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We analyze the effects of modified gravity on specific heats of electrons and ions, Debye temperature,
crystallization process, and cooling mechanism in white dwarfs. We derive the Lane-Emden-Chandra-
sekhar equation and relate it to the cooling process equations for Palatini fðRÞ gravity. Moreover, for the
first time in the literature, we show that the gravity model plays a crucial role not only in the mass and size
of the white dwarf, but also affects their internal properties. We further demonstrate that modified gravity
can decrease the cooling age significantly.
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I. INTRODUCTION

White dwarfs (WDs) are burned-out cores of main
sequence stars with mass ≲ð10� 2ÞM⊙ and constitute
the final stage of a stellar evolution [1,2]. The mass of a
typical WD is similar to that of the Sun, but it is much
smaller in size (recent discovery shows a WD with the size
of the moon [3]). Due to its small radius, it generally has a
low luminosity but very high surface temperature and thus
occupies the lower left portion of the Hertzsprung-Russell
diagram [4]. As a star enters the WD phase, it should be
noted that the only significant source of radiation comes
from the residual ion thermal energy. Since there is no
derivation of energy from the thermonuclear reactions at
this phase of the stars, their ages significantly depend on the
cooling processes. The thermal energy in the interior of a
WD is much smaller than the Fermi energy and thus their
structures are supported by the pressure of the degenerate
electron gas. However, near the surface when the density
drops significantly with respect to that of the core, thermal
pressure starts becoming prominent. Many WDs are found
in binary systems. When such a WD accretes matter from
its companion, its mass increases. But there is a limit up to
which this mass can increase and this limit is the well-
known Chandrasekhar mass-limit (approximately 1.4M⊙

for a carbon-oxygen, nonrotating, nonmagnetized WD) [5].
Once a WD exceeds this critical mass, it undergoes a
tremendous explosion in the form of a type Ia supernovae
(SNe Ia). SNe Ia generally have consistent peak luminos-
ities and thus are often used as standard candles [6,7].
However, the recent observations of several overluminous
[8–11] and underluminous peculiar SNe Ia [12–14] seem to
question the uniqueness of the Chandrasekhar mass-limit as
well as the existing theory of general relativity (GR). It has
been found that the overluminous SNe Ia violate the
Khokhlov pure detonation limit [15] with a surprisingly
large 56Ni mass content of 1.8M⊙ and thus one of the
probable candidates for such SNe Ia are the super-
Chandrasekhar WDs [8]. Similarly, underluminous SNe
Ia with 56Ni mass as low as 0.05M⊙ infer indirect evidence
of sub-Chandrasekhar limiting mass WDs.
These peculiar observations along with a few other

astrophysical and cosmological problems motivated vari-
ous groups around the world to modify Einstein’s theory of
GR. One such popular modification is the fðRÞ gravity,
with R being the scalar curvature [16,17]. It aims at
generalizing the Lagrangian density with an arbitrary
function of R and the modified field equations are obtained
by following one of the two variational principles: the
standard metric variation and the Palatini variation.1
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1Then, the curvature scalar R is constructed with two inde-
pendent objects, the metric and Ricci tensor built of the
independent connection, see the details in Sec. II.

PHYSICAL REVIEW D 107, 044072 (2023)

2470-0010=2023=107(4)=044072(10) 044072-1 © 2023 American Physical Society

https://orcid.org/0000-0002-3818-6037
https://orcid.org/0000-0003-1651-9563
https://orcid.org/0000-0002-1545-1483
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.044072&domain=pdf&date_stamp=2023-02-28
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.107.044072
https://doi.org/10.1103/PhysRevD.107.044072


In the metric approach, the action is varied with respect to
the metric, leading to fourth-order field equations.2 On the
other hand, in the Palatini fðRÞ gravity, the metric and
connections are treated as independent of each other and
the action is varied with respect to both of them [19,20]. It
must be noted that both these approaches, in general, give
rise to entirely different theories and spacetime structures.
This is due to the fact that the connection in the metric
formalism is taken to be the Levi-Civita, a spacetime
metric, whereas the connection in the Palatini formalism
depends on the form of the chosen fðRÞ. Only when fðRÞ
is assumed to be a linear function of R, both these
formalisms become equivalent and reduce to GR. In recent
times, a number of phenomena starting from cosmic
acceleration [21–24], dark energy problem, compact
objects including black holes, neutron stars, and WDs
have extensively been studied using the Palatini fðRÞ
gravity [25–27].
So far, fðRÞ gravity has been successful in explaining the

