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Abstract: A simple cooling model of white dwarf stars is re-analyzed in Palatini f (R) gravity.
Modified gravity affects the white dwarf structures and consequently their ages. We find that the
resulting super-Chandrasekhar white dwarfs need more time to cool down than sub-Chandrasekhar
ones, or when compared to the Newtonian models.
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1. Introduction

Gravity, one of the most fundamental interactions that are readily experienced in every-
day life, remains enigmatic. To date, general relativity (GR) continues to be a successful and
well-accepted theory for explaining gravitational phenomena. Fulfilling the shortcomings of
Newtonian gravity, GR can quite accurately explain a plethora of phenomena, starting from
the perihelion precession of Mercury and gravitational redshift to the prediction of gravita-
tional waves [1]. Even though Einstein’s theory of gravity is well-tested in the weak-field
regime with remarkable accuracy [2], it might break down in the very strong gravity regime.
This, along with recent cosmological evidences [3,4], suggests that GR may not be adequate
to explain the universe and demands appropriate modifications to this theory. Several
cosmological observations indicate that ordinary matter comprises only a tiny percentage of
the total energy component of the universe and is inadequate to explain the two phases of
cosmic acceleration [3–7]. In order to make GR compatible with these cosmological data
and other observations related to the rotation curve of the galaxies [8], dark matter and
dark energy were postulated to exist [9,10]. The popular cosmological model, viz. ΛCDM
model [11], can fit the new observations with remarkable accuracy. However, this model
is burdened with well-known cosmological problems and is unable to explain the origin
of inflation or dark matter [12]. Although the nature and origin of dark matter still remain
a mystery, a scalar field with a slowly varying potential can be considered a candidate for
inflation as well as dark energy [13,14]. On the other hand, a pure geometric contribution
also seems able to play the same role as it does the scalar field [15–28].

The last approach means that one modifies Einstein’s theory of gravity [29–32] in
order to solve the aforementioned problems. Though there are several ways of extending
and modifying GR, the simplest one is the f (R) gravity [33,34], in which the Lagrangian
density is considered to be an arbitrary function of the scalar curvature R. In order to
obtain the modified field equations, one can apply either of the two variational principles
to the action: the standard metric variation or the Palatini variation. The former approach
involves varying the action with respect to the metric only, leading to the fourth-order field
equations for the metric1. On the other hand, the latter is the variation of the action with
respect to the metric as well as the connection, waiving thus the assumption that those two
objects are related to each other, as it happens in GR or in the metric formulation. It gives
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rise to the second-order field equations [18,35]. It is worth mentioning that both approaches
are equivalent only in the context of GR when f (R) is a linear function of R. Otherwise,
for a general f (R) term in the action, they might lead to entirely different theories and
spacetime structures. This is so because the connection in the Palatini approach depends
on the particular f (R) form2 Moreover, being more general in nature and comparatively
easier to work with, the Palatini f (R) gravity is, therefore, increasingly used to study a
wide variety of phenomena in recent times. Apart from the cosmological models based
on the Palatini f (R) gravity to study cosmic acceleration [19,36–39], several astrophysical
systems, including white dwarfs (WDs), neutron stars [40,41], stellar [42–44] and substellar
objects [45–50] have been extensively studied using this theory (for review, see [51,52]).

WDs represent the final evolutionary stage of progenitor stars with masses less than
(10± 2)M� [53,54]. Although the less massive WDs with mass being less than about 0.4M�,
seem to be predominantly composed of helium, the other WDs, in general, might contain
heavier elements such as carbon and oxygen [54]. Moreover, in all such stars, the core is
surrounded by a thin layer of helium, which in turn is surrounded by an even thinner layer of
hydrogen. In order to support this structure of WDs, the inward gravitational force is balanced
by the electron degeneracy pressure acting outward due to the Pauli exclusion principle. Since
these stars cannot derive energy from thermonuclear reactions, their evolution can be described
simply as a cooling process. The degenerate core of the WDs acts as a reservoir of energy,
whereas the outer non-degenerate layers are responsible for energy outflows. The simplest
models assume that WDs possess temperatures substantially lower than the Fermi temperature.
As a result, zero temperature calculations seem to suffice to obtain their structures, however
temperature does play an important role to obtain their ages. By studying cooling processes,
one can calculate the lifetime of these stars, which can provide important information about
the age of different galactic components, stellar formation rate and past galactic history.

