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Abstract

The solutions of the diffuse reflection finite atmosphere problem are very useful in the astrophysical context.
Chandrasekhar was the first to solve this problem analytically, by considering atmospheric scattering. These results
have wide applications in the modeling of planetary atmospheres. However, they cannot be used to model an
atmosphere with emission. We solved this problem by including the thermal emission effect along with scattering.
Here, our aim is to provide a complete picture of the generalized finite atmosphere problem in the presence of
scattering and thermal emission, and to give a physical account of the same. For that, we take an analytical
approach using the invariance principle method to solve the diffuse reflection finite atmosphere problem in the
presence of atmospheric thermal emission. We established general integral equations of the modified scattering
function S(τ; μ, f; μ0, f0), transmission function T(τ; μ, f; μ0, f0), and their derivatives with respect to τ for a
thermally emitting atmosphere. We customize these equations for the case of isotropic scattering and introduce two
new functions V(μ), and W(μ), analogous to Chandrasekhar’s X(μ), and Y(μ) functions, respectively. We also
derive a transformation relation between the modified S and T functions and give a physical account of the V(μ)
and W(μ) functions. Our final results are consistent with those of Chandrasekhar’s at the low emission limit (i.e.,
only scattering). From the consistency of our results, we conclude that the consideration of the thermal emission
effect in the diffuse reflection finite atmosphere problem gives more general and accurate results than considering
only scattering.

Unified Astronomy Thesaurus concepts: Radiative transfer (1335); Radiative transfer equation (1336);
Atmospheric effects (113); Diffuse radiation (383)

1. Introduction

Chandrasekhar did pioneering work on the process of radiative
transfer, which is at the heart of observations as well as modeling
in astrophysical contexts (Chandrasekhar 1960). One of his most
interesting and useful methods is the invariance principle
technique, which has a great deal of applications in atmospheric
modeling. Although this principle was first introduced by
Ambartsumian (1943, 1944), Chandrasekhar (1960) used this
theory to solve the semi-infinite and finite atmosphere problems in
its most elegant way by introducing the scattering function S(τ; μ,
f; μ0, f0) and transmission function T(τ; μ, f; μ0, f0). The final
results of those treatments can be represented in terms of the H
function (semi-infinite case) Chandrasekhar (1947a) and X and Y
functions (finite case) Chandrasekhar (1948). The values of the H
function (Chandrasekhar & Breen 1947) and X and Y functions
(Chandrasekhar et al. 1952; Chandrasekhar & Elbert 1952) in the
case of isotropic scattering are directly used in atmosphere
modeling. Even a simple transformation rule between S and T was
established by Coakley (1973).

Although the results provided by Chandrasekhar (1960) have
direct applications in stellar and planetary problems, the treatment
is not complete in some sense as it does not consider atmospheric
emission and scattering simultaneously. Bellman et al. (1967)
included thermal emission in the planetary atmosphere problem
and started a new technique called invariant embedding (Bellman
& Wing 1992). In the context of exoplanetary transmission
spectra modeling, Sengupta et al. (2020) and Chakrabarty &

Sengupta (2020) showed the crucial effect of scattering and
atmospheric reemission, respectively. Recently, Sengupta (2021)
considered scattering and atmospheric emission simultaneously to
study modifications of Chandrasekhar’s semi-infinite atmosphere
problem. However, the effect of emission on the finite atmosphere
problem, which is more general than the semi-infinite one,
remains unsolved.
In this work we solve the finite atmosphere problem in the

case of isotropic scattering and emission by the same analytical
procedure as shown by Sengupta (2021). For that we consider
the local thermodynamic equilibrium condition in vertical
atmospheric layers, which ensures the fact that each layer
contributes to blackbody emission according to Kirchoff’s law
(Chandrasekhar 1960; Seager 2010). We used the invariance
principle method (Ambartsumian 1944; Chandrasekhar 1960)
to derive the modified scattering and transmission functions
and the final radiation to show that our results are more general
than Chandrasekhar’s results. This treatment is also free
from the isothermal atmosphere condition, which was a
limitation of the work of Sengupta (2021).
In Section 2 we state the mathematical formulas of the

