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Abstract. We study the nonlinear dynamics of a warped or twisted accretion
disc, in which the viscosity coefficients are assumed to be locally proportional
to the rotational velocity (β-prescription). Using asymptotic methods for thin
discs, dynamical equations of the disc are obtained in warped spherical polar
coordinates. These equations are solved by the method of the separation of the
variables. This analysis constitutes an analogous study of the nonlinear theory
of an alpha model warped disc which has been studied by Ogilvie (1999). We
have compared our results with Ogilvie’s analysis. The dynamical behaviours of
these models have also been discussed. Our results show that different viscosity
prescriptions and magnitudes (α and β prescriptions) affect the dynamics of
a warped accretion disc. Therefore it can be important in determining the
viscosity law even for a warped disc.
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1. Introduction

The development of studies about accretion discs during the present century is an illus-
tration of the growth of research interest in this area. In more recent times a good deal
of attention has been devoted to studies of the warped accretion discs. This kind of discs
have been observed in a wide variety of astronomical objects from young stellar objects,
X-ray binary stars to active galactic nuclei. For example, the stability of the super orbital
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periodicity in the neutron star XRBs Cyg X-2, LMC X-4 and Her X-1 (Clarkson et al.
2003) is attributed to a warped disc. The outflows and illumination patterns from the
central engine of a Seyfert Galaxy (Greenhill et al. 2003) provide direct reasoning to
warped accretion discs. Observations of FUSE (Far Ultraviolet Spectroscopic Explorer)
and HST (Hubble Space Telescope) ultraviolet of the low-inclination, nova-like Cata-
clysmic variable RW Sex also presented evidences of warped discs (Prinja et al. 2003).
The precession of warped discs in magnetized stars (T Tauri stars, white dwarf or neutron
stars) discussed by Pfeiffer & Lai (2004) that can be concluded from magnetic torques
due to the interaction between the stellar field and the induced electric currents in the
disc. A photometric study of the SW Sex star, PX And (Boffin et al. 2003) reveals a
precessing disc possibly warped. Many different systems, including young stellar objects
and X-ray binaries, display a different precession period or radiation flux variabilities
that may be concluded from a warped accretion disc. Her X-1 (Tananbaum et al. 1972;
Katz 1973; Roberts 1974; Still & Boyd 2004) and the hard X-ray component of the micro
quasar GRS1915+105 (Rau, Greiner & McCollough 2003) also show typical behaviour of
warped discs.

During recent years, several driving mechanisms for disc warps have been suggested.
A warp may be induced through instabilities that may be due to viscous torque (Pringle
1992), bending waves and viscous torques (Ogilvie 1999), resonant tidal interactions
(Lubow 1992; Lubow & Ogilvie 2000); irradiation-driven wind torques (Schandl & Meyer
1994); radiation torques (Pringle 1996); wind torques via Kelvin-Helmholts instability
(Quillen 2001); magnetic torques (Lai 1999) and magnetic-induced electric current torques
(Lai 2003).

Most theoretical studies of the accretion discs are based on the concept of a real
fluid and the equations of magnetohydrodynamics. Adjacent layers of a moving real fluid
experience tangential forces (shearing stresses) as well as normal forces (pressures). The
viscous forces are the main physical agents in any accretion disc theory. Therefore, the
viscous forces are parameterized. This can be done through the dimensionless parameter
α introduced by Shakura & Sunyaev (1973). It describes angular momentum transport in
accretion discs. The mechanisms of the angular momentum transport can be described by
the magnetic or the hydrodynamic instabilities. There is another prescription through the
dimensionless parameter β introduced by Lynden-Bell & Pringle (1974), in which the vis-
cosity coefficient is proportional to the rotational velocity. Analyzing the turbulent flows
between the coaxial cylinders, Richard & Zahn (1999) investigated β- prescription for
turbulent viscosity and found that the parameter β is of the order of 10−5. Furthermore,
in their model, the viscosity is very small compared to the viscosity in α- prescription.
Consequently, the forces due to viscous friction are very small compared to the remaining
forces (gravity and pressure forces). So, the Reynolds numbers are very large, because
of very low viscosity of the fluid. Accretion disc model with β- prescription has been
studied by Hure et al. (2001). They argued that the beta model for viscosity prescription
is applicable for analyzing the steady state structure of the Keplerian accretion discs and
it yields somewhat different results compared to the classical α-viscosity introduced by
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Shakura & Sunyaev (1973). Study on hydrodynamic viscosity and selfgravitation in non-
warped accretion discs (β model) has been done by Duschl et al.(2000). They showed
that β-discs can explain the observed spectra of protoplanetary discs and yield a natural
solution to an inconsistency in the α-disc models if the mass of the disc is large enough
for self-gravity to play a role and in the limit of low mass, hydrodynamic turbulence will
result by α model. Turbulence induced by the horizontal and vertical shear has been
studied by Mathis et al. (2004). They have presented a new prescription, the β-viscosity,
for the horizontal component of the turbulent diffusivity due to the differential rotation
in latitude. They generalized β prescription (Richard & Zahn 1999) in the stationery
limit, advection and diffusion balance each other. That prescription (Richard & Zahn
1999) has been established in the case of maximum differential rotation and so its validity
must be verified to milder shear rates. They have examined various prescriptions with
their work. Their prescription yields a better agreement with the observations, but one
can hardly consider it as the final answer, especially for extreme differential rotation.

In general, what we can find from previous works on accretion discs is the effects of
various viscosity prescriptions on the structure of discs and under conditions, their results
are compatible to some prescriptions. However, almost all previous studies of β-discs are
dedicated to non-warped accretion discs.

In order to investigate the non-linear dynamics of warped accretion discs and whether
selecting of the model affects the forms of the equations governing a warped viscous disc,
we applied Ogilvie’s method (1999, hereafter OG) as considered in a α theory and check
this new prescription for a thin viscous disc. Our study includes numerical solutions
of the Navier-Stokes equations. First, the problem is reduced to a so-called singular
perturbation which is then solved by the method of matched asymptotic expansions.

In Section 2, we explain the general formulation. Analysis of the problem is presented
in section 3. We show that the equations can be solved using the method of the separation
of the variables and the numerical solutions are discussed in section 4. We compare the
warped α and β-discs in section 5 followed by conclusions in section 6.