peculiarities of WDs and this is evident by the large number
of works being done in this regard. After initiating the
exploration using metric Rþ αR2 gravity [28], some of us
later showed that the introduction of higher-order correc-
tions to this model could get rid of the possible ghost modes
as well as probe both the regimes of super- and sub-
Chandrasekhar limiting mass WDs by just changing the
central density [29]. Moreover, due to the comparatively
large radius of WDs, Newtonian treatment is also viable
and someworks have been done by deriving the hydrostatic
equilibrium equations in the weak-field limit for the metric
[30,31] as well as the Palatini fðRÞ gravity [32] along with
the study of the stability of these modified gravity inspired
WDs. Furthermore, by studying the gravitational wave
signatures from these peculiar WDs, proposals were made
to detect them by some futuristic gravitational wave
detectors [33].
A few tests with the use of stellar and substellar objects

have also been proposed. We know that the most funda-
mental equations to describe a (non)relativistic star are the
hydrostatic equilibrium equations along with the equation
of state. Thus, altering any of them by the effects intro-
duced by modified gravity results in the change of stars’
internal properties (for a detailed review, see [34]), and
thereby a different stellar evolution. They manifest by,
for example, variations of the limited masses: the
Chandrasekhar mass-limit of WDs, the minimum main
sequence mass, minimum mass for deuterium burning,
Jeans and opacity mass, etc. Seismic properties in stars [35]
and terrestrial planets [36–38] turn out to be also affected,
providing us tools to constrain theories. Another effect is

observed in the light elements’ abundances in stellar
atmospheres [39]. As mentioned, the evolutionary phases
of nonrelativistic stars, brown dwarfs, WDs [32], and giant
planets are also modified, and some of those phenomena,
with the more accurate data provided by GAIA,3 James
Webb Space Telescope,4 or Nancy Grace Roman Space
Telescope,5 can also be used to constrain theories of
gravity. For more discussion, see [40] and references
therein.
In what follows, we are interested in the effects of

gravitation on the processes happening in the interiors of
WDs. Along with the violation of the well-known
Chandrasekhar mass limit, we also expect a modification
in the physical processes of WDs. Therefore, we are
interested in studying the crystallization process in the
framework of Palatini fðRÞ gravity. The cooling process of
WDs can be roughly divided into four stages, namely,
neutrino cooling, fluid cooling, crystallization, and Debye
cooling [1]. Note that latent heat and sedimentation play a
major role in crystallization. The net effect in this process is
the migration of heavier elements towards the central
region with a release of gravitational energy. Moreover,
as the WD core crystallizes into a solid, latent heat is
released that provides a source of thermal energy and hence
delays the cooling process. Moreover, the crystallization
temperature increases with the central density, and hence
the massiveWDs crystallize to solid at higher temperatures.
Once the crystallization sets in and the star solidifies, the
specific heat follows the Debye law and this is known as
Debye cooling. Because Palatini fðRÞ gravity modifies the
hydrostatic equilibrium equations and the resulting mass–
radius curve, it does modify the other physical properties
such as specific heat, Debye temperature, and hence the
crystallization process, as we demonstrate in this paper.
Following the indications discussed in the previous

works on how the gravitational interaction affects
microphysical properties,6 in this work, we revise the
crystallization process [51,52] of WDs in modified gravity.
As a simple generalization of Einstein’s gravity, we base
our calculations on Palatini fðRÞ gravity, which we briefly
recall in Sec. II. We further discuss the nonrelativistic
limit of this theory, modified hydrostatic equilibrium
equation, and Chandrasekhar equation of state [5], which,
combined together, provides the so-called Lane-Emden-
Chandrasekhar (LEC) equation for Palatini theory. In
Sec. III, we demonstrate that the Debye temperatures

2It turns out, however, that the theory can be recast into the
scalar-tensor representation from which it is easy to see that the
fðRÞ metric gravity possesses an extra degree of freedom, related
to the scalar curvature [18].

3https://www.esa.int/Science_Exploration/Space_Science/Gaia/
Gaia_overview.

4https://www.nasa.gov/mission_pages/webb/about/index.html.
5https://www.nasa.gov/content/goddard/nancy-grace-roman-

space-telescope.
6Such as a gravitational dependence of the chemical potential

and temperature [41,42], equations of state [43,44], opacities
[45], energy generation rates [39,46–48], chemical reactions rates
[49], and elementary particle interactions [50].
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and specific heats do depend on the model of gravity, and as
a consequence, it further affects the latent heat released
during the crystallization process. Taking this correction
into account, we also provide a more accurate cooling
model of WDs. Finally, Sec. IV includes a discussion of
these results and our conclusions.