invariance principles for a finite atmosphere following
Chandrasekhar (1960). Section 3 is devoted to deriving the
general integral equations of the scattering function (S) and
transmission function (T) in case of thermal emission with
scattering. The modified form of these functions specifically for
the isotropic scattering case is shown in Section 4. Then we
establish a simple transformation rule between S(μ) and T(μ) in
Section 5 and give their physical interpretations in Section 6.
The consistency of our new results with the literature is
discussed in Section 7 and we conclude with an elaborated
discussion in Section 8.
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2. Invariance Principle for a Finite Atmosphere

The radiative transfer equation in case of plane-parallel
approximation can be written as,

( ) ( ) ( ) ( )dI

d
I

, ,
, , , , . 1m

t m f
t

t m f x t m f= -n n

n
n n n

Here, Iν(τν, μ, f) is the specific intensity at a particular
frequency ν, direction cosine μ, angle of azimuth f and optical
depth range between τν to τν+ dτν. With these same
parameters the source function is written as, ξν(τν, μ, f).

For an atmosphere with simultaneous scattering and
absorption, the optical depth can be defined as (Domanus &
Cogley 1974; Sengupta et al. 2020; Sengupta 2021),

[ ( ) ( )] ( ) ( )d z z dz z dz 2t k s c= - + = -n n n n

Here, κν(z), σν(z) and χν(z) are the volumetric absorption
coefficient, scattering coefficient, and extinction coefficient at a
particular frequency ν and depth z, respectively.

Note that, for the sake of simplicity in further calculations we
suppress the subscript ν by considering all the calculations at a
particular frequency. It should not be confused with the gray
atmosphere approximation as there is no such assumption in
the present work.

A finite atmosphere is bounded by optical depth τ= 0 to
τ= τ1 (Chandrasekhar 1960). To provide a solution of the
problem of only diffuse reflection from such an atmosphere,
Chandrasekhar (1947b) used the invariance principle method.
We will use the same methodology following Chandrasekhar
(1960) to get a solution of the more general problem where
atmospheric thermal emission is also included with diffuse
scattering.

Consider a radiation of light πF incident on an atmosphere of
optical thickness τ1 along the direction (−μ0, f0). Then, the
diffusely reflected and transmitted intensities can be repre-
sented as,
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respectively, where S(τ1, μ, f; μ0, f0) and T(τ1, μ, f; μ0, f0)
are the scattering and transmission functions. Note that these
two intensities refer only to light that has suffered at least one
scattering process and they do not include any direct
transmission along the (−μ0, f0) direction. For a detailed
discussion on this, we refer the reader to Radiative Transfer by
Chandrasekhar (1960).

The four mathematical expressions of invariance principle in
a finite atmosphere problem can be written as (Chandrasekhar
1960),
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Principle IV

( ) ( )

( )

( )

( )
( )

( )

/

/

F
T

F
e T

e I

I

T d d

4
; , ; ,

4
; , ; ,

, ,

1

4
, ,

, , ; , .
7

1 0 0 1 0 0

0

1

0

2

1

0

1

ò ò

m
t m f m f

m
t t m f m f

t m f

pm
t m f

t t m f m f m f

= -

+ -

+ -

´ -

t m

t t m

p

-

- -

¢ ¢

¢ ¢ ¢ ¢

These equations are derived and diagrammatically shown in
Chandrasekhar (1947b, 1960) and Peraiah (2001). The
boundary conditions used to calculate ( )S ; , ; ,1t m f m f¢ ¢ and

( )T ; , ; ,1t m f m f¢ ¢ are,

( ) ( ) ( )I I0, , 0 and , , 0. 81m f t m f- = + =

Chandrasekhar (1960) used these boundary conditions in
Equation (1) and derived the four invariance principles (4)–(7)
in terms of the source functions ξ(0, μ, f) and ξ(τ1, μ, f) . We
directly use these relations in this paper.

