.
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I. INTRODUCTION

One of the most interesting features of a black hole is
the shadow seen in its image. The idea of observing the
black hole shadow using Very Long Baseline Interferometry
(VLBI) goes way back to the initial years of 21st century and
was first proposed by Falcke et al. [1] wherein an image
of Sagittarius A* was simulated using general relativistic
ray-tracing code. It was proposed that with the resolution of
global VLBI arrays at about 1.3 mmwavelength, the shadow
of Sgr A* should be observable. Later, images of two black
holes, M87* and Sgr A* were successfully produced by the
Event Horizon Telescope (EHT) Collaboration [2,3], which
provided the first ever direct visual evidence of these black
holes and has motivated a detailed study of various aspects
of black hole shadows.
The first simulated image of a Schwarzschild black hole

surrounded by a thin accretion disk was constructed by J. P.
Luminate where the boundary of the black hole shadow was
defined by the marginally trapped light rays [4]. A com-
prehensive study of null trajectories and the marginally
trapped light rays has been done for the four-dimensional
black holes in Einstein’s gravity, namely the Schwarzschild
black hole [5,6], the Reissner-Nordström black hole [7,8]
and the Kerr black hole [9,10]. Some of the other black hole

solutions for which the shadow size has been evaluated are
black holes of the Plebański-Demiański class, a black hole
surrounded by dark matter, a class of regular black holes,
braneworld black holes, etc. A detailed review of analytical
studies of these black hole shadows can be found in [11] and
references therein. Such investigations of the shadow are
not only restricted to the black holes in Einstein’s gravity
but are also extended to alternative and modified theories of
gravity such as, the Lovelock gravity [12], the scalar tensor
theory [13], the F ðRÞ gravity [14] etc. Many more black
hole solutions such as the charged, rotating black holes
in the Einstein-Gauss-Bonnet gravity, F ðRÞ gravity, fðTÞ
gravity and Rastall gravity have also been investigated for
their shadows, see [15–30] for examples.
An interesting relationship has been found between the

quasinormal modes (QNMs) derived in the eikonal limit
and the shadow radius of static spherically symmetric
asymptotically flat black holes. The real part of the QNM
is related to the angular velocity of the circular photon
orbit while the imaginary part of the QNM is connected to
the Lyapunov exponent which is related to the stability or
instability of the orbits. The relationship between the
QNMs and the shadow of a rotating black hole has been
checked for a variety of cases including the rotating black
hole solutions in Einstein’s gravity (see [31–35]) as well as
static spherically symmetric black hole solutions in the-
ories of gravity beyond Einstein’s gravity (see [36–44]).
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The investigation of black hole shadows essentially
involves the study of null geodesics around the curved
black hole background. On the other hand, one could study
accelerated trajectories in a black hole geometry, particu-
larly the linear uniformly accelerated (LUA) trajectories.
The LUA trajectories are curved spacetime generalization
of linear uniformly accelerated Rindler trajectories in flat
spacetime [45]. The LUA curves satisfy the Letaw-Frenet
equations for fixed curvature scalar and vanishing torsion
and hyper-torsion [46,47]. In the usual flat spacetime
picture, a Rindler trajectory with constant magnitude of
acceleration jaj lying in the (X-T) plane and confined to,
say, the right Rindler wedge, formed by the past and future
horizon null surfaces X ¼ −T and X ¼ T respectively,
where X and T are Minkowski coordinates is a LUA
trajectory. The casual structure of Rindler quadrant along
with the timelike boost Killing trajectories leads to the
well known Unruh effect [48,49]. An interesting aspect is
to understand how the quadrant structure and the globally
hyperbolic motion of the Rindler trajectories are modified
due to spacetime curvature when a gravitating body is
brought in the picture. An extreme case, would be to study
the LUA trajectories in the background of a static black hole
spacetime. Since an event horizon already exists in the black
hole geometry, a Rindler-type motion, in particular the LUA
motion, would introduce additional Rindler-type horizons
in the comoving frame of the LUA observer. Interesting
questions arise in such a scenario in a semiclassical setting
as to what does the LUA observer see in the Hartle-Hawking
vacuum or in the Unruh vacuum. For the Schwarzschild
spacetime, radial LUA trajectories were investigated in [50]
and the corresponding Rindler quadrant structure was
analyzed in [51]. Interestingly, it was found that there
exists an upper bound on the magnitude of acceleration of
the radial LUA trajectories incoming from past infinity to
turn back at some radius, otherwise the trajectory falls into
the black hole horizon. This acceleration bound further
leads to a bound on the radius of turning point, that is, the
distance of closest approach for these LUA trajectories to
escape to infinity. It is these parameters, the acceleration
bound and the turning point bound of the LUA trajectories
that we investigate and compare with the black hole shadow
parameters of the unstable circular photon orbit.
In this work, we investigate and report a connection

between the black hole shadow parameters and the accel-
eration bounds on radial linear uniformly accelerated
(LUA) trajectories for static spherically symmetric black
holes of the Schwarzschild type. The paper is organized as
follows. In Sec. II, we first set up the basic null geodesic
equations in a Schwarzschild-type spacetime and summa-
rize the definitions related to the shadow parameters in
Sec. II A. We then evaluate the shadow parameters of
static spherically symmetric black holes in three different
theories of gravity, namely, the Einstein’s theory, the
Lovelock theory and the F ðRÞ theory. In particular, we

evaluate the shadow radii of the Einstein’s charged black
hole in d dimensions with d ≥ 4, vacuum black hole
solution in pure Lovelock theory and a black hole with
conformally coupled scalar field in F ðRÞ theory of gravity
in Secs. II B–II D, respectively. The shadows of black
holes in Einstein’s theory have been well-studied in four
dimensions. Consideration of higher dimensions then
accounts for some correction to the size of the shadow
calculated for a four-dimensional black hole. The pure
Lovelock theory have many interesting features. The
vacuum in Nth order Lovelock theory is pure Lovelock
flat and gravity is kinematic in all critical d ¼ 2N þ 1
dimensions [52], giving the black hole solutions only in
d ≥ 2N þ 2 dimensions [53]. These black hole solutions in
d ¼ 3N þ 1 dimensions are indistinguishable from black
holes in Einstein’s gravity as for all of them the gravita-
tional potential goes as 1=r [54]. This motivates the study
of pure Lovelock black holes.
In Sec. III, we set up LUA trajectories in the background