II. PALATINI f ðRÞ GRAVITY FORMALISM AND
MODIFIED HYDROSTATIC BALANCE

EQUATIONS

Let us first briefly discuss the basic formalisms of
Palatini fðRÞ gravity. Throughout this paper, we consider
the metric signature to be ð−;þ;þ;þÞ. For a spacetime
metric gμν, the action for fðRÞ gravity is given by [53]

S½g;Γ;Ψ� ¼ 1

2κ

Z ffiffiffiffiffiffi
−g

p
fðRðg;ΓÞÞd4xþ Sm½g;Ψ�; ð2:1Þ

where κ ¼ −8πG=c4, g ¼ detðgμνÞ, G is Newton’s gravi-
tational constant, c is the speed of light, and Sm is the matter
action that depends on the metric and the matter field Ψ.
Varying this action with respect to gμν results in the
modified field equation, given by [53]

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κT μν; ð2:2Þ

where f0ðRÞ¼dfðRÞ=dR and T μν is the energy-momentum
tensor. It is easy to verify that in GR, fðRÞ ¼ R, and thus
this equation reduces to the famous Einstein equation.
Moreover, varying S with respect to Γ gives the following
modified equation:

∇λð
ffiffiffiffiffiffi
−g

p
f0ðRÞgμνÞ ¼ 0; ð2:3Þ

where ∇λ is the covariant derivative ruled by Γ. Let us now
define a new metric tensor ḡμν such that ḡμν ¼ f0ðRÞgμν.
Thus the above equation simplifies to

∇λð
ffiffiffiffiffiffi
−ḡ

p
ḡμνÞ ¼ 0; ð2:4Þ

providing now that Γ is the Levi-Civita connection of the
metric ḡμν.
Assuming the matter of the WD is nonmagnetized and

behaves like a perfect fluid, the energy-momentum tensor
can be written as

T μν ¼ ðρc2 þ PÞuμuν þ Pgμν; ð2:5Þ

where P and ρ are, respectively, the pressure and matter
density of the fluid. Assuming the Newtonian limit, we
have ρc2 ≫ P. Now, in the weak-gravity limit, expanding
the metric tensors as gμν ¼ ημν þ hμν and ḡμν ¼ ημν þ h̄μν,

such that jhμνj, jh̄μνj ≪ jημνj, and substituting it in Eq. (2.2)
with an analytic functional

fðRÞ ¼
X
i¼0

αiRi; ð2:6Þ

one obtains the following modified Poisson equation [54]

∇2Φ ≈ 4πGðρ − 2α∇2ρÞ; ð2:7Þ

where h00 ¼ −2Φ=c2 with Φ being the gravitational
potential. Note that one may neglect the contribution from
cosmological constant in stellar studies [55] and thus
α0 ¼ 0. Moreover, without the loss of generality, one
can safely assume α1 ¼ 1 and thus in the above equation,
α comes from the quadratic term, i.e., α ≔ α2. Therefore,
the nonrelativistic objects feel contributions from the linear
and quadratic terms of the gravitational Lagrangian; i.e.,
effectively we have fðRÞ ¼ Rþ αR2.
In the weak-field limit, for a spherically symmetric

spacetime, the hydrostatic-balance and the mass-estimate
equations can be, respectively, written as

dΦ
dr

¼ −
1

ρ

dP
dr

; ð2:8Þ

dm
dr

¼ 4πr2ρ: ð2:9Þ

Using these relations in the modified Poisson equation, we
obtain

1

r2
d
dr

�
r2

ρ

dP
dr

�
¼ −4πG

�
ρ −

2α

r2
d
dr

�
r2
dρ
dr

��
; ð2:10Þ

which, upon simplification, can be recast as

dP
dr

¼ −
Gmρ

r2
þ 8πGαρ

dρ
dr

: ð2:11Þ

Since the interiors of WDs predominantly consist of
electron-degenerate matter, we consider the Chandrasekhar
equation of state (EOS) to obtain their structures. Defining
pF as the Fermi momentum, me the mass of an electron, h
the Planck’s constant, μe the mean molecular weight per
electron, and mp the mass of a proton, the Chandrasekhar
EOS is given by [5]

