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Abstract

There has been a constant improvement in the observational measurement of linear polarization in chromospheric
spectral lines in the last three decades. However, modeling polarized profiles of these lines still remains incomplete,
due to the lack of inclusion of fundamental physics in modeling efforts. To model the observed solar spectrum and
its linear polarization, we need a solution to the polarized radiative transfer equation. The polarization in strong
resonance lines originates from the scattering mechanism known as the partial frequency redistribution (PFR) of an
anisotropic radiation field. The understanding of the linear polarization in spatially resolved structures needs
radiative transfer solutions in multidimensional geometries. In this paper, we explore the effects of angle-dependent
PFR on scattering polarization profiles formed in three-dimensional (3D) media. We find that the 3D geometry
combined with angle-dependent PFR produces more scattering polarization than an angle-averaged one.

Unified Astronomy Thesaurus concepts: Radiative transfer (1335); Solar atmosphere (1477); Magnetic fields (994)

1. Introduction

The observed linear scattering polarization profiles of the
strong resonance lines such as Ca I 4227Å and Ca II K formed
in the solar atmosphere have a characteristic triple-peak
structure. It is now established that the theory of partial
frequency redistribution (PFR) is necessary to explain this
structure (see, e.g., Holzreuter et al. 2005). Angle-dependent
PFR is a general theory that includes the coupling between the
angles and frequencies of the incident and scattered photons.
However, radiative transfer calculations including this general
theory are computationally very demanding. Therefore, for
modeling the observed polarized profiles an approximation of
averaging the PFR functions over the angles (the angle-
averaged PFR) is usually adopted.

In the cores of the strong resonance lines, the polarization is
also modified by weak magnetic fields (the Hanle effect).
Therefore, modeling these lines requires a PFR theory that
includes the Hanle effect. The PFR line formation theory with
the Hanle effect was first developed by Omont et al.
(1972, 1973). An explicit calculation of the PFR matrices for
resonance scattering polarization was performed by Domke &
Hubeny (1988). Magnetic fields were included by Bommier
(1997a, 1997b) to derive Hanle PFR matrices for a two-level
atom case using a quantum electrodynamic approach. Recently,
Bommier (2016a, 2016b, 2017) extended the PFR theory to a
multilevel atom system.

In Anusha & Nagendra (2011a), a historical account of the
literature on radiative transfer with angle-dependent PFR is
presented. Here, we highlight some of the recent developments.
The angle-dependent PFR effects on the polarized spectrum in
the context of arbitrary strength magnetic fields and hyperfine
structure transition under the incomplete Paschen–Back effect
regime have been studied respectively in Sampoorna et al.
(2017) and Nagendra et al. (2020). Janett et al. (2021) explored

the effect of angle-dependent PFR on the polarization profile
of the Ca I 4227Å line in one-dimensional (1D) empirical
model atmospheres.
In a series of papers, we have studied the effect of PFR on

the polarized line formation in multidimensional (multi-D)
media. Anusha & Nagendra (2011b) and Anusha & Nagendra
(2011c) were dedicated to understanding the effects of angle-
averaged PFR on the scattering polarization profiles in
nonmagnetic and magnetic media. Angle-dependent PFR
effects in two-dimensional (2D) media are explored in Anusha
& Nagendra (2011a) and Anusha & Nagendra (2012). The
implementation was restricted to radiative transfer in 2D due to
the limited computational resources. To model polarization
observations using three-dimensional (3D) magnetohydro-
dynamic (MHD) models of the solar chromosphere (see, e.g.,
Przybylski et al. 2022), we need 3D polarized radiative transfer
solutions. Prior to undertaking the numerically expensive
modeling efforts, it is essential to understand the 3D results in
simple model atmospheres. Therefore, in this paper, for the first
time, we solve the polarized 3D radiative transfer equation with
angle-dependent PFR and present benchmark results.

