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Bound orbit domains in the phase space of the Kerr geometry
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We derive the conditions for a non-equatorial eccentric bound orbit to exist around a Kerr
black hole in two-parameter spaces: the energy, angular momentum of the test particle,
spin of the black hole, and Carter’s constant space (E, L, a, Q), and eccentricity, inverse-
latus rectum space (e, μ, a, Q). These conditions distribute various kinds of bound orbits
in different regions of the (E, L) and (e, μ) planes, depending on which pair of roots
of the effective potential forms a bound orbit. We provide a prescription to select these
parameters for bound orbits, which are useful inputs to study bound trajectory evolution
in various astrophysical applications like simulations of gravitational wave emission from
extreme-mass ratio inspirals, relativistic precession around black holes, and the study of
gyroscope precession as a test of general relativity.
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1. Introduction

Bound trajectories in the Kerr geometry have been studied extensively, and some

of the important results are discussed in a pioneering work by S. Chandrasekhar

(Ref. 1). The general trajectory in the Kerr spacetime was first expressed in terms

of quadratures in Ref. 2, while Ref. 3 discusses the essential conditions for bound

spherical geodesics, and also horizon-skimming orbits. The quadrature form of the

fundamental orbital frequencies for a general eccentric trajectory was first presented

in Ref. 4. Later, to decouple the r and θ motions, a parameter called Mino time, λ,

was introduced in Ref. 5, which was then implemented to calculate a closed-form

trajectory solution and orbital frequencies in Ref. 6. Recently, an alternate analytic

solution was derived for the general bound and separatrix trajectories in a compact

form using the transformation 1/r = μ (1 + e cosχ) in Refs. (7, 8). The inputs to

these integrals for calculating the trajectories are the constants of motion E, L, Q,

and spin of the black hole, a. These parameters can also be translated to (e, μ, a,

Q) space, as derived in Refs. (7, 8). It is essential to find the canonical bound orbit

conditions in these two parameter spaces to calculate the trajectory evolution.

We express the bound orbit conditions on (E, L, a, Q) parameters for the non-

equatorial eccentric bound orbits around a Kerr black hole, and then find the analog

of these conditions in the (e, μ, a, Q) space. The regions of different bound orbits

were graphically separated in the (E, L) plane in Ref. 9, according to the pair of

roots of the effective potential spanning the radius of the bound orbit. It is essential

to find the canonical bound orbit conditions in these two parameter spaces.
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2. Conditions for bound trajectories around Kerr black hole

Now, we consider the radial motion of the bound trajectory which is described by

the equation (Refs. 2, 4, 7, 8)(
E2 − 1

)
2

=
ρ4

2r4

(
dr

dτ

)2

− 1

r
+
L2 − a2 (E2 − 1

)
+Q

2r2
− (L− aE)

2
+Q

r3
+
a2Q

2r4
, (1)

to derive the conditions in (E,L, a,Q) and (e, μ, a,Q) spaces for various bound orbit

regions previously discussed in Ref. 9, where ρ2 = r2 + a2 cos2 θ, τ is the proper

time, and a = J/M2 which have their usual meanings; we use geometrical units

throughout.

2.1. Dynamical parameter space (E, L, a,Q)

Next, we solve the quartic equation, Eq. (1), to find the four roots (that include

the turning points of the bound orbit) of dr/dτ = 0, which can be expressed as

r4 +
2

(E2 − 1)
r3 +

(
a2E2 − L2 −Q− a2)

(E2 − 1)
r2 +

2
(
x2 + Q

)
(E2 − 1)

r − a2Q

(E2 − 1)
= 0, (2)

where x = L−aE. Applying Ferrari’s method (Ref. 10) to the above equation gives

r1 =
1

2 (1− E2)
+

√
2z

2
+

1

2

√
D1, (3a)

r2 =
1

2 (1− E2)
+

√
2z

2
− 1

2

√
D1, (3b)

r3 =
1

2 (1− E2)
−
√

2z

2
+

1

2

√
D2, (3c)

r4 =
1

2 (1− E2)
−
√

2z

2
− 1

2

√
D2, (3d)

where r1 > r2 > r3 > r4, and

D1 = −2G− 2z −
√

2H√
z
, D2 = −2G− 2z +

√
2H√
z
, (3e)

z = U + V − G

3
, U =

(
I +

√
I2 + J3

)1/3
, V =

(
I −

√
I2 + J3

)1/3
, (3f)

I =

(
2G3 + 27H2 − 72GT

)
432

, J = −
(
G2 + 12T

)
36

, (3g)

G =

[
L2 − a2 (E2 − 1

)
+Q

]
(1− E2)

− 3

2 (1− E2)2
, (3h)

H =

[
L2 − a2 (E2 − 1

)
+Q

]
(1− E2)

2 − 2
(
x2 +Q

)
(1− E2)

− 1

(1− E2)
3 , (3i)

T =

[
L2 − a2 (E2 − 1

)
+Q

]
4 (1− E2)

3 − 3

16 (1− E2)
4 −

(
x2 +Q

)
(1− E2)

2 +
a2Q

(1− E2)
. (3j)
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The bound orbit regions were graphically classified in the (E,L) plane in Ref. 9

on the basis of which pair of roots of quartic equation, Eq. (2), contains the bound

orbit. We algebraically classify these regions using the expressions of roots, Eqs.