P ¼ πm4
ec5

3h3
½xFð2x2F − 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 1

q
þ 3 sinh−1 xF�;

ρ ¼ 8πμempðmecÞ3
3h3

x3F; ð2:12Þ

where xF ¼ pF=mec. Denoting A ¼ πm4
ec5=3h3, B ¼

8πμempðmecÞ3=3h3, and xF ¼ x, this EOS can be written as
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P ¼ AgðxÞ; ρ ¼ Bx3; ð2:13Þ

where gðxÞ ¼ xð2x2 − 3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
þ 3 sinh−1 x. Using this

EOS, the modified Poisson equation (2.10) can be recast as

1

r2
d
dr

�
r2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

dr

�
¼ −

πGB2

2A

�
x3 −

2α

r2
d
dr

�
3r2x2

dx
dr

��
:

ð2:14Þ

Assuming y2 ¼ x2 þ 1 such that at r ¼ 0, we have
xð0Þ ¼ x0 and yð0Þ ¼ y0. We now introduce new variables
η and ϕ, given by

r ¼ aη; y ¼ y0ϕ; ð2:15Þ

with

a ¼
�
2A
πG

�
1=2 1

By0
; y20 ¼ x20 þ 1: ð2:16Þ

Substituting these variables in the modified Poisson equa-
tion (2.14), we obtain the following modified LEC equation
for the Palatini fðRÞ gravity

1

η2
d
dη

�
η2
dϕ
dη

�
1−

6α

a2
ϕ

�
ϕ2−

1

y20

�
1=2

��
¼−

�
ϕ2−

1

y20

�
3=2

:

ð2:17Þ

The boundary conditions at the center of the WD are
ϕðη ¼ 0Þ ¼ 1 and ϕ0ðη ¼ 0Þ ¼ 0. The vanishing density at
the surface provides ϕðη1Þ ¼ 1=y0, where the radius of the
star R is given by R ¼ aη1. Furthermore, from our
definitions, the matter density is given by

ρ ¼ ρc
y30

ðy20 − 1Þ3=2
�
ϕ2 −

1

y20

�
3=2

; ð2:18Þ

where the central density ρc follows

ρc ¼ Bx30 ¼ Bðy20 − 1Þ3=2: ð2:19Þ

Therefore, the total mass of the WD written with respect to
the solution of the modified LEC equation is given by

M¼−
4π

B2

�
2A
πG

�
3=2

�
η2
dϕ
dη

�
1−

6α

a2
ϕ

�
ϕ2−

1

y20

�
1=2

��
η¼η1

:

ð2:20Þ

Note that, at the surface, we already have ϕðη1Þ ¼ 1=y0,
and thus the above expression reduces to

M ¼ −
4π

B2

�
2A
πG

�
3=2

�
η2

dϕ
dη

�				
η¼η1

: ð2:21Þ

Before going further, let us discuss the mass–radius
relation and constraints on the parameter α, which will be
useful for our further considerations. Figure 1 shows the
mass–radius relation as well as the variation of mass with
respect to ρc for the modified gravity inspired WDs. α ¼ 0
corresponds to the Chandrasekhar mass–radius relation
with a mass-limit of approximately 1.4M⊙. For α ≠ 0,
the mass–radius overlaps with the Chandrasekhar one at
low density. For negative α, it deviates in such a way that
mass of the WD goes over this mass limit and it can explain
the origin of super-Chandrasekhar WDs resulting in the
formation of overluminous SNe Ia. On the other hand, for
positive α, it deviates on the other side after attaining a
maximum mass. We already showed that in Palatini fðRÞ
gravity, decreasing mass with the increase in ρc results in
unstable WDs, which can blow up under small radial
perturbation [32]. Thus, the maximum mass for positive α
is the mass limit of the WD, which turns out to sub-
Chandrasekhar and it can explain the origins of under-
luminous SNe Ia. Therefore, this model of gravity can
explain the sub- and super-Chandrasekhar limiting mass
WDs depending on the values of α. In fact, a better model
would be the one where the model parameters are fixed
throughout and both the mass regimes are obtained just by
varying the central density. In other words, both the mass
regimes can be explained by a single mass–radius curve.
Such exploration was done previously for metric fðRÞ
gravity in [29,30]. However, the calculations are more
complicated, and because, in this paper, our target is to
explain the thermal properties of the WDs, we use this
simplified model.