2. General formulation

In order to construct a model for a warped accretion disc, we start by writing hydrody-
namic equations. We use the appropriate forms of these fundamental equations in warped
spherical polar coordinates (r, θ, φ) (OG). Although many physical agents such as mag-
netic fields and radiative processes play significant roles in the dynamics of the discs, we
neglect all those complex phenomena in order to understand the dynamics of an accretion
disc with β-prescription for viscosity via semi-analytical methods. The self-gravity of the
disc and interaction of the stellar magnetic field with the disc are also neglected. The
fundamental governing equations are the continuity,

Dρ = −ρ∇ · u, (1)
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the adiabatic condition,

Dp = −Γp∇ · u, (2)

and finally the equation of motion,

ρDu = −∇p− ρ∇Φ +∇ · [µ∇u + µ(∇u)T
]
+∇ [

(µb − 2
3µ)∇ · u]

, (3)

where u, ρ, p and Φ are the absolute velocity, the density, the pressure and the external
gravitational potential, respectively. Γ is the adiabatic exponent and the shear and the
bulk viscosities are denoted by µ and µb. The symbol D denotes the Lagrangian time
derivative operator,

D = (∂t)r,θ,φ + vr∂r +
vθ

r
∂θ +

vφ

r sin θ
∂φ. (4)

Note that the components (ur, uθ, uφ) are the absolute velocity components, i.e. u is the
velocity as measured in the inertial frame. But the additional motion with respect to the
warped coordinate system is described by the relative velocity v. The exact relationship
between these two velocities has been found by OG.

Warped spherical polar coordinates (r, θ, φ) is defined so that on each sphere r =
constant, one can define the usual angular coordinates (θ, φ), but with respect to an axis
that is tilted to a point in the direction of the unit vector `(r, t). This tilt vector can be
described using the Euler angles βE(r, t) and γ(r, t):

` = sin βE cos γ ex + sin βE sin γ ey + cosβE ez. (5)

For the viscosity coefficients, we are using the β- prescription (Lynden-Bell and Pringle
1974) rather than the usual α- prescription which has been used by OG. Thus, the
viscosity coefficients are assumed to be locally proportional to the rotational velocity,

µ = βr2Ωρ, (6)
µb = βbr2Ωρ, (7)

where the dimensionless coefficients β and βb can be considered as functions of the ra-
dius. We will show that β-prescription for the viscosity coefficients leads to significant
changes in the equations describing a warped disc. Also the fluid is assumed to be locally
polytropic,

p = kρΓ. (8)

where Γ(r) is a prescribed function of the radius.

We can consider a thin disc in a spherically potential Φ(r), in which the small para-
meter ε is a characteristic value of the local angular semi-thickness of the disc. Using this
small parameter, it is possible to study the structure of a warped disc by the asymptotic
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expansion method. In thin disc approximation, one can assume that the disc matter
lies close to θ = π/2. To resolve the internal structure of the disc, introduce the scaled
dimensionless vertical coordinate ζ,

θ =
π

2
− εζ, (9)

and the slow time coordinate,
T = ε2t. (10)

For the density and pressure, introduce the scalings

ρ(r, θ, φ, t) = εs
[
ρ0(r, φ, ζ, T ) + ερ1(r, φ, ζ, T ) + O(ε2)

]
, (11)

p(r, θ, φ, t) = εs+2
[
p0(r, φ, ζ, T ) + εp1(r, φ, ζ, T ) + O(ε2)

]
, (12)

and for the relative velocities,

vr(r, θ, φ, t) = εvr1(r, φ, ζ, T ) + ε2vr2(r, φ, ζ, T ) + O(ε3), (13)
vθ(r, θ, φ, t) = εvθ1(r, φ, ζ, T ) + ε2vθ2(r, φ, ζ, T ) + O(ε3), (14)
vφ(r, θ, φ, t) = rΩ(r) sin θ + εvφ1(r, φ, ζ, T ) + ε2vφ2(r, φ, ζ, T ) + O(ε3). (15)

Finally, for the viscosities, assume

µ(r, θ, φ, t) = εs+2
[
µ0(r, φ, ζ, T ) + εµ1(r, φ, ζ, T ) + O(ε2)

]
, (16)

µb(r, θ, φ, t) = εs+2
[
µb0(r, φ, ζ, T ) + εµb1(r, φ, ζ, T ) + O(ε2)

]
, (17)

where s is a parameter which should be positive if the self-gravitation of the disc is to
be negligible. The equations of fluid dynamics were derived in warped spherical polar
coordinates by OG. He reduced them by means of above asymptotic expansions for a
thin disc and then divided them into two sets. Set A, which determines the intermediate
velocities, consists of five coupled non-linear partial differential equations (PDEs) in two
dimensions (φ, ζ) and seven dependent variables {ρ0, p0, µ0, µb0, vr1, vθ1, vφ1}. Also Set
B, which determines the slow velocities, contains a set of five linear PDEs for the higher-
order quantities {ρ1, p1, µ1, µb1, vr2, vθ2, vφ2}, including coefficients that depend upon the
solutions of Set A and their radial derivatives. In the present work, we adopted Set A
and B for our analysis (see OG, for details of deriving the expansions of Set A and Set
B).

3. Analysis

It is very unlikely that the equations of Set A can be solved analytically. Numerical
approach is a convenient way. Fortunately, we can transform the partial differential
equations into a set of ordinary differential equations (ODEs) using the method of sep-
aration of variables. To achieve this, at first we introduce the following forms for the
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variables:

h0 = r2Ω2
[
f1(φ− χ)− 1

2f2(φ− χ)ζ2
]
, (18)

vr1 = rΩf3(φ− χ)ζ, (19)
vθ1 = rΩ

[
f4(φ− χ)ζ + g4(φ− χ)ζ3

]
, (20)

vφ1 + rvr1γ
′ cosβE = rΩ

[
f5(φ− χ)ζ + g5(φ− χ)ζ3

]
. (21)

where h0 = Γ
Γ−1

p0
ρ0

is the enthalpy. Using the relation (18), one can drive the upper
surface of the disc as

ζ2 = 2f1(φ− χ)f−1
2 (φ− χ). (22)