2. Polarized Transfer with Angle-dependent PFR

The non–local thermodynamic equilibrium (non-LTE) polar-
ized transfer equation is a coupled nonlinear problem. The
nonlinearity of the non-LTE polarized transfer equation is due to
the coupling between the statistical equilibrium equation for the
atomic energy levels and the radiative transfer equation (see, e.g.,
Landi Degl’Innocenti & Landolfi 2004, chapter 6). The
nonlocality arises due to the coupling of the angles, frequencies,
and spatial points. We limit our formalism in this paper to a two-
level atom model with unpolarized ground level. Therefore, the
transfer equation considered here (Equation (1)) is a nonlocal,
linear equation, which is complex to solve. When angle-dependent
PFR scattering is included, the angular dependence in the source
and the Stokes vectors further complicates the problem. The
decomposition technique developed in Anusha & Nagendra
(2011a, 2012) addresses the solution in multi-D geometry, posing
the problem in an irreducible spherical tensor formalism combined
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with Fourier series expansion. All the symbols and notations used
in this paper are the same as in Anusha & Nagendra (2012).
Therefore, we do not repeat their description. We give the basic
equations here.

Let us consider a multi-D medium with an oriented magnetic
field B (see Figure 1). The polarized transfer equation for a
given ray defined by direction Ω at a position vector r= (x, y,
z) is given by

· ( ) [ ( ) ( ) ( )]
[ ( ) ( )] ( )

k f kW  W
W W

= - +
´ -

I r B r r
I r B S r B

x x
x x

, , ,
, , , , , , , 1

l c

where I= (I, Q, U)T is the Stokes vector, with I, Q, and U the
Stokes parameters (see, e.g., Chandrasekhar 1960, for a
definition). The solid angle element is defined as

q q jW¢ = ¢ ¢ ¢d d dsin , where θä [0, π] and jä [0, 2π]. The
direction cosines of the ray are W = ( )h g m =, ,
( )q j q j qsin cos , sin sin , cos , with θ and j being the polar
and azimuthal angles of the ray (see Figure 1).

Here, κl and κc are line and continuum opacities, respectively,
with f being the Voigt profile function. x= (ν− ν0)/ΔνD is the
frequency measured in reduced units, withΔνD being the Doppler
width. The source vector is given by
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Here, ( ) ( ( ) )= nS r rx B, , 0,0c
T is the unpolarized continuum

source vector, with Bν(r) being the Planck function. The line
source vector is
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where the thermal source vector is G(r)= òBν(r) with
( ) ( ( ) )=n nB r rB , 0, 0 T , and R̂ is the Hanle redistribution

matrix with angle-dependent PFR (see Section 4.2,

approximation II, of Bommier 1997b). We recall here that
the matrix R̂ involves the destruction probability per scattering
ò and the damping parameter a of the Voigt profile function.
Here, ò= ΓI/(ΓR+ ΓI), with ΓI and ΓR being the inelastic
collision rate and the radiative de-excitation rate, respectively.
The damping parameter a= aR[1+ (ΓE+ ΓI)/ΓR], with aR=
ΓR/4πΔνD and ΓE being the elastic collision rate.

3. Transfer Equation in Terms of Irreducible Spherical
Tensors

Frisch (2007) showed that, for a 1D planar geometry, S and
I can be decomposed into irreducible vectors S and I of
dimension six each, defined as
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A generalization of the above techniques to the multi-D case
was developed and presented in Anusha & Nagendra
(2011b, 2011c). It was shown that I and I satisfy a transfer
equation of the form

( )
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where κtot is the sum of the line and continuum opacities and is
given by κtot(r, x)= κl(r)f(x)+ κc(r), and

( ) ( ) ( ) ( ) ( )W W= + -S r B S r B S rx p x p x, , , , , , 1 , , 6x l x C

with the ratio of the line opacity to the total opacity being given
by

( ) ( ) ( ) ( )k f k= r rp x x, . 7x l tot

The irreducible line source vector is given by
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where ˆ ( ) ˆ ˆ ( ) ˆW WY ¢ = Y ¢W WW (see chapter 14 in Frisch 2022).
Here, the atomic depolarization parameter is represented by the
matrix ˆ { }=W W W W W W Wdiag , , , , ,0 2 2 2 2 2 and Ŷ is a 6x6
matrix that represents the reduced Rayleigh scattering phase
matrix, whose elements can be found in several papers (see, e.g.,
Appendix D in Anusha & Nagendra 2011c). The unpolarized
continuum source vector is denoted as ( ) ( )= nG r B r , with

