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Abstract

The Minkowski tensors (MTs) can be used to probe anisotropic signals in a field, and are well suited for measuring
the redshift-space distortion (RSD) signal in large-scale structure catalogs. We consider how the linear RSD signal
can be extracted from a field without resorting to the plane-parallel approximation. A spherically redshift-space
distorted field is both anisotropic and inhomogeneous. We derive expressions for the two-point correlation
functions that elucidate the inhomogeneity, and then explain how the breakdown of homogeneity impacts the
volume and ensemble averages of the tensor Minkowski functionals. We construct the ensemble average of these
quantities in curvilinear coordinates and show that the ensemble and volume averages can be approximately
equated, but this depends on our choice of definition of the volume average of a tensor and the radial distance
between the observer and field. We then extract the tensor Minkowski functionals from spherically redshift-space
distorted, Gaussian random fields and gravitationally evolved dark matter density fields at z= 0 to test if we can
successfully measure the Kaiser RSD signal. For the dark matter field, we find a significant, ∼10% anomalous
signal in the MT component parallel to the line of sight that is present even on large scales RG 15Mpc, in
addition to the Kaiser effect. This is due to the line-of-sight component of the MT being significantly contaminated
by the Finger of God effect, which can be approximately modeled by an additional damping term in the cumulants.

Unified Astronomy Thesaurus concepts: Cosmology (343)

1. Introduction

The tensor Minkowski functionals are a rank-p general-
ization of the scalar Minkowski functionals (Santalo 1976;
McMullen 1997; Alesker 1999; Beisbart et al. 2001a, 2002;
Hug et al. 2008; Schroder-Turk et al. 2013, 2010). Being
tensors, they are sensitive to directionally dependent signals in
data and have found application in a number of disciplines such
as material science (Becker et al. 2003; Olszowka et al. 2006;
Rehse et al. 2008). The scalar Minkowski functionals and
associated morphological statistics have a long and storied
history within cosmology (Melott et al. 1989; Gott et al. 1990;
Park & Gott 1991; Mecke et al. 1994; Schmalzing &
Buchert 1997; Sahni et al. 1998; Schmalzing & Gorski 1998;
Park et al. 1992, 2001; Bharadwaj et al. 2000; Park &
Kim 2010; van de Weygaert et al. 2011a; Zunckel et al. 2011;
Park et al. 2013; van de Weygaert et al. 2011b; Shivshankar
et al. 2015; Pranav et al. 2017, 2019a, 2019b; Feldbrugge et al.
2019; Munshi et al. 2021; Wilding et al. 2021), but the tensors
are less widely adopted. They were initially introduced in
Beisbart et al. (2001b, 2001a, 2002) to provide a measure of
substructure of galaxy clusters and spiral galaxies. In the
mathematics literature, they are defined for structures on flat
Euclidean space. In two dimensions, the definition of the
translation invariant rank (2) Minkowski tensors (MTs) were
generalized to structures on the two-sphere in Chingangbam &
Yogendran (2017). More recently, they have been applied to
cosmological scale fields (Chingangbam & Yogendran 2017;
Ganesan & Chingangbam 2017; Appleby et al. 2018a, 2018b;

Rahman et al. 2021), cosmic microwave background (CMB)
temperature and polarization data (Ganesan & Chingangbam
2017; Joby et al. 2019; Kochappan et al. 2021; Goyal et al.
2020; Goyal & Chingangbam 2021), and the fields of the epoch
of reionization (Kapahtia et al. 2018, 2019, 2021). In addition,
the authors have written a series of papers on the application of
the MTs to the low redshift matter density field as traced by
galaxies (Appleby et al. 2018a, 2018b). The ensemble average
of the MTs measured from isotropic and anisotropic, Gaussian
random fields were considered in Chingangbam & Yogendran
(2017), Appleby et al. (2018b), and Chingangbam et al. (2021).
Anisotropic random fields were subsequently explored further in
Klatt et al. (2022), including higher-rank statistics. Numerical
algorithms with which to extract the MTs from two-dimensional
fields can be found in Schroder-Turk et al. (2010), Appleby et al.
(2018a), and Schaller et al. (2020).
In real space, galaxies are assumed to be distributed in a

statistically isotropic and homogeneous manner. The cosmic
web is locally anisotropic, with filaments feeding matter into
nodes, and extended structures aligning on two-dimensional
walls. In this picture, isotropy of the matter distribution means
that there is no globally preferred direction within the
filamentary large-scale structure, when averaging over a
volume that is large compared to the typical scale of the
structures. This statistical isotropy is an axiom within
cosmology, motivated by observations of the CMB. For any
large-scale structure distribution, we can always find a frame of
reference in which the observer is at rest with respect to the
data using a velocity correction. Conventionally observed
redshifts are adjusted to place large-scale structure catalogs in
the rest frame of the CMB temperature fluctuations, but recent
results suggest that high redshift radio sources require a
different velocity correction (Secrest et al. 2021, 2022). If
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robust, this apparent breakdown in the cosmological principle
highlights the importance of testing standard model assump-
tions such as isotropy and homogeneity (Aluri et al. 2022).

Even if the large-scale distribution of the matter field in real
space is isotropic, the observed distribution of galaxies is
contaminated by their peculiar velocity along the line of sight.
This phenomenon was first described in early pioneering works
(Kaiser 1987), and is referred to as the redshift-space distortion
(RSD) effect. The RSD effect perturbs the apparent position of
galaxies in redshift space only along the line of sight, and
hence has rotational symmetry around the central observer.
However, it leads to a global alignment of structures in the
excursion sets of the density field along the line of sight. This
alignment of structures in the field is what we refer to as
anisotropy in the context of MTs. A significant body of
literature has subsequently been devoted to understanding the
effect of RSD on the two-point statistics (Hamilton 1997;
Scoccimarro 2004; Weinberg et al. 2013) and other quantities
(Matsubara 1996; Codis et al. 2013).

There are two phenomena commonly associated with RSD.
On small scales 1 Mpc( ) , the Finger of God effect describes
the scatter of galaxy positions within bound structures due to
their stochastic velocity components (Jackson 1972). In
addition, coherent in-fall into overdensities—and corresp-
onding outflow from underdensities—occurs on all scales.
The latter phenomenon, dubbed the Kaiser effect (Kaiser 1987),
can be described using the linear perturbation theory on large
scales. The density field in the late universe is non-Gaussian
due to the nonlinear nature of gravitational collapse, but by
smoothing the field on sufficiently large scales, one can treat
the field as approximately Gaussian and the RSD effect as
approximately Kaiserian. The anisotropic effect of RSD
contains information regarding the growth rate of structure,
due to the fact that the signal is a measure of the in-fall rate of
matter into gravitational potentials. When modeling the large-
scale-smoothed density field, the complicated physics asso-
ciated with bound and merging structures is reduced to a simple
phenomenological parameterization of the Finger of God effect
(Jackson 1972).

This work is a continuation of a series of papers by the
authors, in which we consider the impact of RSD on the tensor
Minkowski functionals. In Appleby et al. (2018b), the authors
described a numerical algorithm used to extract the Minkowski
functionals and Cartesian tensors from any three-dimensional
field. In Appleby et al. (2019), we constructed the ensemble
expectation value of the MTs in redshift space, in the
linearized, plane-parallel Kaiser limit and for Gaussian random
fields. The latter paper used the so-called distant observer
approximation, making the simplifying assumption that the
field is sufficiently remote from the observer and localized in
the direction, so that each point in the field practically shares a
common line-of-sight vector along which the RSD operator
acts. This, in conjunction with periodic boundary conditions,
renders the field anisotropic but homogeneous, and the sky flat
for computational purposes. In reality, the radial nature of the
RSD signal generates an inhomogeneous field.

The purpose of this work is two-fold. First, we generalize the
calculation in Appleby et al. (2019) to account for the radial
nature of the RSD signal. We calculate the ensemble average
of the MTs in spherical coordinates, for a field that has
been subjected to a radial RSD correction. The calculation
requires a careful reappraisal of the Cartesian tensor analysis of

Appleby et al. (2019) to account for the vagaries of curvilinear
coordinate systems. In addition, a radial signal is inherently
inhomogeneous, and this will have consequences for the
assumption of ergodicity that is frequently applied to cosmolo-
gical fields. Second, we use gravitationally evolved, dark matter
N-body simulations to construct mildly non-Gaussian density
fields by smoothing over large scales 15Mpc< RG< 45Mpc.
We compare the extracted MT statistics to their Gaussian
expectation values, to determine the scale at which the analytic
prediction can be used. This analysis serves as a precursor to a
forthcoming paper, in which we will extract these statistics from
the BOSS galaxy data and infer the growth rate from the RSD
signal.
The paper will proceed as follows. We review the definition

of the rank (2) MTs in Section 2, and also provide details on
our approach to ensemble averaging. In Section 3, we restate
the main results of Appleby et al. (2019); the ensemble average
of the MTs in globally plane-parallel redshift space. In
Section 4, we expand the analysis and derive the expectation
value of the MTs in a spherical coordinate system for a field
with radial anisotropy relative to a central observer. We repeat
this analysis in a Cartesian coordinate system in Section 5. In
Section 6, we extract the MTs from dark matter particle
snapshot boxes after applying a radial RSD correction, to test
the scale at which the Gaussian limit is approached and the
magnitude of the non-Gaussian corrections. We also compare
plane-parallel and radial anisotropic signals. We discuss our
results in Section 7.
Throughout this work, in the main body of the text, we focus

on the particular MT W1
0,2, because it is computationally

simpler, and we expect that it will provide superior constrain-
ing power (Appleby et al. 2019). A second linearly
independent, translation invariant MT in three dimensions
W2

0,2 has some additional complications because it is a function
of the second derivative of the field. For completeness we
include a brief analysis of W2

0,2 in Appendix A. The rotation of
the spherical basis vectors relative to a great arc tangent vector
is presented in Appendix B, and finally some useful identities
regarding spherical harmonics and Bessel functions are
provided in Appendix C.

2. Translation Invariant Minkowski Tensors in Three
Dimensions

The MTs have been elucidated in numerous papers, and we
direct the reader to Schroder-Turk et al. (2013) for details on
the quantities used in this work. Briefly, in three dimensions,
we define an excursion set Q for a field δ(x) on a manifold as

Q x x: , 1t{ ( ) } ( ) d d= Î

where δt is a chosen density threshold value. Initially we take
the manifold  to be three-dimensional Euclidean space 3 .
We then define two translation invariant, rank (2) tensors as

nW
V

1

6
dA; 2

Q
1
0,2 2ˆ ( )òº

¶

nW
V

G
1

3
dA, 3

Q
2
0,2

2
2ˆ ( )òp

º
¶

where the boundary ∂Q of Q is a two-dimensional isofield
surface defined by δ(x)= δt. The vector n̂ is the unit normal
vector, and G2 is the mean curvature at each point of the
surface ∂Q. We define the symmetric tensor product as

2

The Astrophysical Journal, 942:110 (28pp), 2023 January 10 Appleby et al.



/n n n n n n n 2i j j i
2ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ )= Ä = + . The vector n̂ is an element of

the cotangent space at each point on 3 . Since addition is
defined only for vectors or tensors that belong to the same
vector space, in order to perform these integrals, we must
transport all normal vectors to a fiducial point, and addition is
then carried out in the cotangent space at that point. This is a
trivial step when the manifold is flat space. W1

0,2 and W2
0,2 are

invariant under translation of the coordinates, which ensures
that they are independent of the choice of fiducial point on 3 .
If the manifold is curved, then the integrals defined in the
expressions from Equations (2), (3) require a fiducial point at
which the average is taken to be specified, as well as the choice
of transport path. These details will be important later and
considered in Section 4.2.