FIG. 1. (a) mass–radius relation and (b) central density as a
function of the WD mass in Palatini fðRÞ gravity. The numbers
adjacent to the various lines denote α in the units of 1013 cm2.
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Regarding the constraints, there are a few works to
mention. In this work, we use the bound given by the
Gravity Probe B experiment, which states that jαj≲ 5 ×
1015 cm2 [56]. Notice that in the case of Palatini gravity,
the value of the model parameter is related to the curvature
regime [57], and because the Palatini curvature scalar is
proportional to the density, its value also does. The
analytical studies in the weak-field limit provided jαj ≲
2 × 1012 cm2 [57], while when electric forces taken into
account and assumed to be of the same order of magnitude,
resulted in jαj≲ 2 × 109 cm2 [58,59]. Further considera-
tions revealed that the Solar System experiments do not
deliver bounds on the parameters because of the micro-
physics uncertainties [54]. Moreover, Palatini gravity, in a
similar fashion as GR, is not able to explain the galaxy
rotation curves [60]. Thus the parameter in Palatini gravity
has not been yet restrictively constrained, and hence, for a
given ρc, one deals with a particular range of the param-
eter’s value.

III. COOLING MODEL OF WHITE DWARFS
IN PALATINI f ðRÞ GRAVITY

In our previous work [61], we studied a simplified
cooling model in Palatini fðRÞ gravity. In that approach,
we assumed that the total thermal energy of the star
(3=2kBT is the thermal energy per ion) is given by

U ¼ 3

2
kBT

M
Amp

; ð3:1Þ

where T is the temperature of the isothermal core and
M=ðAmpÞ is the number of ions with A being the mean
atomic weight. It means that the main contribution comes
from the ions [for which the specific heat cv ¼ ð3=2ÞkB
when crystallization is not taken into account]. In these
calculations, we neglected its dependency on the Debye
temperature ΘD and the ratio of Coulomb to thermal
energy. In what follows, we are going to take into account
those properties in this work. We eventually observe how
modified gravity affects them and thereby the cooling
process of WDs.

A. Thermal heat of white dwarfs

We now want to take into account the thermal properties
of WDs’ interior. Denoting the specific heats of ions as cionv

and the same for the electrons per ions as celv , the mean
specific heat is given by

c̄v ¼
1

M

Z
M

0

ðcelv þ cionv Þdm: ð3:2Þ

This average is taken for the whole stellar configuration
because both specific heats depend on density. Thus, the
thermal energy of our star in that case is given by

U ¼ c̄v
M
Amp

T; ð3:3Þ

and thereby the luminosity provided by the rate of decrease
in thermal energy of ions and electrons in time t, takes the
form

L ¼ −
dU
dt

¼ −
M
Amp

c̄v
dT
dt

: ð3:4Þ

Let us now discuss each element of Eq. (3.2). The
specific heat of the electrons per ion is given by [62]

celv ¼ 3

2

kBπ2

3
Z
kBT
ϵF

; ð3:5Þ

where Z is the charge and ϵF is the Fermi energy, which is
related to the Fermi momentum pF as

ϵ2F ¼ p2
Fc

2 þm2
ec4; ð3:6Þ

p3
F ¼

3h3

8π

ρ

μemp
: ð3:7Þ

On the other hand, cionv , as already mentioned, depends
on the crystallization properties. More specifically, it
depends on the critical value of the ratio of Coulomb to
thermal energy, denoted by Γ. Different computations
consider that the crystallization may start at different
critical Γ, denoted by Γm ∈ f60; 125g [63]. If Γ < Γm,
cionv takes the mentioned constant value of ð3=2ÞkB.
However, above Γm, it modifies as

cionv ¼ 9kB

�
T
ΘD

�
3
Z

ΘD=T

0

x4ex

ðex − 1Þ2 dx; ð3:8Þ

where the Debye temperature is given by

ΘD ¼ 0.174 × 104
2Z
A

ffiffiffi
ρ

p
: ð3:9Þ

Figure 2 shows the variation of ΘD, whereas Fig. 3 shows a
comparison between celv and cionv inside a modified gravity
induced WD with ρc ¼ 1010 g cm−3. Note that we show
them only for the negative values of α. This is because
negative α gives a significant deviation from the standard
Newtonian curve of WD. Further, the positive values lead
to unstable configurations beyond certain densities (the
turnback portions of curves in Fig. 1). Thus, there is no
point of considering the WDs lying in the receding branch
of the mass–radius curves. Also, the turn around point is
very close to the Newtonian curve and so the effective
results for positive α are very similar to the Newtonian
results. Hence we do not show anything for positive α.
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Moreover, knowing the exact dependency on density and
denoting cv ¼ celv þ cionv , Eq. (3.2) can be recast as

c̄v ¼
1

M

Z
M

0

cvðT; ρÞ
dm
dr

dr: ð3:10Þ

Figure 4 shows a comparison between the effect of
relativistic and nonrelativistic pF − EF relation on c̄v.
Further, Fig. 5 shows the variation of c̄v as a function of
T for carbon WDs using the relativistic pF − EF relation
given by Eq. (3.6).