In recent times, with the observations of various over- and under-luminous-type Ia
supernovae, WDs are extensively being studied in the framework of f (R) gravity [55–60]
and other theories of gravity or fundamental physics [61–69,69–79]. Other than a violation
of the Chandrasekhar limit, we also expect a modification in the physical properties of
the WDs, including the cooling rate, and hence, their ages. Therefore, this work aims at
studying a part of the cooling process in WDs using Palatini f (R) gravity. This will allow
estimating the modifications in their lifetime, brought on by the particular theory of gravity.

The following is a breakdown of how this article is structured. In Section 2, we
discuss the basic formalism of Palatini f (R) gravity and briefly review how it modifies the
hydrostatic balance equations. We further employ these equations in Section 3 to derive the
modified temperature gradient equation in Palatini f (R) gravity and thereby obtain the
modified cooling age of WDs. In Section 4, we numerically calculate the masses and radii
of the modified gravity-inspired WDs and their ages. Finally, in Section 5, we put forward
our concluding remarks on this work.

2. Basic Formalism of Palatini f (R) Gravity and Hydrostatic Balance Equations

In this paper, the metric signature convention is (−,+,+,+). For a spacetime metric
gµν, the action for f (R) gravity has the following form [80]

S[g, Γ, Ψ] =
1

2k

∫ √
−g f

(
R(g, Γ)

)
d4x + Sm[g, Ψ], (1)

where k = −8πG/c4, g = det
(

gµν

)
, G is Newton’s gravitational constant, c is the speed

of light and Sm is the matter action depending on the spacetime metric and matter fields
Ψ only. On the other hand, the Ricci–Palatini curvature scalar is constructed with two
independent objects: the connection Γ and the metric gµν, such that R = Rµν(Γ)gµν.

Varying this action with respect to gµν results in the modified field equation, given
by [80]

f ′(R)Rµν −
1
2

f (R)gµν = kTµν, (2)
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where f ′(R) = d f (R)
/

dR and Tµν is the energy-momentum tensor defined as usually
Tµν = −(2/

√−g)δSm/δgµν. Let us notice that for the spherical-symmetric WD in the
statistical equilibrium, the microscopic description of Fermion gas comes down to the
perfect-fluid description with the Chandrasekhar equation of state [81,82]. Moreover,
the Ricci–Palatini tensor Rµν must be symmetric since its antisymmetric part introduces
instabilities [27,83,84].

In contrast, varying the action with respect to Γ and performing some small algebraic
transformation, gives the following equation:

∇λ

(√
−g f ′(R)gµν

)
= 0, (3)

where ∇λ is the covariant derivative ruled by Γ. Now, defining a new metric tensor
ḡµν = f ′(R)gµν, the above equation can be recast as

∇λ(
√
−ḡḡµν) = 0, (4)

providing that Γ is the Levi–Civita connection with respect to ḡµν. Let us notice that it is
conformally related to the spacetime metric g, allowing us to rewrite the field equations in
a much simpler form in order to perform rather tedious calculations [85–87]. Moreover, the
trace of Equation (2) with respect to gµν is given by

f ′(R)R− 2 f (R) = kT , (5)

where T = gµνTµν. It is clear now that the curvature is not dynamical, and it can be
expressed by the trace of the energy-momentum tensor for a given functional f (R). In
other words, all the modifications introduced by Palatini f (R) gravity are functions of the
matter fields.