We will measure W1
0,2 and W2

0,2 from dark matter point
distributions, which are smoothed with a Gaussian kernel to
generate a continuous matter field with background density ρm
and fluctuations δ(x). The fluctuations satisfy 〈δ〉= 0, where
〈...〉 represents the ensemble average of this random field.
When smoothed on large scales,5 δ(x) is assumed to be well
approximated as a Gaussian random field, but on small scales,
non-Gaussianities are present due to the mode coupling arising
from the nonlinear nature of gravitational collapse. In this
work, we are chiefly concerned with the large-scale limit of the
density field, where Gaussian statistics can be applied. The
non-Gaussian corrections require further study and are beyond
the scope of this work. For the remainder of the paper, we will
focus specifically on the MT W1

0,2, and consign the more
complicated W2

0,2 statistic to Appendix A.
An alternative approach to the one considered in this work is

to generate a triangulated mesh directly from the point
distribution and extract the MTs from this manifold (Klatt
et al. 2016). This approach preserves all information in the
distribution, but also includes the noise component due to finite
sampling. However, since the shot noise contribution is
expected to be isotropic, working with the point distribution
directly may be optimal to extract anisotropic signals. If we
wish to relate the measured volume average with large-scale
cosmological perturbation theory, smoothing is required. A
related issue was studied within the context of the CMB
E-mode data (Kochappan et al. 2021).

Following Schmalzing & Buchert (1997), Schmalzing &
Gorski (1998), we perform a surface-to-volume integral
transform and use ni iˆ ∣ ∣d d=  to rewrite Equation (2), as

W
V

1

6
dV , 4i

j

V
D t

i
j

1
0,2∣ ( )

∣ ∣
( )ò d d d

d d
d

= -


where we use shorthand notation for the gradients of the field
δi=∇iδ, and δD is the Dirac delta function. Given that δ is
assumed to be a smooth random field, its derivatives and in
particular the vector δi/|∇δ| are well defined at all points over
the volume V. The right-hand side of Equation (4) is the
volume average of the rank (1, 1) tensor

w
1

6
, 5i

j i
j

D t∣ ∣
( ) ( )d d

d
d d d=


-

where the delta function δD(δ− δt) can be defined in a
distributional sense when constructing the ensemble average
or approximately discretized when taking the volume average
(Schmalzing & Buchert 1997). We denote the volume average
of this tensor as w Wi

j
i

j
1
0,2¯ ∣º .

2.1. Ensemble Average and Ergodicity

First, we review the steps made in calculating the ensemble
average of wi

j, because there are some subtleties that will
become important later. The purpose of this subsection is to
highlight the assumptions that are made when deriving the
ensemble average of wi

j, and then equating this quantity to the
volume average that we measure from cosmological data.
The ensemble average 〈...〉 is the linear sum over possible

states of the quantity within the brackets, weighted by the
probability of that state;

w X
1

6
, dX, 6i

j
D t

i
j

( ) ( )
∣ ∣

( )ò d d d
d d
d

á ñ = F S -


where X= (δ, δi) is shorthand for an array of the field and
components of its first derivatives, and Φ(X, Σ) is the underlying
probability distribution function (PDF) for X. Here wi

j is defined at
a point on the manifold, so Φ(X, Σ) is the PDF describing the field
and its derivatives at a single location. For a Gaussian random
field, we have X X X, exp 2T 1( ) [ ]F S µ - S- , where Σ denotes
the covariance between the component fields of X. When
integrating over X, all physical information is contained within
the inverse covariance matrix Σ−1 in Φ(X, Σ). To estimate the
ensemble average of wi

j, we require the covariance matrix Σ.
In cosmological applications, we measure wi

j¯ from a data set
and then equate this quantity to the theoretically predicted
〈wi

j〉. That is, we invoke ergodicity to impose w wi
j

i
j¯á ñ .

Ergodicity is known to be exact if a field is homogeneous,
Gaussian, the two-point correlation ζ of δ satisfies
ζ(r)|r→∞= 0, and we take the limit V→∞ (Adler 1981
p145). In reality, cosmological fields occupy a finite volume
and have finite resolution, and ergodicity is never exactly
realized. We tacitly interpret the volume average of a quantity
over a finite domain as providing an unbiased estimate of the
ensemble average, with an associated uncertainty related to the
finite sampling of the probability distribution.
If the covariance Σ between the fields δ, δi contains explicit

coordinate dependence, then the ensemble average 〈wi
j〉 is

sensitive to the position x on the manifold at which we take this
average: Φ=Φ(X, Σ(x)). In this case, it is clear that the
ensemble average at any given point cannot be equated to the
volume average of the same tensor over the entire manifold.
The constancy of Σ is a consequence of the fields being
homogeneous (see, e.g., Adler 1981; Chingangbam et al.
2021), so when the fields are inhomogeneous, we cannot
invoke ergodicity, and generically w wi

j
i

j¯á ñ ¹ . In such a
situation, the question of whether we can invoke ergodicity—
even approximately—depends on the physical properties of the
field, manifold, and coordinate system adopted. In what
follows, we will present an example for which w wi

j
i

j¯  á ñ is
an excellent approximation despite the field being inhomoge-
neous, and a second example for which wi

j¯ completely fails to
encapsulate the properties of the ensemble average.
For a homogeneous field, Σ and hence 〈wi

j〉 are constant
over the entire manifold, and the ergodicity is more naturally

5 Throughout this work, we apply Gaussian smoothing in Fourier space,
hence imposing periodic boundary conditions on the field.
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realized. Ambiguity remains in the definition of the volume
average of a tensor, which is discussed further in Section 4.2.

3. Review: Plane-parallel Redshift-space Distortions

In Section 4, we will calculate the ensemble average of wi
j for a

Gaussian field that has been subjected to a spherically symmetric
RSD operator, but before doing so, we briefly review the plane-
parallel result derived in Appleby et al. (2019), aided by earlier
work on the Minkowski functionals (Doroshkevich 1970;
Adler 1981; Gott et al. 1986; Hamilton et al. 1986; Tomita 1986;
Gott et al. 1987; Weinberg et al. 1987; Ryden et al. 1989;
Matsubara 1994a, 1994b; Matsubara & Suto 1996; Matsubara
2000; Hikage et al. 2008; Gay et al. 2012).6

We take an isotropic and homogeneous Gaussian random
field in a periodic box, adopt a Cartesian coordinate system x,
y, z with basis vectors ex, ey, ez, and then apply the plane-
parallel RSD operator aligned with one of the coordinate axes
taken arbitrarily to be ez. We preserve periodicity in ez, so that
the field is homogeneous but anisotropic. We simply restate the
main results of Appleby et al. (2019), and direct the reader to
that work for details of the calculation and Matsubara (1996),
Codis et al. (2013) for a detailed analysis of the RSD effect on
the scalar functionals.

To linear order in the density fluctuation, the relation
between the true position of a tracer particle x and its redshift-
space position s is given by

s x e u ef . , 7z z( ) ( )= +

where f d D d aln ln= , and D is the linear growth factor,
u= v/(aHf ), v is the peculiar velocity, and H is the Hubble
parameter. We have assumed that every tracer particle is
subject to a single, parallel line of sight. In this work, we
assume that f is independent of redshift, neglecting its time
dependence. In practice, we measure fσ8 from galaxy catalogs,
which only has mild redshift dependence.

The density field in redshift space d̃ can be related to its real
space counterpart δ according to

k kf1 , 82˜( ) ( ) ( ) ( )d m d= +

where μ= k. ez/|k| is the cosine of the angle between the line
of sight and wavenumber k. The cumulants of the field d̃ and its
gradient are given by Matsubara (1996):

x x f f1
2

3

1

5
; 9x x 0

2 2⎡
⎣

⎤
⎦

˜( ) ˜( ) ∣ ( )d d sá ¢ ñ = + +¢

x x

x x f f
1

3

2

15

1

35
; 10

x x

x x

x x

y y 1
2 2⎡
⎣

⎤
⎦

˜ ( ) ˜ ( ) ∣

˜ ( ) ˜ ( ) ∣ ( )

d d

d d s

á ¢ ñ

= á ¢ ñ = + +

¢

¢

x x f f
1

3

2

5

1

7
; 11x xz z 1

2 2⎡
⎣

⎤
⎦

˜ ( ) ˜ ( ) ∣ ( )d d sá ¢ ñ = + +¢

x x 0, 12x xi˜( ) ˜ ( ) ∣ ( )d dá ¢ ñ =¢

where we have defined the ith isotropic cumulant as

k P k R dk
1

2
, , 13i

i2
2

2 2
G( ) ( )òs

p
= +

and have introduced a Gaussian-smoothed power spectrum P(k,
RG)=W2(kRG)P(k), withW kR e k R

G
22

G
2( ) µ - for some comov-

ing smoothing scale RG. The ensemble expectation value of the
components of the MT W1

0,2 in this particular Cartesian
coordinate system, assuming the field is Gaussian, is then
Appleby et al. (2019):

W

A
e

4

2 1 cosh 2 1

1

2

1
, 14

xx1
0,2

0
2 1 2

2 3 2 2
22⎡

⎣⎢
⎤
⎦⎥

∣
( ) ( )

( )
( )l l

l
l

l

á ñ

=
- -

-
-

-
n

-
-

W W , 15yy xx1
0,2

1
0,2∣ ∣ ( )á ñ = á ñ

W A e
1

cosh

1
, 16zz1

0,2
0

2

2

1

2

22
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ( )l
l

l
l

l
á ñ =

-
-

-
n

-
-

W W W 0, 17xy xz yz1
0,2

1
0,2

1
0,2∣ ∣ ∣ ( )á ñ = á ñ = á ñ =

the constant A0 is given by

A
f f

f f6 3

105 42 9

105 70 21
, 180

1

0

2

2
( )s

ps
=

+ +
+ +

and

f f

f f

35 42 15

35 14 3
, 192

2

2
( )l =

+ +
+ +

and we have introduced the normalized threshold t 0˜n d s= ,
where x x x x0

2˜ ˜( ) ˜( ) ∣s d d= á ¢ ñ ¢ . The MT is diagonal in this
coordinate system, with discrepant values in the directions
perpendicular and parallel to the line of sight z. A coordinate
transform will generate off-diagonal terms, but the eigenvalues
remain invariant. Modulo a noise component due to finite
sampling, the eigenvalues are equal to the diagonal elements of
the MT in this coordinate system. The properties of the field
dictate the form of the MT; anisotropy is represented by
unequal eigenvalues, and homogeneity is manifested by the
constancy of the cumulants (Equations (9)–(11)) over the
domain on which the field is defined.

4. Minkowski Tensors—Spherical Redshift-space
Distortion

The plane-parallel limit reviewed in the previous section is
an approximation where the observed patch of the density field
is sufficiently distant from the observer and localized on the sky
so that the line of sight can be approximately aligned with one
of the Cartesian axes. A detailed description of this approx-
imation can be found in Castorina & White (2018).
Now we generalize and calculate the MTs without the plane-

parallel approximation. Since RSD acts along the line of sight,
we choose to work with the spherical coordinate system with
the observer at the origin. The radial and angular basis vectors
in this system are denoted er, eθ, ef; and er is aligned with the
line of sight. The RSD operator is spherically symmetric and
applied to an otherwise isotropic and homogeneous Gaussian
random field. Under the assumption that the average number
density of tracer particles is constant over the manifold, the

6 See Buchert et al. (2017) for a model-independent approach applying
Minkowski functionals to the CMB and using general Hermite expansions of
the discrepancy functions with respect to the analytical Gaussian predictions.
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relation between the density field in real (δ) and redshift (˜ )d
space is given by Hamilton (1997):

r rf
r r r

1
2

, 20
2

2
2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

˜( ) ( ) ( )d d= +
¶
¶

+
¶
¶

-

to linear order in the fields. Here f is the growth factor that we
assume to be constant, neglecting its redshift dependence. The
RSD operator in square brackets is now radial relative to a
central observer located at r= 0. There is no longer a uniformly
parallel line-of-sight vector over the entire manifold—the line
of sight is now aligned with the radial basis vector er. The
redshift-space field is sensitive to this vector, because the tracer
particles that are used to define d̃ are perturbed according to the
component of their velocity parallel to the corresponding line-
of-sight direction. The radial nature of the signal renders the
redshift-space distorted field inhomogeneous, and the two-
point correlation function of d̃ is no longer solely a function of
the separation between two tracer particles, but now depends
on the triangle formed by the observer and the two points.
Translation invariance is broken, but the residual rotational
symmetry around the observer and azimuthal symmetry about
the line of sight persists.

