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Abstract

The photometric transit method has been the most effective method to detect and characterize exoplanets as several
ground based as well as space based survey missions have discovered thousands of exoplanets using this method.
With the advent of the upcoming next generation large telescopes, the detection of exomoons in a few of these
exoplanetary systems is very plausible. In this paper, we present a comprehensive analytical formalism in order to
model the transit light curves for such moon-hosting exoplanets. In order to achieve analytical formalism, we have
considered circular orbit of the exomoon around the host planet, which is indeed the case for tidally locked moons.
The formalism uses the radius and orbital properties of both the host planet and its moon as model parameters. The
coalignment or noncoalignment of the orbits of the planet and the moon are parameterized using two angular
parameters and thus can be used to model all the possible orbital alignments for a star–planet–moon system. This
formalism also provides unique and direct solutions to every possible star–planet–moon three circular body
alignment. Using the formula derived, a few representative light curves are also presented.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Natural satellites (Extrasolar) (483); Transit
photometry (1709)

1. Introduction

The large number of natural satellites around the planets in
our solar system suggests a high possibility of the existence of
such subplanetary bodies around many of the exoplanets
discovered to date. In the past two decades, more than 4000
exoplanets with a wide range of size and mass have been
discovered by using various detection techniques. However,
the discovery of natural satellites (also known as exomoons) in
those systems still remains elusive.

Out of the various detection techniques used for the
discovery of exoplanets, the transit method has been proven
to be the most effective. Apart from detection, the transit
method also provides a way to estimate the size and orbital
properties of the exoplanets accurately. Derivatives of the
transit method involving the effect of the exomoon on the
companion exoplanet, such as the transit-timing variation
(TTV, Sartoretti & Schneider 1999; Szabó et al. 2006), and the
transit-duration variation (Kipping 2009) have been proposed
for the detection of exomoons. However, the amplitude of these
effects is extremely small for sub-Earth mass exomoons and so
far no confirmed exomoon candidate has been detected using
these techniques (Fox & Wiegert 2021; Kipping 2020, 2021).
Several other techniques have also been proposed for the
detection of exomoons, such as photometric orbital sampling
effect (Heller 2014; Teachey et al. 2018), imaging of mutual
transits (Cabrera & Schneider 2007), microlensing (Han &
Han 2002), spectroscopy (Williams & Knacke 2004; Johnson
& Huggins 2006; Oza et al. 2019), polarimetry of self-
luminous exoplanets (Sengupta & Marley 2016), Doppler
monitoring of direct images of exoplanets (Agol et al. 2015),
pulsar timing (Lewis et al. 2008), and radio emissions of giant
exoplanets (Noyola et al. 2014, 2016). However, no confirmed

exomoon candidate has yet been detected by using any of these
techniques.
A shortcoming of the transit method is that the transit

probability decreases with the increase in the orbital distance of
the exoplanets from their host stars. Also, with the increase in
the orbital distance, the orbital period of the exoplanets
increases reducing the probability of detection as it requires
continuous monitoring for a longer time period to confirm the
detection. Both these factors have severely constrained the
discovery of exoplanets in wider orbits. Previous studies
(Namouni 2010; Spalding et al. 2016; Dobos et al. 2021) have
shown that the exoplanets in close-in orbits are likely to lose
any natural satellites during the orbital migration. This could be
the prime reason behind the lack of discovery of exomoons
around the planetary systems discovered to date. With the
installation of dedicated survey telescopes, both ground based
and space based, and a combination of the observations from
multiple observing facilities, the detection of exoplanets in
wider orbits in near future is enabled. Such facilities may also
enable the detection of natural satellites around the exoplanets.
Another major factor that makes it difficult to detect the

exomoons through the photometric transit method is the
requirement of extreme precision. Survey missions like the
CoRoT, Kepler, and TESS, and the 2 m class Hubble Space
Telescope have made it possible to detect and study exoplanets
as small as the Earth. However, the detection probability of
such smaller exoplanets is more around the smaller late-K or
M-dwarf stars compared to the larger stars of similar apparent
magnitude. This is because the precision required to detect
exoplanets is proportional to the ratio of disk area of the planet
to the star. On the other hand, the largest of the natural satellites
in our solar system has a radius even smaller than half of the
radius of the Earth. Such smaller natural satellites may be
abundant in many exoplanetary systems, but their detection
would require a much better photometric precision. All these
factors sum up to the inference that the detection of exomoons
would require a precision higher than that achievable using the
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currently available instruments. However, the next generation
of large telescopes, such as the James Webb Space Telescope
(JWST), the European Extremely Large Telescope (E-ELT),
the Thirty Meter Telescope (TMT), and the Giant Magellan
Telescope (GMT), etc., will make it possible to achieve such
extremely high precision. Also, the major improvements in
small-scale noise reduction techniques (Johnson et al. 2015;
Livingston et al. 2019; Chakrabarty & Sengupta 2019; Saha
et al. 2021; Saha & Sengupta 2021) will help in such studies to
improve the precision of photometric light curves.