Introducing the dimensionless functions f1, . . . , f5 and g4, g5, one can obtain the coupled
sets of the non-linear ODEs of first order for the given equations

f ′1(φ) = (Γ− 1)f4(φ)f1(φ), (23)
f ′2(φ) = (Γ + 1)f4(φ)f2(φ)− 6(Γ− 1)g4(φ)f1(φ), (24)
f ′3(φ) = f4(φ)f3(φ) + 2f5(φ) +

[
f2(φ)− 6(βb + 1

3β)g4(φ)
] |ψ| cosφ (25)

f ′4(φ) = −f ′3(φ)|ψ| cosφ + 2f3(φ)|ψ| sin φ + f4(φ) [f4(φ) + f3(φ)|ψ| cos φ] + 1− f2(φ)
+6(βb + 1

3β)g4(φ) + 6βg4(φ)(1 + |ψ|2 cos2 φ), (26)
g′4(φ) = g4(φ)f3(φ)|ψ| cos φ + 4g4(φ)f4(φ), (27)
f ′5(φ) = f4(φ)f5(φ)− 1

2 κ̃2f3(φ) + 6βg5(φ)(1 + |ψ|2 cos2 φ), (28)
g′5(φ) = 3f4(φ)g5(φ) + g4(φ)f5(φ), (29)

where these functions are subject to periodic boundary conditions fn(2π) = fn(0) and
gn(2π) = gn(0). The epicyclic frequency κ(r) is defined by

κ2 = 4Ω2 + 2rΩΩ′, (30)

and the dimensionless epicyclic frequency is κ̃ = κ/Ω. Meanwhile the amplitude of the
warp is defined as

|ψ| = r|∂`

∂r
|, (31)

hence, using the tilt vector, we have

ψ = |ψ| eiχ = r(β′E + iγ′ sin βE), (32)

that it is a dimensionless complex variable.1 Moreover, by the definition of f6 (see,
Appendix B), one can drive

f ′6(φ) = −2f4(φ)f6(φ) + 9(Γ− 1)f1(φ)f2(φ)−1g4(φ)f4(φ). (33)

1Throughout this paper, prime and dot for Ω(r), βE and γ imply radial and time derivatives, respec-
tively.
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In addition, we find the following combinations

f2(φ)g4(φ) = 0 if Γ 6= 1/3, (34)
g4(φ)f3(φ) = −2g5(φ) all Γ. (35)

All information about a warped disc with β- prescription can be obtained by solving
equations (23)-(33) numerically. Before presenting the results of numerical integration,
we discuss the evolutionary equations of a warped β- disc and its relations with solutions
described by functions fn and gn. In particular, it is very important to see whether the
equations of Pringle (1992) can be derived from the three dimensional fluid equations.
Pringle (1992) developed an approach for deriving the equations of a warped disc, with-
out reference to the detailed internal fluid equations. OG showed the impossibility of
deriving the angular momentum equation of Pringle (1992) from the basic equations of
fluid dynamics. In fact, one should allow for a more general form of the torque between
neighbouring rings. Thus, OG introduced three dimensionless coefficients Q1, Q2 and Q3,
which depend on physical quantities of the disc. These coefficients enable us to discuss
the relative importance of torques between neighbouring rings in a warped α-disc. We are
following a similar approach for describing a warped β-disc. However, in a warped β-disc
there are various torques and so we introduce extra dimensionless coefficients. Using the
equations that can be extracted from Set B in OG and substituting the defined quantities
{h0, vr1, vθ1, vφ1}, we can propose the evolutionary equations for the warped β- disc as
(for details, see Appendix B),

∂

∂t

(
Σr2Ω`

)
+

1
r

∂

∂r

(
Σv̄rr

3Ω`
)

=

1
r

∂

∂r

(
Q1Ir2Ω2`

)
+

1
r

∂

∂r

(
Q2Ir3Ω2 ∂`

∂r

)
+

1
r

∂

∂r
(Q3Ir3Ω2`× ∂`

∂r
)

+
1
r

∂

∂r

(
Q′1Σr4Ω2`

)
+

1
r

∂

∂r

(
Q′

2Σr5Ω2 ∂`

∂r

)
+

1
r

∂

∂r

(
Q′3Σr5Ω2`× ∂`

∂r

)
, (36)

for the angular momentum, and

Σv̄r
∂

∂r
(r2Ω) =

1
r

∂

∂r

(
Q1Ir2Ω2

)−Q2Ir2Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

+
1
r

∂

∂r

(
Q′1Σr4Ω2

)−Q′
2Σr4Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

,

(37)
for the component of angular momentum parallel to `, and

Σr2Ω
(

∂`

∂t
+ v̄r

∂`

∂r

)
=

Q1IrΩ2 ∂`

∂r
+

1
r

∂

∂r

(
Q2Ir3Ω2 ∂`

∂r

)
+ Q2Ir2Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

` +
1
r

∂

∂r

(
Q3Ir3Ω2`× ∂`

∂r

)

+Q′1Σr3Ω2 ∂`

∂r
+

1
r

∂

∂r

(
Q′2Σr5Ω2 ∂`

∂r

)
+ Q′

2Σr4Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

` +
1
r

∂

∂r

(
Q′

3r
5Ω2`× ∂`

∂r

)
.

(38)
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for the tilt vector.
Thus, we can obtain coefficients Qn and Q′

n {i.e., n = 1, 4} as (Appendix B),

Q1 =
〈
f6(−f3f5 + 3βg5|ψ| cos φ)

〉
, (39)

Q′1 =
〈− 1

2 (4− κ̃2)β + βf5|ψ| cos φ
〉
, (40)

Q4 =
1
|ψ|

〈
eiφf6 [f3 − if3(f4 + f3|ψ| cosφ) + 3iβg4|ψ| cosφ]

〉
, (41)

Q′4 =
1
|ψ|

〈
eiφ [iβ(f4 + f3|ψ| cos φ)|ψ| cos φ− iβf3 − iβ|ψ| sin φ]

〉
, (42)

where Q4 and Q′
4 defined as Q2 + iQ3 and Q′2 + iQ′

3.

The dimensionless coefficients Qn and Q′n can be evaluated from the solutions of Set
A (see OG). We find that these coefficients depend on selecting the model, the amplitude
of the warp, the rotation law and the shear viscosity. For a warped β-disc as we consider
here, we find three kinds of the internal viscous torques, (see equation (36)):

G(r, t) = (Q1I + Q′
1Σr2)r2Ω2` + (Q2I + Q′2Σr2)r3Ω2 ∂`

∂r

+(Q3I + Q′3Σr2)r3Ω2`× ∂`

∂r
.