4.1. Ensemble Average 〈wi
j〉

The goal of this section is to derive the ensemble average of
the tensor wi

j for the field d̃ defined in Equation (20), in a
spherical coordinate system. The first step is to derive the
cumulants 2d̃á ñ, i

˜ ˜ddá ñ, and i
j˜ ˜d dá ñ. The variance of the field 2d̃á ñ is

a scalar quantity and hence invariant under coordinate
transformations, but i

j˜ ˜d dá ñ is a rank (1, 1) tensor, and i
˜ ˜ddá ñ is

a vector, both of which transform nontrivially. Spherical
redshift-space two-point statistics have been extensively
studied in the literature, and we direct the reader to Hamilton
(1992), Hamilton & Culhane (1996), Zaroubi & Hoffman
(1996), Szalay et al. (1998), Szapudi (2004), Shaw & Lewis
(2008), Bonvin & Durrer (2011), Raccanelli et al. (2016), Yoo
& Seljak (2014), Reimberg et al. (2016), Paul et al. (2022) and
references therein for details.

Starting with the scalar cumulant, following Castorina &
White (2018), we define the density field in terms of angular
coefficients as

*r ea r Y . 21
ℓm

ℓm ℓm r˜( ) ( ) ( ) ( )åd =

Then the two-point function is given by

*r r r r e ea r a r Y Y,

22
ℓm

ℓm ℓm ℓm r ℓm r˜( ) ˜( ) ( ) ( ) ( ) ( ) ( )

( )

åd d zá ¢ ñ = ¢ = á ¢ ñ ¢

e e
ℓ

C r r
2 1

4
, . , 23

ℓ
ℓ ℓ r r( ) ( ) ( )å p

=
+

¢ ¢

where
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where primes on the spherical Bessel function jℓ denote
differentiation with respect to the argument kr, or kr¢ and ℓ are
Legendre polynomials. The cumulant is defined as the field
correlation in the limit r r ¢, which is
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where we took the limit r r¢  on the right-hand side and used
the normalization of the Legendre polynomials e e. 1ℓ r r( ) = .
The first term on the right-hand side of Equation (25) is the
cumulant in the plane-parallel limit. The second term is divergent
as r→ 0 but falls off at large distances from the central observer.
The divergent behavior at r= 0 is not physical, and can be
subtracted via a suitable correction to the space distortion
operator in Equation (20). Practically, cosmological data will
always occupy a domain excluding the observer, and for
computational purposes, we will excise the r= 0 point from the
manifold in redshift space. Hence the manifold on which the
RSD field d̃ is defined is not 3 , but rather 2

0 ´ > .
Similarly the radial and angular derivative cumulants can be

calculated—
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The cross covariance terms are 0 in this coordinate system—for
example
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Hence in this coordinate system, the gradient cumulant tensor

i
j˜ ˜d dá ñ is diagonal. There is an additional correlation not present

for a homogeneous field—the vector i
˜ ˜ddá ñ has a single nonzero

component
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There are two crucial differences between this scenario and the
previous plane-parallel calculation in Appleby et al. (2019)—
the cumulants are now explicitly functions of the position on

the manifold at which they are estimated, and they are no
longer defined over 3 because we excise the r= 0 point. Both
are consequences of the inhomogeneous nature of the RSD
signal. In each of the cumulants (Equations (25)–(28)), the first
terms on the right-hand sides correspond to the plane-parallel
limit, and the remaining terms are corrections that are fractionally
suppressed by r0

2
1
2 2( )s s and r1

2
1
2 4( )s s- at large distances from

the observer. Similarly the vector i
˜ ˜ddá ñ has asymptotic behavior

0i
˜ ˜ddá ñ  as r 01

2
0 1

3( )s s s - . Hence, at large distances from
the observer, the cumulants approach their constant, plane-parallel
limits. The ensemble average, being defined at a point on the
manifold, is independent of the volume on which the field is
defined, and the approach to the plane-parallel limit is sensitive
only to the ratio of the RG-dependent cumulants and radial
distance r. The volume occupied by the field is important when
extracting the volume average from the data.
To quantify the departure of the cumulants from the plane-

parallel limit, we numerically evaluate Equation (26) for a
typical cold dark matter density field in the linearized limit.
Taking cosmological parameters from Table 1, we generate a
linear ΛCDM matter power spectrum P(k, RG) at z= 0, and we
use this and f m Wg , γ= 6/11 to numerically reconstruct the
plane-parallel limit r,

2˜ s and radial-dependent correction r
2D to

the cumulant, r rr
r

r r,
2 2˜ ( ) ˜ ( ) ˜ d d sá ñ = + D , defined as
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In the left panel of Figure 1, we present the dimensionless
fraction r r

2
,
2˜ sD as a function of comoving distance r from an

observer at r= 0 using the standard ΛCDM distance–redshift
relation with parameters given in Table 1. We select Gaussian
smoothing scales RG= 20, 40Mpc (blue, green lines). We only
present r rr

r˜ ( ) ˜ ( )d dá ñ, as this is representative of the other
cumulants. In the right panel, we present the same quantity as a
function of dimensionless ratio r/RG.
The figure shows that the coordinate dependent corrections

to the cumulant are negligible for r? RG, and that for
cosmological density fields that occupy a redshift domain
r R10 G( )>  the radial cumulant is practically equal to its
plane-parallel limit, r rr

r
r,
2˜ ( ) ˜ ( ) ˜ d d sá ñ . Conversely, for

r RG, the r
2D term is the dominant contribution to the

cumulant, which is strongly position dependent. In this regime,

Table 1
Fiducial Cosmological Parameters Used in This Work, Selected to Match the
Fiducial Cosmology of the Quijote Simulations Villaescusa-Navarro et al.

(2020)

Parameter Fiducial Value

Ωm 0.318
h 0.671
wde −1
ns 0.962
σ8 0.834
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the cumulants grow without bound as r→ 0, so there is always
a region for which the field d̃ cannot be considered
perturbatively small. However, the region r RG is not
typically utilized in any cosmological scale density field
reconstruction, and the plane-parallel limit of the cumulants
is very accurate for our purposes.

After calculating the cumulants i
j˜ ˜d dá ñ, i

˜ ˜ddá ñ, 2d̃á ñ, we can
now estimate the ensemble average 〈wi

j〉—

w X r dX
1

6
, 34i

j i
j

D t( ( ))
˜ ˜
∣ ˜∣

( ˜ ) ( )ò
d d
d
d d dá ñ = F S


-

where Φ(X, Σ(r)) is the probability distribution of the variables
X. The array X denotes any combination of the stochastic fields
( , , ,r
˜ ˜ ˜ ˜d d d dq f) to which wi

j is sensitive. Σ is a square matrix
whose dimension is given by the number of components of X.

We use the fact that d̃q and d̃f are uncorrelated with d̃ and rd̃
and one another, and their variances are equal as given by
Equations (27), (28). Furthermore, if the density field is
statistically isotropic on the two-sphere, it suffices to calculate
〈wθ

θ+ wf
f〉, and then halve this value to obtain the individual

elements. To estimate 〈wθ
θ+ wf

f〉 and 〈wr
r〉, we can use

the variables X y, ,r(˜ ˜ )d d= , where y ˜ ˜ ˜ ˜d d d d= +q
q

f
f , where

˜ ˜d df
f and ˜ ˜d dq

q are given by Equations (27) and (28)
respectively. The random field y is Rayleigh distributed and
uncorrelated with d̃ and rd̃ . The fields d̃ and rd̃ are Gaussian
random variables with nonzero correlations:

r . 35r
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Each term in Ŝ is nonzero and a function of r, but in the limit
r? σ0/σ1, and r 1 1 s s- , Σ approaches a diagonal form
with constant components—the plane-parallel limit of Appleby
et al. (2019). In the same limit, the variance y

2s becomes

independent of the radial coordinate. Defining d , r(˜ ˜ )d d= ,
X= (d, y), and the probability distribution is

d d dy r
y y

, ,
2
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1

2 2
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36
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where y
2 ˜ ˜ ˜ ˜s d d d d= á ñ = á ñq

q
f

f . Although we cannot perform the
integral in Equation (34) analytically, 〈wi

j〉 can be
numerically estimated for any r. In the regime r2

0
2

1
2 s s ,

and r4
1

2
1
2 s s- , we can use the plane-parallel limit

calculated in Appleby et al. (2019) as an excellent
approximation.
In Figure 2, we present the ensemble average (Equation (34))

using the probability distribution (Equation (36)) for fixed
RG= 20Mpc, using the radially dependent cumulants in rˆ ( )S
and ry

2 ( )s . The yellow, blue, and green curves correspond to
the value of the ensemble average at r= 10, 25, 50Mpc
respectively, and the solid and dashed curves are the (r, r) and
(θ, θ) components. The (f, f) components are always equal to
the (θ, θ) element, and so they are not plotted. The gray lines
correspond to the plane-parallel limit of the ensemble average,
obtained by taking r to be some arbitrarily high value
r= 103 Mpc. For r< RG, the ensemble average significantly
departs from the standard Gaussian expectation value (see
yellow, blue curves). This is due to the r dependent terms in the
cumulants dominating for r< RG, and also the shape change in
the (r, r) component is due to the cross correlation contribution

0r
˜ ˜ddá ñ ¹ . For r> RG, the components approach the plane-
parallel limit (see green curves).
The shape of the 〈wi

j〉 curves depend on the correlation
properties of the field. When 〈δδi〉= 0, the components of
〈wi

j〉 possess the well-known ν functional dependence
e 22n- . Any correlation between the field and its gradient will

Figure 1. Fractional correction to the radial cumulant r
2s̃ due to the inhomogeneous contribution rr

2( )D , relative to its plane-parallel limit r,
2˜ s . Blue and/or green lines

correspond to smoothing scales RG = 20, 40 Mpc respectively. We present rr r
2 2( ) s̃D as a function of comoving distance from observer (left panel) and ratio of

comoving distance and smoothing scale (right panel).
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modify the shape of these statistics, even for a Gaussian
random field. Practically, it would not be feasible to extract the
extremely nonstandard ν dependence presented in Figure 2 for
r< RG from large-scale structure catalogs, because we measure
the volume average wi

j¯ , and for r< RG, the volume is
insufficient to obtain the fair sample required to estimate
〈wi

j〉. Still, we can potentially probe small perturbations to
the shape of the Minkowski functionals and tensors arising
from the 〈δδi〉 field correlation.