of a spherically symmetric Schwarzschild-type black hole
spacetime and present general solutions of a LUA trajec-
tory in Sec. III A. We summarize the acceleration bounds
for LUA trajectories in the background of Schwarzschild
black hole in Sec. III B. Using the techniques applied in the
case of Schwarzschild spacetime, we calculate the corre-
sponding acceleration bounds for radial LUA trajectories
in the background of the three black hole geometries in
three different theories of gravity, namely the background
geometries of a charged black hole in Einstein's gravity in
d dimensions with d ≥ 4 in Sec. III C, a pure Lovelock
black hole in Sec. III D and a black hole in F ðRÞ theory in
Sec. III E. Comparing the results for the unstable circular
photon orbits obtained in Sec. II and the LUA trajectories
in Sec. III, we find an intriguing correspondence between
the radius of the black hole shadow and the inverse of the
acceleration bound of the LUA trajectories. Further, the
radius of photon sphere and the bound on the distance
of closest approach for LUA trajectories are found to
be equal. This is a fascinating correspondence since the
notion of a black hole shadow is completely independent
of the LUA trajectories. To check the robustness of this
equivalence, we further investigate this correspondence
in a general Schwarzschild-type spherically symmetric
black hole spacetime in Sec. IV. A more general class of
spherically symmetric black hole spacetimes are explored
in Sec. V for such a correspondence. The conclusions and
discussions are presented in the last section.
The signature adopted is ðþ;−;−;−Þ and the natural

units, kB ¼ c ¼ G ¼ ℏ ¼ 1 are used throughout the paper.

II. BLACK HOLE SHADOW PARAMETERS

Two of the important notions related to the shadow of a
static spherically symmetric black hole are the photon
sphere and the critical impact parameter. The family of null
trajectories with the value of impact parameter being
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infinitesimally larger than that of the critical impact
parameter are the last set of photon trajectories which
can just spiral outwards from an unstable circular orbit on
the photon sphere and define the boundary of the shadow.
For the Schwarzschild metric, these two notions are well-
studied [4,5] and have known values in terms of the mass
M of the black hole as the radius of the photon sphere
rph ¼ 3M and the critical impact parameter bcr ¼ 3

ffiffiffi
3

p
M.

In the conventional approach, the radius of photon sphere
is obtained from the peak of the effective potential
encountered by photons moving in the background space-
time. For some static spherically symmetric black holes,
there may exist several photon spheres, in which case, it is
the unstable photon sphere which is relevant for the critical
light rays spiralling outwards and it must be distinguished
from the stable photon sphere about which the perturbed
light trajectory may just oscillate. Another equivalent
geometric approach uses the notions of geodesic curvature
kgðrÞ and Gauss curvature KðrÞ in the context of optical
metric of black holes [55,56]. For spherically symmetric
black holes, the unstable photon sphere satisfies the
conditions kgðrÞ ¼ 0 andKðrÞ < 0while the stable photon
sphere satisfies kgðrÞ ¼ 0 and KðrÞ > 0.
In following sections, for the sake of completeness, we

set up the basic equations leading to the radii of photon
spheres and the shadow radius for static spherically sym-
metric black hole spacetimes of the Schwarzschild type
and then solve them for particular solutions, namely the
charged black hole in Einstein’s gravity in d dimensions,
pure Lovelock black hole in d dimensions and the black
hole in F ðRÞ gravity with conformally coupled scalar field
in four dimensions. In case of the charged black hole in
Einstein’s gravity and the black hole in F ðRÞ gravity, we
encounter two photon spheres, one of which is unstable with
respect to the radial perturbations and hence used to obtain
the shadow radius.

A. Basic equations and definitions

Consider a d-dimensional static spherically symmetric
and asymptotically flat black hole metric,

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dΩ2
d−2; ð2:1Þ

where fðrÞ is a smooth differentiable function with
fðrHÞ ¼ 0 at some radius rH which is the outer horizon
of the black hole and fðrÞ → 1 as r → ∞. Owing to the
spherical symmetry, it is sufficient to consider the null
geodesic motion in an equatorial plane. A photon moving
in an equatorial plane will have only three nonzero velocity
components. The conserved quantities along the null geo-
desics corresponding to the two Killing vectors ∂t and ∂ϕ

lead to the two constants of motion,

fðrÞṫ ¼ E and r2ϕ̇ ¼ L; ð2:2Þ

where E and L are the energy and angular momentum of
the photon as measured by an observer at infinity. Using
these in the radial geodesic equation, the first integral for
geodesic motion of photons can be written as

ṙ2

L2
þ fðrÞ

r2
¼ 1

b2
; ð2:3Þ

where b ¼ L=E is the impact parameter for the trajectory.
The second term on left-hand side is the effective potential
where we define

VeffðrÞ ¼
fðrÞ
r2

: ð2:4Þ

The effective potential plays an important role in calculat-
ing the size of the black hole shadow. The asymptotic
flatness of metric at spatial infinity implies that VeffðrÞ
falls as 1=r2 as r → ∞ while at the outer horizon rH we
have VeffðrHÞ ¼ 0 since fðrHÞ ¼ 0. Thus, VeffðrÞ has at
least one maxima between rH and r → ∞. This unstable
extremum or the in the case of multiple unstable extrema,
the one with the largest value of the potential is relevant for
the shadow of the black hole as seen by an observer far
away from the black hole. Here we assume, for the sake of
simplicity, that all the sources of light are placed uniformly
at infinity. In case there are sources between the outer event
horizon and the radius of unstable extremum, the nature of
the shadow as seen by the observer at infinity would be
different and would depend on the distribution of these
light sources.
The relevant unstable extremum point rph described

above leads to a circular orbit for photons and the value
of the corresponding impact parameter, called the critical
impact parameter bcr, then gives us the boundary of a black
hole shadow. The light ray which just escapes the circular
orbit at rph and reaches the observer at distance r0 can be
projected straight backwards from r0 to get the radius of the
black hole shadow as

rsh ¼ r20
dϕ
dr

����
r¼r0

¼
�

1

b2cr
− Veffðr0Þ

�
−1
2 ð2:5Þ

which for the observer at infinity, r0 → ∞ leads to the
critical impact parameter rsh ¼ bcr. The critical impact
parameter bcr can be obtained by setting r ¼ rph with
ṙ ¼ 0 in Eq. (2.3) to get

bcr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VeffðrphÞ
p : ð2:6Þ

This corresponds to the turning point rph for which the
effective potential is maximum. For the effective potential
in Eq. (2.4), the photon sphere radius can be obtained as a
solution to the equation,
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0 ¼ dVeff

dr

����
r¼rph

¼ rphf0ðrphÞ − 2fðrphÞ
r3ph

; ð2:7Þ

where the prime denotes the derivative with respect to
radial coordinate r. Using the radius of photon sphere rph,
it is then straightforward to get the critical impact param-
eter bcr which gives the shadow radius rsh of black hole as

rsh ¼ bcr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VeffðrphÞ
p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

p
f0ðrphÞ

; ð2:8Þ

where the last equality is obtained using the equation for the
photon sphere radius Eq. (2.7). Thus, given a specific form
of fðrÞ, the size of the shadow of any black hole of the form
of Eq. (2.1) can be evaluated using Eqs. (2.7) and (2.8). We
use these equations in the next sections to solve for the
shadow radius of the black hole under consideration.