(43)

From a mathematical point of view, the equation (36) constitutes the prototype for
a parabolic partial differential equation and can be thought as an advection-diffusion-
dispersion equation in the non-linear regime. So for a flat disc ( ∂`

∂r = 0), the evolution
equation reduces to a standard disc diffusion equation.

According to the above equation for G(r,t), the first term on the right-hand side gives
a contribution to G which is in the local direction `. So, the effective advection coefficients,
Q1 and Q′1, represent viscous torques on each ring in the disc due to differential rotation
within the disc plane. Thus, the rings tend to rotate in direction `.

Considering neighbouring rings in directions ` and ` + ∆`, the second term on the
right-hand side gives a contribution to G which is in the ∂`

∂r direction. Therefore, the
effective diffusion coefficients, Q2 and Q′2, represent viscous torques due to the interaction
between neighbouring rings in the disc, in order to flatten the disc.

The last term on the right-hand side is a dispersion one. So the effective dispersion
coefficients Q3 and Q′

3 demonstrate torques which are perpendicular to ` and ∂`
∂r , respec-

tively. In this case, each ring in the disc experiences torques tending to make the ring
precess if it is not aligned with its neighbours. Then we would expect to generate wave
motions in the disc so that the warp propagates as a dispersive wave.
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4. Numerical solutions

One can expand the dimensionless functions fn {n = 1, . . . , 6}, g4 and g5 as power
series of the amplitude of the warp to determine the dynamics to any desired order.
In Appendix A, truncated Taylor series are presented including the coefficients Qn and
Q′

n. These series enable us to start numerical integration. From the expansions of the
dimensionless functions fn and gn and their relations to coefficients Qn and Q′n, we found
truncated Taylor series only for coefficients Q′

1, Q
′
2 and Q3. Meanwhile, as we discuss in

Appendix A, our solutions are restricted to the nearly Keplerian-discs. So we consider in
our calculations for κ̃2 = 0.99 for all values of β.

In order to be able to compare our results with the warped α- disc, we adopt coef-
ficients Q1 and Q4 = Q2 + iQ3 from OG. To distinct between these two coefficients, we
label them by superscript α. Now the set of ODEs in the previous section can be solved
numerically and we may obtain the coefficients Q′n and Qn. In addition, we should note
that solutions must satisfy periodic conditions for functions fn and gn as well as

〈
f6

〉
= 1

(see, Appendix B). Thus, the derived solutions make an interesting dynamical description
of a warped β- disc.

4.1 The warped β-disc

First, we investigate a non-Keplerian disc without viscosity. We consider Γ = 5/3 and
β = βb = 0. The dimensionless functions f1, f2, f5, f6 and g4 are even, but f3, f4 and g5

are odd. So the only non-vanishing coefficient is Q3. So,

Q3 =
1
|ψ|

〈
f6[f3 sin φ− f3 cosφ(f4 + f3|ψ| cos φ) + 3βg4|ψ| cos2 φ]

〉 |β=0,

=
1
|ψ|

〈
f6[f3 sin φ− f3 cosφ(f4 + f3|ψ| cos φ)]

〉
. (44)

A contour plot of coefficient Q3, is shown in Figure 1.

For the case of nearly Keplerian disc with viscosity, we consider κ̃2 = 0.99, Γ = 5/3
and βb = 0. Figure 2, shows β vs. |ψ| and contours of all coefficients. Note that all the
plots in Figure 2; parts (a), (c) and (e) show coefficient Q′n and parts (b), (d) and (f) show
coefficient Qn. The solutions can be calculated for large values of |ψ|. For evaluating the
coefficients Q1 and Q′1, we used equations (39) and (40). Figures 2a and 2b show contour
plots of the coefficients Q′1 and Q1 respectively. For reasonably small values of |ψ| there
is a good agreement with the truncated Taylor series for Q′1.

Figures 2c and 2d show contour plots of the coefficients Q′2 and Q2 respectively. We
used equations (41) and (42) for evaluating the coefficients Q2 and Q′

2, respectively. For
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Figure 1. The square of dimensionless epicyclic frequency versus the amplitude of the warp for

contour plots of the coefficients Q3(solid line) and Qα
3 (dash line) for an inviscid disc with Γ =

5/3.The condition κ̃2 = 1 separates solutions into two parts. For κ̃2 < 1, we have Q3, Q
α
3 > 0;

and for κ̃2 > 1, we see Q3, Q
α
3 < 0.

reasonably small values of |ψ| there is a good agreement with the truncated Taylor series
for Q′2.

Figures 2e and 2f show contours of the coefficients Q′
3 and Q3 respectively. We used

equations (41) and (42) for evaluating the coefficients Q3 and Q′3, respectively. Also Q′
3

is much smaller in magnitude than Q3. For reasonably small values of |ψ| there is a good
agreement with the truncated Taylor series for Q3.

4.2 The warped α-disc

First, as an illustrative case, we investigate a non-Keplerian disc without viscosity. We
consider Γ = 5/3 and α = αb = 0. According to obtained functions f1, f2, f5, f6 by OG,
the only non-vanishing coefficient is Qα

3 . So,

Qα
3 =

1
|ψ|

〈
f6[f3 sin φ− f3 cos φ(f4 + f3|ψ| cos φ)]

〉
. (45)

If we plot κ2/Ω2 versus |ψ|, we get the contours indicated in Figure 1 for Qα
3 . We selected

a given interval for |ψ|.