3. The General Integral Equations for a Scattering and
Thermally Emitting Atmosphere

When there is atmospheric emission as well as scattering, the
source function ξ can be written as (Sengupta 2021),
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Here, p(μ, f; μ″; f″) and β(τ, μ, f) are the phase function and
atmospheric emission, respectively. The atmospheric emission
β can be expanded (Bellman et al. 1967; Sengupta 2021) as
follows,

( ) ( ) ( ) ( )m; ; , cos . 10
m

N
m

0
0åb t m f b t m f f= -

=

For a planetary atmosphere, emission can be caused by
different mechanisms (for example, see, Bellman et al. 1967;
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Chakrabarty & Sengupta 2020; Malkevich 1963; Sengupta 2021;
Seager 2010). In the current study, we consider an atmosphere
where each horizontal layer is in local thermodynamic equilibrium
and emits only in terms of Planck Emission (Seager 2010), as
shown in Figure 1. Hence, considering m= 0 with no μ
dependencies, Equation (10) will reduce into,

( ) ( ) ( )B T, , . 11b t m f » t

Here Tτ represents the absolute temperature of that particular
atmospheric layer, which has optical depth τ. It is worth noting
that in the case of thermal emission the exact expression of β is

( )B Tk
c t . But in the case of the low scattering limit (i.e., κ? σ),
κ≈ χ and Equation (11) is valid (Sengupta 2021).

Assuming the low scattering approximation, Equation (9)
will become,

( ) ( ) ( )

( )

( ) ( )

B T F p

p

S d
d

0, ,
1

4
, ; ,

1

4
, ; ;

; , ; , . 12

0 0 0

0

1

0

2

1 0 0

⎡
⎣⎢

⎤
⎦⎥

ò ò

x m f m f m f

p
m f m f

t m f m f f
m
m

= + -

+

´

p
¢¢ ¢¢

¢¢ ¢¢ ¢¢
¢¢

¢¢

( ) ( ) ( )

( )

( ) ( )

/B T F e p

p

T d
d

, ,
1

4
, ; ,

1

4
, ; ;

; , ; , . 13

1 0 0

0

1

0

2

1 0 0

1
1 0⎡

⎣⎢

⎤
⎦⎥

ò ò

x t m f m f m f

p
m f m f

t m f m f f
m
m

= + -

+ -

´

t
t m

p

-

¢¢ ¢¢

¢¢ ¢¢ ¢¢
¢¢

¢¢

Now using Equations (12) and (13) in Equations (23)–(26);
p. 168 in Chandrasekhar (1960) we will get (for a detailed
derivation see Appendix),
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Equations (14)–(17) represent the integral equations govern-
ing the problem of diffuse reflection and transmission in the
presence of atmospheric thermal emission of a plane-parallel
atmosphere with a finite optical depth.

4. The Integral Equations in Isotropic Scattering

It is evident that these four integral equations have an explicit
dependency on the phase function ( )p , ; ,m f m f¢ ¢ . The different
types of phase functions are discussed in Chandrasekhar (1960)
and Sengupta (2021). Here, we specifically study the effect of
thermal emission in the isotropic scattering case only. It can be
treated in terms of single scattering albedo ˜ 0w (Sengupta 2021)
as,

