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Abstract

Bipolar magnetic regions (BMRs) provide crucial information about solar magnetism. They exhibit varying
morphology and magnetic properties throughout their lifetime, and studying these properties can provide valuable
insights into the workings of the solar dynamo. The majority of previous studies have counted every detected BMR
as a new one and have not been able to study the full life history of each BMR. To address this issue, we have
developed Automatic Tracking Algorithm for BMRs (AutoTAB) that tracks the BMRs for their entire lifetime or
throughout their disk passage. AutoTAB uses the binary maps of detected BMRs and their overlapping criterion to
automatically track the regions. In this first article of this project, we provide a detailed description of the working
of the algorithm and evaluate its strengths and weaknesses by comparing it with existing algorithms. AutoTAB
excels in tracking even for the small BMRs (with a flux of ∼1020 Mx), and it has successfully tracked 9152 BMRs
over the last two solar cycles (1996–2020), providing a comprehensive data set that depicts the evolution of various
properties for each BMR. The tracked BMRs exhibit the well-known butterfly diagram and 11 yr solar cycle
variation, except for small BMRs, which appear at all phases of the solar cycle and show a weak latitudinal
dependence. Finally, we discuss the possibility of adapting our algorithm to other data sets and expanding the
technique to track other solar features in the future.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar active regions (1974); Sunspots
(1653); Bipolar sunspot groups (156); Solar cycle (1487); Solar magnetic flux emergence (2000); Sunspot groups
(1651); Sunspot cycle (1650)

1. Introduction

Bipolar magnetic regions (BMRs) remain one of the most
predominant signatures of solar magnetism as observed on the
surface of the Sun. The number of such regions at a given time
represents the solar activity that waxes and wanes cyclically
over a period of 11 yr (Schwabe 1844; Hathaway 2015). These
BMRs are generally the source regions of solar eruptive events
(Schrijver 2009), and hence they are crucial for the under-
standing of space-weather conditions. BMRs are observed to be
tilted by an angle with respect to the equator, which is found to
increase statistically with latitude; this is known as Joy’s law
(Hale et al. 1919). It is observed that the decay and dispersal of
tilted BMRs produce the poloidal field in the Sun through the
Babcock–Leighton mechanism (Babcock 1961; Leighton 1964;
Mordvinov et al. 2022).

Sunspot groups in white-light observations mimic the locations
of large BMRs and have traditionally been used for the study of
BMR properties (e.g., Howard 1991, 1996; Sivaraman et al. 2007;
Dasi-Espuig et al. 2010) because of the unavailability of
magnetogram data. Since the early 1970s, regular full-disk
measurements of the Sun's magnetic field have been conducted,
and now there exist vast archived data of solar magnetograms
from the different ground-based (Synoptic Optical Long-term
Investigations of the Sun, SOLIS; Keller et al. 2003; Global

Oscillation Network Group, GONG; Harvey et al. 1996) and
space-based (Michelson Doppler Imager, MDI; Scherrer et al.
1995; Helioseismic and Magnetic Imager, HMI; Scherrer et al.
2012) observatories. To exploit such a large volume of data for
the understanding of BMRs and solar magnetism, various
automatic methods have been developed (Stenflo & Kosovi-
chev 2012; Tlatov & Pevtsov2014; Jha et al. 2020). In all these
studies, each detection of BMRs has been treated as a new one
(Stenflo & Kosovichev 2012; Jha et al. 2020). However, this
approach may influence the analysis as bigger BMRs have a
longer lifetime and thereby will have higher weightage in the
analysis (van Driel-Gesztelyi & Green 2015). Furthermore, BMR
properties, including morphology, magnetic field strength, and tilt
angle, evolve significantly over its lifetime (Ugarte-Urra et al.
2015; McClintock & Norton 2016; Getling & Buchnev 2019;
Schunker et al. 2019, 2020). Hence, to overcome these
limitations, it is essential to track the BMR to get insight into
the physics of the formation and evolution of a BMR. Moreover,
the automatic detection and tracking of magnetic regions also
become essential for monitoring solar activity and events
(McAteer et al. 2005; LaBonte et al. 2007). Therefore, an
enormous effort has been made to develop automatic algorithms
to track the BMRs (Higgins et al. 2011; Muñoz-Jaramillo
et al. 2016).
Solar monitor active region tracking (SMART; Higgins et al.