For the case of nearly Keplerian disc with viscosity, we consider κ̃2 = 0.99, Γ = 5/3
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Figure 2. The dimensionless viscosity parameter versus the amplitude of the warp for contour

plots of the coefficients; (a)Q′1, (b)Q1, (c)Q′2, (d)Q2, (e)Q′3 and (f)Q3 for a viscous, nearly

Keplerian disc (κ̃2 = 0.99)with Γ = 5/3 and βb = 0.
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and αb = 0. Figure 3 shows α vs. |ψ| and contours of all coefficients. Note that all the
plots in Figure 3; parts (a), (b) and (c) show coefficients Qα

n. We adopt this coefficients
from OG,

Qα
1 =

〈
f6[
−1
2

(4− κ̃2)αf2 − f3f5 + αf2f5|ψ| cos φ]
〉
. (46)

Qα
2 =

1
|ψ|2

〈
f6[(f4 + f3|ψ| cos φ)(1 + f3|ψ| sin φ) + αf2f3|ψ| sinφ

−αf2(f4 + f3|ψ| cosφ)|ψ|2 cosφ sin φ + αf2|ψ|2 sin2 φ]
〉
. (47)

Qα
3 =

1
|ψ|

〈
f6[f3 sin φ− f3 cosφ(f4 + f3|ψ| cos φ) + αf2(f4 + f3|ψ| cos φ)|ψ| cos2 φ

−αf2f3 cosφ− αf2|ψ| sin φ cos φ]
〉
. (48)

5. Comparing the warped α and β-discs

5.1 Inviscid, non-Keplerian disc

Figure 1 shows a good agreement between two contour plots of Q3 and Qα
3 . Also they

show good agreements with truncated Taylor series for small values of |ψ|. As Figure
1 demonstrates the condition κ̃2 = 1 separates solutions into two parts. For κ̃2 < 1,
we have Q3, Q

α
3 > 0; and for κ̃2 > 1, we see Q3, Q

α
3 < 0. In the case κ̃2 < 1 and for

small values of |ψ|, the physical solutions of β and α models exist only for |ψ| < 0.35 and
|ψ| < 0.4 respectively. The solutions terminate when g4 = 0, f2 ¿ 1 for β model because
we could not obtain the numerical solution. Whereas the solutions terminate for α model
when f2 = 0. Hence, the stability condition establishes for such discs for all values κ̃2 > 0
in small values of |ψ|. In other words, under the condition κ̃2 > 0, since the epicyclic
frequency has the relation with particle orbits, the displacements oscillate about a fixed
mean position and the circular orbit is stable to small perturbations.

5.2 Viscous, nearly Keplerian disc

We compare α and β models for a viscous, nearly Keplerian disc. If we compare equation
(36) with Pringle’s equation (130), the coefficients Q′1 and Q1 represent viscous torques
according to the horizontal shear. Figures 2a and 2b show similar behaviours, the mag-
nitudes of Q′1 and Q1 increase with increasing |ψ| and this is similar to Qα

1 (Figure 3a).
Nevertheless, we see different treatments between two models when torques due to Q′

1

and Q1 are considered. As mentioned before, they indicate viscous torques parallel to
` and Q′

1, Q1 identified as the advection coefficients. Then comparing to α model, the



The non-linear theory of a warped β-disc 459

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-0.20

-0.40

-0.60

-0.80

-1.00

-1.20

-1.40

α

|ψ|

0.0

0.2

0.4

0.6

0.8

1.0

α

2.0
1.5

1.
5

1.
4

1.
2

1.0

0.8

0.40.0 0.2 0.6 0.8 1.0

|ψ|

0.0 0.2 0.4 0.6 1.00.8
0.0

0.2

0.4

0.6

0.8

1.0

0.32

0.22

0.12

|ψ|

α

-0.08

0.02

-0.18

(a)

(b)

(c)

Figure 3. The dimensionless viscosity parameter versus the amplitude of the warp for contour

plots of the coefficients; (a) Qα
1 , (b) Qα

2 and (c) Qα
3 for a viscous, nearly Keplerian disc (κ̃2 = 0.99)

with Γ = 5/3 and αb = 0.



460 J. Ghanbari et al.

advection of the warp occurs more significantly. On the other hand, the viscous stability
condition implies that Q1, Q′

1 < 0, so β-discs tend to become stable more quickly com-
pared to the α-discs. This is in agreement with Hure et al. (2001). Thus, contrary to α
discs, β disc do not tend to fragment.

The coefficients Q′2 and Q2 represent viscous torques due to the vertical shear. Com-
paring Figures 2c and 3b we see that with increasing |ψ|, Q′

2 increases whereas Qα
2

decreases. So, the results due to the torques of Q′2 and Q2 do not tend to OG’s results.
This model affects the vertical structure of α-disc so that viscous torques try to flatten
the β-disc. Also when compared to OG’s analysis, the coefficients of Q′

3 and Q3 represent
torques which lead to the dispersive wave-like propagation of the warp. Figures 2e, 2f
and 3c show that Q′

3, Q3 and Qα
3 respectively are treated in a similar manner so that

with increasing |ψ|, they decrease. Although their typical treatments are similar, Q3 is
typically much larger than Q′3 and Qα

3 coefficients especially in small |ψ|. So we expect
to generate wave motion more in small |ψ| for β-disc so that it loses its importance for
large |ψ|.

6. Summary and discussion

We have presented an analysis of the non-linear dynamics of a warped accretion disc
using β-prescription. Using basic equations of fluid dynamics in warped spherical polar
coordinates, we have obtained the general equations that describe a warped disc. We
have also employed the method of matched asymptotic expansions for thin discs to derive
a set of coupled PDEs which govern the dynamics of the system. We then solved the
equations by the method of the separation of variables in order to extract the equations
governing the warp in their simplest forms. The non-linear dynamics of a warped β-
disc under a differential rotation field in the presence of a spherically symmetric external
potential presents a more complicated behaviour compared to the case in which a warped
α- disc is considered (OG). Moreover, it is more complicated than the case of the linear
theory of Papaloizou & Pringle (1983) to allow an arbitrary rotation law. In our study,
there are six coefficients. They have been determined numerically and analytically, by
solving a set of ODEs. Using truncated Taylor series in the amplitude of the warp, the
coefficients Q′1, Q′2 and Q3 are calculated analytically. Figures 1-3, show their contour
plots for two cases inviscid-Keplerian and viscous-nearly Keplerian disc when Γ = 5/3
and βb = 0. We find that these coefficients depend on selecting of the model and the
shear viscosity. Considering the equations (39)...(42), it can be noted that the coefficients
also depend on Γ, βb and the value of |ψ|. Our results show that the equations governing
a warp viscous disc depend on the parameters of the model. The results can be compared
with the studies of Pringle (1992) and OG as follows:

1) A comparison with the notation of Pringle (1992), shows that there are four dif-
ferent viscous torques due to the interaction between neighbouring rings in the disc (see,
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Appendix B). Therefore, these torques may be explained by four coefficients. Comparing
to OG, we find two extra coefficients Q′1 and Q′2 for the viscous torques. To understand
the meaning of these coefficients, we may deduce the following equations by comparing
equations (130) and (133),

Q1IΩ + Q′
1Σr2Ω ←→ ν1Σ

d lnΩ
d ln r

, (49)

Q2IΩ + Q′
2Σr2Ω ←→ 1

2
ν2Σ. (50)

We see that the numerical evaluation of the coefficients Q1, Q
′
1 and Q2, Q

′
2 represents the

qualitative behaviour of ν1 and ν2. We may conclude that ν1 and ν2 depend on the value
of β.