( )p , ; , .0 0 0m f m f w=~

This axial symmetry in the phase function is also a property
of the scattering and transmission functions, and they can
be expressed in axisymmetric terms as, ( )S ; ;1t m m¢ and
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Then, Equation (15) will become,
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Similarly, Equations (14), (16), and (17) can be expressed in
terms of the V and W functions as follows,
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Figure 1. This figure depicts the total effect of diffuse scattering and thermal emission B for a finite atmosphere. Considering an arbitrary layer with optical depth τ
(0 < τ < τ1 ) we show the effect of scattering and emission, while B is isotropic in nature and depends only on the temperature of the emitting layer.
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Subtracting Equation (23) from Equation (22) gives,
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Subtracting Equation (22)*1

m
from Equation (23)* 1

0m
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Thus, the functional form of V and W functions
(Equations (19) and (20)) can be modified as,
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The final emitted radiation from τ= 0 and τ= τ1 can be
expressed from Equation (3) as,
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Equations (28) and (29) can be expressed as,
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5. A Simple Transformation Rule

Chandrasekhar (1960) introduced two crucial functions, S(τ1; μ,
f; μ0, f0) and T(τ1; μ, f; μ0, f0), while considering diffuse
scattering in a finite atmosphere. The transformation rule between
these two functions was established by Coakley (1973) as,
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Here we will show that these rules are indeed true while the
thermal emission is included in this problem under some
circumstances. We replace μ0 by−μ0 in Equation (14) and
multiplying both sides by e 1 0t m- and get,
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Now if we make use of Equation (31) and the symmetric
properties of the phase function p(μ, f;−μ0, f0)= p(−μ,
f; μ0, f0) and p(−μ, f;−μ0, f0)= p(μ, f; μ0, f0) then
Equation (32) will be,
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Observing the similarity of this equation with Equation (16),
we can write the condition on thermal emission,

( ) ( ) ( ) ( ) ( )/ /U T U T e B T B T e . 340 01
1 0

1
1 0= =t

t m
t

t m- -

So the transformation rule between the S function and T
function (Equation (31)) will be valid when the thermal
emission from different atmospheric layers are connected by
Equation (34). This blackbody emission can be named as the
reduced thermal emission.

For the isotropic scattering case, the transformation rules of
V and W can be obtained using Equations (31), (19), and (20)
as,

( ) ( ) ( ) ( ) ( )/ /V e W W e V . 351 1m m m m- = - =t m t m- -

6. The Physical Meaning of the V and W Functions

We introduced two new functions, V(μ) and W(μ), which
resemble Chandrasekhar’s X(μ) and Y(μ) functions, respec-
tively, in the presence of thermal emission with the diffusely
reflecting finite atmosphere problem. The physical meaning
of the X function and Y function has been discussed by
Chandrasekhar (1960), Van de Hulst (1948), and Peraiah
(2001). Here we will discuss the additional effects introduced
in the V and W functions.

Let there be a point source above the layer τ= 0, which has
unit brightness (with a total emitting flux of 4π from the point
source). Now the flux will be scattered and transmitted multiple
times by both the atmospheric layers at τ= 0 and τ= τ1 (see
Figure 2). In addition to it there is a contribution of thermal
emission B(T0) and ( )B T 1t , respectively, from those layers. Now
for an observer at a large distance, the combination of the same
point source and the illuminated atmosphere will again appear
as a point source and only the combined effect can be observed.
If that distant observer is in the (+μ, f) direction from the
atmosphere (i.e., above the atmospheric layer τ= 0 in
Figure 2), then V(μ) will be the total observed brightness. In
the same way, if the observer is in the (−μ, f) direction from
the atmosphere (i.e., below the atmospheric layer τ= τ1 in
Figure 2), then W(μ) will be the total observed brightness. In
both the cases, the factor 1

m
is positive.

In other words, V(μ) and W(μ) represent the relative change
of the incident and transmitted flux along the (+μ) and (−μ)
directions, respectively, due to the presence of the atmosphere.
This relative change shows the combined effect of scattering,
transmission, and thermal emission by the atmospheric layers.

Clearly in the absence of thermal emission, the contribution
of thermal emission will be removed and the observed
brightness will be a combination of atmospheric scattering
and transmission of the point source flux only. In such
circumstances, the V(μ) and W(μ) functions will reduce into
Chandrasekhar’s X(μ) and Y(μ) functions only (see Section 7
for more discussion). Also Figure 2 will reduce into the figure
given in Van de Hulst (1948).