4.2. Volume Average wi
j¯

Next we consider what is actually extracted from cosmolo-
gical data—the volume average of wi

j. We assume that the
continuous field d̃ has been sampled at a finite set of points,
specifically we take d̃ evaluated on a Cartesian grid in a cubic
volume. The volume of the cube is L3 Mpc3, and each pixel
occupies volume Δ3 Mpc3. We denote a discretized field with
subscript {...} brackets to denote pixel dependence, so m n p, ,{̃ }d is
the value of the field in the m, n, p pixel in (x, y, z) coordinates.
We define the Cartesian basis vectors as ex, ey, ez, and spherical
basis vectors er, eθ, ef in a coordinate system with respect to an
observer located at the center of the cube. At each grid point,
we construct the gradient of the field in Cartesian coordinates
using a second-order accurate finite difference scheme. Then wi

j

at each point on the grid is given by

w
1

6
, 37i
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, ,
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{ } { }

{ }
{ }

d d
d

d d d=
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where the Dirac delta function is also discretized (Schmalzing
& Buchert 1997):

if 2

0 Otherwise.
. 38D m n p t

m n p t
, ,

1
, ,⎧

⎨⎩
( ˜ ) ∣˜ ∣ ( ){ }

{ }d d d d d- = - <- 

ò is a small parameter that we fix as ò= 10−2 in what
follows. There is a discretization error that comes with
this approximation (Lim & Simon 2012; Chingangbam &
Yogendran 2017), but we neglect this subtlety. The function

D m n p t, ,(˜ ){ }d d d- selects a subset of pixels of roughly equal field
value, which are the points on at which we sample the vector

field i m n p, ,
˜ { }d for each threshold δt. Since the gradient of the

field id̃ is approximately uncorrelated with d̃ point-wise on the
manifold, this sampling generates an unbiased estimate of the
underlying vector field id̃ for every δt. The only caveat is that, in
spherical redshift space, rd̃ is weakly correlated with d̃ , but the
correlation is negligible for r4

1
2

1
2 s s- . The quantity

wi
j
{m,n,p} is a tensor evaluated at a particular point on the

manifold (specified by the {m,n,p} pixel), and wi
j¯ is their volume

average. In Figure 14, Appendix C, we present an example of a
point distribution data set, the corresponding smoothed field,
and the discretized delta function approach to selecting pixels
of particular threshold value.
The concept of a volume average of non-Cartesian tensors

defined at different points on a manifold is ambiguous. To
proceed, we should define a fiducial pixel {a, b, c} at which we
take the volume average, and a choice of path by which we
transport each wi

j
{m,n,p} to {a, b, c}. We write the volume

average as

w a b c
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g g

where the γ superscript id̃g denotes the transport of id̃ from {m,
n, p} to {a, b, c} along a path γ, and

V . 40
m n p, ,

3 ( )å= D

We do not use all pixels in the cubic volume, but rather ∑m,n,p

represents all pixels that lie in some radial range
r r rmin max  , where r Rmin G> , and r L 2max < are selected
to ensure that we cut pixels close to the central observer and in
the vicinity of the boundary of the box.
The choice of path γ is completely arbitrary. However, the

manifold on which the field is defined is 2
0 ´ > , which is

geodesically incomplete with respect to Euclidean paths. Since
we are adopting a spherical coordinate system and anticipate a
preferred signal in the radial direction, it behooves us to select a
transport that preserves the radial basis vector. A natural choice
that achieves this is great arc transport on the two-sphere from
the angular location of {m, n, p} to {a, b, c} followed by a
radial translation to the same distance from the central
observer. Great arc transport from {m, n, p} to {a, b, c}
rotates the spherical basis vectors e er r ¢ , e e ¢q q, e e ¢f f,
such that e er r¢ = , but e¢q and e¢f become mixed relative to eθ,
ef.

7 The mixing of spherical components is unimportant,
because we are assuming that the field is isotropic on 2 . We
explicitly present the rotation of the spherical basis vectors—
relative to great arc tangents—in Appendix B. For both the
plane-parallel and spherical redshift-space distorted fields, the
field is assumed to be isotropic on the submanifold perpend-
icular to the line of sight— 2 relative to ez and 2 relative to er
respectively.
To perform this transport for all pixels that satisfy

0D m n p t, ,(˜ ){ }d d d- ¹ , we define T1̂ and T2̂ as unit vectors

Figure 2. The ensemble average (Equation (34)) for the spherically redshift-
space distorted field, evaluated at distance r = 10, 25, 50 Mpc from the central
observer (yellow, blue, green lines), as a function of constant normalized
threshold t 0˜n d s= . We also present an example with very large separation
from the observer r = 103 Mpc, which we label as “Plane Parallel” (gray lines).

7 Parallel transport along geodesics on 2 preserves the orientation of the
tangent space relative to the tangent vector of the transport. The mixing
described here arises due to the fact that the angle subtending a great arc
tangent vector and the basis vectors eθ, ef varies continuously along the path.
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pointing to pixels {m, n, p} and {a, b, c} from the observer at
r= 0, and rotate the vector i m n p, ,

˜ { }d by angle T Tcos 1 2
ˆ · ˆq = ,

about the axis defined by T T1 2
ˆ ˆ´ . Such a rotation can be used

to describe great arc transport. The second stage of transport,
along er, is trivial and undertaken implicitly. Finally the
transported, Cartesian gradient i m n p, ,

˜ { }d¢ , now defined at {a, b,
c}, is converted into the spherical basis via a coordinate
transformation. Note that we used a Cartesian basis to define id̃
and performed a coordinate transformation as a final step, but
one could instead define id̃ in a spherical basis then rotate from
{m, n, p} to {a, b, c}. The final result will not depend on the
ordering of these operations.

In Figure 3, we present a schematic image of the vectors
associated with the transport scheme. The tan and red vectors
are the vectors pointing to T1̂ and T2̂ respectively. The purple
vector is id̃ , at point {m, n, p}. The blue and/or black lines
denote the great arc and Euclidean paths to point {a, b, c}, and
the violet/green vectors denote id̃ after these respective
transports. The green vector is parallel to the purple; the violet
and purple vectors are both parallel to the tangent vector to the
blue curve. In this work, we adopt great arc transport, which
transports the purple to the violet vector at {a, b, c}.

If we used Euclidean paths to transport id̃ to a common point
on the manifold (ignoring the geodesic incompleteness), then
we would obtain a completely different result. In this case, all
three spherical basis vectors er, eθ, ef would mix, and wi

j¯
would depend entirely on the volume over which the field is
defined.

The fact that the choice of transport affects the volume
average is troubling, because the ensemble average is defined at
a point on the manifold and requires no notion of transport.
However, we expect that our choice is appropriate for the very
specific physical scenario considered in this work. With our
path selection, the radial basis vector is preserved, and although
the angular derivatives become mixed, we are working with a
field that is isotropic on 2 . Other choices of path could be used
instead—for example transport along lines of latitude and
longitude. This choice is not angle preserving—lines of latitude
are not generally geodesics. Ultimately there is no unique path
definition, but for a field that is isotropic on 2 , these details are
not important. Also the point on 2 at which we take the
average will not impact the volume average for an idealized
field that is isotropic on 2 . Anisotropic fields on 2 will be
considered elsewhere, as many of these subtleties are likely to
become problematic in the absence of this symmetry.

We would like to equate the volume and ensemble averages
of wi

j, defined in Equations (39) and (34) respectively.8 As
justification, we can appeal to the weak law of large numbers;
for a sequence of identically distributed variables Xn, we define
an average

X
N

X
1

. 41
n

N

n
1

¯ ( )å=
=

Then if the covariance between variables (Xn, Xn+m) asymp-
totes to 0 as m→∞ , the sample mean X̄ in Equation (41)
approaches the underlying expectation value E(X) in the limit
N→∞ . In our example, the summed variables are the

combination on the right-hand side of Equation (39). As we
take the volume V→∞ , we expect that the pixels will provide
a fair sample, and the correlation functions of d̃ and its gradient
satisfy ζ(r)→ 0 as r→∞ . This suggests that the ensemble and
sample averages will converge, but in realistic scenarios, we
deal with finite volumes, and furthermore the fields d̃ , id̃ are
non-Gaussian in the low redshift universe. It is not clear that
the sample and ensemble averages converge when higher point
correlations are present, and if so how quickly they do as the
volume increases (Watts & Coles 2003). With our choice of
transport, we do not expect the volume average to be sensitive
to the point on the sphere at which we take the average, and we
will take the density fields located at r? RG, so the radial
dependence of the cumulants should be irrelevant. We therefore
expect that, for this particular physical scenario, our choice of
coordinate system and transport will allow us to use the
approximation w wi

j
i

j¯  á ñ. At precisely what scale the plane-
parallel approximation and ergodicity can be reasonably
applied depends on the radial distance between the observer
and the data, and the smoothing scale RG used. From Figure 1
(right panel), we expect that corrections to the plane-parallel
limit become subpercent at radial distances equal to approxi-
mately ten smoothing lengths. This implies that for cosmolo-
gical large-scale structure data (Alam et al. 2015) the plane-
parallel approximation should be accurate to more than 1%, as
these catalogs are hundreds of Megaparsecs from the observer,
and we typically smooth on scales 10 Mpc( )~ . However,
small departures from the plane-parallel limit should be
observable in local large-scale structure catalogs at redshifts
z< 0.1 (Abazajian et al. 2009). Measuring these deviations is a
direction of future study.

Figure 3. Figure showing the parallel transport of the vector id̃ from point {m,
n, p} (purple vector) to {a, b, c}, using great arcs on the two-sphere (violet
vector) and Euclidean transport (green vector).

8 Since we measure w Wi
j

1
0,2¯ º from a cosmological density field, we should

not compare the measurement to the ensemble average of the Minkowski tensor
W1

0,2á ñ but rather 〈wi
j〉. When the field is statistically homogeneous, we can

write w Wi
j

1
0,2á ñ = á ñ, and there is no distinction to be made.
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We confirm the accuracy of the plane-parallel approximation
numerically in Section 6. However, before moving on to the
numerics, we present a counter example in Section 5 for which
the notion of ergodicity (even approximate) fails completely.

5. Spherical Redshift-space, Cartesian Coordinate System

In this section, we calculate the cumulants of the spherically
redshift-space distorted field in Cartesian coordinates (x, y, z),
following the methodology of Castorina & White (2018). The
calculation is extremely tedious, and we simply state some
important steps and the results in the main body of the text. The
density field in redshift space r˜( )d can be written in terms of its
real-space counterpart δ(r) via
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where sℓ are the Legendre polynomials.
We express k as kxex+ kyey+ kzez in Cartesian coordinates.

The differentiation of the first term on the right-hand side in
Equation (42) with respect to x gives
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We treat the other terms in the right-hand side of Equation (42)
in a similar way and substitute the results into

r r
x r r

x
˜( ) ˜( )d d

¶
¶

¢¶
¶ ¢

¢

. We then use the relation (Equation C1),

and e e 1x x( · ) = , along with the result
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In this coordinate system, the cumulant tensor i
j˜ ˜d dá ñ is not

diagonal. We visualize the Cartesian cumulants in Figure 4. We
smooth the power spectrum with a Gaussian kernel with scale
RG= 20Mpc, select a fixed radial distance r= 200Mpc from
the central observer, and present Mollweide projections of the
dimensionless quantity i

j
1
2˜ ˜d d sá ñ on the sphere. The top row

panels show the diagonal (x, x), (y, y), and (z, z) components
(left to right), while the bottom row panels show (x, y), (x, z),
and (y, z) components (left to right). The diagonal elements
present a series of dipoles on the sphere, and the off-diagonal
elements are quadrupolar. All elements are generically nonzero
and vary significantly with spatial position. This is in contrast
with the cumulants in a spherical coordinate system, which are
isotropic on the sphere and vary only weakly with r.
The spatial dependence of i

j˜ ˜d dá ñ means that the vector id̃
located at different points on 3 is not equally likely to be
observed in a realization. Given 2d̃á ñ, j

˜ ˜ddá ñ, and i
j˜ ˜d dá ñ, we can

construct the ensemble average〈wi
j〉 in this coordinate system:

w X x y z dX
1

6
, , , , 50i

j i
j

D t( )
˜ ˜
∣ ˜∣

( ˜ ) ( )ò
d d
d
d d dá ñ = F


-
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where Σ(x, y, z) is given by

x y z, , . 51
i

j
i

j

2⎛

⎝
⎜

⎞

⎠
⎟( )

˜ ˜ ˜

˜ ˜ ˜ ˜
( )

d dd

dd d d
S =

á ñ á ñ

á ñ á ñ

It is clear that the volume average wi
j¯ will not generically be

representative of the ensemble average 〈wi
j〉 in this

coordinate system, due to the coordinate dependence of
〈wi

j〉. For example, taking the all-sky spatial average of wi
j

extracted from a field with the particular cumulant pattern in
Figure 4 will yield an isotropic result wi

j
i

j¯ dµ —we confirm
this in the following section.9 The volume average in this
particular case would incorrectly identify the field as isotropic,
because the spatial dependence of the signal in this coordinate
system would be washed out by the averaging. If we take the
volume average of the cumulant tensor i

j˜ ˜d dá ñ over 2 and some
arbitrary radial range, then the result will be proportional to the
identity matrix. We can infer that the directional information is
lost upon volume averaging. The volume and ensemble
averages cannot be equated even approximately in this
example. This conclusion is not in contradiction with the
plane-parallel limit, because here we are considering an all-sky
average. If we instead took a small patch on the sky and aligned
the Cartesian coordinate system with one axis pointing to the
patch, then the plane-parallel limit could be approximately
realized.