2) The evolutionary equations for the warped disc show that this scheme is a gener-
alization of the form suggested by OG. A warped accretion disc can be studied in detail
by the coefficients Q′

3 and Q3 in β model and only the coefficient Qα
3 in α model (OG).

These coefficients demonstrate torques tending to make the ring precess if it is misaligned
with its neighbours. Comparing Figures 2e and 3c show that the direction of the torques
is negative for both coefficients Q′3, Qα

3 . These torques lead to the dispersive wave-like
propagation of the warp.

3) Our results show that different viscosity prescriptions and magnitudes (α and β
prescriptions) affect dynamics of a warped accretion disc. Therefore, it can be important
in determining the viscosity law even for a warped disc.

Further work still remains to be done to study the dynamics of a viscous warped
accretion disc using β-prescription:

a) The dynamics of the warped accretion disc may be studied by considering the
magnetic effects. We have to then modify the equations by including the magnetic field
of the disc. Thus, a suitable model should be included for the geometry of the magnetic
field components. One can also extend our analysis to the case that self-gravity of the
warped discs is important.

b) In this paper, we neglected the thermal and the radiative effects, however, these
physical processes are playing important roles in the dynamics of the discs. Therefore,
the behaviour of the dynamics of these discs needs to be studied further.

c) As we discussed, the expansions fail only when κ̃2 = 1 for all values of β. This is a
resonant case, which can not be described using this method. Therefore, it is interesting
to study the non-linear dynamics of the resonant case for a viscous Keplerian (or nearly
Keplerian) disc.
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A. Truncated non-linear equations

In this Appendix we find truncated Taylor series of the dimensionless functions fn{n =
1, . . . , 6}, g4, g5 and the coefficients Q1, Q

′
1, Q4 and Q′4 in terms of powers of |ψ|. Thus,

f1(φ) = f10 + |ψ|2f12(φ) + O(|ψ|4), (51)
f2(φ) = f20 + |ψ|2f22(φ) + O(|ψ|4), (52)
f3(φ) = |ψ|f31(φ) + |ψ|2f32(φ) + |ψ|3f33(φ) + O(|ψ|4), (53)
f4(φ) = |ψ|2f42(φ) + O(|ψ|4), (54)
g4(φ) = |ψ|g41(φ) + |ψ|3g43(φ) + O(|ψ|5), (55)
f5(φ) = |ψ|f51(φ) + |ψ|2f52(φ) + |ψ|3f53(φ) + O(|ψ|4), (56)
g5(φ) = |ψ|2g52(φ) + |ψ|3g53(φ) + O(|ψ|4), (57)
f6(φ) = f60 + |ψ|2f62(φ) + O(|ψ|4). (58)

Note all terms that are scaled with |ψ|0 indicate an unwarped disc.

A.1 Zeroth-order solution

For an unwarped disc, equation (26) at O(|ψ|0) gives

f20 = 1. (59)

Equation (33) at O(|ψ|0) yields

f ′60(φ) = 1, (60)

and since 〈f6〉 = 1 by definition (see, Appendix B), then

f60 = 1. (61)

A.2 First-order solution

The vertical velocity at first order is obtained using equation (27) at O(|ψ|),

g′41(φ) = 0, (62)

Hence

g41 = C̃θ1. (63)
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The horizontal velocities at first order are obtained by equations (25) and (28) at O(|ψ|),

f ′31(φ)− 2f51(φ) = cos φ, (64)
f ′51(φ) + 1

2 κ̃2f31(φ) = 0. (65)

Therefore,

f31(φ) = Cr1 cos φ + Sr1 sin φ, (66)
f51(φ) = Cφ1 cosφ + Sφ1 sin φ. (67)

We can express the solutions using a complex notation as Z = C + iS,
[ −i −2

1
2 κ̃2 −i

] [
Zr1

Zφ1

]
=

[
1
0

]
. (68)

The determinant of this matrix is −(1 − κ̃2), and therefore, there is no solution for the
Keplerian-disc (κ̃2 = 1). Hence,we have

Zr1 =
i

1− κ̃2
, (69)

Zφ1 =
κ̃2

2(1− κ̃2)
. (70)

A.3 Second-order solution

The horizontal velocities at second order are obtained by equations (25), (28) and (29)
at O(|ψ|2)

f ′32(φ)− 2f52(φ) = −6(βb + 1
3β)g41 cos φ, (71)

f ′52(φ) + 1
2 κ̃2f32(φ) = 6βg52(φ), (72)

g′52(φ) = g41f51(φ). (73)

Equation (73) yields a solution as

g52(φ) = C̃θ1Zφ1 sin φ (74)

while equations (71) and (72) have the solutions as follows

f32(φ) = Cr2 cos φ + Sr2 sin φ, (75)
f52(φ) = Cφ2 cosφ + Sφ2 sin φ, (76)

with
[ −i −2

1
2 κ̃2 −i

] [
Zr1

Zφ1

]
=

[−6(βb + 1
3β)C̃θ1

6iβZφ1C̃θ1

]
. (77)
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so the solution is

Zr2 = 6iC̃θ1

(βb + 1
3β) + 2βZφ1

κ̃2 − 1
, (78)

Zφ2 = 3C̃θ1

κ̃2(βb + 1
3β) + 2βZφ1

κ̃2 − 1
. (79)

The enthalpy and vertical velocity at the second order are obtained by equation (23) at
O(|ψ|2),

f ′12(φ) = (Γ− 1)f42(φ)f10, (80)

equation (24) at O(|ψ|2),

f ′22(φ) = (Γ + 1)f42(φ)− 6(Γ− 1)f10g41, (81)

and equation (26) at O(|ψ|2)

f ′42(φ) = −f ′31(φ) cos φ + 2f31(φ) sin φ− f22(φ). (82)

Combining the last two equations, gives

f ′′42(φ) + (Γ + 1)f42(φ) = 3Sr1 sin 2φ. (83)