As a consequence, it is very much likely that the improved
facilities in the near future will make it possible to detect the
exomoons through the photometric transit method. In that case,
a self-consistent and mathematically straightforward analytical
formalism will be necessary to model the transit light curves of
stars having moon-hosting planets and to estimate the physical
properties of the exomoons. The theoretical models need also
to be unambiguous enough to be applicable for all possible
realistic scenarios of the position of the exomoon with respect
to the host exoplanet, and will thus help to strategize the
observational parameters to such extremely time-critical
observations. We therefore, present in this paper a compre-
hensive and generic analytical formalism for the light curves of
a transiting exoplanetary system with an exomoon in terms of
the radius and orbital parameters of both the planet and the
moon. An important aspect of such formalism is to formulate
the motion of the three bodies in a common reference frame
with respect to the observer. The existing formalism (Kip-
ping 2011; Teachey & Kipping 2018) relies on the rotational
transformation of the individual orbits for this purpose. On the
other hand, we present a comparatively simple and straightfor-
ward analytical formalism by taking into account only the
physically significant orbital parameters of the exoplanet and a
circularly orbiting exomoon, such that one can easily model the
transit light curves for every possible orbital alignment of the
system. To account for the independent spatial inclination of
the orbits of the planet and the moon in a simpler way, we have
used a two angular parameter approach. We have also provided
direct and straightforward solutions to the conditions for
various alignments of the star–planet–moon system, especially
for the cases where all the three circular bodies intersect with
each other. In Section 2, we discuss the analytical formalism, in
Section 3, we present the results, and in Section 4, we conclude
our study.

2. Analytical Formalism

Let us consider a natural satellite or moon with radius rm,
orbiting a planet with radius rp, where rm and rp are expressed
in term of the radius of the star. If the moon is sufficiently
massive, the barycenter of the planet–moon system will be
significantly away from the center of the planet even though it
lies inside the planetary surface. However, the barycenter will
follow the same orbit as the planet would in the absence of a
moon. In order to achieve a simple analytical formalism,
we have considered a circular orbit for the barycenter around
the star. This provides us the advantage of the underlying
symmetry. For most of the cases, the orbital eccentricity of an
exoplanet can only be estimated by using the radial–velocity
method, and a prior knowledge of it would be required to
model the transit light curve correctly. However, in the absence
of a prior information of the eccentricity, modeling the transit
signal for a circular orbit would result in a slightly different

value for the orbital semimajor axis and the orbital inclination
of the planet. However, it would not affect the orbital properties
of the moon.
In the formalism presented here, we have used subscripts s,

p, m, and b to denote the star, the planet, the moon, and the
planet–moon barycenter, respectively. Now, the separation of
the barycenter of the planet–moon system from the center of
the star is given by

q q= +z a isin cos cos 1b b b bsb
2 2 2 ( )

q
p

= -
P

t t
2

, 2b
b

b0( ) ( )

where ab is the semimajor axis, ib is the inclination angle, θb is
the orbital phase, Pb is the orbital period, and t0b is the
midtransit time of the planet–moon barycenter around the star.
If we consider the distance between centers of the moon and

the planet to be rpm, the distance of the center of the moon from
the planet–moon barycenter is am= rpm/(1+Mm/Mp), where
Mm is the mass of the moon and Mp is the mass of the planet,
and the distance of the center of the planet from the planet–
moon barycenter is ap= rpm− am. Now, the separation
between the center of the moon and the barycenter of the
planet–moon system is given by

q q= +z a isin cos cos 3m m m mmb
2 2 2 ( )

q
p

= -
P

t t
2

4m
m

m0( ) ( )

and the separation of the center of the planet from the
barycenter of the planet–moon system can be written as

q q= +z a isin cos cos , 5p m m mpb
2 2 2 ( )

where am is the semimajor axis of the moon, ap is the
semimajor axis of the planet, im is the inclination angle, θm is
the orbital phase, Pm is the orbital period, and t0m is the
midtransit time of the moon around the planet–moon
barycenter. Note that, the orbital inclination angle of the moon
is also measured with respect to the point of view of the
observer. The separation between the center of the planet and
the center of the moon is