In case of a semi-infinite atmosphere, the bottom layer will
be extended at τ1→∞ as shown in Figure 3. In such
circumstances, the distant observer can observe the combined
effect from (+μ, f) direction only. Hence the W(μ) function
will vanish and the V(μ) function will give the combined effect
of scattering and thermal emission. In such a case the V(μ)
function will reduce into the well known M(μ) function as
introduced by Sengupta (2021) for the semi-infinite atmos-
phere case.

Hence the V and W functions represent the relative change of
the flux from point source due to the presence of atmospheric
scattering, transmission, and thermal emission.

7. Consistency Check

In this section we will show that how our results reduce into
previous literature results at specific boundary conditions. It is
expected that, when the atmospheric thermal emission is very
much less than the incident flux (i.e., ( ) ( ) B T B T F,0 1t ), then
our solutions should match with the results of only the
scattering case as derived by Chandrasekhar (1960).
In the case of the no thermal emission limit, ( )U T ,0
( )U T 01 t and thus Equations (26) and (27) will reduce into

those of Chandrasekhar’s X and Y functions, as shown by
Chandrasekhar (1960) (p. 181; Equations (84)–(85))
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Hence in the limit of U→ 0, Equations (21) and (24) will
become,
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These equations are the same as given by Chandrasekhar
(1960) (p. 181; Equations (80)–(81)). The no thermal emission
limit will also affect the final radiation coming out from both of
the boundaries at τ= 0 and τ= τ1. Hence Equations (28) and
(29) will reduce into the scattering-only case. For the no
thermal emission case we can write the matrix Equation (30) as
follows,
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This is the same form as derived by Chandrasekhar (1960)
(p. 201; Equations (108) and (109)) in the case of diffuse
scattering.
Now we will show the two limiting cases of optical depth.

1. Semi-infinite optical depth (τ1→∞): In this condition
the expression of the function V(μ) will reduced into
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This expression is same as the M function derived by
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Sengupta (2021) in the context of a semi-infinite
atmosphere. Hence we can say that the finite atmosphere
problem boils down to the semi-infinite atmosphere
problem at this limiting value.

Now using the transformation rule (35), the W
function can be represented as,

( ) ( ) ( )/W V elim 0. 39
1

1m t m= ¥ - t m-

2. Small optical depth (τ1→ 0): In such a case the W
function will be,

( ) ( )W e 401m  t m-

and using the transformation rule we get,

( ) ( ) ( )/V W e 1. 411m m= - t m-

These values are same as shown by Peraiah (2001) in
the cases of the Y and X functions, respectively.

8. Discussion

The finite atmosphere diffuse reflection problem was first
introduced by Chandrasekhar (1960) for a scattering-only
atmosphere where no atmospheric emission was considered.
Here for the first time we include the thermal emission effect
simultaneously with the isotropic scattering from each atmo-
spheric layers in the finite atmosphere diffuse reflection
problem. The thermal emission modifies Chandrasekhar’s
results in terms of the factor U(T), where U is the ratio of
blackbody emission (B) and irradiation flux (F) (see Sections 3
and 4). Moreover, the modified scattering and transmission
functions obey the same transformation rules as established by
Coakley (1973) (as shown in Section 5). Then, we show that
our results are consistent with those of the Chandrasekhar
(1960) results in the limit of low atmospheric thermal emission
(i.e., B= F). Hence, it can be said that our treatment of thermal

emission and scattering for the finite atmosphere problem is
more general than Chandrasekhar’s one. In the exoplanetary
context, Chandrasekhar’s results are used to model the
reflection, transmission, and emission spectra of highly
irradiated low emitting planets (Madhusudhan & Burrows
2012). But as it is evident that when thermal emission and
scattering occurs comparably in a planetary atmosphere (e.g.,
low irradiating ultrahot Jupiters), then our model will provide
more accurate results than Chandrasekhar’s results.
The thermal emission from each atmospheric layer will