(3a-3d), in the (E,L, a,Q) parameter space as follows (Ref. 11):

(1) Region Δ: Bound orbits exist between (r1, r2), and between (r3, r4): D1 > 0,

D2 > 0, and E < 1.

(2) Region ς : Bound orbit either exists between r1 and r2 if (r3, r4) forms a

complex pair i.e. D2 < 0 or exists between r3 and r4 if (r1, r2) forms a complex

pair i.e. D1 < 0: (D1 ·D2) < 0. This region exists for both E < 1 and E > 1.

(3) Region Λ: Bound orbit exists between r2 and r3 with r4 < r3 and r1 > r2:

D1 > 0, D2 > 0, and E > 1.
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Fig. 1. The bound orbit regions Δ, ς, and Λ are shown in the (E, L) plane for a = 0.5, Q = 5,
where the region Δ is bounded by stable and unstable (also corresponds to the separatrices)
spherical orbits, and E = 1; the Λ region is bounded by the inner unstable spherical orbits
(IUSO). Points A and B represent the innermost stable spherical orbit (ISSO) and marginally
stable spherical orbit (MBSO) respectively.

The classification of these regions in the (E, L) plane is shown in Fig. 1. The

bounding curves of these regions represent spherical orbits. The eccentricity and

inverse latus-rectum of the bound orbit are defined as (Ref. 11)

eij =
ri − rj
ri + rj

, μij =
ri + rj
2rirj

, (4)

where we see that {eij , μij} can be expressed in terms of (E, L, a, Q) through roots,

Eqs. (3). The details of derivations presented here will be provided in Ref. 11.

2.2. Conic parameter space (e, µ, a,Q)

According to the definitions given for regions Δ, ς , and Λ in §2.1, the convention

adopted for {e, μ} is as follows: Region Δ given by {e12, μ12}; Region Λ given by

{e23, μ23}; Region ς given by {e12, μ12} or {e34, μ34}, depending on which pair is
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real. Now, we derive the defining conditions for Δ, ς , and Λ regions in the (e, μ, a,

Q) space:

(i) Region Δ: The defining conditions for this region was derived using the

necessary constraints on the parameters of the Elliptic integrals involved in the

trajectory solutions (Refs. 7, 8), which are[
μ3a2Q (1 + e)

2
+ μ2

(
μa2Q− x2 −Q) (3− e) (1 + e) + 1

]
> 0, (5a)[

μ (1 + e)
(

1 +
√

1− a2
)]

< 1, (5b)

E(e, μ, a,Q) < 1. (5c)

(ii) Region ς: The region ς is defined by two complex roots of r or u = 1/r

with a bound orbit existing between the two remaining real roots. We can write

Eq. (2) for region ς in the form (Ref. 11)

[u− μ (1− e)] · [u− μ (1 + e)] · (u2 +Au+B
)

= 0, (6a)

where bound orbit exists between μ (1 + e) and μ (1− e) which is a real pair of the

roots, and

A = −2

[
x2 +Q

a2Q
− μ

]
, B =

1− E2

μ2a2Q (1− e2)
. (6b)

Hence, the remaining factor
(
u2 +Au+B

)
of Eq. (6a) should have complex roots

for the ς region, which reduces to the condition (Ref. 11){(
Q+ x2

)2
μ+ a4e2Q2μ3 − a2Q [1 +

(
1 + e2

) (
Q+ x2

)
μ2
]}

< 0, (7)

where we have substituted for the factor (1−E2) in terms of (e, μ, x) using relations

previously derived in Refs. (7, 8).

(iii) Region Λ: The region Λ is defined by the condition that a bound orbit

exists between r2 and r3 (or u2 and u3) with r1 > r2 (or u1 < u2) and r3 > r4 (or

u3 < u4). We can express Eq. (2) for this region as

[u− μ (1− e)] · [u− μ (1 + e)] · (u2 +Au+B
)

= 0. (8)

The remaining roots u1 and u4 can be derived from the factor
(
u2 +Au+B

)
, which

can be substituted into the conditions u1 < u2 and u3 < u4 to obtain[
μ3a2Q (1− e)2 + μ2