= +z z z . 6pm mb pb ( )

We denote the angle between the major axes of the projected
orbits of the planet–moon barycenter around the star and the
moon around the planet–moon barycenter as αmb (see
Figure 1). Now, the separation between the centers of the
planet and the star can be written as
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2
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2
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where f is the angle between zsb and zpb. Similarly, the
separation between the centers of the moon and the star is
written as

f= + -z z z z z2 cos 11sm sb
2

mb
2

sb mb 1 ( )

f p f= - . 121 ( )
If the ratio between the mass of the moon and the planet is

assumed very small, the barycenter of the planet–moon system
could be approximated at the center of the planet, i.e., ap = 0,
in which case the model simplifies to zpb= 0, zsp= zsb, and
zpm= zmb.

Figure 1. Orbital orientation of the star–planet–moon system from the observer’s point of view, showing zsp, zpm, and zsm, the separations between the centers of the
star and the planet, the planet, and the moon, and the star and the moon, respectively; zsb, zpb, and zmb, the separation of the planet–moon barycenter from the centers of
the star, the planet, and the moon, respectively; αmb, the angle between the major axes of the projected orbits of the planet–moon barycenter around the star and the
moon around the planet–moon barycenter; ab and am, the orbital semimajor axes of the planet–moon barycenter around the star and the moon around the planet–moon
barycenter, respectively.

Figure 2. (I) Alignment with star–planet and planet–moon intersections showing l1s and l2s, the separation of the star from the points of intersection of the planet and
the moon; (II) alignment with star–planet and star–moon intersections showing l1p and l2p, the separation of the planet from the points of intersection of the star and the
moon; (III) alignment with star–planet and star–moon intersections showing l1m and l2m, the separation of the moon from the points of intersection of the star and the
planet.
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The separation of the star from the points of intersection of the moon and the planet (see Figure 2 and Appendix) are given by
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Similarly, the separation of the planet from the points of intersection of the moon and the star are given by

= + -
+ -

+
- +- -l r z r z

z z z

z z

r z

z r
2 cos cos

2
cos

1

2
15p m m

m

m
1

2
pm
2

pm
1 pm

2
sm
2

sp
2

pm sm

1
2

sm
2

sm

⎛

⎝
⎜

⎞

⎠
⎟ ( )

= + -
+ -

-
- +- -l r z r z

z z z

z z

r z

z r
2 cos cos

2
cos

1

2
. 16p m m

m

m
2

2
pm
2

pm
1 pm

2
sm
2

sp
2

pm sm

1
2

sm
2

sm

⎛

⎝
⎜

⎞

⎠
⎟ ( )

Also, the separation of the moon from the points of intersection of the star and the planet are given by
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The normalized flux from the star is given by

= -
¢

F
F

F
1 , 19

T
( )

where FT is the unobscured flux of the star, and ¢F is the occulted flux. If ¢Fp is the flux occulted by the planet and ¢Fm is that by the

moon, then

¢ = +F F F . 20p m
’ ’ ( )

Under small-planet approximation, i.e., rp, rm 0.1, we have followed the prescription by Mandel & Agol (2002). Hence, we have
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where I(ρ) is the specific intensity, ρ being the radial distance, Aop is the area of the stellar disk occulted by the planet, and Aom is that
occulted by the moon.

Thus, the normalized flux from the star can be written as

ò
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Different alignments of the star, the planet, and the moon result into different values of Aop and Aom. We have categorized all the
possible alignments into 22 cases, as shown in Figure 3. Similar categorizations were previously provided by Fewell (2006) and
Kipping (2011). However, we have made a more concise categorization considering only the physically feasible alignments and a
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more straightforward criteria for where they hold. The
conditions where these cases hold, along with the values of
Aop and Aom are listed in Table 1. Various terms for the area
used in Table 1 are as follows.

p=A rp p
2 and p=A rm m

2 are the disk areas of the planet and
the moon, respectively; Asp, Apm, and Asm are the areas of
intersections of star–planet, planet–moon, and star–moon,
respectively (Mandel & Agol 2002), given by

=
- +
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Following a similar formalism as given by Fewell (2006),
the area of intersection of all the three bodies, i.e., the star, the

