
A&A 675, A4 (2023)
https://doi.org/10.1051/0004-6361/202244958
c© The Authors 2023

Astronomy
&Astrophysics

BeyondPlanck: end-to-end Bayesian analysis of Planck LFI Special issue

BeyondPlanck

IV. Simulations and validation

M. Brilenkov1,?, K. S. F. Fornazier2, L. T. Hergt3, G. A. Hoerning2, A. Marins2, T. Murokoshi4, F. Rahman5,
N.-O. Stutzer1, Y. Zhou6, F. .B. Abdalla2,7,8,9, K. J. Andersen1, R. Aurlien1, R. Banerji1, A. Basyrov1, A. Battista10,

M. Bersanelli11,12,13, S. Bertocco23, S. Bollanos10, L. P. L. Colombo11,13, H. K. Eriksen1 , J. R. Eskilt1, M. K. Foss1,
C. Franceschet11,13, U. Fuskeland1, S. Galeotta23, M. Galloway1, S. Gerakakis10, E. Gjerløw1, B. Hensley15,

D. Herman1, T. D. Hoang16, M. Ieronymaki10, H. T. Ihle1, J. B. Jewell17, A. Karakci1, E. Keihänen18,19,
R. Keskitalo20, G. Maggio23, D. Maino11,12,13, M. Maris23, S. Paradiso11, B. Partridge21, M. Reinecke22,
A.-S. Suur-Uski18,19, T. L. Svalheim1, D. Tavagnacco23,14, H. Thommesen1, M. Tomasi11,12, D. J. Watts1,

I. K. Wehus1, and A. Zacchei23

(Affiliations can be found after the references)

Received 12 September 2022 / Accepted 2 April 2023

ABSTRACT

End-to-end simulations play a key role in the analysis of any high-sensitivity cosmic microwave background (CMB) experiment, providing high-
fidelity systematic error propagation capabilities that are unmatched by any other means. In this paper, we address an important issue regarding
such simulations, namely, how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained
realization derived from the data or as a random realization independent from the data. We refer to these as posterior and prior simulations, respec-
tively. We show that the two options lead to significantly different correlation structures, as prior simulations (contrary to posterior simulations)
effectively include cosmic variance, but they exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify
fundamentally different types of uncertainties. We argue that as a result, they also have different and complementary scientific uses, even if this
dichotomy is not absolute. In particular, posterior simulations are in general more convenient for parameter estimation studies, while prior simula-
tions are generally more convenient for model testing. Before BeyondPlanck, most pipelines used a mix of constrained and random inputs and
applied the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck
represents the first end-to-end CMB simulation framework that is able to generate both types of simulations and these new capabilities have
brought this topic to the forefront. The BeyondPlanck posterior simulations and their uses are described extensively in a suite of companion
papers. In this work, we consider one important applications of the corresponding prior simulations, namely, code validation. Specifically, we
generated a set of one-year LFI 30 GHz prior simulations with known inputs and we used these to validate the core low-level BeyondPlanck
algorithms dealing with gain estimation, correlated noise estimation, and mapmaking.
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1. Introduction

High-fidelity end-to-end simulations play a critical role in the
analysis of any modern cosmic microwave background (CMB)
experiment for at least three important reasons. Firstly, during
the design phase of the experiment, simulations are used to
optimize and forecast the performance of a given experimen-
tal design and ensure that the future experiment will achieve its
scientific goals (e.g., LiteBIRD Collaboration 2023). Secondly,
simulations are essential for validation purposes, since they may
be used to test data-processing techniques as applied to a real-
istic instrument model. Thirdly, realistic end-to-end simulations
play an important role in bias and error estimations for tradi-
tional CMB analysis pipelines.

Simulations played a particularly important role in the data
reduction of Planck and massive efforts were invested in imple-
menting efficient and re-usable analysis codes that were gen-
erally applicable to a wide range of experiments. This work
started with the LevelS software package (Reinecke et al. 2015)
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and culminated with the Time Ordered Astrophysics Scalable
Tools1 (TOAST), which was explicitly designed to operate in
a massively parallel high-performance computing environment.
TOAST was used to produce the final generations of the Planck
Full Focal Plane (FFP) simulations (Planck Collaboration XII
2016), which served as the main error propagation mechanism in
the Planck 2015 and 2018 data releases (Planck Collaboration I
2016, 2020).

For Planck, generating end-to-end simulations have repre-
sented (by far) the dominant computational cost of the entire
experiment, accounting for 25 million CPU-hrs in the 2015 data
release alone. In addition, the production phase required massive
amounts of human effort, in terms of preparing the inputs, exe-
cuting the runs, and validating the outputs. It is of great interest
for any future experiment to optimize and streamline this simula-
tion process, and reuse both validated software and human work
whenever possible.

In this respect, the BeyondPlanck end-to-end Bayesian
analysis framework (BeyondPlanck Collaboration 2023) offers
a novel approach to generating CMB simulations. While the
1 https://github.com/hpc4cmb/toast
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primary goal of this framework is to draw samples from a full
joint posterior distribution for analytical purposes, it is useful to
note that the foundation of this approach is simply a general and
explicit parametric model for the full time-ordered data (TOD).
When exploring the full joint posterior distribution, this model
is compared with the observed data in the TOD space. The anal-
ysis phase is as such numerically equivalent to producing a large
number of TOD simulations and comparing each of these with
the actual observed data. In this framework, each step of the anal-
ysis and simulation pipelines are thus fully equivalent, and the
primary difference is simply based on whether the input model
parameters are assumed to be constrained by the data or not.

This latter observation is in fact a key point regarding end-
to-end simulations for CMB experiments in general, and a main
goal of the current paper is to clarify the importance of choosing
input parameters for a given simulation appropriately. Specifi-
cally, we argue in this paper that two fundamentally different
choices are available: we can either choose parameters that are
constrained directly by the observed data (as is traditionally done
for the CMB Solar dipole or astrophysical foregrounds) or we
can choose parameters that are independent from the observed
data (as is traditionally done for CMB fluctuations or instrumen-
tal noise). We further argue that this choice will have direct con-
sequences for the specific scientific questions the resulting sim-
ulations are optimized to address.

It is important to note that these ideas were discussed
broadly, but not systematically, within the Planck community
before building the FFP simulations. For instance, one proposal
was to base the large-scale CMB temperature fluctuations at ` ≤
70 from constrained WMAP realizations (Bennett et al. 2013),
and thereby integrate knowledge about the real sky into the sim-
ulations. Another proposal was to use the actually observed LFI
gain measurements to generate the simulations. A third and long-
standing discussion has revolved around which values to adopt
for the CMB Solar dipole.