travel through other layers as well and will undergo scattering
and transmission. For example, emission from the layer at
τ= 0 is B(T0), which is scattered along the direction (μ, f) and
contributes to the final radiation I(0, μ) in terms of B(T0)V(μ)
(see Equation (28)). In the same way it contributes along the
direction (−μ, f) in the radiation in terms of B(T0)W(μ). Thus,
the flux F irradiated the atmosphere and the atmospheric
thermal emission will follow the same rules of scattering and
transmission. So this theory is applicable to those planetary
atmospheres where (1) the atmospheric thermal emission is
comparable to the irradiated stellar flux and (2) the atmosphere
gives infrared scattering effects.
Here we have revisited the connection relation between the

scattering and transmission functions (see Equation (31)) as
established by Coakley (1973). This transformation rule
describes the interchange between the S and T functions
depending on the orientation of the incident beam in the case of
only diffuse scattering in a finite atmosphere (Coakley 1973).
In this work, we first show that this relation is indeed true in the
case of a thermally emitting atmosphere. Second, a transforma-
tion rule for the V and W functions (see Equation (35)) as well
as a connection relation between the thermal emission flux at
different atmospheric layers, which can be named as reduced
thermal emission, is established. It ensures that if a beam is
incident from the upper side of the layer τ= 0, then the V and
W functions can be represented as shown in Figure 2. But if a
light beam is incident from the lower side of τ= τ1 layer then

Figure 2. This figure explains the physical meaning of the V(μ) and W(μ) functions. The total brightness observed by a distant observer will be V(μ) (for the observer
above τ = 0) and W(μ) (for the observer below τ = τ1) times the brightness of the point source alone. Hence all the scattering, transmission, and thermal emission
from the atmosphere contributes in terms of the V and W functions.
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the positions of V and W functions in Figure 2 will interchange.
This shows the symmetry of the solutions provided here. Note
that the transformation rules are applicable only if the
atmospheric emission at different optical depths are connected
by the relation given in Equation (34).

The applicability of the transformation rule in the case of
thermal emission also ensures the fact that in case of
comparable emission and scattering from an atmosphere, both
of these effects are in equal footing. Hence, both effects should
be considered for a full-proof modeling.

The V(μ) and W(μ) functions are analogous to Chandrase-
khar’s X and Y functions mentioned in Chandrasekhar (1960).
They represent the relative changes of the radiation from the
layer τ= 0 along the direction (μ, f) and from τ= τ1 along
(−μ, f), respectively, due to the presence of the atmosphere.
Hence, the atmospheric presence can be realized in terms of
diffuse reflection and atmospheric thermal emission from the
corresponding layer. In other words it can be said that they act
as the source function for the direction (μ, f) at τ= 0 and the
direction (− μ, f) at τ= τ1, respectively.

We showed (in Section 7) that at the semi-infinite limit
(i.e.,τ1→∞ ), our finite atmosphere results will reduce into
that of the semi-infinite results obtained by Sengupta (2021).
Hence we can say that the M(μ) function (see Sengupta 2021
for details) is a semi-infinite counterpart of the more general
V (μ) function, as shown in Figure 3. It reveals the semi-infinite
limiting case of the V(μ) function.

The work presented by Sengupta (2021) considered atmo-
spheric thermal emission in the semi-infinite atmosphere case
and was thus limited by the condition of translational invariant
thermal emission in the atmosphere. For a planetary atmos-
phere it means that such a theory is applicable only for those
planets that have an isothermal atmosphere. In this work we
removed that limitation by considering the finite atmosphere
problem, which does not need a translational invariant thermal
emission and in such case the scattering function S(τ, μ, f; μ0,
f0) varies with the optical depth of the atmosphere. This will
provide the opportunity to model the atmospheric spectra for
any type of atmospheric temperature structure with simulta-
neous emission and scattering.