Figure 3. An instance of all possible cases of alignment for the star (blue), the planet (red), and the moon (green).
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planet, and the moon, (see Figure 4) can be written as

= + + +A A A A A 29spm1 sa pa ma1 ( )

when D� 0. Otherwise,

= + + +A A A A A , 30spm2 sa pa ma2 ( )

where,

= - -
- - -

D c c c c

c c c c , 31
mx pmx smy pmy

my pmy smx pmx

( )( )
( )( ) ( )

which determines whether more than half of the moon is within
the arc area (see Figure 4).
In the following expressions,

= - - -A s s s s s s s , 32sp pm sm( )( )( ) ( )

= - --A
s s

ssin
2 4

4 , 33sa
1 pm pm

pm
2 ( )

= - --A r
s

r

s
r ssin

2 4
4 , 34p

p
ppa

2 1 sm sm 2
sm
2 ( )

= - --A r
s

r

s
r ssin

2 4
4 , 35m

m
mma1

2 1 sp sp 2
sp
2 ( )

Table 1
Different Cases of Star–Planet–Moon Alignments

Case Conditions Aop Aom

1 zsp � 1 + rp 0 0
zsm � 1 + rm

2 zsp � 1 + rp 0 Asm

1 + rm > zsm > 1 − rm

3 zsp � 1 + rp 0 Apm

zsm � 1 − rm

4 zsp � 1 − rp Ap 0
zpm � rp + rm
zsm � 1 + rm

5 zsp � 1 − rp Ap Asm

zpm � rp + rm
1 + rm > zsm > 1 − rm

6 zsp � 1 − rp Ap Am

zpm � rp + rm
zsm � 1 − rm

7 zsp � 1 − rp Ap Am − Apm

rp + rm > zpm > rp − rm
zsm � 1 − rm

8 zsp � 1 − rp Ap 0
zpm � rp − rm
zsm � 1 − rm

9 zp � 1 − rsp Ap Asm − Apm

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

10 1 + rp > zsp > 1 − rp Asp 0
zsm � 1 + rm

11 1 + rp > zsp > 1 − rsp Asp Asm

zm � rp + rm
1 + rm > zsm > 1 − rm

12 1 + rp > zsp > 1 − rp Asp Am

zpm � rp + rm
zsm � 1 − rm

13 1 + rp > zsp > 1 − rp Asp Am − Apm

rp + rm > zpm > rp − rm
zsm � 1 − rm

14 1 + rp > zsp > 1 − rp Asp 0
zpm � rp − rm

15 1 + rp > zpm > 1 − rp Asp Asm − Aspm1

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

l1m > rm > l2m
D � 0

16 1 + rp > zsp > 1 − rp Asp Asm − Aspm2

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

l1m > rm > l2m
D < 0

17 1 + rp > zsp > 1 − rp Asp Asm − Apm

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

1 � l1s � l2s
l1p � l2p � rp
l1m � l2m � rm

Table 1
(Continued)

Case Conditions Aop Aom

18 1 + rp > zpm > 1 − rp Asp Asm

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

l1s � l2s � 1
l1p � l2p � rp
l1m � l2m � rm

19 1 + rp > zsp > 1 − rp Asp Am − Apm

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

1 � l1s � l2s
rp � l1p � l2p
l1m � l2m � rm

20 1 + rp > zsp > 1 − rp Asp 0
rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

l1s � l2s � 1
rp � l1p � l2p
l1m � l2m � rm

21 1 + rp > zsp > 1 − rp Asp Asm − Asp

rp + rm > zpm > rp − rm
1 + rm > zsm > 1 − rm

l1s � l2s � 1
l1p � l2p � rp
rm � l1m � l2m

22 1 + rp > zsp > 1 − rp Asp Asm − Apm + (Ap − Asp)
rp + rm > zsp > rp − rm
1 + rm > zsm > 1 − rm

1 � l1s � l2s
l1p � l2p � rp
rm � l1m � l2m

Note. Aop and Aom are the areas of the stellar disk occulted by the planet and
the moon respectively.
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Here, A! is the area of the triangle and Asa, Apa, Ama1, and
Ama2 are the areas of the arcs within the area of intersection of
the three bodies (i.e., the star, the planet, and the moon); csp,
cpm, and csm are the coordinates of intersection of the three
bodies; and cm is the coordinate of the center of the moon.