The BeyondPlanck framework offers a novel systematic
view on these questions, as our Bayesian approach provides for
the first time statistically well-defined constrained realizations
for all parameters in the sky model – and not just a small sub-
set. Furthermore, when comparing the correlation structures that
arise from the posterior samples with those derived from tra-
ditional simulations, obvious and important differences appear,
both in terms of the frequency maps (Basyrov et al. 2023) and
CMB maps (Colombo et al. 2023).

The first main goal of the current paper is to explain these
differences intuitively and in that process, we introduce the con-
cepts of “posterior simulations” and “prior simulations”2. Pos-
terior simulations are random samples drawn from P(ω|d), and
represent simulations that are constrained by the observed data;
these are thus identical to the posterior samples described by
BeyondPlanck Collaboration (2023). In contrast, prior simula-
tions drawn from a prior distribution, P(ω), and are, as such,
unconstrained by the data. We note that a similar distinction has
recently been made in terms of a so-called “Bayesian workflow”
by Betancourt3 and Gelman et al. (2020).

The second main goal of this paper is simply to demonstrate
in practice how the BeyondPlanck machinery may be used
to generate prior simulations, on a similar footing as TOAST,
and we will use these simulations for one important application,

2 Other possible names could be “Bayesian” and “frequentist”
simulations.
3 https://betanalpha.github.io/assets/case_studies/
principled_bayesian_workflow.html

namely code validation. As discussed by Galloway et al. (2023a)
and Gerakakis et al. (2023), the Commander code that forms the
computational basis of the BeyondPlanck pipeline is explic-
itly designed to be re-used for a wide range of experiments. It
is therefore critically important that this implementation is thor-
oughly validated with respect to statistical bias and uncertainties.
We do so by analyzing well-controlled simulations in this paper.

At the same time, we note that the use of prior simulations is
not a requirement for the validation study, as any one of the pos-
terior simulations would have served equally well as an input
for the TOD generation process. Rather, our main motivation
for using prior simulations for this particular task is simply that
the posterior simulations have already been used extensively in
many companion papers.

The rest of the paper is organized as follows. We first provide
a brief overview of the BeyondPlanck framework and data
model in Sect. 2. In Sect. 3, we introduce the concept of pos-
terior and prior simulations, and we discuss their difference. In
Sect. 4, we describe the input parameters and simulation config-
uration used in this paper, before using these simulations to vali-
date the BeyondPlanck implementation in Sect. 5. We present
our conclusions in Sect. 6.

2. BeyondPlanck data model and Gibbs sampler

As described in BeyondPlanck Collaboration (2023) and its
companion papers, the single most fundamental component of
the BeyondPlanck framework is an explicit parametric model
that is to be fitted to raw TOD that includes instrumental, astro-
physical, and cosmological parameters. For the current analysis,
this model takes the following form:

d j,t = g j,tPtp, j

Bsymm
pp′, j

∑
c

Mc j(βp′ ,∆bp
j)ac

p′ + B4π
j,t sorb

j + Basymm
j,t sfsl

t


(1)

+ a1 Hzs1 Hz
j + ncorr

j,t + nw
j,t,

where p denotes a single pixel on the sky, and c represents one
single astrophysical signal component. Furthermore, d j,t denotes
the measured data; g j,t denotes the instrumental gain; Ptp, j is a
pointing matrix; Bpp′, j denotes beam convolution with either the
(symmetric) main beam, the (asymmetric) far sidelobes, or the
full 4π beam response; Mc j(βp,∆bp) denotes the so-called mix-
ing matrix, which describes the amplitude of component c as
seen by radiometer j relative to some reference frequency when
assuming some set of bandpass correction parameters ∆bp; ac

p is
the amplitude of component c in pixel p; sorb

j,t is the orbital CMB
dipole signal, including relativistic quadrupole corrections; sfsl

j,t

denotes the contribution from far sidelobes; s1 Hz
j,t denotes the

contribution from electronic 1 Hz spikes; ncorr
j,t denotes correlated

instrumental noise; and nw
j,t is uncorrelated (white) instrumental

noise. The sky model, denoted by the sum over components,
c, in the above expression may be written out as an explicit
sum over CMB, synchrotron, free-free, AME, thermal dust, and
point source emission, as described by Andersen et al. (2023),
Svalheim et al. (2023b).

On the instrumental side, the correlated noise is associated
with a covariance matrix, Ncorr = 〈ncorr(ncorr)T 〉, which may
be approximated as piecewise stationary, and with a Fourier
space power spectral density (PSD), N f f ′ = P( f )δ f f ′ , that for
BeyondPlanck consists of a sum of a classic 1/ f term and a
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log-normal term (Ihle et al. 2023),

P( f ) = σ2
0

[
1 +

(
f

fknee

)α]
+ Ap exp

−1
2

(
log10 f − log10 fp

σdex

)2 . (2)

We define ξn = {σ0, α, fknee, Ap} as a composite parameter that is
internally sampled iteratively through an individual Gibbs step,
as described by Ihle et al. (2023); the peak location and width
parameters of the log-normal term, fp and σdex, are currently
fixed at representative values.

Denoting the set of all free parameters in Eqs. (1)–(2) by ω,
we can simplify Eq. (1) symbolically to

d j,t = stot
j,t (ω) + nw

j,t. (3)

The BeyondPlanck approach to CMB analysis simply
amounts to mapping out the posterior distribution as given by
Bayes’ theorem,

P(ω | d) =
P(d | ω)P(ω)

P(d)
∝ L(ω)P(ω), (4)

where P(d | ω) ≡ L(ω) is called the likelihood, P(ω) is some set
of priors, and P(d), the so-called evidence, is effectively a nor-
malization constant for purposes of evaluating ω. The likelihood
is easily defined, and given by Eq. (3) under the assumption that
nw

j is Gaussian distributed,

−2 lnL(ω) =
(
d − stot(ω)

)t
N−1

wn

(
d − stot(ω)

)
. (5)

The prior is not as well defined, and we adopt in prac-
tice a combination of informative and algorithmic priors in
the BeyondPlanck analysis (see BeyondPlanck Collaboration
(2023) for an overview).

To explore this distribution by Markov chain Monte Carlo,
we use the following Gibbs sampling chain (BeyondPlanck
Collaboration 2023),

g ← P(g | d, ξn, a1Hz, ∆bp, a, β, C`), (6)

ncorr ← P(ncorr | d, g, ξn, a1Hz, ∆bp, a, β, C`), (7)

ξn ← P(ξn | d, g, ncorr, a1Hz, ∆bp, a, β, C`), (8)

a1Hz ← P(a1Hz | d, g, ncorr, ξn, ∆bp, a, β, C`), (9)

∆bp ← P(∆bp | d, g, ncorr, ξn, a1Hz, a, β, C`), (10)

β ← P(β | d, g, ncorr, ξn, a1Hz, ∆bp, C`), (11)

a ← P(a | d, g, ncorr, ξn, a1Hz, ∆bp, β, C`), (12)

C` ← P(C` | d, g, ncorr, ξn, a1Hz, ∆bp, a, β ), (13)

where the symbol ← denotes setting the variable on the left-
hand side equal to a sample from the distribution on the
right-hand side. In these expressions, it is worth noting that
not all conditioned parameters are explicitly used in each
sampling steps. For instance, the CMB power spectrum only
depends conditionally on the CMB map and, therefore, P(C` |

d, g, ncorr, ξn, a1 Hz,∆bp, a, β) = P(C` |aCMB), as, discussed by
Wandelt et al. (2004), Eriksen et al. (2004). However, aCMB

depends on many of the additional variables and the above full
notation makes the “correlations-through-conditionals” Gibbs
sampling nature of the algorithm explicit.