2011) was developed for the automatic detection and tracking
of magnetic active regions in real time for solar eruptive event
prediction. Although SMART does a decent job in identifying
and extracting various magnetic features, it tends to miss some
quiet-Sun magnetic regions. The bipolar active region detection
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(BARD; Muñoz-Jaramillo et al. 2016) is another algorithm that
was developed for the detection and tracking of BMRs. It uses
similar techniques as SMART to detect BMRs, but uses the
dual-maximum flux-weighted overlap method for feature
association. The BARD uses human supervision to correct
any errors in detection and tracking. Furthermore, Space-
Weather MDI Active Region Patches (SMARPs; Bobra et al.
2021) and Space-Weather HMI Active Region Patches
(SHARPs; Bobra et al. 2014) are the data sets derived from
MDI and HMI magnetograms, respectively, which provide the
tracked maps of active regions identified in the magnetic image
of the Sun. We note that in SMARPs and SHARPs, active
regions are not necessarily the BMRs, where a decent flux
balance condition holds.

To the best of our knowledge, there is no existing catalog
that can provide the properties of the individual BMRs
throughout their lifetimes, or at least the course of their
lifetimes. Therefore, we overcome the limitation of existing
BMR tracking algorithms and develop a completely automatic
method to track the BMR, which can be implemented in all sets
of magnetogram data. In Section 2, we present a detailed
description of our tracking algorithm and its comparison with
the existing algorithm. In Section 3, we present some
representative results based on our tracking algorithm, and
finally, in Section 4, we conclude with our insight on this new
algorithm.

2. Data and Method

In our study, we use line-of-sight (LOS) magnetic field
observations of the Sun, usually referred to as magnetograms,
for the period of 1996 September–2019 December (Cycles 23
and 24) from MDI (1996 to 2011; Scherrer et al. 1995) and
HMI (2010–present; Scherrer et al. 2012) on board the Solar
and Heliospheric Observatory (SOHO) and Solar Dynamics
Observatory (SDO), respectively. Here, we utilize all the
magnetogram data from MDI, which have a cadence of
96 minutes in 1024× 1024 pixels with a spatial resolution of
4″× 4″. Although HMI provides magnetograms with a cadence
of 45 s in 4096× 4096 resolution with a spatial resolution of
1″× 1″, for the ease of computation, we only use one image
every 96 minutes as available for MDI from the HMI series
“hmi.M_720s.”

The data sets used for the mentioned period contain 126,381
fits images (MDI: 56,384; HMI: 69,997). In addition to the
quality keyword, the number of faulty pixels (identified as “Not
a Number”) on the solar disk region is also checked for every
magnetogram. If the number of faulty pixels is found to be
greater than 100, the magnetogram is considered defective and
was not included in the analysis.

The data in the magnetograms correspond to the LOS
component of the surface magnetic flux density, calculated
across a spatial resolution window. These LOS magnetograms
suffer from the projection effects, which are inversely
proportional to the cosine of the heliocentric angular distance
(μ).6 We correct for the LOS component of the magnetic field
by assuming that the magnetic field is normal to the solar
surface. Therefore, we divide the surface magnetic flux density
at each pixel by the cosine of μ. Furthermore, as we approach
to limb, the projection effects become severe, and hence,
initially, we restrict ourselves to less than 0.9 Re.

2.1. BMR Detection Algorithm

The algorithm developed to detect BMRs from the LOS
magnetograms follows the prescription given in Stenflo &
Kosovichev (2012), which was also used in Jha et al. (2020)
with slight modifications. A brief description of the detection
algorithm is as follows. In the first step, an adaptive threshold,
based on the average of the absolute magnetic field inside the
0.9 Re, is applied to the projection-corrected magnetogram to
identify the regions of strong magnetic fields. This step is
followed by applying a threshold of 200 G to the identified
regions and imposing a flux balance condition defined by
(F++F−)/(F+−F−)< 0.4 on them to isolate the BMRs. Here,
F+ (F−) represents the sum of all the positive (negative) radial
magnetic field values that exceed absolute 100 G for the identified
regions (see the Appendix of Stenflo & Kosovichev 2012, for a
detailed description of the detection method). Stenflo &
Kosovichev (2012) only used this algorithm for the MDI data
set, and it was extended for HMI in Jha et al. (2020). Jha et al.
(2020) noted that the same method could be used for HMI data by
multiplying the HMI magnetogram by a factor of 1.4, which
comes from the comparison of MDI and HMI magnetograms in
the overlapping period (Liu et al. 2012). To keep the consistency
in the data set, for HMI magnetograms, we rebinned the
magnetogram from 4096× 4096 pixels to 1024× 1024 pixels
to further reduce the computational time. By comparing the
detected BMRs from the original and the binned data, we find that
binning tends to miss the detection of small BMRs with a flux of
∼1020 Mx, but the detection of other BMRs remains unaffected.
One such example of identified regions from MDI is shown in
Figure 1(a). The BMR from both data sets is stored in the form of
a binary mask, which acts as the starting point of our tracking
algorithm.