In this paper, we work with the Starobinsky model of f (R) gravity, i.e., f (R) = R+ αR2

with α being the model parameter. Hence, the trace equation reduces to the relation between
the scalar curvature and the trace of the energy momentum tensor, which resembles the
one known from GR, given by

R = −kT . (6)

In our previous study [59], we analyzed hydrostatic equilibrium equations in both
Jordan and Einstein frames separately. We use the Einstein frame’s equations to perform
rather tedious calculations in the case of the Jordan ones, and then we transform them
back to the Jordan frame, in which we are equipped with the equation of state. The frames
are related by the conformal transformation ḡµν = f ′(R)gµν. Thereby we obtained the
structure of WDs and later analyzed their stabilities with respect to the radial perturbations.
We considered the weak-gravity regime for those equations3 in a spherically symmetric
case, that is, the pressure P̃ is insignificant with respect to the density ρ̃: P̃(r̃) � ρ̃(r̃)c2

with 4πr̃3P̃/c2 � m(r̃), as well as for the geometric contribution, that is, 2Gm(r̃)/r̃c2 � 1,
where m is the mass function. The ‘tilde’ denotes variables in the Einstein frame which
are related to the physical ones by the tranformations r̃2 = Φr2, ρ̃ = ρ/Φ2 and P̃ = P/Φ2,
where Φ := f ′(R). Hence, for the considered Starobinsky model, we have

Φ = 1 + 2αR = 1 + 2αkρc2. (7)

Thus, when we take into account the above simplifications, the hydrostatic balance
equations in the Einstein frame, are given by

dP̃
dr̃

= −Gmρ̃

Φr̃2 , (8)

dm
dr̃

= 4πr̃2ρ̃. (9)

Now, performing the conformal transformation, one can obtain the hydrostatic balance
equations in the Jordan frame, given by
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dP
dr

= − Gmρ

Φ
3
2 r2

(
1 +

1
2

r
Φ′

Φ

)
+ 2P

Φ′

Φ
, (10)

dm
dr

=
4πr2ρ

Φ
1
2

(
1 +

1
2

r
Φ′

Φ

)
, (11)

where we define Φ′ = dΦ
/

dr = 2αkc2 dρ
/

dr .
In order to solve the above system of differential equations, one needs to choose an

equation of state (EoS). It relates the microscopic variables defining a physical system, as
well as carries information about additional forces between particles, dependence on the
temperature or phase transitions points, to mention just some of them. We consider a quite
simple EoS, that is, the barotropic EoS of the form P = P(ρ), neglecting its dependence
on the temperature and other thermodynamic variables. This is so because, in a WD,
temperature is much lower than the Fermi temperature due to its high density. Since in
this paper, we focus on the non-rotating and non-magnetized WD stars, which can be well
modeled as spherical-symmetric balls consisting of degenerate electrons, the EoS describing
the microscopic properties of such a system is given by the Chandrasekhar one, written in
the parametric form as [89]

P =
πm4

ec5

3h3

[
xF

(
2x2

F − 3
)√

x2
F + 1 + 3 sinh−1 xF

]
,

ρ =
8πµemH(mec)3

3h3 x3
F, (12)

where xF = pF/mec with pF being the Fermi momentum, me the mass of an electron, h
the Planck’s constant, µe the mean molecular weight per electron and mH the mass of a
hydrogen atom. Solving Equations (10) and (11) simultaneously along with this EoS, one
can obtain the mass–radius relation of WDs in the considered model of gravity.

3. Temperature Gradient Equation and Cooling Timescale of White Dwarfs in
f (R) Gravity

Let us consider a very simple model of the cooling process. In what follows, we
assume that the WD star radiates its energy away and does not have any other energy
sources. Therefore, its cooling process depends only on the atmosphere properties with the
energy transports through the star and the model of gravity. In the case of GR, a similar
analysis is given in [53,90].