3. Posterior versus prior simulations

End-to-end TOD simulations have become the de facto industry
standard for producing robust error estimates for high-precision
experiments (e.g., Planck Collaboration XII 2016), and the data
model defined in Eqs. (1)–(2) represents a succinct simulation
recipe for producing such simulations: If ω is assumed to be per-
fectly known, then these equations can be evaluated in a forward
manner without the need for parameter estimation or inversion
algorithms. Then, the only stochastic terms are the correlated and
white noise, both of which can be easily generated by a com-
bination of standard random Gaussian number generators and
Fourier transforms.

However, in practice ω is of course not perfectly known and
the matter of precisely how ω is specified has direct and strong
implications regarding what kind of information the resulting
simulations can offer the user; for an example of this within
the context of Planck LFI, we refer to Basyrov et al. (2023). In
short, the key discriminator is whether ω is defined using real
observed data (and, in practice, drawn from the posterior distri-
bution, P(ω | d)) or whether it is drawn from a data-independent
hyper-distribution, for instance: informed by theoretical models
and/or ground-based laboratory measurements. We will refer to
these two approaches as “posterior-” and “prior-based,” respec-
tively, indicating whether or not they are conditioned on the true
data in question.

We note that both posterior and prior simulations specifi-
cally refer to time-ordered data in the current paper – and not to
pixelized maps or higher-level products. That is to say, we dis-
tinguish between simulation pipelines, which transform ω into
timelines, and analysis pipelines, which transform timelines into
higher ordered products, such as maps and power spectra.

3.1. Bayesian versus frequentist statistics

Before comparing the two simulation types through a few
worked examples, it is useful to recall the fundamental differ-
ence between Bayesian and frequentist statistics, which may be
summarized as follows: In frequentist statistics, the model, M,
and its parameters, ω, are considered to be fixed and known,
while the data, d, are considered to be the main uncertain quan-
tity. In Bayesian statistics, on the other hand, d is assumed to
be perfectly known and essentially defined by a list of numbers
recorded by a measuring device, while ω is assumed to be the
main unknown quantity.

This difference has important consequences for how each
framework typically approaches statistical inference, and which
questions they are most suited to answer. This is perhaps most
easily illustrated through their most typical mode of operations.
First, the classical frequentist approach to statistical inference is
to construct an ensemble of simulated data sets, di, each with
parameters drawn independently from M(ω). The next step is
to define some statistic, γ(di) : RN → R, that isolates and
highlights the important piece of information that the user is
interested in; widely used CMB examples include χ2 statis-
tics, angular power spectrum statistics, or non-Gaussianity statis-
tics. Finally, we go on to compute γ both for the simulations
and the actual data and determine the relative frequency for
which γ(dreal) < γ(di), which is often called the p-value or
“probability-to-exceed” (PTE). Values between about 0.025 and
0.975 are taken to suggest that the data are consistent with the
model, while more extreme values indicate a discrepancy.

Given this prescription, it is clear that the frequentist
approach is particularly suited for model testing applications; it
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intrinsically and directly addresses the question of whether the
data are consistent with the model. As such it has been widely
used in the CMB field for instance for studies of non-Gaussianity
and isotropy. In this case, the null-hypothesis is easy to spec-
ify, namely that the universe is isotropic and homogeneous, and
filled with Gaussian random fluctuations drawn from a ΛCDM
universe with given parameters. Agreement between this null-
hypothesis and the real observations is then typically assessed
by computing the p-value of some preferred statistic.

Establishing some statistic that shows that the observed data
are inconsistent with this hypothesis would constitute evidence
of new physics and is, as such, a high-priority scientific target.
In contrast, Bayesian statistics takes a fundamentally different
approach to statistical inference. In this case, we consider ω to
be a stochastic and unknown quantity and we want to under-
stand how the observed data constrains ω. The most succinct
summary of this is the posterior probability distribution itself,
P(ω | d), and the starting point for this framework is therefore
Bayes’ theorem, as given in Eq. (4). Thus, the majority of appli-
cations of modern Bayesian statistics simply amounts to map-
ping out P(ω | d) as a function of ω by any means necessary.

At the same time, it is important to note that the likelihood
L(ω) = P(d | ω) on the right-hand side of Eq. (4) is a fully
classical frequentist statistic, in which ω is assumed to be per-
fectly known and the data are uncertain. Still, it is important to
note that the free parameter in L(ω) is indeed ω, not d, and L
itself is really just a frequentist statistic that measures the over-
all goodness-of-fit between the data and the model. This statis-
tic may then be used to estimate ω within a strictly frequentist
framework. One popular example of this within the CMB field
is the so-called profile likelihood.

Likewise, the Bayesian approach is also able to address the
model selection problem, and this is typically done using the
evidence factor, P(d), in Eq. (4). The importance of this fac-
tor becomes obvious when explicitly acknowledging that all
involved probability distributions in Eq. (4) actually depend on
the overall model M, and not only the individual parameter
values:

P(ω | d,M) =
P(d | ω,M)P(ω | M)

P(d | M)
. (14)

Mathematically, P(d | M) is simply given by the average likeli-
hood integrated over all allowed parameter values, and classical
Bayesian model selection between modelsM1 andM2 proceeds
simply by evaluating P(d | M1)/P(d | M2); the model with the
higher evidence is preferred.

In summary, the foundational assumptions underlying fre-
quentist and Bayesian methods are different and complementary,
and they fundamentally address different questions. Frequen-
tist statistics are ideally suited to address model testing prob-
lems (e.g., “is the observed CMB sky Gaussian and isotropic?”),
while Bayesian statistics are ideally suited to address parameter
estimation problems (e.g., what the best-fit ΛCDM parameters
would be). At the same time, this dichotomy is by no means
absolute and either framework is fully capable of addressing
both types of questions if they are carefully addressed.