2.2. Preprocessing of BMR Masks

In Jha et al. (2020), the identified BMRs are stored as
rectangular regions by binary masks (see Figure 1(a)), which
include additional pixels that are not part of BMRs and may
affect the tracking, particularly in the case of closely spaced
BMRs during a high-activity period. Hence, to get rid of those
extra pixels before we start the tracking, we go through the
following preprocessing steps.
To get the exact morphology of the BMR in the rectangular

regions of interest (ROI), we picked all the pixels with absolute
magnetic field values greater than 100 G. This threshold not
only leads to a few fragmented pixels in the ROI but also
separates the poles of the BMR, as they do not always touch
each other’s boundaries (see Figure 1(b)). To eliminate the
fragmented pixels and connect isolated parts, we use a
technique called morphological closing. It works by filling in
the gaps or holes in the image using a kernel with a certain
shape and size.7 Here, we use a kernel of a square matrix with
values inside a set radius R equal to 1 and others 0. In our case,
we start with a kernel that has an initial radius of 6 pixels,
followed by an area threshold of 50 pixels for filled regions.
The radius of the kernel is systematically increased up to
9 pixels at the step of one pixel until the number of connected
regions matches the number of identified BMRs (i.e., the
number of rectangular regions; see Figure 1(a)) in that
magnetogram. Finally, the flux balance condition, as described

6 Angular distance of the pixel in consideration from the disk center. 7 We use morph_close.pro function available in IDL for this.
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Figure 1. (a) Magnetogram from MDI for 2000 November 15 20:48 with detected BMRs represented by white rectangular boxes. (b) Binary mask of detected BMRs
from panel (a), but after applying the threshold of 100 G to the detected regions. (c) Same as panel (b) after the preprocessing (described in Section 2.2). (d) Identified
regions after the preprocessing depicted on the magnetogram. The solid blue and dashed red circles represent 1.0 Re and 0.9 Re, respectively.

Figure 2. Representative example of the BMR tracking algorithm. The BMR intended to be tracked is marked by a circle. (a0), (a1), (a2), and (a3) represent the
selected binary maps in Sequence-a. (b0), (b1), (b2), and (b3) represent Sequence-b, the isolated and differentially rotated binary masks of the BMR, corresponding to
the time of observation in Sequence-a. (c1), (c2), and (c3) represent Sequence-c, obtained by adding Sequence-a and Sequence-b. The zoomed-in view of the
overlapping region is shown in the inset.
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previously, (Stenflo & Kosovichev 2012; Jha et al. 2020) is
verified for each region to ensure that they are bipolar. In
Figure 1(c), we show the BMR regions after the morphological
closing operation. In Figure 1(d), white contours represent the
BMRs after the preprocessing steps. The information of
detected BMRs after preprocessing is also stored as binary
masks so that it can be used for tracking.

2.3. BMR Tracking Algorithm

Now we come to the core of the work, which is to develop
an automatic algorithm to track all of the identified BMRs. Our
tracking algorithm employs binary masks obtained from the
last step of preprocessing to follow the interested regions over
their lifetimes/disk passage. The concept of the BMR tracking
algorithm comes from the sunspot tracking algorithm devel-
oped in Jha et al. (2021), which is modified considerably to
track the BMRs in the magnetograms. Now, we discuss the
steps of our tracking algorithm as follows.

1. In the first step, a binary mask is selected from the archive
(Figure 2(a1)). A BMR is selected from this mask and is
checked for tracking history stored in Step 7. If the
selected BMR is not tracked already (see the marked
circle in Figure 2(a1)), it is isolated in a separate binary
mask (Figure 2(b1)), and a unique BMR-ID (e.g., 10001)
is assigned to it.

2. Now, we calculate the maximum tracking period (Tmax),
i.e., the time it takes to reach the west limb, based on the
heliographic latitude θBMR and longitude fBMR of the
BMR, as

f
q

=
 -
W

T
90

. 1max
BMR

BMR( )
( )

Here, Ω(θBMR) is the photospheric differential rotation
rate (Howard et al. 1990) for a given θBMR.