B. Shadow of a d-dimensional charged black
hole in Einstein’s gravity

The metric of d-dimensional charged black hole in
Einstein’s gravity has the form as given in Eq. (2.1) with
the metric component fðrÞ given by [57]

fðrÞ ¼ 1 −
2M
rd−3

þ Q2

r2ðd−3Þ
; ð2:9Þ

where M is the mass and Q is the charge of the black hole
with M > Q and d ≥ 4. The black hole has two horizons.
The outer horizon of the black hole is at radius

rH ¼ ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
Þ 1
d−3: ð2:10Þ

Substituting the metric function fðrÞ in Eq. (2.7) and
simplifying we get the equation defining the photon sphere
radius as

r2ðd−3Þph −Mðd − 1Þrd−3ph þ ðd − 2ÞQ2 ¼ 0: ð2:11Þ

According to the rule of signs, this equation will have two
positive real roots, i.e., the black hole will have two photon
spheres. The radii of these photon spheres are given by

rph ¼
 
Mðd− 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðd − 1Þ2 − 4ðd− 2ÞQ2

p
2

! 1
d−3

;

ð2:12Þ

where photon sphere corresponding to “þ” sign is an
unstable photon sphere while the one corresponding to “−”
sign is stable with respect to radial perturbations. The light
rays forming the boundary of the shadow spiral towards the
unstable photon sphere. Hence to obtain the shadow of the
black hole we use solution of the outer unstable photon

sphere in Eq. (2.8). This gives the radius of shadow to be
equal to

rsh ¼ rph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þrd−3ph

ðd − 3Þðrd−3ph −MÞ

s
: ð2:13Þ

Comparing the expressions for the radius of horizon rH,
the radius of unstable photon sphere rph and the shadow
radius rsh and using the constraint M > Q, one can show
that the inequalities rH < rph < rsh always hold for all
d ≥ 4. Also, by specifying some values of M and Q with
M > Q, one can check that all the radii rH, rph and rsh
decrease with increasing dimension d, i.e., a black hole
with same mass M and charge Q in higher dimension will
have smaller horizon, photon sphere and shadow compared
to the ones in lower dimensions.
For consistency, one can check that in four dimensions,

the results for the photon sphere radius and the shadow
radius simplify to

rph ¼
3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
2

and rsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ3

2ðM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ

vuut ; ð2:14Þ

which are the corresponding values of the Reissner-
Nordström black hole [7,8].

C. Shadow of a pure Lovelock black hole

The pure Lovelock theory of Nth order admits an
interesting class of pure Lovelock charged black hole
solutions. These solutions posses a characterizing property
of pure Lovelock theory of having the universal character
of their thermodynamic parameters in terms of the event
horizon radius [53]. The metric of a d-dimensional Nth-
order pure Lovelock charged black hole takes the form of
Eq. (2.1) with the function fðrÞ given by [58]

fðrÞ ¼ 1 −
�

2NM
rd−2N−1 −

Q2

r2d−2N−4

�1
N

; ð2:15Þ

where M is the mass and Q is the charge of the black hole
with d ≥ 2N þ 2. Substituting the metric function fðrÞ in
the equation of the photon sphere, Eq. (2.7), we get

r2d−2N−4
ph ½2NMrd−3ph −Q2�N−1

−
�
2NMðd − 1Þrd−3ph − 2ðd − 2ÞQ2

2N

�N
¼ 0: ð2:16Þ

This equation is not analytically solvable in general. Hence,
we solve for a special case, an uncharged black hole with
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Q ¼ 0, which is the vacuum solution of the pure Lovelock
theory. The metric function in this case becomes

fðrÞ ¼ 1 −
�

2NM
rd−2N−1

�1
N

: ð2:17Þ

This black hole has a horizon at radius,

rH ¼ 2
N

ðd−2N−1ÞM
1

ðd−2N−1Þ: ð2:18Þ
Further, with Q ¼ 0, the equation for photon sphere radius
simplifies to

rd−2N−1
ph −M

�
d − 1

N

�
N
¼ 0: ð2:19Þ

This equation will have only one positive real root by the
Descartes rule of signs for the above polynomial. Thus, in
the case of uncharged pure Lovelock black hole we
encounter only one photon sphere and its radius is given by

rph ¼
�
d − 1

N

� N
d−2N−1

M
1

d−2N−1: ð2:20Þ

Using this expression for radius of photon sphere in
Eq. (2.8), we obtain the shadow radius of the uncharged
Lovelock black hole to be

rsh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d − 1

d − 2N − 1

r
rph: ð2:21Þ

Comparing the radii of horizon, photon sphere and shadow,
it can be easily shown that the inequalities

rH < rph < rsh

always hold for all d ≥ 2N þ 2. In Einstein’s gravity i.e., for
N ¼ 1, one can check that the expressions reduce to

rph ¼ ðd − 1Þ 1
d−3M

1
d−3 and rsh ¼

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 3

r
ðd − 1Þ 1

d−3M
1

d−3

ð2:22Þ

which are the radii of photon sphere and shadow of the
d-dimensional Schwarzschild black hole.
For a given order N of the Lovelock theory in the lowest

possible dimension d ¼ 2N þ 2 for a black hole, the radius
of photon sphere rph and the shadow radius rsh given by
Eqs. (2.20) and (2.21), will always be proportional to the
massM of the black hole. In such a case, the expressions in
Eqs. (2.20) and (2.21) simplify to

rph ¼ ð2N þ 1ÞNM and rsh ¼ ð2N þ 1ÞNþ1
2M: ð2:23Þ

From these expressions one can easily see that the sizes of
the photon sphere and the shadow of the black hole increase

with the increasing order N of the Lovelock theory. Thus a
black hole in four-dimensional Einstein’s gravity will have
a smaller shadow than the one in six-dimensional pure
Gauss-Bonnet gravity.