Moreover, we assume the WD behaves as a perfect black body, such that the equation
for radiative energy transport in the Einstein frame is given by

dT
dr̃

= − 3Lκρ̃

4πr̃24acT3 , (13)

where T(r̃) is the temperature of the WD at a radius r̃, L is the luminosity at that radius, κ
is the opacity and a = 8π5k4

B/15c3h3 ≈ 7.6× 10−15 erg cm−3 K−4 is the radiation constant
with kB being the Boltzmann constant. Moreover, for the perfect black body, the spatial
variation of L is given by

dL
dr̃

= 4πr̃2ρ̃(r̃)ε(r̃), (14)

where ε is the power produced per unit mass of stellar material. Now, combining Equa-
tions (8) and (13), we obtain

∂T
∂P̃

=
3LκΦ

16πacGmT3 . (15)

Thus, defining ∇ = ∂ ln T
/

∂ ln P̃ , we obtain
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∇̃ =
3LκP̃Φ

16πacGmT4 . (16)

In Jordan frame, using Equation (13), the temperature gradient equation is given by

dT
dr

= − 3Lκρ

4πr24acT3Φ5/2

(
1 +

1
2

r
Φ′

Φ

)
. (17)

Therefore, combining Equations (10) and (17), we obtain

∂T
∂P

=
3Lκ

16πacGmT3Φ
−

3Lκρ
(

1 + 1
2 r Φ′

Φ

)
32πacr2T3PΦ3/2Φ′

, (18)

and thereby4

∇ =
∂ ln T
∂ ln P

=
3LκP

16πacGmT4Φ
−

3Lκρ
(

1 + 1
2 r Φ′

Φ

)
32πacr2T4Φ3/2Φ′

. (19)

This factor ∇ determines the dynamical stability against convective processes in the
modified gravity-inspired stars [43]. For a fluid parcel inside a star, if the ∇ < ∇ad,
where ∇ad the adiabatic gradient, it is convectively stable. This is famously known as the
Schwarzschild stability condition. For a degenerate gas following P ∝ ρΓ, ∇ad = 1− 1/Γ.
Near the surface of a WD, generally the EoS is non-relativistic with Γ = 5/3 (can be
obtained from Equation (12) when the non-relativistic limit is taken), and hence in this case,
∇ad turns out to be 2/5.

We assume Kramer’s opacity throughout the paper, i.e., κ = κ0ρT−3.5 with κ0 = 4.34×
1024Z(1 + X) cm2 g−1, where X is the mass-fraction of hydrogen and Z is the mass-fraction
of metals (elements other than hydrogen and helium). Therefore, from Equation (18),
we have

dP
dT

=
16πacGmT6.5Φ

3Lκ0ρ
− 32πacr2T6.5PΦ3/2Φ′

3Lκ0ρ2
(

1 + 1
2 r Φ′

Φ

) . (20)

Near the surface, it is reasonable to assume the ideal gas EoS

P =
ρkBT
µmu

, (21)

where mu is the atomic mass unit and µ is the mean molecular weight. Moreover, near the
surface, m can be replaced by the total mass of the WD, that is, m(r ≈ R) = M. Therefore,
combining Equations (20) and (21), we obtain

P
dP
dT

=
16πacGMkBT7.5Φ

3Lκ0µmu
−

32πacR2k2
BT8.5Φ3/2Φ′

3Lκ0µ2m2
u

(
1 + 1

2R
Φ′
Φ

) . (22)

Integrating this equation with the boundary condition P = 0 at T = 0, we obtain

P =

(
2

8.5
4acΦ

3
4πGM

κ0L

)1/2( kB

µmu

)1/2
T4.25 −

 4
9.5

4acΦ3/2Φ′

3
(

1 + 1
2R

Φ′
Φ

) 4πR2

κ0L

1/2(
kB

µmu

)
T4.75. (23)

Equating this pressure with the ideal gas pressure in Equation (21), we obtain



Universe 2022, 8, 647 6 of 13

ρ =

(
2

8.5
4acΦ

3
4πGM

κ0L
µmu

kB

)1/2
T3.25 −

 4
9.5

4acΦ3/2Φ′

3
(

1 + 1
2R

Φ′
Φ

) 4πR2

κ0L

1/2

T3.75. (24)