The underlying point is that, for tensors and inhomogeneous
fields, the volume average can reasonably approximate the
ensemble average or completely misrepresent it, depending on
the properties of the field and choice of coordinate system,
volume, and transport path.

6. Numerical Extraction of Minkowski Tensors in Spherical
Redshift Space

We now confirm numerically some of the results of the
previous sections, and furthermore study the conditions under
which we can faithfully extract the Kaiser signal from a
redshift-space distorted, non-Gaussian matter field in the low
redshift universe. The matter density field is assumed to be
Gaussian in the early universe, but the nonlinear nature of
gravitational collapse couples Fourier modes. This is a scale
dependent statement, and by smoothing the late time density
field over sufficiently large scales, the standard model of
cosmology posits that the density field is perturbatively non-
Gaussian. We attempt to extract the Kaiser RSD signal from
the large-scale-averaged density field.
In this work, we do not pursue the computational challenges

that come with real data, such as galaxy bias, shot noise,
complex survey geometries, and Malmquist bias—these issues
will be considered elsewhere. When galaxies are scattered
radially, the relative volume difference along the line of sight
can introduce a spurious radial gradient in the mean density,
which must be carefully subtracted. Neglecting these subtleties,
we focus specifically on two questions—can we use the volume
average constructed in Section 4.2 as an unbiased estimate of
the ensemble average derived in Section 4.1, and over what
scales must we smooth the non-Gaussian dark matter field to
reproduce the Gaussian limit of these statistics? We also
compare the MTs extracted from plane-parallel and spherical
redshift-space distorted fields and confirm that they are
indistinguishable for fields occupying cosmological volumes.
To perform these tests, we use two data sets—initially

Gaussian random fields and then dark matter particle distribu-
tions that have been gravitationally evolved to z= 0.

6.1. Gaussian Random Fields

For Gaussian random fields, we start by generating an
isotropic and homogeneous field δ in a periodic cube of side
length L= 1490Mpc (=1000 h−1Mpc), in Fourier space using

Figure 4. Cartesian cumulants i
j

1
2d d sá ñ projected onto the two-sphere for fixed radial distance r = 200 Mpc from the central observer. The top row panels display the

(x, x), (y, y), and (z, z) components from left to right, while the bottom row panels display the off-diagonal components (x, y), (x, z), and (y, z) components, from left to
right.

9 Simply adding Cartesian components of wi
j at different points of the

manifold to obtain wi
j¯ implicitly assumes Euclidean path transport, but

neglects the geodesic incompleteness of the manifold. Regardless, we do not
use the Cartesian coordinate system other than to provide an example for which
ergodicity fails.
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an input linear ΛCDM matter power spectrum P(k, RG) at z= 0
with the cosmological parameters given in Table 1. We smooth
the field with Gaussian kernel W kR e k R

G
22

G
2( ) µ - . The field is

sampled on a Cartesian grid with Np= 512 pixels per side, with
resolution Δ= 2.9 Mpc. We then create plane-parallel and
spherical redshift-space distorted fields. For the plane-parallel
case, we apply the standard operator (see Equation (8)) to δ, in
Fourier space, using f m

6 11= W and aligning the RSD
correction with the ez axis of the box.

To construct a spherically redshift-space distorted field, we
generate a second isotropic field Ω≡∇−2δ on the grid, and
construct the gradient ∇iΩ in the Cartesian coordinate system.
Then we infer the radial derivative ∂rΩ using a standard
transformation (we provide our angle conventions explicitly in
Equation (C15)). We repeat this procedure on ∂rΩ on the lattice
to obtain the second derivative ∂rrΩ, and finally define the
spherically redshift-space distorted density field as

f
r

2
. 52m n p m n p rr m n p r m n p, , , , , , , ,⎛

⎝
⎞
⎠

˜ ( ){ } { } { } { }d d= + ¶ W + ¶ W

This field is then masked such that m n p, ,{̃ }d is assigned zero
value and not used in our analysis if the pixel {m, n, p} is such
that it is a radial distance from the observer at the center of the
box, lies outside the range 100< r� 630 in Mpc units. We use
all-sky data, taking the complete 4πr2 area on 2 relative to the
central observer.

For each data set, we calculate the mean d̄ and variance 0
2s̃ of

the unmasked pixels, and define the zero mean, unit variance
field m n p, , 0(˜ ¯ ) ˜{ }d d s- . The volume average wi

j¯ is calculated for
each of the three data sets—isotropic, plane-parallel, and
spherical redshift-space distorted. For the isotropic and plane-
parallel fields, we use the entire box with periodic boundary
conditions, and wi

j¯ is defined in the Cartesian coordinate
system of the box. From the Cartesian lattice, we use a simple
second-order accurate finite difference scheme to construct the
gradients δi and id̃ , and because we use Euclidean paths to
collect tensors in 3 , we can simply take a sum of wi m n p

j
, ,{ }

pixels without any explicit transport transformation. Hence the
volume averages are

w
V

1

6
, 53i

j

m n p
D m n p

i m n p
j

m n p

m n p

re

, ,

3
, ,

, , , ,

, ,
¯ ( )

∣ ∣
( ){ }

{ } { }

{ }
å d d n

d d
d

= D -


w
V

1

6
, 54i

j

m n p
D m n p

i m n p
j

m n p

m n p

pp

, ,

3
, ,

, , , ,

, ,
¯ ( ˜ )

˜ ˜

∣ ˜ ∣
( ){ }

{ } { }

{ }
å d d n

d d
d

= D -


where the superscripts denote real space (re) and plane parallel
(pp), and ν is the root mean square normalized threshold
ν= δt/σ0, or t 0˜n d s= , respectively.

For the spherically distorted field, we follow the procedure
outlined in Section 4.2; we randomly select an unmasked pixel
{a, b, c} as the fiducial point at which we take the spatial
average, with the unit vector pointing to the pixel denoted T2̂ .
Then for each pixel selected by the discretized delta function

0D m n p, ,(˜ ){ }d d n- ¹ , we define the unit vector pointing to this
pixel as T1̂ , and use T1̂ and T2̂ to construct a unit quaternion q,
which is used to rotate the Cartesian gradient vector,

*q qi i
˜ ˜d d¢ = , reflecting its change of orientation when trans-
ported from T1̂ to T2̂ . The components of the quaternion are
given in Appendix C. At {a, b, c}, the rotated Cartesian
gradient is transformed to the spherical coordinate basis er, eθ,

ef. We present a schematic of this transport in Figure 3. Note
that there is no unique rotation–great arc transport for pixels at
antipodal points on the sphere to {a, b, c}; for these we select a
random rotation axis in the plane perpendicular to T2̂ (we have
confirmed that different choices do not affect our numerical
results). The volume average for the spherically redshift-space
distorted case (superscript sp) is
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g g

where γ denotes great arc transport, and the tensor is defined in
a spherical basis. We measure wi

j¯ over Nν= 51 threshold
values ν equi-spaced over the range −3.8� ν� 3.8, for
Nreal= 50 realizations of a Gaussian random field. We repeat
the measurements for fields smoothed with scale RG over the
range 15Mpc� RG� 45Mpc.
Before presenting the numerical results, we discuss a way to

check the Gaussian nature of a random field. For a general
weakly non-Gaussian field, we can expand the components of
the MTs as a series of Hermite polynomials,10 as follows:

w e A H a H a H .

56
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This expansion is equivalent to Matsubaraʼs perturbative
expansion for the scalar Minkowski functionals (Matsubara
2003), albeit the expansion coefficients are assigned to each
Hermite polynomial and not to powers of the variance. The
coefficients contain information of the generalized skewness,
kurtosis, and higher moments of the field. The coefficients
A a a, ,i

j
i
j

i
j

1 2∣ ∣ ∣ can be computed using the orthogonality
properties of the Hermite polynomials, as
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where maxn  ¥. For our analysis, we take 3.8maxn = , after
checking that our results are not sensitive to reasonable
variations of this value.11 For Gaussian random fields, the
coefficients of the higher-order terms in the expansion a1, a2
etc. should be consistent with 0 in real and redshift space, so we
refer to the coefficient of H0(ν) as the amplitude of the MT
components.
Using the above way of representing weakly non-Gaussian

random fields, in the Gaussian and plane-parallel limits, we
have (Appleby et al. 2019)

w A H e 60i
j

G i
jpp pp

0
22¯ ∣ ( ) ( )n= n-

10 Hn(ν) are the probabilistʼs Hermite polynomials, the first few of which are
given by H0(ν) = 1, H1(ν) = ν, H2(ν) = ν2 − 1.
11 The Hermite polynomials are exactly orthogonal only in the limit

maxn  ¥. However, since wi
j¯ is exponentially damped at large thresholds,

it suffices to choose finite maxn . Taking maxn to be too large in a finite volume
data set can generate biased values of the Hermite polynomial coefficients (see
Appendix A-4 of Appleby et al. 2021).
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where A0 and λ are defined in Equations (18) and (19). In real
space, we have (Appleby et al. 2018b)
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For the Minkowski functional W1, the coefficient a1 of H1(ν) is
one of two terms induced as a leading-order non-Gaussian
correction, and a2 is one of several higher-order contributions.
Hence we use these terms as proxies to study the non-Gaussian
corrections of the MTs that are induced by gravitational
collapse. As mentioned above, for the Gaussian random fields
considered in this subsection, a1 and a2 should be consistent
with 0 in real, plane-parallel, and spherical redshift space. The
RSD operator does not change the Gaussian nature of the field.
We check that the numerically computed values of a1 and a2
are consistent with 0 in our calculations, when measuring the
MT of Gaussian random fields.

In Figure 5 (top left panel), we present the diagonal and off-
diagonal components of wi

jre ¯ and wi
jsp ¯ extracted from the

fields smoothed with RG= 20Mpc. The points and error bars
correspond to the mean and root mean square of the
realizations; hence we are presenting the ensemble average of
the volume average. The filled and open diamonds are
measurements in spherical redshift and real space respectively.
The diagonal components in real space are equal, modulo of a
noise component (see light green and/or blue and/or red open
diamonds). The real-space volume average satisfies wi

j
i

jre ¯ dµ
in every coordinate system. In redshift space, the radial
component of wi

j¯ is significantly larger than the angular
components—this is the Kaiser signal. The off-diagonal
components of wi

jre ¯ , wi
jpp ¯ , and wi

jsp ¯ are all consistent with
0. The error bars are the statistical uncertainty of the
measurements, which increase for increasing RG because we
are using a simulation box of fixed size.