B. Latent heat of the crystallization process

During the crystallization process, one deals with an
additional source of energy which should be taken into
account in the energy losses. The latent heat released during

FIG. 3. Variation of cv inside a WD with ρc ¼ 1010 g cm−3.
Dashed lines represent celv and solid lines represent cionv . Green,
blue, orange, and magenta lines represent α ¼ 0, −2 × 1013,
−4 × 1013, and −1014 cm2, respectively.

FIG. 2. Variation of the Debye temperature inside a modified
gravity inspired carbon WD with ρc ¼ 1010 g cm−3.

FIG. 4. c̄v as a function of T for carbon WDs for M ¼ 0.36M⊙
with α ¼ 0. The red-dashed curve is obtained using the non-
relativistic EF − pF relation while the blue solid curve is for the
relativistic one given by Eq. (3.6). Comparing the red-dashed
curve with Fig. 6(a) of the Ref. [62], we notice similar behavior.

FIG. 5. c̄v as a function of T for different carbon WDs. Solid
lines represent conventional WDs under the Newtonian gravity
while dashed and dotted lines represent modified gravity inspired
WDs with α ¼ −2 × 1013 cm2 and α ¼ −3 × 1013 cm2, respec-
tively. WDs with ρc ¼ 2.0 × 105 g cm−3, 2.0 × 108 g cm−3,
6.3 × 109 g cm−3, 1.3 × 1010 g cm−3, 2.5 × 1010 g cm−3,
5.0 × 1010 g cm−3, and 1011 g cm−3 are represented by cyan,
yellow, magenta, black, blue, green, and red lines, respectively.
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the crystallization process is assumed to be qkBT.
Hence, the following additional term contributes to the
luminosity [52]

Lq ¼ qkBT
dðms=AmpÞ

dt
; ð3:11Þ

where ms is the amount of mass that is already crystallized.
Let us now rewrite this equation as follows:

Lq ¼ qkBT
M
Amp

1

M
dms

dt
;

¼ qkBT
M
Amp

1

M
dm
dr

dr
dρ

dρsðTÞ
dT

dT
dt

; ð3:12Þ

where ρsðTÞ is the density of the crystallized mass at a
temperature T. It is related to the ratio of Coulomb to
thermal energy Γ by the relation [62]

Γ ¼ 2.28 × 105
Z2

A1=3

ρ1=3s

T
: ð3:13Þ

When it reaches the critical value for which the crystal-
lization starts, that is, Γ ¼ Γm, one can show that

dρs
dT

¼ 3ρs
T

; ð3:14Þ

such that the luminosity in Eq. (3.12) can be rewritten as

Lq ¼ 3ρsqkB
M
Amp

1

M
dm
dr

dr
dρ

dT
dt

: ð3:15Þ

Note that dm=dr and dρ=dr are taken at radius r� where
ρðr�Þ ¼ ρsðTÞ is satisfied.

C. Cooling process

In the presence of crystallization, the final luminosity is
the sum of luminosities obtained from Eqs. (3.4) and (3.15).
Thus the modified cooling equation is given by

L ¼ 3kBM
Amp

�
−

c̄v
3kB

þ ρsq
1

M
dm
dr

dr
dρ

�
dT
dt

: ð3:16Þ

In our discussion, we consider the initial temperature at
t ¼ 0 to be 108 K, such that one understands the “age of a
white dwarf” as cooling time from this temperature to the
present values, which is assumed to be 106 K. In Fig. 6, we
show the dependency of WD age on the central density for
the Newtonian and modified gravity, while Fig. 7 repre-
sents how the luminosity fades away with time, also plotted
for three values of the parameter α. Furthermore, Fig. 8
demonstrates the effects of crystallization in the modified
model of gravity. Moreover, the crystallization process we
study here is rather expected in more massive WDs because

FIG. 6. Age of carbon WDs as a function of their central
densities, obtained by solving Eq. (3.4), when they cool down
from 108 K to 106 K.