An order of magnitude calculation for a WD shows that the first term on the right
hand side is at least 3–4 orders of magnitude larger than the second one. Thus, for further
calculations, we can safely drop the second term. Near the surface, the non-relativistic EoS is
followed, and hence in Equation (12), assuming xF � 1, we obtain P ≈ 1.0× 1013(ρ/µe)

5/3.
Substituting P in the ideal gas EoS (21), we obtain the density ρ∗ and temperature T∗ at
the interface radius inside which temperature nearly remains constant. Thus, equating
degenerate pressure and ideal gas pressure, we obtain ρ∗ = 2.4 × 10−8µeT3/2

∗ g cm−3.
Substituting it in Equation (24), and after some rearrangements, luminosity is given by

L ≈
(

5.8× 105 erg s−1
) µ

µ2
e

Φ
Z(1 + X)

M
M�

T3.5
∗ . (25)

Assuming a carbon–oxygen WD with the surface containing 90% of helium and 10%
other heavy elements, we have µe = 2, X = 0, Y(helium mass-fraction) = 0.9, Z = 0.1 and
µ = 1.4. Thus, the above luminosity expression reduces to

L =
(

2× 106 erg s−1
)

Φ
M

M�
T3.5
∗ . (26)

Because luminosity is defined as the energy E radiated per unit time t, it is given by

L = −dE
dt

. (27)

Defining a constant C such that CM� = 2 × 106 erg s−1 and substituting L from
Equation (26), we obtain

− d
dt

(
3kBTM
2Amu

)
= CMΦT7/2

∗ . (28)

Integrating this equation from time t0 to the present time t such that T0 was the initial
temperature and T∗ is the present temperature of the WD, we obtain

3kB

5Amu

(
T−5/2
∗ − T−5/2

0

)
= CΦ(t− t0). (29)

Assuming T0 � T∗ and defining cooling time as τ = t− t0 and denoting L∗ is the
present surface luminosity of the WD, the use of the Equation (26) allows us to approximate
the cooling timescale as a function of mass and luminosity for a WD as follows:

τ =
3
5

kBT∗M
AmuL∗

=
3
5

kB

AmuCΦT5/2
∗

=
3
5

kB

AmuC2/7Φ2/7

(
M
L∗

)5/7
. (30)

In the next section, we explore the numerical values of this timescale for different WDs.
However, it is easy to notice from the above equation that the Palatini gravity effect on the
cooling time can be negligible in such a simplified model. It is so because the only direct
modification is given by Φ2/7 ≈ 1, while the indirect one is hidden in the value of the mass
M. Notice that WDs with limiting masses larger (or smaller) than the Chandrasekhar limit
exist only for α 6= 0. See the discussion in the following section as well as Figure 1.
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1 2 3
M (M¯ )

103

104

R
 (k

m
)

A

B

C

D
E

F

α= 2× 1015 cm2

α= 0

α= − 2× 1015 cm2

Figure 1. Mass–radius relation of f (R) gravity inspired WDs. The GR case is represented by α = 0.

4. Mass–Radius Relation and Cooling Age of White Dwarfs

Let us firstly solve the hydrostatic balance equations to obtain the mass–radius relation
of the WDs. We perform these calculations numerically and present them as the mass–
radius curves, which will be helpful for analyzing our cooling model. In our previous
paper [59], we already obtained these curves for both the Einstein and Jordan frames, and
showed that in a WD system, the results do not differ significantly. It is so because in the case
of non-relativistic equations, the additional contribution enters via functions of Φ, which
does not differ a lot from 1 for the low-density regimes; that is, Φ ≈ 1, in the considered
Palatini model. However, at high-density regimes, it has some important consequences.