D. Shadow of F ðRÞ black hole

We consider a black hole solution of a F ðRÞ gravity
theory nonminimally coupled to a self-interacting scalar
field ΦðrÞ [59]. For this black hole solution the F ðRÞ
gravity was modeled with a nonlinear curvature correction
to the Ricci scalar R as

F ðRÞ ¼ R − 2α
ffiffiffiffi
R

p
; ð2:24Þ

where α is a model parameter with the dimensions of
inverse length. This model with a conformally coupled
scalar field has a asymptotically flat black hole solution in
four dimensions given by the metric in Eq. (2.1) with d ¼ 4
and the metric function [59],

fðrÞ ¼ 1

2
−

1

3αr
þ 3

64α2r2
ð2:25Þ

with α > 0. The model parameter α is the only free
parameter for the black hole and it is inversely proportional
to the mass of the black hole. The black hole has two
horizons given by

r� ¼ 8� ffiffiffiffiffi
10

p

24α
: ð2:26Þ

The corresponding scalar field solution is [59]

ΦðrÞ ¼
ffiffiffi
6

p

1 − 4αr
ð2:27Þ

which diverges at a radius rd ¼ 1=4α that lies between the
inner horizon r− and the outer horizon rþ. In the region of
our interest, outside the outer horizon rþ, both the metric
function fðrÞ and the scalar field ΦðrÞ are finite. The
unstable photon sphere responsible for shadow lies in
this region. The equation of a photon sphere, Eq. (2.7),
for this black hole becomes

16α2r2ph − 16αrph þ 3 ¼ 0: ð2:28Þ

According to the rule of signs, this equation will have two
positive real roots, that is the black hole has two photon
spheres. The unstable photon sphere outside the horizon
rþ has radius equal to

rph ¼
3

4α
: ð2:29Þ

Substituting this radius of the unstable photon sphere in
Eq. (2.8) we get the radius of the black hole shadow as
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rsh ¼
6ffiffiffi
5

p rph: ð2:30Þ

For α > 0, the horizon, the photon sphere and the shadow
radii will always satisfy the relation rþ < rph < rsh. From
the expressions, one can easily show that with the increasing
value of α, i.e., the increasing contribution from nonlinear
curvature correction term to the gravity, the sizes of horizon,
photon sphere and shadow decrease.

III. ACCELERATION BOUNDS FOR LUA
TRAJECTORIES

A LUA trajectory is the curved spacetime generalization
of the hyperbolic Rindler trajectory in flat spacetime. The
Rindler trajectories in flat spacetime can be quantified in a
covariant definition in terms of the Letaw-Frenet equations
wherein, out of the three geometric scalars for a curve,
only the curvature is a nonzero constant and equal to the
magnitude of acceleration whereas the torsion and hyper-
torsion scalars vanish [46]. Generalizing this covariant
construction to curved spacetime ensures that the corre-
sponding curves with constant curvature scalar and van-
ishing torsion and hypertorsion are locally hyperbolic and
linear in a local inertial frame at any event along the
curve [47].
In the following subsections, we first recall the general

setup to obtain the LUA trajectories in static spherically
symmetric black hole spacetimes of Schwarzschild type and
then briefly summarise the results of radial LUA trajectories
in Schwarzschild geometry regarding the bounds on accel-
eration and the distance of closest approach. We then follow
the same procedure to calculate the corresponding bounds
for radial LUA trajectories in the background of a charged
black hole in Einstein’s gravity in d dimensions, a pure
Lovelock black hole and the F ðRÞ black hole considered
in Sec. II.

A. General setup

The linearity condition imposed by setting torsion and
hypertorsion to zero in the Letaw-Frenet equations for
uniform acceleration leads to the following expression [47]:

wi − jaj2ui ¼ 0; ð3:1Þ

where wi ¼ uj∇jai and ai and ui are the acceleration and
velocity vectors along the trajectory. All solutions to the
above constraint equation along with constant magnitude of
acceleration jaj form the set of LUA trajectories for a given
spacetime.
We consider a static spherically symmetric background

metric of the Schwarzschild type of the form,

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dθ2 − r2sin2θdϕ2; ð3:2Þ

where the function fðrÞ is a metric function defining a black
hole spacetime with a horizon at some radius rH such that
fðrHÞ ¼ 0 which we consider to be the outer horizon of the
black hole and fðrÞ → 1 as r → ∞. We next consider a
radial trajectory with all angular coordinates fixed and solve
for the LUA trajectory consistent with the constraint
Eq. (3.1). We obtain the solution in terms of the components
of velocity vector of the trajectory [50] as

dt
dτ

¼ fðrÞ−1ðjajrþ hÞ; ð3:3Þ

dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjajrþ hÞ2 − fðrÞ

q
; ð3:4Þ

dθ
dτ

¼ dϕ
dτ

¼ 0; ð3:5Þ

where, τ is the proper time along the trajectory, jaj is the
uniform magnitude of acceleration and h is specified as
boundary data. In flat spacetime, the constant h para-
metrizes the shifted Rindler wedges and form a symmetry
of Minkowski spacetime corresponding to the global
translation Killing vector ∂X. Although the translation
symmetry does not hold for spherically symmetric space-
times with a black hole at the center, the role of h for
generating a shift in the radial LUA trajectory with respect
to boundary events on the future and past null infinity still
holds. A more detailed discussion is presented in [50,51].
Given an explicit form of the metric function fðrÞ and
suitable boundary condition, one can obtain a particular
solution for the radial LUA trajectory.
These results can be extended to a d-dimensional

Schwarzschild-type spacetime of the form of Eq. (2.1).
In such a case, the components Γk

ij of Christoffel connection
vanish for all k ≠ ðr; tÞ and ði; jÞ ¼ ðr; tÞ. Then the only
nonzero components of acceleration ai and the vector wi are
along the radial and temporal directions. This leads to the
exact same linearity condition as in the four-dimensional
spacetime for radial LUA trajectories. Hence the solutions
in Eqs. (3.3) and (3.4) are valid also for radial LUA
trajectories in d-dimensional Schwarzschild-type black hole
spacetimes defined by Eq. (2.1).

B. LUA trajectory in the Schwarzschild spacetime

We briefly summarize the results in [50,51] pertaining to
the radial LUA trajectory and the acceleration bounds in
Schwarzschild spacetime. For the Schwarzschild metric,

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2 − r2dθ2

− r2sin2θdϕ2; ð3:6Þ

where M is the mass of the black hole, the solution for the
radial LUA trajectory in Eqs. (3.3) and (3.4) become
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dt
dτ

¼
�
1 −

2M
r

�
−1
ðjajrþ hÞ; ð3:7Þ

dr
dτ

¼ �jaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − rminÞðr − rmaxÞðr − rnÞ

r

r
; ð3:8Þ

where rmin, rmax and rn are the roots of the cubic poly-
nomial, rðjajrþ hÞ2 − rþ 2M. The roots rmin and rmax are
the turning points of the incoming and outgoing trajectories
starting from radius r > rmin and r < rmax, respectively. The
root rn being negative does not have any physical signifi-
cance. For radial LUA trajectories initially moving towards
the black hole starting from the radial infinity, the turning
points rmin and rmax were found to be positive real only up to
a certain maximum value of the magnitude of acceleration
jaj written as a bound value jajb. For jaj > jajb the turning
points become complex and the ingoing LUA trajectory
always falls into the horizon. The bound on acceleration can
be expressed as a function of the mass of the black hole and
the initial boundary data h as

jajb ¼
�
−9hþ h3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3þ h2Þ3

p 	
27M

: ð3:9Þ

The turning point rmin corresponding to the bound value of
acceleration gives the lower bound on the distance of closest
approach rb as