FIG. 7. Luminosity as a function of time for carbon WDs with
ρc ¼ 1011 g cm−3. Here the initial luminosity corresponds to a
surface temperature of approximately 107 K. Note that massive
WDs fade faster.

FIG. 8. Age of modified gravity induced carbon WDs with α ¼
−2 × 1013 cm2 as a function of their central densities, obtained
by solving Eq. (3.16), when they cool down from 108 K to 106 K.
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the carbon and oxygen ions in the core solidify when the
WD cools down (there exists a low-mass carbon WD
because of the cannibalism process of their binary com-
panions, but the lower mass, the slower is the cooling
process, so the crystallization would start much later than in
more massive objects). Our modeling is still simplified and
required further improvements, especially in the case of
EOS and taking into account the atmosphere’s structure and
properties. When we do it, we expect to see the effects of
modified gravity much more significant for a wider range
of the parameter’s value.

IV. DISCUSSION AND CONCLUSIONS

The aim of the present research was to examine the
crystallization process, which is a crucial part of the WDs’
cooling phase. We have also taken into account the thermal
properties which in our previous work were neglected [61].
Let us note that this problem has not been studied in
modified gravity before, and as we have demonstrated,
there are a few significant consequences that can have an
impact not only on compact stars but also on solid-state
physics.
Before discussing our findings, let us briefly summarize

our work. First, we have derived the LEC equation (2.17)
for the Palatini fðRÞ gravity, which allows us to obtain the
mass, radius, and density profile of a white dwarf whose
matter is described by the Chandrasekhar equation of state
(2.12). This formalism is useful to study the cooling
process of white dwarfs since we can express the cooling
equations with respect to the solution of the LEC equation.
Further, we have reanalyzed the thermal properties, that

is, if, and how, they depend on a model of gravity. Indeed,
the mean specific heat in Eq. (3.2) includes a term related to
the phonons’ contribution (becoming important when a
given material crystallizes), which does depend on the
modified gravity model via Debye temperature. This is so
because the density profile inside a white dwarf depends on
the modified gravity model and the Debye temperature
directly depends on the density. Figure 2 demonstrates how
the Debye temperature in modified gravity differs with
respect to the Newtonian one for a given central density
ρc ¼ 1010 g cm−3. We observe that for negative α with
super-Chandrasekhar WDs, the Debye temperature is
slightly higher in the stellar interior when modified gravity
effects are taken into account, while near the surface, it
decreases rapidly. This happens because of the fact that the
super-Chandrasekhar white dwarfs possess higher mass in
comparison to the conventional ones at the same radius
(which eventually makes the former to be smaller in size)
and because the Debye temperature ΘD ∝

ffiffiffiffiffiffiffiffiffi
ρðrÞp

, it also
follows the same trend of the density profile.
Let us recall that (specific) heat capacity is a property of

the material, which depends on temperature and the state of
matter. As we have demonstrated here, it also depends on

the model of gravity. Figure 3 shows the specific heat of the
electron per ions celv and of ions cionv . We have seen that at a
low temperature and at high density, celv dominates over
cionv , which, however, flips at low density or at high
temperature. Moreover, it can be noticed that as we move
from the center to the surface, cionv increases to 3kB and then
sharply decreases to ð3=2ÞkB at a particular radius. This is
so because, beyond that radius, Γ < Γm is satisfied due to
low density. This radius decreases as the temperature
increases. In reality, this effect might not be seen with a
realistic temperature profile where the surface temperature
of a white dwarf is even lower 104–105 K, and the core
temperature is high. Further, we have depicted in Fig. 4 the
mean specific heat c̄v of carbon as a function of temperature
for nonrelativistic and relativistic Fermi energy in the
Newtonian case (α ¼ 0) in order to check our results with
[62]. We see that we have obtained similar behavior as in
the mentioned paper. Therefore, in the high temperature,
the contribution of the electron per ion dominates in the
mean specific heat, which, however, drops rapidly when the
temperature decreases till it reaches its crystallization value,
and then the mean specific heat rises again up to the
maximum value at v̄ ¼ 3kB. It further decreases with
temperature since most of the WD’s mass cools down
below the Debye temperature. On the other hand, we have
also shown the relativistic counterparts for the Fermi
energy in the same figure, which resulted in slightly
different shapes than the Newtonian case. Generally, the
decrease in temperature is not so steep as in the non-
relativistic case. Notice that relativistic expressions are
more relevant for high-density regimes although we also
notice a change in the low one.
Figure 5 demonstrates the mean specific heat for a given