In Figure 5, we present the values of A|i
j (top right panel), a1|i

j

(bottom left panel), and a2|i
j (bottom right panel) for wi

j¯
extracted from the real and spherical redshift-space distorted
fields as a function of smoothing scale RG. In the top right
panel, the solid and/or dashed gold lines are the corresponding
plane-parallel Kaiser limits given in Equations (61)–(63), and
the solid silver line is the isotropic expectation value in
Equation (64).

The volume averages wi
jre ¯ and wi

jsp ¯ extracted from the
spherical RSD and real-space data sets match the ensemble
averages derived in Appleby et al. (2018b, 2019). Similarly the
coefficients a1, a2 are consistent with 0 at all scales probed (see
bottom panels). This is expected—we generated Gaussian
random fields, and the application of the linear RSD operator
preserves Gaussianity. This provides a check on the ergodicity
condition w wi

j
i

j¯á ñ , and indicates that our definition of the

volume average can be used to reproduce the ensemble
average.
Finally, in Figure 6, we present the fractional differences

(spA|i
j− ppA|i

j)/ppA|i
j (left panel), (spa1|i

j− ppa1|i
j)/ppAG|i

j (central
panel), and (spa2|i

j− ppa2|i
j)/ppAG|i

j (right panel) as a function of
smoothing scale RG. These quantities are all consistent with 0
at all scales probed, confirming that the plane-parallel and
spherical redshift-space distorted fields are statistically indis-
tinguishable for data that are at cosmological distance
>100Mpc from the observer.

6.2. Non-Gaussian Dark Matter Fields

To study the gravitationally evolved non-Gaussian dark
matter density field, we use Nreal= 50, z= 0 snapshot boxes
from the Quijote simulations (Villaescusa-Navarro et al.
2020). These are a suite of cosmological scale dark matter
simulations in which ∼44,000 realizations of 5123 particles are
gravitationally evolved in boxes of size L= 1490Mpc
(=1000 h−1Mpc), from z= 127 to z= 0. We take Nreal= 50,
z= 0 snapshot boxes and generate real-space density fields by
binning the dark matter particles into a regular 5123 Cartesian
grid of resolution Δ= 2.9 Mpc using a cloud-in-cell scheme.
Defining the number density field n n ni j k i j k, , , ,( ¯) ¯{ } { }d = - ,
where n{i,j,k} is the number of particles in the {i, j, k} pixel, and
n̄ is the mean number of particles per pixel. We smooth this
field with a Gaussian kernel W kR e k R

G
2G

2 2( ) µ - in Fourier
space. In this work, we exclusively work with dark matter data
because we focus on the question of the scale at which the
Gaussian, Kaiser limit of the density field is reached. Using
galaxy data introduces additional complications, as the choice
of galaxy sampling will affect small scale velocity dispersion,
which will impact the radial component of the statistics. The
galaxy density field—both mock and actual data—will be
studied in the future.
To generate the plane-parallel and spherical redshift-space

distorted fields, we take the real-space positions of the particles
x and perturb them according to

s x e v e
z

H z
.

1
, 65z z( ) ( )

( )
( )= +

+

s x e v e
z

H z
.

1
, 66r r( ) ( )

( )
( )= +

+

respectively, where v is the velocity of the particle, ez is the unit
vector aligned with the z-direction of the Cartesian grid, and er
is the radial basis vector to the particle from an observer at the
center of the box. We take redshift zero snapshot boxes, so we
fix z= 0, and H(z)=H0.
For the redshift-space distorted fields, we bin the particles

into pixels with the cloud-in-cell scheme according to their
redshift-space position, using the same Δ= 2.90Mpc Carte-
sian grid. We apply periodic boundary conditions for the plane-
parallel corrected box along ez, which renders the field
homogeneous but anisotropic. The spherical RSD operator is
incompatible with periodicity. So we exclude all pixels that lie
at distances r� 50Mpc, and r� 700Mpc from the central
observer in our calculations of wi

j¯ . The outer boundary of the
shell is at least 50Mpc from the edges of the box, so all
particles affected by the periodic boundary are excluded.
Finally, we smooth these pixel boxes with Gaussian kernel
W kR e k R

G
2G

2 2( ) µ - in Fourier space, and then further exclude
all pixels that lie a distance r� 100Mpc, and r� 670Mpc
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from the central observer. This last step eliminates pixels that
are affected by sampling near the boundary. The end result is a
set of three fields from which we extract wi

jre ¯ , wi
jpp ¯ , and wi

jsp ¯ .
We calculate the mean d̄ and variance 0

2s̃ of the unmasked
pixels for each field, and define the zero mean, unit variance
quantity m n p, , 0(˜ ¯ ) ˜{ }d d s- . The quantities wi

jre ¯ , wi
jpp ¯ , and wi

jsp ¯
are measured over nν= 301 values of threshold density ν from
the minimum and maximum values of the field in each
simulation. We then rescale the isodensity threshold ν to νA,
where νA is the threshold for which the excursion set has the

same volume fraction as a corresponding Gaussian field:

f e dt
1

2
, 67t

A
2

A

2 ( )òp
=

n

¥
-

where fA is the fractional volume of the field above νA.
Expressing the MTs as a function of νA as opposed to ν

partially Gaussianizes the statistics (Gott et al. 1987; Weinberg
et al. 1987; Melott et al. 1988). To perform this rescaling, we
use spline interpolation on the W1

0,2 versus ν calculated data

Figure 5. Top left panel: components of the Minkowski tensor extracted from a Gaussian random field in real space (open diamonds), and spherical redshift space
(filled diamonds). The off-diagonal elements for the spherical redshift-space field are also presented and consistent with 0. The field has been smoothed with scale
RG = 20 Mpc. Top right panel: the amplitude of wi

j¯ as a function of smoothing scale of the field. The solid and/or dashed gold lines are the plane-parallel expectation
values in redshift space, and the solid silver line is the isotropic expectation value. Bottom panels: the coefficients of the H1(ν) (left), H2(ν) (right) Hermite
polynomials. They are consistent with 0 for a Gaussian field, in both real and redshift space.
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and construct W1
0,2 versus νA, at n 41A =n values, equi-spaced

over the range −3.8< νA< 3.8.
In Figure 7, we present the components of the MT wi

jsp ¯ as a
function of ν (top left panel) and νA (top middle panel) for the
fields smoothed with comoving scale RG= 20Mpc. The off-
diagonal components are presented in the top right panel and
are consistent with 0. The same is true for all smoothing scales
tested in this work. The top panels represent the components of

wi
jsp ¯ in the spherical basis. In the bottom panels of Figure 7,

we present the components of wi
jsp ¯ in a Cartesian basis,

calculated using Euclidean paths to transport tensors to a
common location on the manifold. We plot the (x, x), (y, y),
(z, z) components as a function of ν (left), νA (middle), and the
off-diagonal elements (right panel). The MTs in the top and
bottom panels are both extracted from the same spherical
redshift-space distorted density field; only the coordinate
systems and choice of transport paths differ. In the bottom
panels, we observe that the diagonal elements of the MT are
statistically equivalent, and the off-diagonal elements are
consistent with zero. Hence wi

j
i

jsp ¯ dµ , and the volume
average incorrectly infers that the field is isotropic. As
discussed in Section 5, in a Cartesian basis, the spherical
RSD operator generates spatially dependent cumulants, and
taking the volume average washes out the anisotropic signal.

Next we explore the information contained in the coefficients
A, a1, and a2 defined in Section 6.1. In the top left panel of
Figure 8, we present the components A|i

j with (i, j)= (r, r), (θ,
θ), (f, f) (dark red, blue, green filled diamonds respectively) in
redshift space. The points and error bars are the mean and rms
values of the N= 50 snapshot boxes, and the points that
overlap have been slightly perturbed for visual clarity. For
comparison we also show the expectation values for spAG|r

r

(solid gold line), and spAG|θ
θ= spAG|f

f (dashed gold line),
in the limit r→∞ for a Gaussian random field with a linear
ΛCDM power spectrum and the same cosmological parameters
as the Quijote simulations. In the top right panel, we exhibit
the ratio of spA|i

j extracted from the Quijote simulations
and the Gaussian plane-parallel expectation values from
Equations (61)–(63). We also present A i

jre ∣ divided by the
isotropic expectation value from Equation (64), with (i, j)=
(x, x), (y, y), (z, z) (light red, blue, green open diamonds
respectively) extracted from the corresponding real-space
snapshot boxes without any velocity correction applied to the
particle positions.

The results for the isotropic field (light open diamonds)
present no surprises. The amplitude of each component (x, x),
(y, y), (z, z) are statistically indistinguishable, and the Gaussian
limit is an excellent approximation at quasi-linear scales
RG 30Mpc (see top panels). Below this scale, the amplitude
of the MT components starts to drop relative to the Gaussian
expectation (see top right panel). This is due to the
“gravitational smoothing” effect first observed in Melott et al.
(1988) for the scalar functionals. The a1 component (see
bottom left) is consistent with 0 on large scales, but is 0.01( )
at quasi-linear scales RG∼ 25Mpc. The a2 term (see bottom
right), which we expect to be induced at higher order in a σ0
expansion of non-Gaussianity, is consistent with 0 at all scales
probed.
In redshift space (dark filled diamonds), the picture changes

considerably. The most striking difference is the strong
departure of spA|r

r from its Gaussian expectation value (see
red filled diamonds, top panels). Even on large scales
RG∼ 40Mpc, the Gaussian, Kaiser formula of Equation (61)
is not a particularly good approximation. In contrast, the Kaiser
approximation of Equations (62), (63) is excellent for the
perpendicular components (green and/or blue filled diamonds,
top panels). It was noted in Kim et al. (2014) that the Gaussian,
Kaiser limit is only a good approximation for the scalar
Minkowski functionals when the density field is smoothed on
very large scales. Our results support this statement, and further
show that the radial component of the field is the origin of the
breakdown. In addition to the decrease in A|r

r, the non-Gaussian
terms a1,2|i

j are larger for the (r, r) component in redshift space,
but remain small at the scales probed. The fact that a2 is
induced at a statistically significant level on scales
RG� 20Mpc suggests that novel non-Gaussian contributions
are induced in redshift space (see red filled diamonds, lower
right panel).
In Appleby et al. (2019), it was noted that the ratio of parallel

and perpendicular components of the MT would provide a
relatively pure measurement of f (or β= f/b for biased tracers).
However, it is clear that spA|r

r strays far from the Kaiser limit.
The perpendicular components spA|θ

θ, spA|f
f remain closer to

their Gaussian expectation values on small scales, but their
values are not sensitive to f alone. Specifically, each individual
component of the MTs is sensitive to ns, Ωch

2, and f. Measuring
the ratios spA|θ

θ/spA|r
r, spA|f

f/spA|r
r would potentially break these

Figure 6. Fractional difference between A|i
j (left), a1|i

j (middle), and a2|i
j (right) extracted from the spherical and plane-parallel redshift-space distorted Gaussian

random fields.
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degeneracies, but only after we have resolved the origin of the
spA|r

r behavior.
The large departure of spA|r

r from the Kaiser limit is not due
to the imposition of the spherical RSD operator. To highlight
this, in Figure 9, we present the fractional differences
(spA|i

j− ppA|i
j)/ppA|i

j (left panel), (spa1|i
j− ppa1|i

j)/ppAG|i
j (central

panel), and (spa2|i
j− ppa2|i

j)/ppAG|i
j (right panel). All three

fractional differences are consistent with 0 over all scales
probed in this work, meaning that the spherical and plane-
parallel redshift-space fields possess statistically indistinguish-
able MT functionals, similar to the Gaussian random fields in
the previous subsection.