rb ¼
2

3jajb

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ h2

p

2
− h

!
: ð3:10Þ

At the bound jaj ¼ jajb the two turning points rmin and rmax
coincide and give the lower bound on the turning point rmin
equal to rb for the trajectory to escape to infinity. Thus, at the
bound the cubic polynomial rðjajrþ hÞ2 − rþ 2M has a
double root. This gives an algebraic condition on the bound
that, for the magnitude of acceleration equal to the bound
value jajb, both the cubic polynomial and its derivative with
respect to the radial coordinate rmust vanish simultaneously
at r ¼ rb. We use this equivalent condition henceforth in the
following sections to find the bounds on the magnitude of
acceleration jajb and the distance of closest approach rb for
the LUA trajectories in the specific black hole spacetimes,
namely the charged black hole in Einstein’s gravity in d
dimensions, the pure Lovelock black hole and the F ðRÞ
black hole spacetime. Another perspective to understand
the existence of an acceleration bound for a radial LUA
trajectory in the Schwarzschild spacetime is to compare it
with the acceleration of an stationary observer’s trajectory at
fixed r [51]. The bound value jajb is equal to the magnitude
of acceleration of a stationary trajectory at the turning point
r ¼ rb, beyond which the inward gravity of the black hole
dominates the outward acceleration of the LUA trajectory,
and so the trajectory falls into the horizon.

The special case of initial boundary data h ¼ 0 in
flat spacetime corresponds to family of LUA trajectories
vis-à-vis the hyperbolic Rindler trajectories in flat spacetime
with jaj∈ ð0;∞� belonging to a Rindler wedge with the
bifurcation point at the origin ðT; XÞ ¼ ð0; 0Þ of the Rindler
past and future horizons and which asymptote to T − X ¼ 0
and T þ X ¼ 0 at future and past null infinity. In the
Schwarzschild spacetime, the h ¼ 0 case does fix a set
of family of LUA trajectories however they do not belong to
a single Rindler wedge since for all different values of jaj
the asymptotes of the LUA trajectories at future and past
null infinity are different. In this case, the allowed values of
acceleration are jaj∈ ð0; jajb� with the upper bound on the
magnitude of acceleration, Eq. (3.9) and the distance of
closest approach, Eq. (3.10) simplified to

jajb ¼
1

3
ffiffiffi
3

p
M

and rb ¼ 3M ¼ 1ffiffiffi
3

p jajb
: ð3:11Þ

We shall later show that it is this set of LUA trajectories
with h ¼ 0 which have an interesting connection with the
shadow parameters in the same black hole spacetime
geometries.
The acceleration bounds on LUA trajectories are con-

sequences of the presence of a black hole horizon. In flat
spacetime, the past and future Rindler horizons and hence
the Rindler quadrant are independent of acceleration jaj of
the trajectory. All the Rindler trajectories with acceleration
jaj in the range 0 < jaj < ∞ lie in the same Rindler
quadrant. However, in the case of black hole spacetime, the
turning point of a LUA trajectory, the corresponding
Rindler horizons and their bifurcation point are all func-
tions of jaj and are different for trajectories with different
acceleration jaj. Increasing the value of jaj of the LUA
trajectory not only decreases the value of the turning point,
as in the case of flat spacetime, but also the value of the
bifurcation point. The lowest possible value of the bifur-
cation point is limited by the horizon of the black hole
which in turn limits the turning point to the bound rb and
the acceleration to jajb. This is explained in detail in our
earlier work [51] in Sec. III C. In nonblack hole space-
times, there is no horizon to limit the bifurcation point of
the past and future acceleration horizons and hence the
acceleration bounds do not exist.

C. Bounds in d-dimensional charged black
hole in Einstein’s gravity

For a d-dimensional charged black hole in Einstein’s
gravity, the metric function fðrÞ is given by Eq. (2.9).
Substituting this metric function in Eq. (3.4) with h ¼ 0,
we get the solution for the radial LUA trajectories to be

�
dr
dτ

�
2

¼ jaj2r2 − 1þ 2M
rd−3

−
Q2

r2ðd−3Þ
: ð3:12Þ
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Beyond the bound value of acceleration, the turning point
of the trajectory becomes complex valued. So to get the
bound on acceleration, we first write the equation of the
turning point of the trajectory. At the turning point, radial
velocity is momentarily zero. Hence, the turning point rt of
the LUA trajectory will satisfy,

jaj2r2ðd−2Þt − r2ðd−3Þt þ 2Mrd−3t −Q2 ¼ 0: ð3:13Þ

Applying the Descartes rule of signs to this polynomial, we
can say that it will have either three positive real roots or one
positive real root. For an acceleration less than the bound
value we expect three positive real roots, out of which two
will coincide exactly at the bound value. These two roots
will become complex valued for jaj > jajb and then the
polynomial will have only one real positive root. At the
bound jaj ¼ jajb, the turning point rt ¼ rb is an extremum
of the above polynomial and hence it also satisfies,

0 ¼
�
d
dr

ðjaj2r2ðd−2Þ − r2ðd−3Þ þ 2Mrd−3 −Q2Þ
�
jaj¼jajb;r¼rb

¼ jaj2bðd− 2Þr2d−5b − ðd− 3Þr2d−7b þ ðd− 3ÞMrd−4b :

ð3:14Þ

Solving the two equations, Eqs. (3.13) and (3.14), simulta-
neously for rb and jajb we get

rb¼
0
@Mðd−1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðd−1Þ2−4ðd−2ÞQ2

p
2

1
A

1
d−3

ð3:15Þ

and jajb ¼
1

rbd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3ÞðMrphd−3 −Q2Þ

q

¼ 1

rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þðrbd−3 −MÞ

ðd − 2Þrbd−3

s
; ð3:16Þ

where the last equality is obtained using the equation for
turning point, Eq. (3.13). We note here that the bound on
acceleration jajb and rb are not simply inversely propor-
tional to each other as in the case of Schwarzschild black
hole. The additional charge on the black hole leads to a more
complex relation between the two bounds. One can note that
expression for the acceleration bound jajb in Eq. (3.16)
and bound on distance of closest approach rb in Eq. (3.15)
are identical to the expressions for the shadow radius rsh and
the photon sphere radius rph given in Eqs. (2.13) and (2.12)
in Sec. II B.