3.2. Constrained versus random input parameters in CMB
simulations

We now return to the issue raised in the introduction to
this section, namely how to properly choose ω for CMB
inference based on end-to-end simulations. As discussed by
Basyrov et al. (2023), essentially all CMB analysis pipelines

prior to BeyondPlanck have adopted a mixture of data-
constrained and data-independent parameters for this purpose.
Key examples of the former are the CMB Solar dipole and
Galactic foregrounds, both of which are strongly informed
by real measurements. Correspondingly, classical examples of
the latter are CMB fluctuations, which are typically drawn as
Gaussian realizations from a ΛCDM power spectrum, and
instrumental noise, which is often based on laboratory measure-
ments. In our notation, these simulations qualify thus neither as
pure posterior-based nor pure prior-based, but rather as a mixture
of the two.

In contrast, each sample of ω produced by the
BeyondPlanck Gibbs chain summarized in Eqs. (6)–(13)
represents one possible simulated realization in which all sub-
parameters in ω are determined exclusively by the real posterior
distribution. This not only refers to the CMB dipole and Galactic
model, but also those parameters that are traditionally chosen
from external sources in classical pipelines, such as the CMB
anisotropies and the specific noise realization.

The difference between these two types of simulation inputs
is illustrated in Fig. 1, which compares ten independent prior
time-domain realizations (red curves) with ten independent pos-
terior realizations (black curves). The top and bottom panels
show the correlated noise ncorr and the sky model ssky, respec-
tively, both plotted as a function of time. Starting with the fre-
quentist simulations, we see that these are entirely uncorrelated
between realizations and scatter randomly with some model-
specific mean and variance. In particular, the frequentist simu-
lations include so-called cosmic variance, that is, independent
realizations have different CMB and noise amplitudes and
phases, even if they are drawn from the same underlying stochas-
tic model. In contrast, posterior simulations do not include cos-
mic variance, but rather focus exclusively on structures in the
real data. For the sky signal component shown in the top panel
of Fig. 1, this is seen in terms of two different aspects. First,
the structure of all ten realizations follow very closely the same
overall structure, and this is defined by the specific CMB pat-
tern of the real sky. However, they also explicitly account for
the uncertainty in the sky value at each pixel, and this is seen
by the varying width of the black band. In the middle of the
plot, the width is small, and this implies that the sky has been
aptly measured here (due to deep scanning), while along the
edges of the plot the width is larger and this implies that the
sky has not been aptly measured. The variation between pos-
terior simulations thus directly quantify the uncertainty of the
true data. Intuitively speaking, this point may be summarized
as follows: Uncertainties measured by frequentist simulations
quantify the expected variations as observed with a random
instrument in a random universe, while posterior simulations
quantify the expected variations of the real instrument in the real
universe.

These intuitive differences translate directly into both qual-
itatively and quantitatively different ensemble properties for
the resulting simulations, and correspondingly also into dif-
ferent resulting error estimates. As a real-world illustration of
this, Fig. 2 shows slices through the empirical low-resolution
polarization covariance matrix computed for each of the three
Planck LFI frequency channels using three different genera-
tions of LFI simulations, namely (from left to right columns):
Planck 2018 (Planck Collaboration II 2020), Planck PR4
(Planck Collaboration Int. LVII 2020), and BeyondPlanck
(BeyondPlanck Collaboration 2023). Row sections show results
for the 30, 44, and 70 GHz channels, respectively, and within
each section the two rows show the QQ and UQ segments
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Fig. 1. Comparison of ten prior (red) and ten posterior (black) simulations in time-domain. Each line represents one independent realization of the
respective type. The top panel shows sky model (i.e., CMB) simulations and the bottom panel shows correlated noise simulations.

of the full matrix, sliced through Stokes Q pixel number 100,
marked in gray in the upper right quadrant. Each covariance
matrix is computed by first downgrading each simulation to a
HEALPix4 (Górski et al. 2005) resolution of Nside = 8, and aver-
aging the outer product over all available realizations; we refer to
Basyrov et al. (2023), Colombo et al. (2023) for further details.
Effectively, these matrices visually summarize the map-space
uncertainty estimates predicted by each simulation set.

Starting with the Planck 2018 simulations, the most strik-
ing observation is that these empirical matrices are very noisy
for all three frequency channels. This is partly a reflection of
the fact that only 300 simulations were actually constructed,
and this leads to a high Monte Carlo uncertainty. Specifically,
the uncertainty due to a finite number of simulations scales as
1/
√

Nsim, which suggests a 6% contribution for 300 simulations.
However, because these simulations are prior-based, that number
applies to all sources of variations between realizations, includ-
ing white noise, instrumental effects, and sky-signal variations.
Furthermore, the gains that were assumed when generating these
simulations exhibited significantly less structure than the real
observations. In summary, there are relatively little common
structures between the various realizations, either from the astro-
physical sky, the instrumental noise, or the gain, and the cor-
responding covariance structures are therefore weak. Visually
speaking, perhaps the most notable feature is a positive correla-
tion from correlated noise along the scanning direction that passes
through the sliced pixel seen in the upper right quadrant, but these
are significantly obscured by Monte Carlo uncertainties.

Proceeding to the Planck PR4 simulations summarized in
the middle column, we now see very strong coherent struc-
tures for the 30 GHz channel, while the 44 and 70 GHz chan-
nels behave similarly to the 2018 case. The explanation for this
qualitative difference is the Planck PR4 calibration algorithm;
in this pipeline, the 30 GHz channel is calibrated independently
without the use of supporting priors, while the 44 and 70 GHz
channels are calibrated by using the 30 GHz channel as a polar-
ized foreground prior. The net effect of this independent cali-
bration procedure is a very high calibration uncertainty for the

4 https://healpix.jpl.nasa.gov

30 GHz channel, and these couple directly to the true CMB dipole,
which is kept fixed between all simulations. The result is the
familiar large-scale pattern seen in this figure, which has been
highlighted by several previous analyses as a particularly difficult
mode to observe with Planck (e.g., Planck Collaboration II 2020;
Gjerløw et al. 2023; Watts et al. 2023).

Turning to the BeyondPlanck simulations summarized in
the right column, we now see coherent and signal-dominated
structures across the full sky in all frequency channels. A part
of this is simply due to more realizations than for the other
two pipelines (in this case, 3200), but even more importantly,
the simulations are now entirely data-driven. That is, they corre-
spond to the black curves in Fig. 1, while the previous pipelines
correspond to the red curves. In practice, this has two main
effects. First, it implies that the total parameter volume that
needs to be explored by Monte Carlo sampling is intrinsi-
cally smaller, simply because the posterior distribution does not
include cosmic variance; the simulations only need to describe
our instrument and universe – and not simply any instrument and
universe, and this is a much smaller sub-set. Second, and even
more importantly, the posterior simulations account naturally
for non-linearity between the various parameters, and these are
very often the dominant contributions in these distributions. As
a concrete example, if the gain happens to scatter either high
or low during a given time period, then the total uncertainty
estimate will be particularly sensitive to the CMB dipole dur-
ing the same time period, and it will excite a correlation struc-
ture in these plots that is intimately connected to the satellite
scanning strategy. Thus, if one chooses a gain profile that is
independent of other parameters, then those real uncertainties
will not be properly accounted for in the simulation set: intu-
itively speaking, the hot and cold spots in the covariance matri-
ces shown in Fig. 2 will either appear in the wrong places or
be suppressed when averaging over independent realizations. In
general, specifying the instrumental model at a sufficiently real-
istic level represents a real challenge for frequentist simulations,
and great care is required in order to capture the full error budget.
This task is considerably simplified in the Bayesian approach,
as each instrumental parameter is defined directly from the data
themselves.
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QQ100FFP 30 QQ100/5PR4 30 QQ100BP 30