6.3. Non-Gaussian Effects along the Line of Sight

The significant drop in the amplitude of the MT component
parallel to the line of sight on small scales observed in the
previous subsection can be interpreted as the Finger of God
effect, which scatters particle positions over megaparsec scales
due to the large peculiar velocity dispersion σpec associated
with bound structures (Jackson 1972). The dominant effect of
σpec is an amplitude decrease in A|r

r, which is consistent with an
additional, anisotropic damping factor acting on the power
spectrum. The Finger of God effect has a long history within
theoretical and observational cosmology (Jackson 1972;

Park et al. 1994; Fisher 1995), and it is well known that
its effect on the power spectrum is imprinted even on
relatively large scales (Juszkiewicz et al. 1998; Hikage &
Yamamoto 2013; Beutler et al. 2014; Reid et al. 2014;
Okumura et al. 2015; Tonegawa et al. 2020). Observations of
the two-point functions indicate that the Kaiser limit is only
accurate on the largest scales (Scoccimarro 2004; Jennings
et al. 2011, 2010; Okumura & Jing 2010; Kwan et al. 2012;
White et al. 2014).
Our analysis provides two new insights into this phenom-

enon in the context of the Minkowski statistics. First, the
components of the MT perpendicular to the line of sight remain
well described by the Kaiser approximation, even on relatively
small scales RG  25Mpc. Second, on small scales RG
20Mpc, the non-Gaussianity of the components wr

r¯ and w̄q
q

differ with considerable statistical significance; this can be
observed in the a2|i

j coefficient in Figure 8 (bottom right panel).
This indicates that the additional non-Gaussian effects are
induced in redshift-space parallel to the line of sight.
Regarding the amplitude decrease in the A|r

r component, we
can attempt to model this effect using the standard approach in
the literature—following Peebles (1976), Peacock & Dodds
(1994), Park et al. (1994), Desjacques & Sheth (2010),
Scoccimarro (2004), we introduce an additional damping
kernel P k R P k R e, , k

G G
2

pec
2( ) ( )  s- into the power spectrum

Figure 7. The Minkowski Tensors measured from Nreal = 50 redshift-space distorted Quijote dark matter simulations, as a function of the thresholds ν, and the
rescaled thresholds νA. The top panels display wi

jsp ¯ from the spherically redshift-space distorted fields in a spherical coordinate system, while the bottom panels show
wi

j¯ extracted from the same spherical RSD fields but in a Cartesian coordinate system.
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that is used in defining the cumulants. Returning to the plane-
parallel limit, we can write the cumulants in redshift space as
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where σpec is a free parameter that describes the velocity
dispersion of tracer particles within bound structures, and

k kz
2 2 2m = . If we use these cumulants to derive the ensemble

average wi
jpp ¯á ñ, the additional anisotropic exponential damping

term due to the Finger of God effect introduces a significant

Figure 8. A|i
j (top left), a1|i

j (lower left), and a2|i
j (lower right) quantities as defined in Equations (57), (58), and (59) measured from Nreal = 50 Quijote simulations, at

z = 0, in real and redshift space. The solid and/or dashed gold lines in the top left panel represent the expectation values of the radial/angular components for a
Gaussian field in the plane-parallel limit, and the silver line is the isotropic Gaussian expectation value. The top right panel shows the fractional difference between the
Quijote measurements of A|i

j and the Gaussian limit of this quantity in real and redshift space.
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drop in the (z, z) component, but does not have a large effect on
the perpendicular (x, x), (y, y) elements. The amplitudes ppAi

j as
a function of RG are presented in the left panel of Figure 10,
keeping all parameters fixed and varying σpec= 0, 4, 6, 8 Mpc
(yellow, green, blue, red lines respectively). The components
parallel and perpendicular to the line of sight are presented as
solid and/or dashed lines respectively, and we have included
the isotropic limit f= σpec= 0 (silver lines), and Kaiser limit
σpec= 0 (yellow lines). The right panel exhibits the ratio of the
Finger of God affected ensemble averages to the Kaiser limit.
The large decrease in the parallel cumulant is clearly observed
on all scales, and the result is in qualitative agreement with the
dark matter snapshot results (see top right panel of Figure 8).
The perpendicular components increase by ∼1%–2% relative
to the Kaiser approximation. We also observe this effect in the
dark matter data—in the top right panel of Figure 8, the (θ, θ),
(f, f) components in redshift space are marginally higher than
the isotropic components (top right panel, blue and/or green
filled diamonds and light blue and/or green and/or red open
diamonds respectively). However, in the dark matter snapshot

case, all components in real and redshift spaces have a
systematically lower amplitude relative to the Gaussian limit
due to the non-Gaussianity of the field (see top right panel,
Figure 8), which requires further modeling.
Attempting to simultaneously constrain ns, Ωch

2, f, and σpec
from the MTs will yield strong degeneracies. Potentially some
of these can be broken because the Finger of God contribution
is scale dependent (see Figure 10), while the Kaiser signal is
independent of our choice of RG. Hence measuring the MTs at
multiple scales will provide simultaneous constraints on σpec
and f. We must be careful to check for additional, non-Gaussian
effects because these will also be scale dependent. A study of
perturbative non-Gaussianity in redshift space is beyond the
scope of this work and will be conducted elsewhere.
An alternative approach to mitigating the Finger of God

effect is to iteratively correct galaxy positions using some
higher-order prescription (Nusser et al. 1991; Gramann 1993;
Narayanan & Weinberg 1998; Park et al. 2010), to reduce the
large scatter induced by stochastic velocities within bound
structures. This method attempts to reconstruct the galaxy
density field in redshift space, but with nonlinear effects

Figure 9. Fractional difference between A|i
j (left), a1|i

j (middle), and a2|i
j (right) extracted from the spherical and plane-parallel redshift-space distorted Quijote dark

matter snapshot boxes.

Figure 10. The effect of an exponential Finger of God damping term on the amplitude of the Minkowski tensor components in plane-parallel redshift space as a
function of smoothing scale RG.
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removed. Many such reconstruction methods rely on the plane-
parallel approximation, so this approach requires further
development to be applied to radial RSD. A comparison of
these different approaches will be a direction of future study.

7. Discussion

We have presented an analysis of the rank (2) tensor
Minkowski functionals for an anisotropic and inhomogeneous
Gaussian random field, in particular an isotropic and homo-
geneous field that has been subjected to the spherically
symmetric RSD operator. Anisotropy here means that the
structures in the field share a common alignment along the
radial direction, leading to an inequality in the diagonal
components of the MTs parallel and perpendicular to the line
of sight. The inhomogeneity of the field introduces some
significant pitfalls—the ensemble average is now a function of
position on the manifold, and the volume average of the statistics
will not necessarily be representative of the ensemble average.
This statement depends on the coordinate system selected, the
volume occupied by the field, and also the choice of path
transport used to define a volume average of the tensors.

For the spherically redshift-space distorted field, there is a
singularity in the cumulants at r= 0, which indicates that this
point must be excised from the manifold. This fact, in
conjunction with the assumed symmetry properties of the
field—isotropic on 2 —suggests that spherical coordinates and
great arc transport provide a natural framework to measure the
MTs. We constructed the cumulants of the density field and the
gradient in this system and found that they are only weakly
coordinate dependent at large distances from a central observer
at r= 0, and furthermore are insensitive to angular position on

2 perpendicular to the line of sight. Similarly the volume
average is insensitive to the specifics of how we transport
vectors on 2 . Of course, we are free to adopt any coordinate
system that we want. However, we cannot naively equate
volume and ensemble averages when the field is inhomoge-
neous. We have presented evidence that a spherical coordinate
system allows us to extract the Kaiser signal from the
components of the volume average wi

jsp ¯ . In contrast, the
volume average in Cartesian coordinates does not necessarily
replicate the ensemble average due to the nontrivial coordinate
dependence of the cumulants. It is important to stress that the
volume average of a tensor is generically ambiguous, and our
choice of coordinates and transport determines the properties of
wi

j¯ . We can choose a definition that approximately respects the
properties of the ensemble average 〈wi

j〉, but ergodicity is
not exactly realized except in highly idealized scenarios;
Gaussian and isotropic fields, Euclidean manifolds. We have
argued that it can be approximately realized for anisotropic and
inhomogeneous fields, but only with careful contrivance.

We extracted the MTs from Gaussian random fields and
gravitationally evolved dark matter snapshot boxes at z= 0, for
three different fields (isotropic, plane-parallel, and spherical
redshift-space distorted). We found that the plane-parallel and
spherical redshift-space fields are statistically indistinguishable
if the data is sufficiently distant from a central observer at
r= 0. At cosmological distances, the inhomogeneous nature of
the cumulants in spherical coordinates is negligible. Hence
measurements of the MTs at redshift z> 0.1 from the current
generation of galaxy catalogs (Alam et al. 2015) and
subsequent inference of f can proceed using spherical
coordinates and the plane-parallel limit being almost perfectly

respresentative of the signal. Conversely the matter distribution
at low redshift z< 0.1 (Abazajian et al. 2009) can potentially
be used to probe departures from the plane-parallel limit.
The effect of non-Gaussianity on the MTs is an order

∼3%–1% effect for the isotropic fields over the range
15Mpc� RG� 45Mpc, manifesting as a decrease in the
amplitude of the diagonal elements, and inducing a nonzero
value of the coefficient of H1(νA) Hermite polynomial that
mildly skews the MT as a function of νA. However, in redshift
space, the component of the MT parallel to the line of sight for
the non-Gaussian dark matter field significantly departs from
the Kaiser limit, even for large smoothing scales. The most
significant effect is an amplitude decrease that is approximately
∼12% on scales RG∼ 15Mpc. This signal is due to large
peculiar velocities along the line of sight from nonlinear
regions of the density field, which can scatter particle positions
over megaparsec scales. To extract the Kaiser signal from the
data, we must model the nonlinear velocity component and
account for this additional signal. The non-Gaussianity of the
redshift-space field is also observed in the dark matter data,
which indicates that, on scales RG 20Mpc, treating the
Finger of God effect purely in terms of a suppression of the
power spectrum is insufficient. Perturbative non-Gaussianity in
redshift space is an important area of future study, and the MTs
are necessary for studying the directional dependence of the
non-Gaussian signal. The scalar Minkowski functionals, which
are proportional to the trace of these quantities, contain
directionally averaged information.
Although we have focused on the radial anisotropy

generated by RSD, even in real space, we can expect a radially
anisotropic signal. This is due to the fact that we observe tracer
particles on the lightcone, and the density field evolves
significantly from the beginning of the matter dominated
epoch to the present. At the level of linearized perturbations,
the evolution can be absorbed into a z-dependent galaxy bias,
amplitude of the matter power spectrum, and the growth rate
f (z) in the RSD signal. In reality, the picture is more
complicated on small scales, and the Minkowski functionals
and tensors will exhibit systematic evolution when measured at
different epochs due to non-Gaussianity induced by gravita-
tional collapse. The non-Gaussian evolution can be potentially
measured and quantified, and this will be the focus of future
work. In this work, we have neglected the time dependence of
f (z), as this effect is tied to the evolution of the field and hence
beyond the scope of our analysis. We have also neglected the
potential existence of a bulk flow between observer and large-
scale structure data, which would modify the expectation value
of the MTs. Introducing a large-scale bulk flow is beyond the
scope of this work, as it would involve the treatment of
perturbations in an intrinsically anisotropic spacetime. This
remains an interesting direction of further study, both within
the confines of the MTs and more generally within cosmology.
The Minkowski functionals and tensors provide a method to

test the fundamental assumptions on which the standard model
of cosmology is based. Without the need for a priori
assumptions, the Minkowski functionals provide a measure
of the non-Gaussianity of the field as a function of scale,
agnostic of the nature of non-Gaussianity. Similarly the
eigenvalues of the MTs can be used to quantify the isotropy
of a field without assuming the presence or absence of this
symmetry property. A test of statistical homogeneity is more
difficult to engineer, but coordinate dependent cumulants are a
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smoking gun for inhomogeneous signals. Constructing a test of
statistical homogeneity using the tensor transformation proper-
ties of the MTs is an interesting direction for future study.
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Appendix A
Minkowski Tensor W2