3. In the next step, we take a sequence of binary masks (e.g.,
Sequence-a, as shown in Figures 2(a0)–(a3)) falling in the
range of Tmax.

4. The binary mask of an isolated BMR (Figure 2(b1)) is
differentially rotated using the drot_map.pro routine in
IDL8 to the time of observation of Sequence-a. For
example, b0 is differentially rotated to the time of
observation of a1 to obtain b1; similarly, b0 is
differentially rotated to the time of a2 to obtain b2, and
so on. This is represented by Sequence-b and is shown in
Figures 2(b0)–(b3).

5. In the following step, we add Sequence-a (Figures 2(a0)–
(a3)) with the corresponding differentially rotated binary
masks, Sequence-b (Figure 2(b0)–(b3)), e.g., c1= a1
+b1, c2= a2+b2 and so on. This is represented by
Sequence-c and is shown in Figures 2(c1)–(c2).

6. Now, we go through all the images in Sequence-c
(Figures 2(c1)–(c3)) and check for the overlapping pixels
(pixels with value 2). If the overlap is more than
150 pixels (600 arcsec2), the BMR is marked as tracked
(Figures 2(c1) and (c2)); otherwise, it is marked as not
tracked (Figure 2(c3)). Furthermore, if the overlapping
criteria are not met in the consecutive 30 binary masks
(i.e., not enough overlap was detected for the next 48 hr),
we increase the overlapping criteria to 250 pixels

(1000 arcsec2) for the next observation to ensure that
the BMR tracked is the intended one and not a new one.
Eventually, we only track BMRs with an area greater than
1000 arcsec2.

7. The same BMR-ID, i.e., 10001, is assigned to all the
tracked BMRs in Sequence-c. At this step, along with
BMR-ID, we also store a few other parameters of the
tracked BMR, such as Bmax, Bmean, total unsigned flux,
area, and heliographic coordinates. The time and unique
region index, which is assigned to each connected region
(pixels with value 2) in Sequence-c along with the BMR-
ID, are appended in the tracking history file, which will
be used in Step 1 to check for tracking history.

8. We repeat all the above steps for all the other detected
BMRs within the chosen binary map from Step 1
(Figure 2(a0)).

9. Once all the BMRs in the first selected observation are
tracked, we select the next observation and track only the
new BMRs that are not tracked already. We do this by
comparing the BMR-ID with the existing information in the
tracked history file that was updated in the previous step.

3. Results

3.1. Representative Tracking Results

To demonstrate the result of our tracking algorithm, in
Figure 3, we show the evolution of NOAA region AR9232
(AutoTAB-ID 11436) and AR11390 (AutoTAB-ID 11201),
which have been observed in MDI and HMI, respectively.
AR9232 was first identified near the east limb (25.2° N, 49.3°
E) and has been tracked throughout its disk passage from 2000
June 18 03:11 to 2000 June 24 22:23.9 Although our algorithm
tracks the AR9232 in the next 113 time steps with 96 minute
cadence, in Figure 3(a), we only show one snapshot every day
for 7 days. In Figure 3(c), we also show the evolution of Bmax
and the absolute total flux for AR9232, and we note a
systematic and continuous decrease (except small fluctuation
due to fragmentation of the negative polarity) in both these
quantities. This continuous decrease suggests that Automatic
Tracking Algorithm for BMRs (AutoTAB) has been able to
track the BMR properly, and it has been picked during its
decaying phase, which is also inferred from Figure 3. In
contrast with our algorithm, the SMART algorithm (Higgins
et al. 2011) tracks the same region from 2000 November 15
03:15 to 2000 November 23 20:48.
In Figure 3(b), we show the evolution of AR11390 observed

in HMI in a similar way as for AR9232. This BMR was first
identified near the east limb (8.3° N, 58.2° E), and AutoTAB
tracked it for 8 days (in 122 observations) until it reached close
to the west limb. The variation of total flux and Bmax
(Figure 3(d)) once again shows the continuous and systematic
variation over the tracking period. Furthermore, in Figure 3(d),
we see that Bmax as well as the absolute total flux initially show
a small variation and then they start to increase rapidly on day
5. Hence, we infer that this BMR has been tracked from its
emergence to the time it crosses the west limb, when AutoTAB
loses track of it.
Apart from these two BMRs, in the Appendix, we also show

the evolution of another tracked BMR that was observed in
both MDI and HMI (also see Figure 9). The comparison of

8 It uses a differential rotation profile from Howard et al. (1990). 9 All the times mentioned in this article are in UTC.
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Bmax and the total flux of this BMR obtained from MDI and
HMI confirms that the AutoTAB is working in the same way
for both data sets. Note that we have scaled up Bmax measured
in HMI by 1.4 to bring both MDI and HMI to the same level
(Liu et al. 2012).