UQ100FFP 30 UQ100/5PR4 30 UQ100BP 30

QQ100FFP 44 QQ100DR4 44 QQ100BP 44

UQ100FFP 44 UQ100PR4 44 UQ100BP 44

QQ100FFP 70 QQ100PR4 70 QQ100BP 70

UQ100FFP 70 UQ100PR4 70 UQ100BP 70

−0.05 0.05µK2

Fig. 2. Single column of the low-resolution 30 (top section), 44 (middle section), and 70 GHz (bottom section) frequency channel covariance
matrix, as estimated from 300 LFI DPC FFP10 frequentist simulations (left column); from 300 PR4 prior simulations (middle column); and from
3200 BeyondPlanck posterior simulations (right column). The selected column corresponds to the Stokes Q pixel number 100 marked in gray,
which is located in the top right quadrant. All covariance matrices are constructed at Nside = 8. Note: the Planck PR4 30 GHz covariance slice has
been divided by a factor of 5 and thus it is even stronger than the color scale naively implies.

4. Simulation specification

Returning to the data model summary in Sect. 2, we note that
the Commander3 code described by Galloway et al. (2023a),
and used by the BeyondPlanck project to perform Bayesian

end-to-end analysis of the Planck LFI data, is able to produce
both prior and posterior simulations essentially without modi-
fications; the only question is whether the parameters used to
generate the TOD, ω, are drawn from the posterior distribution,
or whether they are selected from a data-independent hyper-
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distribution. Choosing which type of simulations to generate is
thus only a matter of selecting proper initialization values in the
Commander3 parameter file.

In this paper, we demonstrate the frequentist mode of oper-
ation by generating a set of classical frequentist simulations
with Commander3, and we then use these to validate the novel
low-level processing algorithms introduced by Keihänen et al.
(2023), Ihle et al. (2023), Gjerløw et al. (2023) for mapmaking,
correlated noise estimation, and gain estimation, respectively.

We note that the original BeyondPlanck analysis required
670 000 CPU-hours to generate 4000 full Gibbs samples for
the full LFI dataset, which took about three months of run-
time to complete. In the current paper, we are primarily inter-
ested in validating the low-level algorithms themselves, and we
therefore chose to consider only one year of 30 GHz observa-
tions in the following (corresponding to about 10 000 Planck
pointing periods (PIDs), each lasting for about one hour;
Planck Collaboration I 2014), rather than the full LFI dataset,
and this reduces the computational cost from 169 to 2.5 CPU-
hours per Gibbs sample (Galloway et al. 2023a). As a result, we
are able to produce individual chains with 10 000 samples within
a matter of days, rather than months or years, which is useful
for convergence analyses. This also reduces the total volume of
the TOD themselves (not including pointing, flags, etc.) from
638 GB to 22 GB, and the simulations may therefore be run on a
much broader range of hardware. In fact, subsets of the follow-
ing simulations have been produced on more than ten different
computing systems all over the world, using both AMD and Intel
processors (e.g., Intel E5-2697v2 2.7 GHz, Intel Xeon E5-2698
2.3 GHz, Intel Xeon W-2255 3.7 GHz, AMD Ryzen 9 3950X
2.2 GHz), with between 128 GB and 1.5 TB RAM per node, and
using both Intel and GNU compilers5.

Given that we will only consider low-level processing of the
30 GHz channel, we simplify the data model in Eq. (1) to

dsim
j,t = g j,tPtp, jB

symm
pp′, j acmb

p′ + Basymm
pp′, j sorb

j,t + +ncorr
j,t + nw

j,t, (15)

= stot
j,t + ncorr

j,t + nw
j,t. (16)

Here, we only included one single sky component, namely the
CMB, and we ignored sub-dominant effects such as far sidelobe
corrections, 1 Hz electronic spikes, etc. As such, this configura-
tion provides a test of the gain, noise estimation, and mapmaking
parts of the full algorithm, but neglecting the component separa-
tion or cosmological parameter estimation.

The CMB sky realizations used in the following anal-
ysis are drawn from the best-fit Planck 2018 ΛCDM
model (Planck Collaboration V 2020), using the HEALPix6

(Górski et al. 2005) synfast utility. All instrumental parame-
ters are drawn from different realizations of the BeyondPlanck
ensemble presented in BeyondPlanck Collaboration (2023) and
these are taken as true input values in the following.

For the noise terms, we drew a random Gaussian realization
of n j,t = ncorr

j,t + nw
j,t with the noise PSD model given in Eq. (2).

This was done independently for each Planck pointing ID (PID)
and the noise PSD parameters thus vary over time with the same
structure as the real observations.

5 The research presented in this paper was undertaken as a part of the
Master- and PhD-level course called “AST9240 – Cosmological com-
ponent separation” in 2021 at the University of Oslo, and individual
students produced and analyzed simulations in their home institutions.
6 http://healpix.jpl.nasa.gov

5. Validation of low-level processing algorithms

To validate the noise and gain estimation and mapmak-
ing steps in Commander3, we analyzed the prior simulations
described above with the same Bayesian framework as used
for the main BeyondPlanck processing and we compared
the output marginal posterior distributions with the known
true inputs. To quantify both biases and the accuracy of the
uncertainty estimates, we adopted the following normalized
residual,

δω =
µω − ω

in

σω
, (17)

where µω and σω are the posterior mean and standard deviation
for parameter ω. For a truly Gaussian posterior distribution with
no bias and perfect uncertainty estimation, this quantity should
be distributed according to a standard normal distribution with
zero mean and unit variance, N(0, 1), while a non-zero value of
δ indicates a bias measured in units of σ. It is of course impor-
tant to note that the full data model in Eq. (1) is highly non-linear
due to the presence of the gain. Therefore, the deviations from
N(0, 1) at some level are fully expected, in particular for signal-
dominated quantities. Still, we find that δ serves as a useful qual-
ity monitor.

Unless otherwise noted, the main results presented in the
following are derived from a single Markov chain comprising
10 000 samples. Where it proves useful for convergence and
mixing assessment, we also used shorter and independent chains,
typically with 1000 samples in each chain.