0,2

The second independent, translation invariant MT consid-
ered in Appleby et al. (2019) is given by
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where the scalar quantity G2 is the mean curvature at each point
of the isofield surface, and can be written as
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Similarly to the W1
0,2 case in the main body of the text, the

quantityW i
j

2
0,2∣ can be interpreted as the volume average of the

following tensor
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G2 is a function of both first and second derivatives of the
field. Hence when constructing the ensemble average 〈vi

j〉,
we must use a ten-dimensional multivariate probability
distribution involving the field and its first and second
derivatives—X= (δ, δi, δjk). If the field is homogeneous and

isotropic or plane-parallel redshift-space distorted, then the
dependence of G2 on the second derivatives δjk does not contribute
to the ensemble average; hence 〈vi

j〉 reduces to an integral over
the joint probability distribution of δ and δi. For an inhomogeneous
field, we cannot assume this remains true and must construct the
corresponding full 10× 10 covariance matrix, Σ, for δ, δi, and δjk.
For a spherically redshift-space distorted field, due to the assumed
residual isotropy on the two-sphere, many off-diagonal terms are
0. The expression for Σ takes the form

This is the covariance matrix of the partial derivatives. If one uses
covariant derivatives as random variables, then different correla-
tions will be present. The 4× 4 block in the top left corner has
been calculated in the main body of the text. In this appendix, we
calculate the other terms as follows:
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These are the correlations between partial derivatives of the
field, although covariant derivatives can be used instead. If we
take the limit r→∞ , then the covariance matrix reduces to the
plane-parallel limit. Hence similar to the main body of the text,
if the field is sufficiently distant from the observer at r= 0, the
ensemble average 〈vi

j〉 is well approximated by the plane-
parallel result in Appleby et al. (2019). More concretely, the
dimensionless terms r1
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all be negligible to satisfy the plane-parallel limit.
The volume average of vi

j in a spherical basis is given by
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This is straightforward to construct; the only complication
beyond wi

jsp ¯ is that we must additionally estimate G2 at each
pixel using Equation (A3). Since G2 is a scalar quantity, we use
Cartesian coordinates and a simple second-order accurate finite
difference scheme for the first and second derivatives to
reconstruct G2 {m,n,p} at each pixel.
In Figure 11, we present the components of the MT vi

j¯ from
the Quijote z= 0 snapshot boxes, smoothed with scale
RG= 20Mpc as a function of ν (left panel) and νA (right
panel). The color scheme matches Figure 7 in the main body of
the text. All off-diagonal components are consistent with 0 and
not plotted. The RSD signal is present, with the (θ, θ), (f, f)
components systematically lower in amplitude compared to the
real-space statistics (see light hollow diamonds). The radial
component (red filled diamonds) is only marginally higher than
the isotropic components—this is due to the same Finger of
God effect observed in the main body of the text (see
Section 6.2).
In Figure 12, we present the amplitude of vi

j¯ defined as the
coefficient of the H1 coefficient:
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The color scheme is the same as in Figure 8. Qualitatively
we observe the same behavior for W2

0,2 as W1
0,2; but here it is

more pronounced. Both the isotropic and spherically redshift-
space distorted fields are significantly affected by the non-
Gaussianity of the Quijote fields for scales RG� 35Mpc, and
the (r, r) component in redshift space most significantly departs
from the Gaussian limit (see top panels, red diamonds and error
bars). The redshift-space Gaussian and plane-parallel limit of
the amplitudes are given by
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and the isotropic Gaussian limit is
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The non-Gaussian coefficients b0|i
j and b2|i

j remain small even
on relatively small scales RG 15Mpc.
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Figure 11. Components of the Minkowski tensor vi
j¯ extracted from the Quijote simulations in real space (open diamonds), and spherical redshift space (filled

diamonds) as a function of normalized threshold ν (left panel) and rescaled threshold νA (right panel). The off-diagonal elements are consistent with 0 and not plotted.
The fields have been smoothed with scale RG = 20 Mpc.
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Appendix B
Rotation of Basis Vectors Relative to a Great Arc

In the main body of the paper, we constructed an algorithm
to describe the rotation of a vector under geodesic transport to a
different location on the two-sphere. In this appendix, we
present the rotation of the spherical basis vectors explicitly
using a simple geometric prescription. Starting with the unit
sphere, we select two points on the sphere defined with 3 unit
vectors û and v̂. To parameterize the great arc that passes
through these two points, we introduce the vectors
m u v u vˆ ˆ ˆ ∣ ˆ ˆ∣= ´ ´ , and n m u m uˆ ˆ ˆ ∣ ˆ ˆ∣= ´ ´ . The unit vec-
tors û, m̂, and n̂ are mutually orthogonal, and û, n̂ form a basis

in the plane in which the great circle is defined. Any position
on the great arc can then be represented parametrically with the
vector

R u t n tcos sin , B1ˆ ˆ ˆ ( )= +

for 0< t� 2π. The tangent vector to the great arc is

T u t n tsin cos . B2ˆ ˆ ˆ ( )= - +

Each point on the great arc, specified by the vector R̂, can be
described using the angles θ, f in a spherical coordinate
system, and we can then define the spherical basis vectors in

Figure 12. B|i
j (top left), b0|i

j (lower left), and b2|i
j (lower right) quantities as defined in Equations (A28), (A29), and (A30) measured from Nreal = 50 Quijote

simulations, at z = 0, in real and redshift space. The solid/dashed gold lines in the top left panel represent the expectation values of the radial/angular components for
a Gaussian field in the plane-parallel limit, and the silver line is the isotropic Gaussian expectation value. The top right panel shows the fractional difference between
the Quijote measurements of B|i

j and the Gaussian limit of this quantity in real and redshift space.
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the usual way:

e e e esin cos sin sin cos ; B3r x y z ( )q f q f q= + +

e e e ecos cos cos sin sin ; B4x y z ( )q f q f q= + -q

e e esin cos . B5x y ( )f f= - +f

The dot products eT .ˆ q, eT .ˆ f then represent the angle rotation
of the spherical basis vectors relative to the great arc tangent
along the path. This is the rotation that is accounted for in the
main body of the text, when summing vector fields at different
locations on the manifold. Parallel transport preserves the
orientation of a tangent space relative to T̂ , so after geodesic
transport, the components of a vector in the basis eθ, ef are
rotated. Conversely the dot product eT . r

ˆ is always 0, and the
components of a vector parallel to er are preserved. If the great
arc lies on the equator of the sphere, then the basis vectors do
not rotate with respect to the great arc tangent vector.

We present N= 10 great arcs defined by selecting û, v̂
randomly in the left panel of Figure 13. The thick gold arc
lies on the equator. The corresponding rotation angles a =q

eTcos .1( ˆ )q- , and eTcos .1( ˆ )a =f f
- , as a function of the arc

parameter t, are presented in the right panel of Figure 13. Only
when the great arc aligns with the coordinate basis is there no
relative rotation of the tangent space (see gold lines). There are
two points on each great arc at which the path is perpendicular
to eθ, and hence T̂ either aligns or antialigns with ef, depending
on the direction of the arc tangent vector. This is the origin of
the dichotomy observed in the αf panel. Note that the vectors
return to their original orientation if transported along the entire
great arc.

Figure 13 elucidates the origin of the rotation of the angular
components of id̃ under the process of parallel transport along
great arcs, described in the main body of the text. Great arc
transport preserves the angle between id̃ and the tangent vector
to the curve. In contrast, here we explicitly show that the angle

between the tangent vector and angular basis vectors, eθ and ef,
is not constant along the curve.

Appendix C
Useful Relations

We provide some useful identities regarding the spherical
Bessel functions and other functions that are used in the paper.
Some of these can be found in standard textbooks (Abramowitz
& Stegun 1965):
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These can be derived using the general result;

*P
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4
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Figure 13. Left panel: a collection of randomly selected great arcs on the unit sphere. The thick gold line is the great arc that coincides with the equator in the
coordinate system adopted. Right panel: the angle between eθ and T̂ (top panel) and ef and T̂ (bottom panel), as a function of great arc parameter t. The colors match
the great arcs in the left panel.
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where

cos cos cos sin sin cos , C7( ) ( )g q q q q f f= ¢ + ¢ - ¢

along with the differential equation that the Legendre
polynomial solves—

x P x xP x ℓ ℓ P x1 2 1 0, C8ℓ ℓ ℓ
2( ) ( ) ( ) ( ) ( ) ( )-  - ¢ + + =

and the normalization Pℓ(1)= 1. Taking derivatives of
Equation (C6) w.r.t. f, f¢, θ, q¢, and then taking the limit
q q ¢, f f ¢, and x cos 1g=  yields results such as
Equations (C2), (C3).

We also have the following relation for the spherical Bessel
function of the first kind, jℓ,

ℓ j x
p

2 1
1

2 1
, C9
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ℓ

p

0

2( )[ ( )] ( )( )å + =
+=

¥

where the (p) superscript denotes the pth derivative of the
spherical Bessel function with respect to its argument. Also
important are the following relations:
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The jℓ functions satisfy the equation

ℓ ℓ j x x j x xj x x j x1 2 , C13ℓ ℓ ℓ ℓ
2 2( ) ( ) ( ) ( ) ( ) ( )+ =  + ¢ +

which can be differentiated w.r.t. x twice to give
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In Section 6, when reconstructing the MTs numerically, we
transform between Cartesian and spherical coordinate systems.
We adopt the standard angle conventions such that the

conversion from Cartesian to radial gradients is

r x y z
sin cos sin sin cos . C15( )q f q f q

¶W
¶

=
¶W
¶

+
¶W
¶

+
¶W
¶

To define volume averages in Section 6, we rotate vectors on
the two-sphere. To do so, we define m̂ as the unit vector
pointing to a position on the manifold at which the

0D m n p t, ,(˜ )[ ]d d d- ¹ , and â is the unit vector pointing to a
fiducial point at which we take the volume average of wi

j, then
the unit quaternion q= q0+ q with elements

q
m a
m a

q cos
2

, sin
2

, C160
ˆ ˆ

∣ ˆ ˆ∣
( )q q

= =
´
´

is used to rotate the gradient vector sampled at [m, n, p] to [a, b,
c], where m acos .ˆ ˆq = . The complex conjugate is q* = q0− q,
and the rotation operator acting on an arbitrary vector v can be
written as

*v q v q v q q vq q q q2 . 2 . C170
2 2

0( ∣ ∣ ) ( ) ( ) ( )= - + + ´

Finally, we present an example of a Quijote snapshot box in
Figure 14. In the top left panel, we exhibit the point distribution
of the snapshot box. We place an observer in the center of the
box, and perturb all particle positions according to their radial
velocity in the er direction relative to the observer. We then
smooth the field in Fourier space, generating a zero mean, unit
variance continuous field d̃ (top right panel). We mask regions
of the box, keeping only pixels at radial separation
100Mpc< r< 630Mpc, and from these pixels, we apply the
discretized delta function to select pixels that are approximately
equal to some threshold value. At these pixels, we sample the
gradient of the density field. An example of the pixel sampling,
for threshold value 2.5d̃ = , is presented in the lower left panel
of Figure 14. We transport these vectors to a common point on
the manifold using great arc transport and radial translation,
and taking the volume average at that point. In the lower right
panel, we present an alternative numerical approach in which a
triangulated mesh of constant field value is generated— 2.5d̃ =
in this example; and the normals to the boundary are
constructed. For the smoothing scales and resolutions utilized
in this work, the two methods yield statistically equivalent
results.
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