D. Bounds in a pure Lovelock black hole spacetime

We consider an uncharged pure Lovelock black hole
defined by the metric in Eq. (2.1) with the function fðrÞ
given by Eq. (2.17). The solution to the radial LUA

trajectory with initial data h ¼ 0 in the background of this
black hole using Eq. (3.4) becomes

�
dr
dτ

�
2

¼ jaj2r2 − 1þ
�

2NM
rd−2N−1

�1
N

: ð3:17Þ

The turning point rt of this trajectory can be obtained by
setting the left-hand side of the above equation to zero to get

jaj2rd−1Nt − r
d−2N−1

N
t þ 2M

1
N ¼ 0: ð3:18Þ

According to the Descartes rule of signs, this polynomial
will have two real positive roots or no real positive root. The
two real positive roots are similar to the ones in the case of
Schwarzschild black hole. These two roots coincide at the
bound value of the magnitude of acceleration, beyond which
no real turning point exists and the trajectory always falls
into the horizon. Hence, for the trajectory with acceleration
equal to the bound value, the derivative of the above
polynomial with respect to radial coordinate r will be zero
at the turning point r ¼ rb. Thus, in addition to Eq. (3.18),
the bound values jajb and rb satisfy the condition,

0 ¼
�
d
dr

ðjaj2rd−1N − r
d−2N−1

N þ 2M
1
NÞ
�
jaj¼jajb;r¼rb

¼ jajb2
�
d − 1

N

�
r
d−1
N −1
b −

�
d − 2N − 1

N

�
r
d−1
N −3
b : ð3:19Þ

Solving Eqs. (3.18) and (3.19) simultaneously for the
bounds jajb and rb we get

rb ¼
�
d − 1

N

� N
d−2N−1

M
1

d−2N−1 ð3:20Þ

and jajb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 2N − 1

d − 1

r
1

rb
: ð3:21Þ

Here, the bound on the acceleration jajb is inversely
proportional to the bound on the distance of closest
approach rb as in the in case of the Schwarzschild black
hole with the proportionality constant varying with the
dimension d of the spacetime and the order N of the
theory. One can note that expression for the acceleration
bound jajb in Eq. (3.21) and bound on distance of closest
approach rb in Eq. (3.20) are identical to the expressions
for the shadow radius rsh and the photon sphere radius rph
given in Eqs. (2.21) and (2.20) in Sec. II C.

E. Bounds in F ðRÞ black hole spacetime

We consider the LUA trajectories in the four-dimensional
black hole spacetime defined by the metric function fðrÞ
given in Eq. (2.25) in theF ðRÞ gravity conformally coupled
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to a scalar field. The solution for a LUA trajectory in this
background spacetime with the initial data h ¼ 0 becomes�

dr
dτ

�
2

¼ jaj2r2 − 1

2
þ 1

3αr
−

3

64α2r2
: ð3:22Þ

At the turning point rt the radial velocity vanishes and the
turning point will satisfy,

192α2jaj2r4t − 96α2r2t þ 64αrt − 9 ¼ 0: ð3:23Þ

According to the rule of signs, this equation will have three
real positive roots or one real positive root, as in the case of
the charged black hole in Einstein’s gravity. At the accel-
eration equal to the bound value, two of the three roots
merge giving the bound on the distance of closest approach
rb, which thus satisfies the equation,

0 ¼ d
dr

ð192α2jaj2r4 − 96α2r2 þ 64αr − 9Þjjaj¼jajb;r¼rb

¼ 12αjaj2br3b − 3αrb þ 1: ð3:24Þ

Solving the above two equations, Eqs. (3.23) and (3.24) for
the bounds jajb and rb, we get

rb ¼
3

4α
; ð3:25Þ

and jajb ¼
ffiffiffi
5

p

6

1

rb
: ð3:26Þ

In this case too the acceleration bound jajb and the bound on
the distance of closest approach rb are inversely propor-
tional to each other. One can note that expression for the
acceleration bound jajb in Eq. (3.26) and bound on distance
of closest approach rb in Eq. (3.25) are identical to the
expressions for the shadow radius rsh and the photon sphere
radius rph given in Eqs. (2.30) and (2.29) in Sec. II D.

IV. RELATION BETWEEN SHADOW
PARAMETERS AND ACCELERATION BOUNDS
FOR SCHWARZSCHILD-TYPE SPACETIMES

From the expressions obtained for the shadow parameters
in Sec. II and for the acceleration bounds of the LUA
trajectories in Sec. III, one can see an interesting connection.
The radii of photon sphere rph and shadow radii rsh as seen
by an observer far away from the black holes are directly
related to the acceleration bounds jajb and bounds on
the closest approach rb for LUA trajectories, in all four
black hole spacetime geometries investigated, namely, the
Schwarzschild black hole, the d-dimensional charged black
hole in Einstein’s gravity, the uncharged pure Lovelock
black hole and the four-dimensional black hole in the F ðRÞ
gravity. In particular we get the following relations:

rsh ¼
1

jajb
and rph ¼ rb: ð4:1Þ

The relation is indeed intriguing since kinematics of the
photon sphere and the shadow of a black hole involve null
geodesics while the kinematics of the acceleration bounds
involve timelike accelerated trajectories and both seem
independent of each other. However, both the former and
the latter, involve limiting cases in their own domain. Below,
we explore these limiting cases in a general way.
Consider a class of d-dimensional static spherically

symmetric black hole spacetimes of Schwarzschild type
defined by the form of the metric as in Sec. II,

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dΩ2
d−2; ð4:2Þ

where fðrÞ is a smooth differentiable function with
fðrHÞ ¼ 0 at the horizon rH of the black hole and
fðrÞ → 1 as r → ∞. For such a black hole, the radius of
photon sphere and the shadow radius are given by Eqs. (2.7)
and (2.8), respectively. To relate these to the acceleration
bounds, we first write the solution of a radial LUA trajectory
with h ¼ 0 as given in Eq. (3.4),�

dr
dτ

�
2

¼ jaj2r2 − fðrÞ≡ −ṼeffðrÞ ð4:3Þ

with jaj ≠ 0. The right-hand side of this equation is a
function of r and can be interpreted as the negative of an
effective potential ṼeffðrÞ for the motion, which determines
the kinematics of the radial LUA trajectory. At the turning
point of such a trajectory, the radial velocity is zero which
constrains the effective potential to be zero at the turning
point. A turning point, say rt, thus satisfies the equation,

0 ¼ −ṼeffðrtÞ ¼ jaj2r2t − fðrtÞ: ð4:4Þ

At the boundaries of our region of interest, i.e., at horizon
and at spatial infinity, the first term jaj2r2 varies from jaj2r2H
to ∞ whereas the second term fðrÞ varies from 0 to 1.
Therefore, in a background spacetime where a return LUA
trajectory exists, these two terms are bound to coincide at
least two points between the horizon rH and radial infinity
giving at least two positive real turning point solutions. The
acceleration bound is then defined by the value of accel-
eration for which the two solutions coincide. Two equal
roots of a polynomial are bound to be the roots of the
polynomial and its derivative simultaneously. This gives
two conditions that needs to be simultaneously satisfied by
the bound on acceleration jajb and the bound on the turning
point rb. The conditions are

ṼeffðrÞjjaj¼jajb;r¼rb ¼ 0; ð4:5Þ

and
dṼeffðrÞ

dr
jjaj¼jajb;r¼rb ¼ 0: ð4:6Þ

BLACK HOLE SHADOW AND ACCELERATION BOUNDS FOR … PHYS. REV. D 108, 104042 (2023)