3. Results and Discussion

The model parameters in the present formalism are rp, rm,
t0b, t0m, Pb, Pm, rpm, Mp/Mm, ib, im, αmb, and the limb-
darkening coefficients of the host star defining I(ρ), where all
the distances are in terms of stellar radius. Here we have used
the quadratic limb-darkening formula (Claret & Gimenez 1990;
Claret 2000), given by

r m m= - - - -I I u u0 1 1 1 , 491 2
2( ) ( ) ( ) ( ) ( )

where m r= -1 2 , and u1 and u2 are the quadratic limb-
darkening coefficients.

While generating the model transit light curves, we have
used the analytical quadratic limb-darkening formalism for
transit flux given by Mandel & Agol (2002). In the absence of
such an analytical quadratic limb-darkening formula, we have
used the small-body approximation to estimate the transit flux
for the cases where all the three circular bodies overlap (see
Section 2).
Let us now consider a scenario with rp = 0.1, rm = 0.01,

t0b= 5 days, t0m= 10 days, Pb = 300 days, Pm = 20 days,
rpm= 200, Mp/Mm= 1411, ib= 90o, im= 90o, αmb= 0o, u1=
0.4, and u2= 0.25. Clearly, ib= im= 90o implies that both the
planet and the moon are transiting through the center of the
star, and that combined with αmb= 0o implies that the orbit of
the moon is aligned with the orbit of the planet, i.e., both the
planet and the moon are in the same orbital plane. The transit
light curve for this scenario is shown in Figure 5(a). Usually,
the transit of the moon can take place before, during, or after
the transit of the planet depending upon a combination of
various parameters. For this scenario, we can see that the transit
of the moon starts after the end of the planet’s transit, as the
moon is placed in a wide orbit around the planet, and its
position makes it highly trailing while transiting the star. If we
change the position of the moon by replacing t0m= 8 days, as
shown in Figure 5(b), we can see that the transit of the moon
starts before the end of the transit of the planet.
The alignment of the orbit of an exomoon depends upon the

formation and evolution path it followed. If the moon is formed
from the circumplanetary disk, there is a higher probability for
its orbit to be equatorial and it might be coaligned (coplanar)
with the planetary orbit (Peale 1999). On the other hand, if the
moon is formed through planetary capture or collision, its orbit
may not be coaligned with the orbit of the planet. Both these
situations can easily be modeled by using our formalism. When
ib = im and αmb= 0, the orbits are coaligned. On the contrary,
when ib≠ im and/or αmb≠ 0, the orbits are no longer coaligned
with each other. To demonstrate it, lets consider a scenario by
replacing αmb= 20o in the first scenario. As shown in
Figure 6(a), we can see that both the transit depth and duration
of the moon have decreased. This is because, in this case, the

Figure 4. Alignment with intersection of all the three bodies (i.e., the star, the
planet, and the moon) showing A!, the area of the triangle, and Asa, Apa, and
Ama1, the areas of the arcs within the common area of intersection of the three
bodies.
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moon is transiting toward the edge of the star instead of
through the center as was in the case of the first scenario.

Obviously, if the moon is in a position such that it is fully
transiting the planet or is fully eclipsed by it, while transiting
the star, no transit signal due to the moon could be observed.
Also, if the moon is in a wide and highly inclined orbit as
compared to that of the planet, it may not transit the star every
time the planet transits it (Martin et al. 2019). For example, if
we replace αmb= 30o in the previous case, no transit is

observed for the moon. However, if the position of the moon is
changed by replacing t0m= 8 days, the transit of the moon is
observed as shown in Figure 6(b). Combining these factors
along with the fact that exomoons are more likely to be found
around planets in wider orbits around their host stars, i.e.,
planets with a much longer orbital period than a few days, it
would require long period surveys continuously monitoring a
particular portion of the sky to detect the exomoons. However,
such surveys are also likely to increase the number of large

Figure 5. Transit light curves of a moon-hosting exoplanetary system: (a) with rp = 0.1, rm = 0.01, t0b = 5 days, t0m = 10 days, Pb = 300 days, Pm = 20 days,
rpm = 200, Mp/Mm = 1411, ib = 90o, im = 90o, αmb = 0o, u1 = 0.4, and u2 = 0.25; (b) replacing t0m = 8 days.
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period exoplanets, including the habitable-zone terrestrial
exoplanets, thereby increasing their effectiveness by detecting
many interesting planetary- and subplanetary-mass bodies.