In this work we considered only the isotropic scattering case,
which is indeed the first step to modifying the finite atmosphere
scattering problem in the presence of thermal emission. This
work can be expanded for the general cases of scattering with

the same recipe and the modifications will follow accordingly.
To include the numerical approach, one should use the
Heyney–Greenstein phase function (Henyey & Greenstein
1941),

( )
( )

p
g

g g
cos

1

1 2 cos
,

2

2 2
3

Q =
-

+ - Q

where g ä [−1, 1] is the asymmetry parameter, as shown by
Bellman et al. (1967) and Batalha et al. (2019).
Atmospheric thermal emission is the simplest possible

emission process considered in our work. However, we assumed
the low scattering limit σ= κ to use the simple Planck function
as the atmospheric emission term (see Equation (11)). It
simplifies the mathematical derivations significantly. However,
this restriction can be removed by replacing B(Tτ) with ( )B Tk

c t

and the results will follow accordingly. Although the physical
interpretations remain unaltered.
In the case of exoplanetary atmosphere modeling, the

atmospheric emission cannot always be simplified by the
Planck emission. The upper atmospheres of exoplanets do not
hold the local thermodynamic equilibrium condition (Seager
2010; Sengupta 2021). In such cases different types of
atmospheric emission can be considered by the general
atmospheric emission function β as shown in Equation (10).
With an appropriate choice of the β parameter for thermal
reemission, anisotropic emission can be considered as
discussed by Sengupta (2021).
Finally, the polarization effect is not considered in this

work. That can be included for a finite atmosphere in the same
way as in the semi-infinite atmosphere case discussed by
Sengupta (2021).

This work is the continuation of the Ph.D. project of S.S. and
received funding from DST, which the Indian Institute of
Astrophysics provides. The author would like to thank Ms.
Manika Singla for her valuable discussions, suggestions, and
continuous support at every stage of this work. S.S. also thanks
Mr. Vishnu Madhu for helping to improve the language quality
of this paper. The author acknowledges the anonymous
reviewer for the critical and thought-provoking comments,
which improved the work significantly. S.S. expresses his
gratitude to the Scientific Editor of the Astrophysical Journal
for publishing this work.

Figure 3. A pictorial view of the M(μ) function derived by Sengupta (2021) for a semi-infinite atmosphere. The total radiation observed from ( + μ , f) direction will
be the addition of the light from the source, scattered by the atmosphere and the thermally emitted radiation from the atmospheric layer. Here all the layers are at same
temperature T.
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Appendix
Derivation of the Scattering Function and its Derivative

In this section we will show the derivation of the scattering

function S(τ1, μ, f; μ0, f0) and its derivative
( )S , , ; ,0 0

1

t m f m f
t t t

¶
¶ =

,

which has directly been written in Equations (14) and (15). For
the simplicity of calculations we write

( )S , , ; ,1 0 0

1

t m f m f
t

¶
¶

instead of
( )S , , ; ,0 0

1t t

t m f m f
t

¶
¶ =

in the main text of Section 3. To start with we

will use the scattering function relation with the source function
equation given by Chandrasekhar (1960) (p. 168; Equations: (23)
and (25)) as follows,
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Now the source functions ξ(0, μ, f) and ξ(τ1, μ, f) in
thermal emission case are given in Equations (12) and (13),
respectively. Making use of them with the boundary conditions
(Equations (8)) the above two equations can be written as,
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Hence, by multiplying Equations (A3) and (A4) by
F

4 and

replacing the quantities ( ) ( )
,B T

F

B T

F
0 1t by U(T0) and ( )U T 1t ,

respectively, we will get Equations (14) and (15), respectively.
In similar fashion, the transmission function T(τ1; μ, f; μ0, f0)
and its derivative
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can be derived.
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