104042-9



Writing these conditions in terms of the metric function
fðrÞ, we get

jaj2br2b − fðrbÞ ¼ 0; ð4:7Þ

2jaj2brb − f0ðrbÞ ¼ 0: ð4:8Þ

Solving these two equations simultaneously, we get an
expression for the acceleration bound jajb in terms of the
metric function fðrÞ and a constraint equation for the bound
on the turning point rb as

jaj2b ¼
fðrbÞ
r2b

; ð4:9Þ

0 ¼ 2fðrbÞ − rbf0ðrbÞ: ð4:10Þ

The above constraint equation is same as that for the radius
of photon sphere in Eq. (2.7). Hence, the bound on distance
of closest approach rb will always be equal to the radius of
photon sphere rph for all static spherically symmetric black
hole spacetimes of the form of Eq. (4.2). This further relates
the bound on acceleration jajb to the effective potential of
the photon trajectories as

jajb ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðrbÞ
r2b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ
r2ph

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VeffðrphÞ

q
: ð4:11Þ

Thus, the bound on the magnitude of acceleration jajb of
LUA trajectories is equal to the square root of the maximum
value of effective potential for the photon trajectories which
gives the shadow radius of a black hole as given in Eq. (2.8).
Collecting all the relations together, we can hence say

that the parameters rph and rsh defining the black hole
shadow and the acceleration bounds jajb and rb for the
radial LUA trajectories in the Schwarzschild-type black
hole spacetime defined by the metric in Eq. (4.2) are
related as

rph ¼ rb; ð4:12Þ

and rsh ¼
1

jajb
: ð4:13Þ

This is indeed a fascinating correspondence since the
notion of black hole shadow is completely independent
of the LUA trajectories.

V. FOR A GENERAL CLASS OF SPHERICALLY
SYMMETRIC BLACK HOLE SPACETIME

We further explore the connection between the shadow
parameters and the acceleration bounds in a more general
class of spherically symmetric black hole spacetimes.

Consider an asymptotically flat black hole spacetime given
by a metric,

ds2 ¼ AðrÞdt2 − BðrÞdr2 − r2dΩ2
d−2; ð5:1Þ

where AðrÞ and BðrÞ are smooth differentiable functions
with AðrÞ → 1 and BðrÞ → 1 as r → ∞. The Killing
horizon of the black hole is at r ¼ rH and is obtained
as a solution to AðrHÞ ¼ 0 [60]. The black hole solutions
of this form have been found in many different gravity
theories such as fðRÞ gravity, Born-Infeld gravity, tele-
parallel gravity and Gauss-Bonnet gravity, see [61–66]
for examples.
By using the technique similar to the one used for the

Schwarzschild-type black hole, one can obtain the photon
sphere radius and the shadow radius in terms of the metric
functions AðrÞ and BðrÞ, see [11] for a detailed derivation.
As the metric is independent of t and ϕ, the energy E and
angular momentum L of photons are constants of motion
on null geodesics. The radial equation of motion for
equatorial null geodesics in such a background spacetime
is then given by

ṙ2

L2
−

1

BðrÞ
�

1

b2AðrÞ −
1

r2

�
¼ 0; ð5:2Þ

where b ¼ L=E is the impact parameter. From the above
equation, the effective potential can be read off as

Veffðr; bÞ ¼ −
1

BðrÞ
�

1

b2AðrÞ −
1

r2

�
: ð5:3Þ

As expected, the effective potential is a function of both the
radial coordinate r and the impact parameter b and depends
on both the metric functions AðrÞ and BðrÞ. By definition
of the photon sphere and the critical impact parameter as
discussed in Sec. II, the constraints on the effective potential
at b ¼ bcr and r ¼ rph are

Veffðr; bÞjb¼bcr;r¼rph ¼ 0 and
dVeffðr; bÞ

dr
jb¼bcr;r¼rph ¼ 0:

ð5:4Þ

To obtain the values of critical impact parameter bcr and
the radius of photon sphere rph one needs to solve both
the constraint equations simultaneously. One then gets the
critical impact parameter in terms of the metric function
AðrÞ as

bcr ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrphÞ

p
A0ðrphÞ

; ð5:5Þ

where the prime denotes the derivative with respect to
radial coordinate r and the radius of photon sphere rph can
be obtained as a solution to the equation,
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rphA0ðrphÞ − 2AðrphÞ ¼ 0: ð5:6Þ

Using the radial equation, Eq. (5.2), we can get the radius
of shadow seen by the observer at r ¼ r0 as

rsh ¼ r20
dϕ
dr

����
r¼r0

¼ ½−Veffðr0; bcrÞ�−1
2: ð5:7Þ

Far away from the black hole as r0 → ∞, the spacetime is
flat and the effective potential reduces to −1=b2. Thus far
away from the black hole, we get the radius of black hole
shadow rsh ¼ bcr. The expression for shadow radius rsh
can be further simplified using the condition on photon
sphere in Eq. (5.6) to get

rsh ¼
rphffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrphÞ

p : ð5:8Þ

Altogether we have the shadow parameters namely, the
photon sphere radius rph given by Eq. (5.6) and the shadow
radius far away from the black hole given by Eq. (5.8).
One can note that both the shadow parameters depend only
on the metric function AðrÞ i.e., the gtt component of
the metric.
Now, to compare the shadow parameters to acceleration

bounds we need to obtain the solutions for the radial LUA
trajectories in this general static spherically symmetric
background spacetime. It turns out that one can setup the
equations for the linearity conditions wi − jaj2ui ¼ 0 in this
case; but the equations are not analytically solvable to get a
general solution in terms of the metric functions AðrÞ and
BðrÞ as in the case of Schwarzschild-type black holes.
Hence, we choose a simpler, analytically tractable special
case within this category of black hole spacetimes wherein
the metric components AðrÞ and BðrÞ are related through a
constant, say c, such that BðrÞ ¼ cAðrÞ−1 with c > 0. For
this special case, the solution for LUA trajectory can be
obtained analytically in terms of the proper-velocity com-
ponents as in the case of Schwarzschild-type black holes. In
the following section, we investigate the acceleration bounds
of the LUA trajectories and their relation to the shadow
parameters in this special class of black hole spacetimes.

A. Special case of static spherically
symmetric spacetime

Considering the relation between the metric functions
AðrÞ and BðrÞ as BðrÞ ¼ cAðrÞ−1, the metric of the static
spherically symmetric black hole becomes

ds2 ¼ AðrÞdt2 − cAðrÞ−1dr2 − r2dΩ2
d−2; ð5:9Þ

where now we have AðrHÞ ¼ 0 at the horizon rH of the
black hole. One such black hole solution in bumblebee
gravity is given in [67].