It has a solution as the following form

f42(φ) = Cθ2 cos 2φ + Sθ2 sin 2φ, (84)

with [−(3− Γ) 0
0 −(3− Γ)

] [
Cθ2

Sθ2

]
=

[
0

3Sr1

]
. (85)

In a complex notation, the solution is

Zθ2 =
3i

Γ− 3
Sr1. (86)

It then follows that

f12(φ) = − 1
2 (Γ− 1)f10Sθ2 cos 2φ, (87)

f22(φ) = − 1
2 (Γ + 1)Sθ2 cos 2φ +

Γ
Γ− 3

Sr1, (88)

f62(φ) = Sθ2 cos 2φ. (89)
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A.4 Third-order solution

The horizontal velocities at third order are obtained by equations (25), (28) and (29) at
O(|ψ|3),

f ′33(φ)− 2f53(φ) = f42(φ)f31(φ) + f22(φ) cos φ, (90)
f ′53(φ) + 1

2 κ̃2f33(φ) = f42(φ)f51(φ) + 6βg53(φ), (91)
g′53(φ) = g41f52(φ). (92)

Equation (92) yields a solution as

g53(φ) = C̃θ1Zφ2 sin φ (93)

while equations (90) and (91) have the solutions as follows

f33(φ) = Cr3 cosφ + Sr3 sin φ + {m = 3 terms}, (94)
f53(φ) = Cφ3 cos φ + Sφ3 sin φ + {m = 3terms}. (95)

Hence, one can obtain

Zr3 =
i

κ̃2 − 1

[
− Γ

Γ− 3
Sr1 +

Γ + 1
4

Sθ2 − 1
2
Sθ2Sr1 + Sθ2Zφ1 + 12βC̃θ1Zφ2

]
, (96)

Zφ3 =
1

κ̃2 − 1

[
1
2
Sθ2Cφ1 + 6βC̃θ1Zφ2 − κ̃2

2

(
Γ

Γ− 3
Sr1 − Γ + 1

4
Sθ2 +

1
2
Sθ2Sr1

)]
. (97)

The vertical velocity at third order is obtained by equation (27) at O(|ψ|3)
g′43(φ) = 4g41f42(φ) + g41f31(φ)g′43(φ) cos φ (98)

it yields a solution as

g43(φ) = −2Sθ2C̃θ1 − 1
4
Sr1C̃θ1. (99)

A.5 Evaluation of the coefficients

With respect to the functions f1...f6, g4 and g5, we find truncated Taylor series for the
coefficients Q′

1 and Q′4 as:

Q′1 = Q′10 + |ψ|2Q′12 + O(|ψ|3), (100)
Q′4 = Q′40 + |ψ|Q′41 + |ψ|2Q′

42 + O(|ψ|3). (101)

At zeroth order, we obtain

Q′10 = 1
2 (κ̃2 − 4)β, (102)
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and

Q′40 = −iβ
〈
eiφ(f31(φ) + sin φ)

〉

= 1
2β(1− iZr1)

=
1
2
β

2− κ̃2

1− κ̃2
. (103)

At first order,

Q′
41 = −iβ

〈
eiφf32(φ)

〉

=
−iβ
2

Zr2

= −3βC̃θ1

(βb + 1
3β)(κ̃2 − 1) + βκ̃2

(κ̃2 − 1)2
. (104)

At second order,

Q′
12 =

1
2
βZφ1

=
β

4
κ̃2

(1− κ̃2)
, (105)

and

Q′42 = iβ
〈
eiφ(f42(φ) cos φ + f31(φ) cos2 φ− f33(φ))

〉

= − iβ
2

Zr3

=
β

8(κ̃2 − 1)3(Γ− 3)
{4Γ(κ̃2 − 1)− 3(Γ + 1)(κ̃2 − 1)− 6− 6κ̃2(κ̃2 − 1)

+144(Γ− 3)βC̃2
θ1[κ̃

2(κ̃2 − 1)(βb + 1
3β)− βκ̃2]}. (106)

From the coefficients Q1 and Q4, truncated Taylor series were found only for the
latter,

Q4 = Q40 + |ψ|Q41 + |ψ|2Q42 + O(|ψ|3). (107)

At zeroth order,

Q40 =
〈
eiφf31(φ)

〉

=
1
2
Zr1

=
i

2(1− κ̃2)
. (108)
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At first order,

Q41 =
〈
eiφ(f32(φ) + 3iβg41 cosφ)

〉

=
i
2
Sr2 +

3
2
iβC̃θ1

=
3i
2

C̃θ1

3(βb + 1
3β)(κ̃2 − 1)2 + βκ̃2 + β(κ̃2 − 1)3

(κ̃2 − 1)3
. (109)

At second order,

Q42 =
〈
eiφ(f33(φ)− if31(φ)f42(φ)− if2

31(φ) cos φ)
〉

=
1
2
Zr3

= −iβQ′
42. (110)

B. Evaluation of the general form of the angular momentum
equation

We derive the general form of the angular momentum equation. At first we adopt the
equations from OG. 2

Σv̄r
∂

∂r
(r2Ω) =

∫ 〈 1
r2

∂r

[
µ0r

4Ω′ − ρ0r
3vr1(vφ1 + rvr1γ

′ cos βE)

+µ0r
3(β′E cosφ + γ′ sin βE sinφ)∂ζ(vφ1 + rvr1γ

′ cosβE)
] 〉

r dζ

−
∫ 〈

ρ0 [vθ1 + rvr1(β′E cosφ + γ′ sin βE sinφ)] [rΩζ + rvr1(β′E sin φ− γ′ sin βE cosφ)]

−µ0(β′E sin φ− γ′ sin βE cosφ)∂ζvr1

+µ0r(β′E cos φ + γ′ sin βE sin φ)(β′E sin φ− γ′ sin βE cos φ)∂ζ [vθ1

+rvr1(β′E cosφ + γ′ sinβE sinφ)]− µ0r
2Ω(β′E sin φ− γ′ sin βE cosφ)2

〉
r dζ.