(
μa2Q− x2 −Q) (3 + e) (1− e) + 1

]
< 0, (9a)

and [
μ3a2Q (1 + e)2 + μ2

(
μa2Q− x2 −Q) (3− e) (1 + e) + 1

]
< 0, (9b)

respectively. Next, as we see from Fig. 1, that the region Λ corresponds to the

orbits with E > 1; this implies[
μ2
(
1− e2) (μa2Q−Q− x2)+ 1

]
< 0. (9c)

In effect, Eqs. (9a, 9b, 9c) together define Λ region the (e, μ) plane, and Fig. 2

shows all these regions in the (e, μ) plane. The details of derivations of the above

conditions will be provided in Ref. 11.
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Fig. 2. The bound orbit regions (a) Δ and Λ, and (b) ς in the (e, μ) plane for (a = 0.2, Q = 2)
are shown along with their defining bounding curves and end points. The regions Δ1 and Δ2 are
replicas of region Δ when (e13, μ13) and (e23, μ23) are chosen respectively.

3. A prescription for selecting bound orbits

We present the scaling formulae specifying the parameters (E, L) and (e, μ) in

terms of the variables (x1, y1) and (x2, y2), where xi, yi ∈ [0, 1], i = 1, 2, can be

chosen to produce valid combinations of the parameters (E, L) and (e, μ) for bound

orbits. The formula for selecting E for bound orbits written in terms of the variable

x1, a, and Q for region Δ in Fig. 1 is (Ref. 11)

E (x1, a,Q) = EZ (a,Q) + x1 [EY (a,Q)− EZ (a,Q)] , (10)

where EZ (a,Q) and EY (a,Q) are the spherical orbit energies at ISSO and MBSO

respectively, and where Z(a,Q) and Y (a,Q) are radii of ISSO and MBSO respec-

tively (Eqs. (19), (20) in Refs. 7, 8).

Now, for a fixed x1 and a, y1 ∈ [0, 1] defines the range of L (r, a,Q) for bound

orbits. The formula for selecting allowed L (Δ in Fig. 1) can be written as (Ref. 11)

1

L (x1, y1, a,Q)
=

1

L− (x1, a,Q)
− y1

[
1

L− (x1, a,Q)
− 1

L+ (x1, a,Q)

]
, (11a)

where L+ (x1, a,Q) and L− (x1, a,Q) are end points of the Δ region in Fig. 1 given

by (Ref. 11)

L+ (x1, a,Q) = x(rv (x1, a,Q) , a,Q) + a ·E(rv (x1, a,Q) , a,Q), (11b)

L− (x1, a,Q) = x(ru (x1, a,Q) , a,Q) + a ·E(ru (x1, a,Q) , a,Q), (11c)

where x (rs, a,Q) and E (rs, a,Q) can be calculated using the spherical orbit for-

mulae (derived in Refs. 7, 8) and where rv (x1, a,Q) and ru (x1, a,Q) are the two

roots of rs in the equation

E (rs, a,Q) = EZ (a,Q) + x1 [EY (a,Q)− EZ (a,Q)] . (12)

The radii rv (x1, a,Q) and ru (x1, a,Q) obey rv (x1, a,Q) > Z(a,Q) and Y (a,Q) <

ru (x1, a,Q) < Z (a,Q).
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For the (e, μ) space, the corresponding formulae for the Δ region in Fig. 2 are

given by

e (x2) = x2, (13a)

μ (y2, rx, a,Q) = y2 · μs (rx, a,Q) , (13b)

where the allowed range of μ is 0 < μ < μs (rx, a,Q) for a given x2, and μs (rx, a,Q)

is the value of μ at the separatix [Eq. (25b) in Refs. (7, 8)], and rx is a root of

rs in the equation x2 = es (rs, a,Q) and es (rs, a,Q) is the eccentricity value at

the separatix [Eq. (25a) in Refs. (7, 8)]. The radius rx lies between Y (a,Q) and

Z (a,Q) for a given a and Q. Hence, for a fixed a and Q, x2 and y2 ∈ [0, 1] which

thereby defines the range of (e, μ).

4. Summary and discussion

We presented the algebraic conditions for non-equatorial bound trajectories in the

(E, L, a, Q) and (e, μ, a, Q) spaces and showed how these conditions classify

the bound orbits into various regions, Δ, ς , and Λ, in the (E, L) plane, which

was previously discussed graphically in Ref. 9; see Fig. 1. In this article, we have

also shown these bound orbit regions in the (e, μ) plane, Fig. 2, geometrically

specified by their bound curves and vertices. For astrophysically relevant orbits,

only the region Δ is applicable. We also provided a useful prescription to select

the parameters (E, L) and (e, μ) in the Δ region, which are canonical inputs

to the trajectory solutions for studying their evolution in various applications like

gravitational wave emission from extreme-mass ratio inspirals, relativistic precession

around black holes, and the study of gyroscope precession as a test of general

relativity.

We acknowledge the support from the SERB project CRG 2018/003415.
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