By selecting the BMRs randomly from the tracked data, we
observe that similar types of variations are consistently present
in all the tracked BMRs, with a few exceptions. Therefore,
based on these findings, we say that AutoTAB is very efficient
in tracking the BMRs during their appearance on the nearside
of the Sun. Using our state-of-the-art algorithm, we have
tracked 9232 BMRs in Cycles 23 and 24 from 1996 to 2022. In
the following section, we discuss some of the statistical
properties of these tracked BMRs.

3.2. Statistical Properties of BMRs

In Figure 4, we show the distribution of the lifetimes/disk-
passage times for all the tracked BMRs. From Figure 4, we
note that BMRs exhibit a broad range of lifetimes, varying
from several hours to over a week. Although AutoTAB is not
able to track a BMR that goes to the farside, it has been tracked
only in its evolutionary stage. Other than that, we also
encountered a few cases in which the BMR lived for a
sufficiently long time, but they were detected for less than 5%
of all times, in the number of expected frames10 due to data
gaps, corrupted data, or they were missed during detection.

Figure 3. Panels (a) and (b) show the snapshots of the tracked BMRs with AR9232 (AutoTAB-ID 11436) and AR11390 (AutoTAB-ID 11201), respectively,
corresponding to each day during the tracking. Panels (c) and (d) show the evolution of the absolute total flux and Bmax for these BMRs. The vertical lines in panels (c)
and (d) represent the times corresponding to the time of the snapshots shown in panels (a) and (b), respectively.

Figure 4. Distribution of the lifetimes of the tracked BMRs of different classes shown by different colors.

10 Number of expected frames = (time of last detection – time of first
detection)/cadence of data.
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Hence, after excluding such cases, based on how they were
tracked, i.e., either for the whole life or only in the evolutionary
stage, we classified the BMRs into three classes, which are as
follows.

1. Short-lived (SL). The BMRs that emerge and decay on
the nearside of the Sun and have a lifetime of 8 hr or
shorter are classified as short-lived (SL) BMRs. We
segregated this class as they mainly comprise small
BMRs, which may include a few large ephemeral regions
with a typical magnetic flux of ≈1020 Mx. The
distribution of the SL class appears in the leftmost panel
of Figure 4. In Figure 5(a), we show the evolution of the
total flux and Bmax of a typical BMR (AutoTAB-ID
10076) from this class. It is noted from this figure that the
BMR shown here emerges with relatively low flux
andBmax and decays within a few hours.

2. Lifetime (LT). The rest of the tracked BMRs that have a
lifetime of more than 8 hr and have emerged and decayed
in the nearside of the Sun, i.e., they were tracked
throughout their lifetime, are classified as lifetime (LT)
BMRs. The distribution of the LT class spans around a
week, as shown in Figure 4. An example of the evolution
of such a BMR (AutoTAB-ID 10213) is shown in
Figure 5(b).

3. Disk passage (DP). This class of BMRs has not been
tracked for their lifetime. Instead, they have only been
tracked for a part of their life span on the visible solar

disk, and we classified them as disk passage (DP). This
class includes (i) BMRs that appear near the east limb
(�45° E) and disappear on the nearside; (ii) BMRs that
appear on the nearside of the Sun, but cross the west limb
(longitude �45° W); and (iii) BMRs that appear on the
east limb (�45° E) and cross the west limb (�45° W).
Here, we restrict ourselves to longitudes of ±45°, as the
uncertainty in the magnetic field measurement increases
toward the limb. The lifetime for this class is distributed
all the way from a few hours to more than a week
(Figure 4). The evolution of flux and Bmax for one such
BMR (AutoTAB-ID 10399; NOAA AR08066) is shown
in Figure 5(c).