( ) ( ( ) )=n nB r rB , 0, 0, 0, 0, 0 T . The redistribution matrix con-
sists of the well-known angle-dependent PFR functions rII,III (see
Hummer 1962) and frequency-domain-dependent Hanle phase
matrices ˆ ( )¢BM x x, ,II,III (see Bommier 1997a, 1997b). The
redistribution functions depend explicitly on the scattering angle
Θ (see Figure 1), defined by ·W WQ = ¢cos , which can be
written as

( )( ) ( ) ( )mm m m j jQ = ¢ + - - ¢ ¢ -cos 1 1 cos . 92 2

Figure 1. The atmospheric reference frame. The outgoing ray direction is
defined by the angle pair (θ, j). B = (Γ, θB, χB) represents the magnetic field
vector, where Γ is the Hanle efficiency parameter and (θB, χB) defines the field
direction. The scattering angle is marked as Θ.
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The expression for the matrices ˆ ( )¢BM x x, ,II,III can be found in
several references (see, e.g., Anusha & Nagendra 2011c). For
all other notations and symbols, we refer the reader to Anusha
& Nagendra (2011a, 2012).

3.1. Reduced Transfer Equation Using Fourier Decomposition

A further reduction of the irreducible Stokes and the source
vectors in terms of a Fourier series expansion to simplify the
radiative transfer problem with angle-dependent PFR was
introduced in Frisch (2010). A generalization of the same, to
multi-D geometry, is presented in Anusha & Nagendra
(2011a, 2012). The angle-dependent PFR matrix with the
Hanle effect has the form
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The Fourier series expansions of the functions
( )W W¢ ¢r x x, , ,II, III is written as
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Substituting Equation (11) in Equation (10), we can write the
ijth element of the R̂ matrix as
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Applying this expansion, we can derive a polarized radiative
transfer equation in terms of the Fourier coefficients ˜( )I k and
˜( )S k , namely
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Equation (15) represents the most reduced form of the
polarized radiative transfer equation in multi-D geometry with
the angle-dependent PFR. Hereafter, we refer to ˜( )I k and ˜( )S k as
“irreducible Fourier coefficients.” ˜( )I k and ˜( )S k are six-
dimensional complex vectors for each value of k.

4. Results and Discussions

In this section, we present the solutions of the 2D and 3D
polarized radiative transfer equations with the PFR scattering
mechanism. We compare the results computed in 2D and 3D
media using angle-averaged and angle-dependent PFR. We
adopt an idealized atmosphere that is a magnetized 2D slab or a
3D box (see Figure 2), with a total optical thickness of 20 in
each direction. The magnetic field vector B= (Γ, θB, χB)= (1,
90°, 60°). The branching ratios of the PFR matrices are chosen
such that they represent the collisionless redistribution process
case that uses only the ˜ ( )( ) q W¢ ¢r x x, , ,k

II function. For the
numerical calculations in this paper, we keep five Fourier
components. We choose the damping parameter of the Voigt
profile function a= 10−3, and the ratios of the elastic and
inelastic collision rates to the radiative de-excitation rate are,
respectively, ΓE/ΓR= 10−4 and ΓI/ΓR= 10−4. All other global
parameters are the same as in Anusha & Nagendra (2012).
The Krylov space iterative method preconditioned stabilized

biconjugate gradient is used here as the numerical method for
solving the polarized radiative transfer equation. As described
in Anusha et al. (2009), this method is much faster compared to
other state-of-the-art numerical methods. The adaptation of this
method to polarized transfer with PFR in multi-D media is
presented in detail in our previous papers (Anusha &
Nagendra 2011c, 2012).
In Figures 3 and 4, we show Q/I and U/I profiles for

μ= 0.11 and 16 j values. In these figures, we compare the
polarized profiles computed with the angle-averaged and the