5.1. Markov auto-correlations

We are also interested in studying the statistical properties of
individual Markov chains in terms of correlation lengths, degen-
eracies, and convergence. We define the Markov chain auto-
correlation for a given chain as:

ρω(∆) =

〈(
ωi − µω
σω

) (
ωi+∆ − µω

σω

)〉
, (18)

where i denotes Gibbs sample number, and ∆ is a chain lag
parameter that denotes the sample separation.

Figure 3 shows the auto-correlation for a typical set of
parameters. The top four panels display: (1) a single CMB map
pixel (in T , Q, and U); (2) a single correlated noise map pixel
(in T , Q, and U); (3) the CMB temperature quadrupole moment,
a2,0; and (4) the gain for a single PID. These all have relatively
short correlation lengths, which indicates that we are likely to
produce robust results for these parameters.

In contrast, the parameters in the bottom four panels have very
long correlation lengths, and these correspond to the four corre-
lated noise PSD parameters within a single PID; σ0, fknee, α, and
Ap/σ0. As discussed by Ihle et al. (2023), the introduction of the
log-normal noise term greatly increases degeneracies and corre-
lations among these parameters as compared to a standard 1/ f
noise profile, and this makes a proper estimation of these param-
eters much more expensive. However, it is also important to note
that this is only a challenge regarding the estimation of the indi-
vidual noise PSD parameters. In fact, the full PSD as a function
of frequency, Pn( f ), is insensitive to these degeneracies and that
function is the only thing that is actually propagated to the rest
of the system. This explains why the long correlations seen in the
lower half of the plot do not excite long correlations also among
the (far more important) parameters in the top half of the plot.
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Fig. 3. Auto-correlation function, ρ, for selected parameters in the
model, as estimated from a single chain with 10 000 samples. From top
to bottom, the various panels show (1) one pixel value of the CMB com-
ponent map mCMB; (2) one pixel of the correlated noise map mncorr ; (3)
the temperature quadrupole moment, a2,0; (4) the PID-averaged total
gain g; and (5)–(8) the PID-averaged noise PSD parameters σ0, fknee,
α, and Ap/σ0. In panels with multiple lines, the various colors show
Stokes T , Q, and U parameters. In panels with gray bands, the black
line shows results averaged over all PIDs, and the band shows the 1σ
variation among PIDs. The dashed red line marks a correlation coef-
ficient of 0.1, which is used to define the typical correlation length of
each parameter.

In fact, the single most important parameter in the entire sys-
tem is the CMB map, shown in the first (for individual pixels)
and third (for the quadrupole moment, a2,0) panels. Indeed, the
correlation length is very short or even non-existent for single
pixels. This is primarily due to the fact that this map is strongly
dominated by white noise on a single-pixel scale for the setup
we consider here. As seen in the third panel, the same does not
hold true for the quadrupole moment, in which case the correla-
tion is in fact higher than 0.3 at a lag of ∆ = 25. The main driver
for this is the gain, as shown in the fourth panel. While the gain
is dominated by white noise on short time-scales (as seen by the

quick drop-off between lags of 1 and 2), there is a slow drift
at higher lags. This is caused by a partial degeneracy between
the CMB map (which acts as a calibration source in this frame-
work, anchored by the orbital dipole) and the overall gain. In the
real BeyondPlanck analysis, this degeneracy is mitigated to a
large extent by analyzing all LFI channels jointly, and also by
including WMAP observations to break important low-` polar-
ization degeneracies (Gjerløw et al. 2023; Basyrov et al. 2023).
Still, even with those additions, there are important long-term
drifts in the largest CMB temperature scales, and these have non-
negligible consequences for the statistical significance of low-`
CMB anomalies (Colombo et al. 2023).

5.2. Posterior distribution overview

Next, to build the intuition regarding the full set of recovered
parameters, we show in Fig. 4 the marginal 1D and 2D poste-
rior distributions for a small set of parameters for two different
PIDs. In each panel, the true input values are shown as dashed
lines. The bottom triangle (blue) show posterior results for one
well-behaved PID with good goodness-of-fit statistics, while the
top triangle (orange) shows a less well-behaved case in which
the true input values are at the edge of recovered distributions.
Together, these two cases represent the majority of all PIDs in
terms of overall behaviour.

Overall, the true input parameters are recovered reasonably
well in most cases. One of the parameters that is not as well
recovered is the white noise amplitude, σ0. This parameter is a
special case due to the sampling algorithm currently used in the
BeyondPlanck pipeline. As described by Ihle et al. (2023), σ0
is currently determined as the standard deviation of all pairwise
differences between neighboring time samples divided by

√
2.

While this is a commonly used technique in radio astronomy to
derive an estimate of the white noise that is highly robust against
unmodeled systematic errors, it does not correspond to a proper
sample from the true conditional distribution P(σ0 | d, g, . . .).
In particular, this approach underestimates the true fluctuations
of σ0, which in turn results in the overall uncertainties being
slightly underestimated. This is one of several examples in the
pipeline in which robustness to systematic effects comes at a cost
of statistical rigor. At the same time, it is important to note that
the absolute white noise level is in general very well determined
in these data (Ihle et al. 2023) and a slight under-estimation of
the uncertainty in σ0 has little practical impact on other parame-
ters in the model.

Looking more broadly at the 2D distributions in this figure,
we see that the parameters are split naturally into two groups,
defined by the short and long correlation lengths discussed
above. That is to say, the CMB, correlation noise, and gain
parameters generally exhibit more symmetric distributions than
the noise PSD distributions, which are highly correlated and
non-Gaussian. Once again, this reflects the internal degeneracies
among the noise PSD parameters.

To further illustrate the impact of the slow convergence rate
for several of these parameters, Fig. 5 shows four partial chains,
each with only 1000 samples, for a sub-set of these parameters.
Once again, we see that the input values are reasonably well
recovered for most cases, but each colored subdistribution only
covers a modest part of the full posterior volume.

5.3. Gain validation

In going into greater detail with respect to individual parameters,
we show in Fig. 6 a subset of the estimated gain as a function
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Fig. 4. Recovered posterior distributions for a selected set of parameters from two PIDs and detectors. The contours indicate 68 and 95% confidence
regions, while the dashed lines (in the respective color of the contours) show the true input value of each of the PIDs. The contours below (blue)
and above (orange) the diagonal correspond to PIDs 3003 and 5515, respectively. From left to right along the horizontal axis, columns show (1)–(3)
one arbitrary CMB map pixel in Stokes I, Q, and U; (4)–(6) correlated noise for the same pixel and Stokes parameters; (7) the CMB intensity
quadrupole amplitude a2,0; (8) gain g; and (9)–(12) the four correlated noise parameters, ξn = {σ0, fknee, α, Ap}. Note: the 1D histograms of the first
seven parameters are completely overlapping since these parameters are independent of PID.

of Gibbs iteration for four selected PIDs, that is: one for each
radiometer. The red lines show the true input values. Here, we
visually observe the same behavior as discussed above; on short
time scales, these trace plots are dominated by random fluctua-
tions, while on long time-scales, there are still obvious signifi-
cant drifts.