The snapshots of the evolution of all the three BMRs in
Figure 5 can be found in the data repository11 for AutoTAB.
The number of BMRs identified in each class is represented

in Table 1 for the period of 1996–2020. Along with their
numbers, we also calculated the mean of area, total flux, Bmax

and Bmean for all these classes, which are listed in Table 1.
From this table, we note that all these quantities increase from
the SL class to the LT and DP classes. Hence, we find that the
larger BMRs have longer lifetimes, which is in agreement with
the earlier findings from the sunspot (van Driel-Gesztelyi &
Green 2015).
After discussing the various classes of BMRs and their time

evolutions, we now discuss the collective behavior of the
BMRs in the aforementioned three classes.

3.2.1. Solar Cycle Variation

The first property that we looked for is whether the number
of newly emerging BMRs obeys the well-known solar cycle
behavior. In contrast to previous studies (e.g., Stenflo &
Kosovichev 2012; Jha et al. 2020), where the same BMR is
counted multiple times during their appearance on the nearside,
here we only count each tracked BMR once. Therefore, in
Figure 6, we show the monthly number of newly emerging
BMRs with the time for all three classes, SL (Figure 6(a)), LT
(Figure 6(b)), and DP (Figure 6(c)). The number of BMRs in
the LT and DP classes obediently follows the known solar
cycle behavior based on the conventional sunspot number.
Such behavior is not evident in the case of the SL class. A
significant number of SL BMRs are also observed during the
solar minima when the toroidal field of the Sun is weak and
only a few large BMRs are produced.

3.2.2. Latitude–Time Distribution

Another crucial property of sunspots is their latitudinal
distribution (Hathaway 2015; Jha et al. 2022), the so-called
“butterfly diagram.” In Figure 7 we show the latitude–time
distribution of the identified BMRs for each class. Here, each
point represents a unique BMR. The latitude and time of all the
BMRs are chosen at a time when they attain their maximum
total flux (represented by the colors of the points) during the
tracking period. We note that for the DP class, the maximum
flux may not be the actual maximum flux of the BMR, as
AutoTAB only tracked them during a fraction of their life span.
The interesting thing to note here is that although the BMR
classes LT (Figure 7(b)) and DP (Figure 7(c)) follow the well-
known butterfly diagram, the SL (Figure 7(a)) class is more

Figure 5. Evolution of the absolute total flux and Bmax for a typical BMR from
(a) SL, (b) LT, and (c) DP classes. AutoTAB-IDs of the BMRs shown in panels
(a), (b), and (c) are 10076, 10399, and 10213, respectively. The NOAA number
assigned only to the representative BMR of the DP class is AR08066.

11 https://github.com/sreedevi-anu/AutoTAB
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scattered over the latitude (a weak latitudinal dependence can
still be seen) independent of the phase of the solar cycle. It
could be that SL class BMRs that appear from the high latitude
at the beginning of the cycle and continue until the end of the
cycle at the solar minimum are part of the extended solar cycle
(McIntosh et al. 2015), and they are formed through shredding
and tangling of the large-scale magnetic field itself (Karak &
Brandenburg 2016). However, Jha et al. (2020) have shown
that the two classes of BMRs, namely the BMRs with a spot
and without a spot in white-light images, follow the same
latitude–time distribution based on their classification. Further
study is required to dig deep into the detail, which will be done
in the follow-up paper. Another point to note here is that
although the total number of BMRs in Cycle 23 is less than in
Cycle 24, the fraction of bigger BMRs that falls in the LT and
DP classes is greater in Cycle 23.

3.3. Comparison with BARD

In this section, we evaluate the performance of AutoTAB
with another existing BMR tracking algorithm, BARD
(Muñoz-Jaramillo et al. 2016, 2021a, 2021b). To achieve this,

we compute the count of newly emergent BMRs detected by
both algorithms for the overlapping period, which is repre-
sented in Figure 8. The number of newly emergent BMRs in
BARD is obtained from the BARD tilt catalog (Muñoz-
Jaramillo et al. 2016, 2021a, 2021b).
It can be seen from Figure 8(a) that AutoTAB detects more

BMRs throughout the intersecting period, especially during
Cycle 24. As BARD has limited the cadence of the observation
to one magnetogram per day, any BMR detected and tracked
by BARD cannot have a lifetime of less than a single day.
Moreover, BARD employs different magnetic threshold values
for MDI and HMI, which can bring about the disparity
observed in the detected number of BMRs. Taking these points
into consideration and in order to maintain consistency between
the data sets, initially, we exclude all BMRs from the SL class
and any BMRs that live for less than a day from the AutoTAB
data set. Nevertheless, AutoTAB still detects 28% more new
BMRs in Cycle 23 and 85% in Cycle 24. Additionally,
removing the LT class BMRs from the AutoTAB data set and
applying a 500 G magnetic threshold to the BMRs detected