The photometric precision required to detect the exomoons is
directly related to the transit depth, which is in turn dependent
upon the ratio of disk area of the moon to that of the star. The
required photometric precision is at a minimum for an exomoon in
a system with a smaller M-dwarf-type star. Let us consider such a
system with a moon the size of Earth’s Moon around a planet the

size of the Earth, i.e., rp = 0.075, rm = 0.02, t0b= 5 days, t0m=
10 days, Pb = 60 days, Pm = 15 days, rpm= 25, Mp/Mm= 81,
ib= 90o, im= 90o, αmb= 0o, u1= 0.4, and u2= 0.25, the light
curve for which is shown in Figure 7(a). If we change the position
of the moon by replacing t0m= 5 days, there would arise a scenario
where the moon transits the planet while simultaneously transiting
the star as well. Such a scenario is presented in Figure 7(b).
To demonstrate the effect of the moon on the transit timing

of the planet, we have coplotted the transit light curve of the

Figure 6. Transit light curves of a moon-hosting exoplanetary system: (a) with rp = 0.1, rm = 0.01, t0b = 5 days, t0m = 10 days, Pb = 300 days, Pm = 20 days,
rpm = 200, Mp/Mm = 1411, ib = 90o, im = 90o, αmb = 20o, u1 = 0.4, and u2 = 0.25; (b) replacing t0m = 8 days and αmb = 30o.
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planet in the absence of a moon in Figure 7(a). Comparing the
two light curves, the TTV can be observed. For a practical
scenario, it could be difficult to detect the TTV in the observed
transit data, as the barycentric offset from the center of the
planet is quite small compared to the distance between the
centers of the planet and the moon, even for a smaller mass

ratio between the planet and the moon (e.g., the earth–moon
system, where Mp/Mm; 81).
On the other hand, a higher precision would be required for

systems with a larger host star. The minimum photometric
precision required to detect a terrestrial exoplanet the size of the
Earth around a star similar to the Sun is about 100 ppm (parts

Figure 7. Transit light curves of a moon-hosting exoplanetary system: (a) with rp = 0.075, rm = 0.02, t0b = 5 days, t0m = 10 days, Pb = 60 days, Pm = 15 days,
rpm = 25, Mp/Mm = 81, ib = 90o, im = 90o, αmb = 0o, u1 = 0.4, and u2 = 0.25; (b) same but with t0m = 5 days. The dashed red lines show the transit light curves of
the planet in the absence of a moon. The TTV due to the presence of a moon can be observed in (a).
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per million). Therefore, a precision much better than that would
be required to detect the exomoons around such systems. Such
extremely high precision is expected to be achievable using the
next generation of large telescopes, such as the James Webb
Space Telescope (JWST), the European Extremely Large
Telescope (E-ELT), the Thirty Meter Telescope (TMT), and
the Giant Magellan Telescope (GMT), etc. Also, the instru-
mental and atmospheric noise effects have to be minimized for
such observations. This can be achieved by using small-scale
noise reduction techniques such as the wavelet denoising
(Donoho & Johnstone 1994; Chakrabarty & Sengupta 2019;
Saha et al. 2021; Saha & Sengupta 2021). The stellar variability
and pulsations can also cause a challenge in such observations,
which need to be reduced using techniques like the Gaussian
process regression (Rasmussen & Williams 2006; Johnson
et al. 2015; Chakrabarty & Sengupta 2019; Saha et al. 2021;
Saha & Sengupta 2021).

4. Conclusion

In this paper, we have presented an analytical formalism to
model the transit light curves for a system with a transiting
exoplanet hosting an exomoon. The formalism uses the radius
and orbital properties of both the planet and the moon as model
parameters. The orbital alignment of the moon is taken with
care by introducing two angular parameters and hence both the
coaligned and noncoaligned orbit of a moon with respect to the
planetary orbit can be modeled easily. This also enables us to
model every possible scenario of alignment for the star–planet–
moon system using this formalism.

The detection of exomoons requires extremely high preci-
sion observations, which are expected to be achievable using
the next generation of very large telescopes along with the
implementation of the existing critical noise reduction
techniques. In such possibilities, our transit formalism could
be useful to model the light curves in order to characterize the
physical properties of the exomoons as well as to simulate
every possible scenario and make strategies for such extremely
time-critical observations.

We are thankful to the anonymous reviewer for a critical
reading of the manuscript and for providing many useful
comments and suggestions.

Appendix
Derivation of l1s and l2s

From Figure 8, the angles γ1 and γ2 can be written as
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l1p, l2p, l1m, and l2m can also be derived in a similar fashion.
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