Figure 7 compares the estimated gain (blue bands) with the
known input (red curves) as a function of PID. The width of
the blue bands indicates the ±1σ confidence region. At least
at a visual level, the two curves agree well, without any obvi-
ous evidence of systematic biases, and the uncertainties appear
reasonable. These observations are made more quantitative in

Fig. 8, which shows histograms of normalized residuals, δg, over
all PIDs. Red lines indicate the standard Gaussian N(0, 1) ref-
erence distribution. Once again, we see that the reconstruction
appears good, as the nominal bias is (at most) 0.36σ, and the
maximum posterior width is 1.36σ. From the shape of the his-
tograms, it is also clear that a significant fraction of these vari-
ations is due to the Monte Carlo sample variance from the long
gain-correlation lengths. Once again, we note that such devia-
tions will decrease as the number of frequency bands included
in the analysis increases, since the Solar CMB dipole, which
is the main calibrator, will be much better constrained with
more observations. The actual gain-correlation lengths found for
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the real BeyondPlanck analysis are shown by Gjerløw et al.
(2023) and they are notably shorter than those of this reduced
simulation.

5.4. Correlated noise posterior validation

Next, we turn to the correlated noise component, and we start
with the specific noise realization, ncorr (the correlated noise PSD
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is the mean sample value and σ is the sample standard deviation. We
then aggregate all of these values into the appropriate histogram. The
red lines are ideal Gaussian distribution for comparison. Each subplot
also lists the aggregate deviation from the expected mean of 0 within
the error bounds.

parameters is discussed separately in Sect. 5.6). To simplify the
visualization, we binned the correlated noise TOD into a sky
map, as illustrated in Fig. 9. The top-left panel shows the true
input correlated noise map (temperature component only), while
the top-right panel shows the corresponding posterior mean (out-
put) map. The bottom-left panel shows the posterior standard
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Fig. 9. Pixel space comparison of reconstructed correlated noise maps in temperature. Top left: true input realization. Top right: estimated posterior
mean (output) map. Bottom left: estimated posterior standard deviation map. Bottom right: normalized residual in units of standard deviations.
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Fig. 10. Histograms of normalized correlated noise residuals, δ for each Stokes parameters (black distributions). For comparison, the dashed red
line shows a standard N(0, 1) distribution.

deviation per pixel and the bottom-right panel shows the nor-
malized residual, δcorr.

A visual inspection of the simulation input and posterior
mean correlated noise maps indicates no obvious differences.
In fact, the normalized residual map in the bottom right panel
of Fig. 9 appears fully consistent with white noise. Once again,
this observation is quantified more accurately in Fig. 10, where
we compare the histogram of δcorr over all pixels with the usual
N(0, 1) distribution for each of the three Stokes parameters. In
each case, the agreement is excellent.

5.5. CMB map validation

Figures 11 and 12 show similar plots for the CMB sky map com-
ponent. Once again, the normalized residual in the bottom right

panel appears fully consistent with white noise over most of the
sky. However, this time, we actually see a power excess in δCMB
around the Ecliptic poles. These features correspond to regions
of the sky that are particularly deeply observed by the Planck
scanning strategy (Planck Collaboration I 2014). As a result of
these deep measurements, the white noise in these regions is
very low, and the total error budget per pixel is far more sen-
sitive to the non-linear contributions in the system, in particular
the coupling between the gain and the Solar dipole.

This effect does of course not only apply to the Ecliptic “deep
fields”, but to all signal-dominated map pixels at some level,
and it therefore also applies to the full-sky CMB map in tem-
perature. This statement is made more quantitative in the left
panel of Fig. 12, where we see that the temperature histogram is
very slightly wider than the reference N(0, 1) distribution. To be
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Fig. 11. Same as Fig. 9, but for the CMB intensity component.
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Fig. 12. Histograms of normalized CMB intensity residuals, δCMB for each Stokes parameters (black distributions). For comparison, the dashed
red line shows a standard N(0, 1) distribution.

specific, the standard deviation of this distribution is about 1.15.
At the same time, the mean of the distribution is consistent
with zero, the non-linear couplings therefore do not introduce a
bias, but only a higher variance. For the noise-dominated Stokes
Q and U parameters, for which gain couplings are negligible
on a per-pixel level, both distributions are perfectly consistent
with N(0, 1).

Figure 13 shows Pearson’s correlation coefficients between
the CMB and correlated noise components for three selected
pixels. Two of the pixels, marked ‘1’ and ‘2’, are located
along the same Planck scanning ring near the Ecliptic plane,
where the Planck scanning strategy is particularly poor. The
third pixel is located far away from these, and on a different
scanning ring. Here, we see that correlations are very strong
for Stokes parameters of the same type along the same ring,
with correlation coefficients ranging between 0.5 and 0.8. These

correlations are induced both by gain and correlated-noise fluc-
tuations, which are tightly associated with the Planck scanning
rings. Stokes parameters of different types (e.g. I and Q) are
significantly less correlated, typically with anti-correlation coef-
ficients of ρ . −0.25. Correlations between widely separated
pixels are practically negligible in the current simulation setup,
although for the real analysis, this is no longer true due to addi-
tional couplings from, for instance, astrophysical foregrounds,
bandpass corrections, and sidelobes (Galloway et al. 2023b;
Svalheim et al. 2023a,b; Basyrov et al. 2023; Colombo et al.
2023; Andersen et al. 2023).

5.6. Correlated noise PSD validation

Finally, we consider the noise PSD parameters, σ0, fknee, α,
and Ap/σ0. As already noted, these are significantly harder to
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Fig. 13. Correlation matrix for selected pixel values of the CMB map,
mCMB, and the correlated noise map, mncorr , for all three Stokes param-
eters I, Q, and U. Pixels 1 and 2 are selected to be neighboring pixels
along the same Planck scanning ring and located near the Ecliptic plane,
while pixel 3 is an arbitrarily selected pixel not spatially associated with
the other two.
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samples for radiometer 27M. We show the white noise level, σ0, knee
frequency, fknee, correlated noise spectral index α, and log-normal noise
amplitude, Ap. For reference, we show the standard normal distribution
as a black dashed line.

estimate individually than the previous parameters due to the
strong correlation between the 1/ f and log-normal terms in
Eq. (2).