We solve Equations (10) and (11) simultaneously along with the Chandrasekhar EoS
with the boundary conditions being m(r = 0) = 0, ρ(r = 0) = ρc, m(r = R) = M and
ρ(r = R) = 0, where M is the mass of a WD with radiusR and central density ρc. Figure 1
depicts the mass–radius curves of WDs for different values of α. Note that α = 0 is the
Chandrasekhar result, with mass-limit being approximately 1.44 M�. Modified gravity
is prominent only in the high-density regime. Hence, the AB branch overlaps with the
Chandrasekhar original mass–radius curve for α = ±2× 1015 cm2. Beyond point B, the
curves differ from the original curve. For α > 0, the curve reaches a maximum mass at
point C and then turns back. It was already shown that the CD branch is unstable under
radial perturbation, and hence point C corresponds to the limiting mass, which turns
out to be sub-Chandrasekhar. On the other hand, for α < 0, the curve turns and reaches
the point F. This BF branch is more stable than the BE branch under radial perturbation,
and hence points lying in this branch represent the super-Chandrasekhar WDs. Thus,
positive and negative values of the parameter α can respectively explain the existence of
sub- and super-Chandrasekhar limiting mass WDs. Let us also note that more significant
deviations are expected in the more realistic description, with improved interior’s and
atmosphere’s modeling.

Let us now explore the cooling timescale for sub- and super-Chandrasekhar WDs, and
compare them with the conventional ones for the same ρc. We know Φ = 1− 16πGρ/c2,
and hence near the surface, where ρ ≈ 0, we have Φ ≈ 1. Thus, from Equation (30), we
have τ ∝ T−5/2

∗ , which means if the surface temperatures of the WDs are almost the same,
then their cooling timescale remains indistinguishable irrespective of whether it is a sub- or
super- or conventional WD, provided their chemical compositions are identical. Figure 2
shows the variation of τ as a function of M for the luminosity L∗ = 10−3L�. Since τ ∝ M5/7,
it is evident that as mass increases, the star’s age also does. Thus, it is expected that the
cooling timescale is longer for the super-Chandrasekhar WDs and shorter for the sub-
Chandrasekhar WDs than conventional ones. However, because L ∝ M and τ depend only
on the surface temperature in this simple model, we find that the ages are indistinguishable
for the same masses for all the three mass–radius tracks. Moreover, Figure 3 shows the
cooling timescale as a function of the luminosity for WDs with different masses. We can see
that the higher the mass of the WDs, the longer the cooling timescale of the WD. Because
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τ ∝ L−5/7, this timescale decreases with the increase in the luminosity. This is so because,
with the higher luminosity, a WD can quickly release its internal energy and becomes cold.
In summary, cooling is faster for heavier WDs with a larger surface luminosity.

1 2 3
M (M¯ )

0.25

0.50

0.75

1.00

1.25
τ 

(1
0

9
y
r)

α= 0

α= 2× 1015 cm2

α= − 2× 1015 cm2

Figure 2. Cooling timescale as a function of the mass of the WDs for L∗ = 10−3L�. Notice that
modified gravity allows the white dwarf stars to have higher masses than the Chandrasekhar limit.

10-5 10-3 10-1

L ∗  (L¯ )

108

1010

τ 
(y

r)

M= 2.9M¯

M= 1.4M¯

M= 0.2M¯

Figure 3. Cooling timescale as a function of the luminosity for WDs with different masses. Note
that 2.9 M� WD is possible only when α < 0. It is worth mentioning that the α value is not required
explicitly to obtain this plot, because from Figure 2, it is evident that for a specific luminosity, cooling
timescale depends only on the mass, and not the radius. Moreover, the 0.2 M� WD can be obtained
regardless of α being positive, negative or zero, and hence it is not necessary to precisely specify a
value of α in order to determine its cooling timescale.