As both the photon sphere radius and the shadow radius
are function of only the gtt component of the metric, the
expressions in Eqs. (5.6) and (5.8) are still valid in the above
black hole spacetime.
The differential equations obtained as the linearity

conditions wi − jaj2ui ¼ 0 with the constant magnitude
of acceleration jaj are solvable analytically and the solution
to the radial LUA trajectory in this background spacetime
can be obtained in terms of its proper-velocity components.
The nonzero components of the velocity vector of a LUA
trajectory are obtained to be

dt
dτ

¼ ffiffiffi
c

p
AðrÞ−1ðjajrþ hÞ; ð5:10Þ

dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjajrþ hÞ2 − AðrÞ

c

r
: ð5:11Þ

Now, following the procedure as used for obtaining the
LUA trajectory in the spacetime of Schwarzschild-type
black holes in Sec. IV, we proceed to obtain the bound on
acceleration jajb and the bound on distance of closest
approach rb in the black hole spacetime given by metric in
Eq. (5.9). We start by writing the radial component of
solution with h ¼ 0 as�

dr
dτ

�
2

¼ jaj2r2 − AðrÞ
c

: ð5:12Þ

The effective potential for the radial motion of LUA
trajectory can be read off as

V̂effðrÞ ¼ −
�
jaj2r2 − AðrÞ

c

�
: ð5:13Þ

The bounds on acceleration jajb and on turning point rb
can be arrived at using the constraints on the effective
potential as given in Eqs. (4.5) and (4.6). For the special
metric under consideration, these conditions lead to the
following equations:

cjaj2br2b − AðrbÞ ¼ 0; ð5:14Þ

2cjaj2brb − A0ðrbÞ ¼ 0: ð5:15Þ

Solving the above equations simultaneously, we get the
acceleration bound jajb to be

jajb ¼
1ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffi
AðrbÞ

p
rb

; ð5:16Þ

whereas the bound on the distance of closest approach rb
can be obtained through

2AðrbÞ − rbA0ðrbÞ ¼ 0: ð5:17Þ
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One can note that the above equation is same as that for
the radius of the photon sphere in Eq. (5.6) which implies
that the bound on the turning point rb will always be equal
to the radius of photon sphere rph in all static spherically
symmetric black hole spacetimes of the form of Eq. (5.9).
Using Eq. (5.17) in Eq. (5.16), one can get a relation
between the bound on acceleration jajb and the shadow
radius given in Eq. (5.8) as

jajb ¼
1ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffi
AðrbÞ

p
rb

¼ 1ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrphÞ

p
rph

¼ 1ffiffiffi
c

p 1

rsh
: ð5:18Þ

Collecting the results, we can summarize the connection
between the shadow parameters rph and rsh and the
acceleration bounds jajb and rb of the LUA trajectories
in the static spherically symmetric black hole spacetime
defined by metric in Eq. (5.9) as

rph ¼ rb ð5:19Þ

rsh ¼
1ffiffiffi
c

p 1

jajb
: ð5:20Þ

Here the photon sphere radius is equal to the bound on the
distance of closest approach as obtained in the case of
Schwarzschild-type black hole spacetimes whereas the
shadow radius doesn’t satisfy the same relation as in
Eq. (4.13). However, the shadow radius rsh can be made
equal to the inverse of acceleration bound jajb for a
different value of the boundary data h ≠ 0 while com-
promising the equality between the photon sphere radius
rph and the bound on distance of closest approach rb. We
have checked this numerically for a range of parameter
values for a specific black hole solution. Hence, the
relations in Eqs. (4.12) and (4.13) are valid simultaneously
only in the special case of Schwarzschild-type black hole
spacetimes for boundary data h ¼ 0. In a more general
black hole spacetimes of the form of Eq. (5.9), the two
connections are valid separately for different boundary
data values h. In the most general static spherically sym-
metric black hole with the metric defined by Eq. (5.1), it is
not possible to comment whether such connections will
hold in these background spacetimes or not, since the LUA
trajectory is not analytically solvable.

VI. DISCUSSION

In this work, we explored an interesting connection
between the shadow parameters of black holes in static
spherically symmetric geometries of the Schwarzschild-
type as defined by the metric in Eq. (2.1) and the accel-
eration bounds for radial linear uniformly accelerated
trajectories, which are the generalizations of the Rindler

trajectories, in the background of the same black hole
geometries. We found that for a particular choice of
boundary data h ¼ 0 for LUA trajectory, the photon sphere
radius rph is equal to the lower bound on radius of closest
approach rb of the radial LUA trajectory incoming from past
null infinity while the shadow radius rsh of the image of
black hole created due to uniform background illumination
as seen by an observer far away is equal to the inverse of
magnitude of the acceleration bound jajb for the LUA
trajectory to turn back to infinity. The relations are simply,

rsh ¼
1

jajb
and rph ¼ rb: ð6:1Þ

We first checked the relation by explicitly solving and
obtaining the expressions for these parameters in the case of
a d-dimensional charged black hole in Einstein’s theory of
gravity, a vacuum black hole solution in the pure Lovelock
theory of gravity and a black hole with conformally coupled
scalar field in the F ðRÞ theory of gravity. We then showed,
using the effective potential technique, that the above
relations hold for a general form of the metric function
fðrÞ for the static spherically symmetric geometries of the
Schwarzschild-type defined by Eq. (2.1) and thus would
hold in any theory of gravity with a metric solution of the
similar form.
We further investigated the connection beyond the

Schwarzschild-type black holes, for a special case within
the general class of static spherically symmetric space-
times wherein the metric components gtt and grr are
represented by two different functions of radial coefficient
r, say AðrÞ and −BðrÞ respectively. In the most general
static spherically symmetric black hole spacetime the LUA
trajectory is not analytically solvable, whereas the shadow
parameters rph and rsh can be evaluated explicitly. In the
special case where the black hole metric components are
related through BðrÞ ¼ c=AðrÞ with a positive constant c,
we found an analytical solution for the radial LUA
trajectory and further obtained the relations between the
shadow parameters and the acceleration bounds for the
boundary data h ¼ 0. In this case, the radius of photon
sphere rph and the bound on the distance of closest
approach rb are found to be equal as in Eq. (6.1) whereas
the shadow radius rsh and the bound jajb are now related
through the constant c. It thus seems that the direct and
simultaneous connection between frph; rshg and frb; jajbg
exists only for the Schwarzschild-type black holes whereas
for the special case discussed in Sec. VA the connection
works for frphg and frbg or frshg and fjajbg separately.
For the Schwarzschild type black holes, the relations in

Eq. (6.1), are indeed intriguing since the kinematics of the
photon sphere and the shadow of a black hole involve null
geodesics while the kinematics of the acceleration bounds
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involve LUA trajectories and both seem independent of
each other. However, they both involve limiting cases in
their own respective domains. Perhaps the relations are just
an algebraic coincidence or perhaps they signify a deeper

connection between the two aspects; the black hole gravi-
tational potential being the common denominator in the
Schwarzschild-type black holes, which needs to be inves-
tigated further.
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