As usual, we plot the reduced residual, δ, for each parameter
type in Fig. 14. In this case, we see that the posterior distribu-
tions are significantly wider than a standard Gaussian distribu-
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Fig. 15. Comparison of recovered correlated noise PSD in terms of the
functional form, Pn( f ). The top two panels show results for the same
PIDs as in Fig. 4. Faint lines indicate individual Gibbs samples, while
the dashed lines show the true input functions. The bottom two pan-
els show the difference between the posterior mean function and the
true input as a fraction of the latter and in units of the posterior rms,
respectively.

tion, by as much as a factor of two. The distributions are also
clearly non-Gaussian, with notable skewness and kurtosis. Both
the excess variance and non-Gaussianity stem from the same
degeneracies as discussed above and are partially due to intrinsic
non-Gaussianities in the model, and partially due to incomplete
Monte Carlo convergence and very long correlation lengths. On
the other hand, the mean bias in these distribution is small and
the estimated posterior distributions do provide a useful sum-
mary of each parameter individually.

As mentioned above, however, other parameters in the model
are not sensitive to individual ξn values, but only to the total
noise PSD, Pcorr( f ). This function is plotted in the top two pan-
els of Fig. 15 for the same two PIDs and radiometers as shown
in Fig. 4; the blue curves correspond to the aptly measured PID,
while the orange curve corresponds to the PID with the marginal
fit. Faint lines in the top two panels show individual Gibbs sam-
ples, corresponding to different combinations of ξn. By eye, the
sampled values appear to span the true input reasonably well,
although the orange line is on the lower edge of the estimated
posterior distribution.

These visual observations are made more quantitative in the
bottom two panels, where the third panel shows the fractional
difference between the output and input PSD functions, and the
fourth panel shows the same in units of standard deviation of the

A4, page 13 of 15



Brilenkov, M., et al.: A&A 675, A4 (2023)

PSD across Gibbs samples, σ. For the well-behaved (blue) pixel,
we see that the posterior mean matches the true input everywhere
to within a few percent; in units of standard deviations, this is
typically less than 2.5σ for most of the region, except at fre-
quencies above 10 Hz, where the estimated standard deviation is
very small due, and the underestimation of the uncertainty in σ0
becomes noticeable. For the less well-behaved case, the recov-
ered PSD is within 2σ at all frequencies in units of standard
deviations, or within 5 % otherwise. Overall, the PSD itself is
recovered very well in both cases in absolute terms.

6. Conclusions

End-to-end time-ordered simulations play a key role in estimat-
ing both biases and uncertainties for current and future CMB
experiments. To date, no other practical method has been able to
account for the full and rich set of systematic errors that affect
modern high-precision measurements.

As detailed in BeyondPlanck Collaboration (2023) and
its companion papers, the BeyondPlanck project has
implemented a new approach to end-to-end CMB analysis in
which a global parametric model is fitted directly to the time-
ordered data, allowing for joint estimation of instrumental, astro-
physical, and cosmological parameters with true end-to-end
error propagation. This approach relies strongly on a sampling
algorithm called Gibbs sampling, which allows the user to draw
joint samples from a complex posterior distribution. Each of
these Gibbs samples correspond essentially to one end-to-end
TOD simulation, similar to those produced by classical CMB
simulation pipelines, such as the Planck full focalplane (FFP;
Planck Collaboration XII 2016) simulations.

The fundamental difference between these two simulation
pipelines lies in how to define the input parameters used to gener-
ate the simulation. In the BeyondPlanck approach, all param-
eters are constrained directly from the true data and correspond
as such to samples drawn from the full joint posterior distribu-
tion. In contrast, traditional pipelines use parameters that are a
mixture of data-constrained and data-independent parameters.
Typical examples of the former include the CMB Solar dipole
and Galactic foregrounds, while typical examples of the latter
include CMB anisotropies and instrumental noise. In this paper,
we call the two types of simulations for posterior- or prior-based,
respectively, indicating whether (or not) they are conditioned on
true data.

The difference between these two types of simulations has
direct real-world consequences for what applications each sim-
ulation type is suitable for. As was first argued by Basyrov et al.
(2023), this may be intuitively understood through the following
line of reasoning. Supposing we are looking to construct a new
end-to-end simulation for a given experiment. Among the first
decisions that needs to be made concerns the CMB Solar dipole,
answering the question of whether this should correspond to the
true dipole or whether it should have a random amplitude and
direction. If it is chosen randomly, then the hot and cold spots in
the correlation matrices shown in Fig. 2 in this paper will appear
at random positions on the sky, and eventually be washed out in
an ensemble average. In practice, all current pipelines adopt the
true CMB Solar dipole as an input. The next question is related
to the type of Galactic model that should be used. Once again,
if this is selected randomly, then the Galactic plane will move
around on the sky from realization to realization. In practice, all
current pipelines adopt a model of the true Galactic signal as an
input.

The third question considers which CMB anisotropies should
be used. At this point, all pipelines prior to BeyondPlanck
have in fact adopted random CMB skies drawn from a theo-
retical ΛCDM model. This has two main effects: on the one
hand, in the same way that randomizing the CMB dipole signal
would average out any coherent correlations between the sky sig-
nal and the gain, randomizing the CMB anisotropies also aver-
age out, and non-linear correlations between these structures and
the instrumental parameters are not accounted for. On the other
hand, the resulting simulations do actually include so-called cos-
mic variance, that is, for the scatter between individual CMB
realizations.

Finally, the same question apply to all the instrumental
parameters, perhaps most notably correlated noise and gain fluc-
tuations: we ask whether these ought to be constrained by the
real data, or whether they should be drawn randomly from a
laboratory-determined hyper-distribution.

It is important to stress that none of these four questions have
a “right” or “wrong” answer. However, whatever choice is made,
it will have direct consequences for what correlation structures
appear among the resulting simulations and, thus, also for the
sorts of applications they are suitable for. In particular, if the
primary application is traditional frequentist model testing (e.g.,
asking whether the CMB sky is Gaussian and isotropic), then it is
critical to account for cosmic variance among the CMB realiza-
tions. For those applications, we must choose data-independent
CMB inputs in order to capture the full uncertainties and the
appropriate choice are frequentist data-independent simulation
inputs.

If, on the other hand, the main application is traditional
parameter estimation, for instance, to constrain the ΛCDM
model, then it is key to properly estimate the total CMB uncer-
tainty per-pixel on the sky. In this case, it is critical to properly
model all non-linear couplings between the actual sky signal, the
true gain, the true correlated noise, and so on. In this case, the
appropriate choices are posterior-based data-dependent simula-
tion inputs.

In this paper, we note that the novel Commander3 software
is able to produce both prior and posterior simulations simply
by adjusting the inputs that are used to initialize the code. While
the posterior simulation process has been described in detail in
most of the BeyondPlanck companion papers, in the current
paper, we present a first application of the frequentist mode of
operation by producing a data-independent time-ordered simu-
lation corresponding to one year of 30 GHz data. We we then
used this to validate three important low-level steps in the full
BeyondPlanck Gibbs samples, namely, gain estimation, cor-
related noise estimation, and mapmaking. In doing so, we find
that the recovered posterior distribution matches the true input
parameters well.
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