5. Conclusions

The present study has been designed to determine the effect of modifications to the
Newtonian hydrostatic equilibrium equation, introduced by the Palatini f (R) gravity, on
the cooling model of white dwarf stars. Since it is the first study related to these topics, it was
limited to the set of assumptions and simplifications. Firstly, we have assumed that such
an object can be modeled as a spherical-symmetric ball of degenerate electrons. It allows
us to describe its interior with an analytical equation of state. The second approximation
is related to the opacity, which we have assumed to be Kramer’s one. Because it also has
an analytical form, we could carry our calculations without the need of simulations, or
without more advanced numerical methods. Subsequently using the temperature gradient
expression, we were able to integrate the hydrostatic balance equation. Applying the ideal
gas equation of state, which describes well the behavior of the particles on the surface in
our modeling, we have derived the luminosity as a function of mass, temperature and
chemical composition in the presence of modified gravity, which is given by Equation (25).
As already mentioned, all those considerations are made in the non-relativistic limit of the
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theory. Moreover, in such a simple model, it is assumed that there is no energy generation in
the stars’ interior (such as, the latent heat, which is a product of the crystallization process,
or further gravitational contraction). Therefore, the white dwarf radiates the whole stored
energy away, which means that it is cooling down with time. This fact allows us to write
the expression for the cooling timescale as a function of the star’s mass and its luminosity
as provided by Equation (30).

Recalling our previous results on the stability with similar assumptions on the white
dwarf model allowed us to immediately notice that we do not expect any significant
differences in our cooling for the low-density regime [59]. We have found there that α > 0
gives the sub-Chandrasekhar limiting mass white dwarfs and α < 0 gives the super-
Chandrasekhar ones. It seems that among the various theories and models, modified gravity
provides a mechanism, which is able to justify both mass ranges self-consistently, which can
further explain the origins of peculiar under- and and over-luminous type Ia supernovae.
Let us now discuss how the previous work helps us interpret the current findings.

In this paper, we have found that the cooling timescale is longer for the super-
Chandrasekhar white dwarfs than the Newtonian or sub-Chandrasekhar ones. Note
that independently of the mass of the dead star, varying the parameter in the given range
does not provide any significant differences in the cooling timescale. However, the very
massive ones can exist only in modified gravity5. It can be surprising because in the less
compact objects, such as the main-sequence stars, brown dwarfs and even planets [43,44,47],
the effects of Palatini gravity manifest in the stellar evolution, even in the cooling pro-
cesses [45,46]. This result has an explanation: the physics we used in our modeling is
too poor with respect to the models of non-relativistic stars. In the mentioned works, the
authors employed much more realistic equations of state, which included information not
only on the electron degeneracy, but also how it evolves with time. This is also a theory-
dependent process [45,98]. These models also took into account the corrections related to
the finite temperature of the gas, mixtures of highly degenerate fluid with the ideal one as
well as ionized elements, and phase transitions in some cases [99]. Including the missing
physics in order to describe a realistic white dwarf, we also expect to see differences with
respect to the Newtonian or GR description. As the most important improvement we
would like to analyze is taking into account crystallization processes and effects of gravity
on matter properties [82]. This is, however, out of the scope of this paper. We will present
results along these lines in the near future.
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Notes
1 Although, one can rewrite the equations as second-order differential equations for the metric, and the additional one for the

curvature scalar, which arises to a dynamical field in this theory.
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2 This fact arises as a conclusion from the field equations and it will be evident in the next section, whereas in the metric formalism,
the connection is assumed to be the Levi–Civita one of the spacetime metric.

3 To see the relativistic hydrostatic equilibrium equation for Palatini f (R) gravity, see [88].
4 Let us notice that this form differs slightly from the one obtained in [43]. This is so because of different assumptions on the matter

description and its behavior under the conformal transformation.
5 Of course, there are other processes, such as magnetic field [91,92], noncommutative geometry [93,94], ungravity effect [95],

consequence of total lepton number violation [96], generalized Heisenberg uncertainty principle [97] and many more which can
also explain massive white dwarfs but they are failing to explain the sub-Chandrasekhar mass-limit.
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