Figure 2. The figure shows cartoon diagrams of the 2D slab (left) and 3D box
(right) atmospheres considered for the radiative transfer computations
presented in this paper. The areas marked as blue represent the regions
considered for the spatial averaging of the emergent solutions shown in
Section 4.
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angle-dependent PFR in magnetized 2D and 3D media. For the
optical thickness considered here, the PFR effects are restricted
to 0� x� 5. The 2D profiles are the same as in Figures 7 and 8
of Anusha & Nagendra (2012). We recall the discussions in
that paper that the shapes of the angle-dependent polarization
profiles are quite different from those of the angle-averaged
profiles in the magnetic case, while the differences were
marginal in the nonmagnetic case. We see a similar trend in the
3D case as well. The angle-dependent profiles are peaked
around x= 2.5 in both the 2D and 3D media for most j values,
while the angle-averaged profiles are rather flat. Further, the
angle-dependent PFR modifies the polarization profiles pre-
dominantly in the line core (0� x� 3.5). This is because the
presence of the magnetic field modifies the polarization due to
scattering via the Hanle effect, which operates only in the line

core. In particular, it is the Hanle effect that brings out the
importance of the angle-dependent PFR.
A comparison of the polarization profiles in 2D and 3D

media shows that they are sensitive to the orientation (θ, j) of
the line of sight. In the angle-dependent case, |Q/I| (|U/I|)
reaches a maximum magnitude of ∼5% (4%) and ∼3.5%
(3.8%), respectively, in 2D and 3D media. Thus, the 3D
medium reaches a lower maximum magnitude in comparison to
the 2D medium. This is because in the 3D medium, there is a
larger area over which the spatial averaging is carried out on
the sign-changing quantities.
In Figure 5, we show the μ variation of the emergent,

spatially averaged (Log I, Q/I, U/I) profiles computed using
angle-dependent PFR in a 3D medium. For the chosen optical
thickness of the atmosphere, log I is relatively less sensitive to
the orientation of the line of sight when compared to the

Figure 3. The figure shows the Hanle effect with PFR in multi-D media. We plot the emergent, spatially averaged Q/I profiles with angle-averaged PFR in 2D and 3D
media (the dashed and solid lines, respectively) and angle-dependent PFR in 2D and 3D media (the dotted–dashed and dotted lines, respectively). The Q/I profiles are
along a line of sight of μ = 0.11 and 16 different j values that are marked in the respective panels.

4

The Astrophysical Journal, 949:84 (6pp), 2023 June 1 Anusha



polarization profiles. For the j values shown here, the peak
values of |Q/I| and |U/I| are, respectively, around 4%
and 2.5%.

5. Conclusions

In this paper, we have studied the effects of angle-dependent
PFR on polarized line formation and the Hanle effect in 3D
media. As already established in 1D (Nagendra et al. 2002) and
2D media (Anusha & Nagendra 2011a, 2012), the 3D geometry
combined with angle-dependent PFR and the Hanle effect
produces significant scattering polarization. The approximation
of angle averaging is not a good representation of the PFR
functions. This is reflected in the Q/I and U/I profiles.
Qualitatively, the angle-dependent PFR effects in 2D and 3D
media are similar. However, quantitatively, the differences are
remarkable.

Radiative transfer in multi-D media in general is very
demanding. The inclusion of angle-dependent PFR further
increases the demand. However, it is important to study the
effect of angle-dependent PFR in 3D media in comparison to
the approximations of a medium that is 1D or 2D. The
computation time for the 3D results presented in this paper was
around one week, using a 64 bit Intel Xeon CPU E5-2630 v4 at
2.20 GHz. We conclude that the differences that angle-
dependent PFR manifests in polarized line profiles make it a
necessary mechanism to be implemented in the 3D modeling of
polarization observations. In particular, it is worthwhile to
explore the effects of the angle-dependent PFR in modeling
strong resonance lines, such as Ca I 4227Å, in 3D MHD model
atmospheres. This requires faster numerical techniques to be
developed and implemented to address the computational
demands.

Figure 4. The same as Figure 3, but for U/I profiles.
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