central density for Newtonian and modified gravity. As we
see, the effect of modified gravity is more prominent at high
densities, as expected from the mass–radius curve in Fig. 1.
In modified gravity, the mean specific heat reaches lower
values than in the Newtonian case for the same temperature.
This is exactly the reason why WDs cool down faster in
Palatini gravity with respect to the Newtonian one.
Finally, we have reexamined all necessary ingredients to

improve our model of the WDs’ cooling process. In our
previous work [61], we studied a very simple cooling
model with only the thermal energy of the star taken into
account. Our current improvement is to include its depend-
ence on the Debye temperature and the ratio of Coulomb to
thermal energy as well as incorporating the crystallization
process into the cooling model. Thus, we have calculated
the latent heat energy resulting from these processes, which
contributes to the luminosity. Figure 6 shows the cooling
age of the white dwarfs under modified gravity. Because
modified gravity affects the dense WDs, the cooling
process is shortened with respect to the Newtonian model.
Figure 7 shows the surface luminosity of the WD as a
function of time. The more massive the WD, the quicker
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decrease in luminosity. Moreover, Fig. 8 shows the cooling
timescale when the crystallization is taken into account in
the internal processes of the WD. Notice that in general,
crystallization prolongs the full cooling process because of
the presence of extra energy in the form of latent heat,
which needs to be radiated away from the star’s surface.
This happens to be true irrespective of the gravity model
and in this figure, we only show the case with
α ¼ −2 × 1013 cm2. However, as already discussed, modi-
fied gravity shortens the cooling process. This is a wanted
feature in order to explain white dwarfs “older than the
Universe.” Notice that the effect is even more prominent in
the case of low-mass WDs, making that in the case of
Newtonian physics one can deal with extremely old WDs
[64] since none of the well-known and accepted scenarios
[65] was helpful to explain this peculiar phenomenon.
Palatini gravity and other theories modifying GR and its
nonrelativistic limit can provide answers to this issue.
We also want to mention a few assumptions we have

considered, which should be taken into account in order to
improve the cooling models. Firstly, we have studied white
dwarfs and their cooling processes in the framework of the
nonrelativistic limit of gravitational proposals: Newtonian
and nonrelativistic limit of Palatini fðRÞ gravity. This is so
because generally white dwarfs are big in size and so
Newtonian treatment is valid as opposed to the case for
small objects like neutron stars. However, it was shown that
relativistic effects do also have consequences on the
physics of these objects, therefore our next step could be
to consider full relativistic theories [66,67]. Moreover,
because we have examined a spherically symmetric star,
we have neglected rotation [68] and magnetic fields
[69,70], which can have also a crucial contribution to
the observational features and internal properties of the
white dwarfs like the pulsation. Apart from it, we have used
the Chandrasekhar equation of state that is temperature
independent; thus a more realistic matter description will be
also required in our next steps [71,72]. Moreover, the
effects of gravity on the equation of state should be
also taken into account in order to deal with a fully
consistent equation describing a star at the statistical
equilibrium [44].

Let us notice that it is the first time in the literature that
the influence of gravity on the specific heat, Debye
temperature, and crystallization process has been reported.
This property can also be significant in the case of solid-
state physics as well as in Earth science. Recently, there
were experiments performed in laboratories in which the
extreme conditions of the Earth’s core were recreated [73].
It allowed studying the properties and behavior of iron, the
main element of the terrestrial planets’ cores, under high
pressures and temperatures. Although the modified effects
can be clearly neglected in weak fields, such as while we
deal with the Earth’s laboratories [36], they can be
important in the Earth’s and stellar’s interiors, as evident
in the works of some of us [37,38,74] (see review, e.g.,
[34]). It would be intriguing to use our findings to under-
stand the gravitational interaction in dense environments
because modified gravity was shown to affect the Earth’s
core description [36–38]. Notice that the microphysics
description of the materials, which the Earth composes of,
in the given range of temperature and pressure is better
understood, providing higher accuracy and comparison
with the seismic [75] or neutrino [76] data. Apart from
this, taking some of the mentioned physics into account,7

our findings can be used to test the existing proposals of
gravitational theory against the growing data of white
dwarfs [77,78]. We are working on these ideas and will
present the results in future works.
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