Table 1
Some Key Parameters of Different Classes of Tracked BMRs

Classification Number of BMRs Area ± ΔArea Flux ± ΔFlux Bmax ± ΔBmax Bmean ± ΔBmean

(μHem) (1022 Mx) (G) (G)

Short-lived (SL) 1251 20.17 ± 0.71 0.26 ± 0.01 541.32 ± 5.38 197.46 ± 0.66
Lifetime (LT) 3191 88.65 ± 1.05 1.50 ± 0.02 949.20 ± 6.35 224.46 ± 0.81
Disk Passage (DP) 4710 116.87 ± 0.17 2.05 ± 0.01 1436.83 ± 7.02 281.07 ± 0.71

Figure 6. Time series of the monthly number of unique BMRs for (a) SL, (b)
LT, and (c) DP classes. The gray shaded region represents the international
smoothed sunspot number (scaled to BMR counts for better representation)
from WDC-SILSO, Royal Observatory of Belgium, Brussels. Here, vertical
strips represent the data gaps in the MDI magnetograms.

Figure 7. Latitude–time distribution (butterfly diagram) of the tracked BMRs
of (a) SL, (b) LT, and (c) DP classes. The color of the points represents the total
flux of the BMR. The vertical strips represent the data gaps in MDI
magnetograms.
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from MDI (Cycle 23) results in a close match of 13% of more
new BMRs detected by AutoTAB in Cycle 23. However, we
still observe that in Cycle 24, AutoTAB detects 42% of the
newer BMRs; see Figure 8(b). This suggests that BARD
competently detects BMRs with larger areas and higher flux
and tends to miss smaller bipolar regions. The number of
uniquely identified BMRs from both AutoTAB and BARD,
over both cycles, are represented in Table 2.

3.4. Limitations of the Tracking Algorithm

As with any algorithm, AutoTAB also has some limitations,
which are as follows.

(i) One of the greatest challenges that AutoTAB has to face
is dealing with multiple BMRs lying closely together.
This issue is mostly carried forward from the detection
and also affects the tracking, and occasionally multiple
BMRs have been tracked as a single one.

(ii) Once a BMR crosses the west limb, AutoTAB loses track
of it, but in a few cases, particularly for long-living

BMRs, the same BMR could appear in the east limb after
coming back from the farside. In this case, AutoTAB
treats this BMR as a new one and gives a unique
AutoTAB-ID to it even though they are the same.

(iii) Last but not least, the detection and preprocessing steps
are strongly affected by the level of noise in the data
while identifying the region of interest, and ultimately
this also impacts the tracking.

3.5. Possible Application to Other Data

So far, we have only discussed and demonstrated the
application of AutoTAB on MDI and HMI magnetogram data
sets. Now the question is, will it be possible for AutoTAB to
track the BMRs in other data sets? The answer is yes, but since
our algorithm has three main parts, (i) detection, (ii)
preprocessing, and (iii) tracking, all of them will not work in
the same way with different data sets. Although the preproces-
sing and tracking are expected to work with various data sets,
our detection algorithm, which is only optimized for MDI
(Stenflo & Kosovichev 2012) and HMI (Jha et al. 2020)
magnetograms, may not work with other data sets. Thus, for a
given binary mask of the region of interest, the tracking
algorithm can be used, along with preprocessing technique.
Here, we would like to emphasize that even for preprocessing
and tracking, a few constants or thresholds, such as
morph closing kernel size or overlapping area threshold, need
to be tuned according to the data. For example, in the case of
HMI magnetogram data with an original resolution of
4096× 4096, the initial appropriate radius of morph closing
kernel size is 16 pixels. The radius is increased to 19 pixels in
three different steps, as mentioned in Section 2.2. The area
threshold mentioned in Section 2.2 can be scaled by the
resolution of the data, in the case of HMI, by a factor of 4.
Furthermore, the AutoTAB tracking algorithm can also be used
to track the other features in the solar atmosphere by optimizing
these parameters.

4. Conclusions

Observational study of the evolving properties of BMRs is
crucial to understand the origin of the solar magnetic field and
cycle. However, due to the unavailability of a completely
automatic and efficient BMR tracking algorithm, the study of
the temporal evolutions of various properties of BMRs is
limited. We have developed an automatic algorithm, AutoTAB,
for tracking the BMR from magnetograms. It works by taking
the binary maps of the detected BMR as inputs. For detecting
BMRs from magnetograms, we also built an algorithm
following the idea of Stenflo & Kosovichev (2012) and Jha
et al. (2020). Using our developed detection algorithm, we have
produced the binary maps of the detected BMRs from HMI and
MDI during Solar Cycles 23 and 24. By feeding these binary
maps to AutoTAB, we have produced a homogeneous and
comprehensive data set for 9152 tracked BMRs.
AutoTAB is successful in tracking the identified BMRs

through their lives on the visible solar disk and in capturing
their evolving magnetic and morphological properties. Repre-
sentative examples of the data set have been presented by
showing the snapshots of the evolution of the BMRs at various
stages of their life, along with the progression of unsigned flux
andBmax. As AutoTAB works by checking for the overlap
between consecutive binary maps, it remains independent of

Figure 8. (a) Comparison of the monthly number of newly emergent BMRs
obtained from AutoTAB (our algorithm) and BARD, along with the traditional
monthly sunspot number (gray shaded area enclosed by line). The sunspot
number has been multiplied by a factor of 0.6 to bring it to the scale of the
BMR count. The vertical strips in the figure represent the data gaps in MDI
magnetograms. (b) Same as panel (a), but only including the BMRs from DP
class, which has a lifetime of greater than 1 day and the 500 G threshold
applied to BMRs from MDI in the AutoTAB data set.

Table 2
Comparison of the Statistics of New Emergent BMRs between AutoTAB and

BARD for Different Cases

Cycle 23 Cycle 24

AutoTAB BARD AutoTAB BARD

All BMRs 3861 2328 3900 1422
BMRs with lifetime �1 day 2989 2328 2742 1422
BMRs with lifetime �1 day

and LT class removed (i.e.,
we are left with DP class)

2722 2328 2114 1422

All DP class BMRs plus
500 G threshold to
Cycle 23

2649 2328 2114 1422
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the data set used and can work efficiently for tracking other
solar features. A comparison between the number of new
emergent BMRs in AutoTAB and the BARD catalog shows
that AutoTAB consistently detects and tracks more BMRs
through the past two solar cycles compared to BARD. As
AutoTAB is fully automatic, multiple closely lying BMRs
might have been identified as one, which remains one of the
main challenges faced by AutoTAB that needs to be addressed
in the future.

AutoTAB tracks the BMR in a wide range of its lifetime, from
hours to days, which leaves us with a large volume of tracked
information. Hence, the tracked BMRs have been classified into
different groups, namely, short-lived (lives for less than 8 hr),
lifetime (emerges and disperses in the visible surface), and disk
passage (coming from and/or going to the farside of the Sun).
The tracked BMRs show the usual signatures of solar cycle
variation. We also observe that the LT and DP BMRs follow
familiar latitudinal and temporal distributions, as seen by the
sunspot butterfly diagram. This distribution is not observed in
the case of SL BMRs as they are the small features that appear at
all times on the Sun. In a follow-up publication, we will further
exploit the results of tracked BMRs to compute various
properties of BMR, which will help us to identify the origin of
BMR formation. The tracked information of the BMRs used in
this study, along with the code of the algorithm, will be publicly
accessible at https://github.com/sreedevi-anu/AutoTAB, soon
after our follow-up article.
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Appendix
Comparison of the Tracking Results from MDI and HMI

Magnetograms

Panels (a) and (b) in Figure 9 show the evolution of NOAA
AR11068 from HMI and MDI, respectively. AutoTAB tracked
this particular BMR for a total duration of 153 hr from 2010
May 5 19:10 to 2010 May 12 04:46, during its passage across
the solar disk, with AutoTAB-ID 10349. As this BMR has been
identified in the period when we have observations from both
instruments (HMI and MDI), we track it in both data sets for
comparison. This BMR was tracked for an extra 6 hr and more
consistently by HMI (102 detections) than MDI, with only 87
detections. Fewer detections in MDI are expected because the
noise in the data is higher than in the HMI data. Nevertheless,
upon closer examination of the evolution of the total flux
andBmax throughout the life span of the BMR (as shown in
Figures 9(c)–(d)), we observe that theBmax and absolute total
flux show excellent agreement in both data sets. For this
particular BMR, the total flux consistently decreases over the
lifetime of the BMR, whileBmax shows a small increase in the
first few hours and subsequently decreases. This small increase
could be due to the uncertainty in the measurement ofBmax

near the limb.
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