(111)

and

Σr2Ω(β̇E + v̄rβ
′
E) + iΣr2Ω(γ̇ + v̄rγ

′) sin βE =∫
1
r2

(∂r + iγ′ cosβE)
〈
eiφ

{
ρ0r

4Ωζvr1 − iρ0r
3vr1

2They can be extracted from the Set B by integration. Note that, the operation 〈.〉 stands for
azimuthally averaged quantities. The range of the integrations with respect to φ and ζ are from 0 to 2π
and −∞ to ∞, respectively.
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× [vθ1 + rvr1(β′E cos φ + γ′ sin βE sin φ)]
+iµ0r

3(β′E cos φ + γ′ sin βE sin φ)∂ζ [vθ1 + rvr1(β′E cosφ + γ′ sin βE sinφ)]

−iµ0r
2∂ζvr1 − iµ0r

4Ω(β′E sinφ− γ′ sinβE cosφ)
} 〉

r dζ +
∫ 〈

eiφ
{−ρ0(r2Ω)′ζvr1

−ρ0(vφ1 + rvr1γ
′ cosβE) [vθ1 + rvr1(β′E cos φ + γ′ sin βE sin φ)]

+iρ0rΩζ(vφ1 + rvr1γ
′ cosβE)

+iρ0rvr1(vφ1 + rvr1γ
′ cos βE)(β′E sin φ− γ′ sin βE cosφ)

−µ0

r
∂ζ(vφ1 + rvr1γ

′ cos βE)− iµ0r(β′E sinφ− γ′ sinβE cosφ)

× [rΩ′ + (β′E cosφ + γ′ sin βE sin φ)∂ζ(vφ1 + rvr1γ
′ cosβE)]} 〉

r dζ.

(112)

where

Σv̄r =
∫ 〈

ρ0vr2 + ρ1vr1

〉
r dζ, Σ =

∫
ρ0 r dζ (113)

here v̄r(r, t) and Σ(r, t) are the mean radial velocity and the surface density, respectively.
To proceed, we define

f6(φ− χ) = Ĩ/I (114)

where Ĩ(r, t) is the second vertical moment of the density being defined through

Ĩ =
∫

ρ0ζ
2 r3 dζ (115)

so that I is its azimuthal average, i.e. I =< Ĩ > and also the definition of f6 requires
< f6 >= 1. Therefore, by substituting the relations (18). . .(22), (34), (35) and three
defined relations (6), (7) and (114) into the equations (111) and (112), the first integral
in (111) becomes

I1 =
1
r
∂r[

〈 κ̃2 − 4
2

r4Ω2β
〉
Σ− 〈

r2Ω2f3f5f6

〉I +
〈
r4Ω2βf5|ψ| cosφ

〉
Σ

+3
〈
r2Ω2βg5f6|ψ|cosφ

〉I],
(116)

and the second integral in (111) becomes

I2 = −〈
Ω2f4f6

〉I − 〈
Ω2f3f4f6|ψ| sin φ

〉I − 〈
r2Ω2βf3|ψ| sin φ

〉
Σ

+
〈
r2Ω2βf4|ψ|2 cosφ sin φ

〉
Σ + 3

〈
Ω2βg4f6|ψ|2 cos φ sin φ

〉I
+

〈
r2Ω2βf3|ψ|3 cos2 φ sinφ

〉
Σ− 〈

r2Ω2β|ψ|2 sin2 φ
〉
Σ

−〈
Ω2f3f6|ψ| cosφ

〉I − 〈
Ω2f2

3 f6|ψ|2 sin φ cosφ
〉I. (117)
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similarly, the first integral in (112)[Note that, for any function F, we can write,
〈
eiφF (φ−

χ)
〉

=
〈
ei(φ+χ)F (φ)

〉
= ψ

|ψ|
〈
eiφF (φ)

〉
] becomes

I ′1 =
1
r
(∂r + iγ′ cosβE)[

〈
eiφr2Ω2(1− if4 − if3|ψ| cos φ)f3f6

〉I ψ

|ψ|
+i

〈
eiφr4Ω2βf4|ψ| cosφ

〉
Σ

ψ

|ψ| + 3i
〈
eiφr2Ω2βg4f6|ψ| cos φ

〉I ψ

|ψ|
+i

〈
eiφr4Ω2βf3|ψ|2 cos2 φ

〉
Σ

ψ

|ψ| − i
〈
eiφr4Ω2β(f3 + |ψ| sin φ)

〉
Σ

ψ

|ψ| ], (118)

and finally for the second integral in (112),we have

I ′2 = −〈
eiφ κ̃2

2
Ω2f3f6

〉I ψ

|ψ| −
〈
eiφΩ2(f4f5 + f3f5|ψ| cos φ)f6

〉I ψ

|ψ| + i
〈
eiφΩ2f5f6

〉I ψ

|ψ|
+i

〈
eiφΩ2f3f5f6|ψ| sin φ

〉I ψ

|ψ| −
〈
eiφr2Ω2βf5

〉
Σ

ψ

|ψ| − 3
〈
eiφΩ2βf6g5

〉I ψ

|ψ|

−i
〈
eiφ κ̃2 − 4

2
r2Ω2β|ψ| sin φ

〉
Σ

ψ

|ψ| − i
〈
eiφr2Ω2f5β|ψ|2 sin φ cos φ

〉
Σ

ψ

|ψ|
−3i

〈
eiφΩ2g5f6β|ψ|2 sin φ cos φ

〉I ψ

|ψ| . (119)

in which fn stands for fn(φ).

Now, we attempt to arrange them in terms of coefficients Q1, Q2, Q
′
1, Q

′
2 and Q4 =

Q2 + iQ3, Q
′
4 = Q′2 + iQ′3. Then, we have

I1 =
1
r
∂r[Q1r

2Ω2I + Q′1r
4Ω2Σ], (120)

I2 = −Q2Ω2I|ψ|2 −Q′2r
2Ω2Σ|ψ|2. (121)

and also

I ′1 =
1
r
(∂r + iγ′ cosβE)(Q4r

2Ω2Iψ + Q′4r
4Ω2Σψ), (122)

I ′2 = Q1IΩ2ψ + Q′
1Σr2Ω2ψ. (123)

Therefore, it is possible to get the coefficients Qn and Q′n{i.e., n = 1, . . . , 4} in terms
of f and g. In the next step, we may write the following combinations,

Σv̄r
∂

∂r
(r2Ω) = I1 + I2,

=
1
r

∂

∂r

(
Q1Ir2Ω2

)−Q2Ir2Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

+
1
r

∂

∂r

(
Q′1Σr4Ω2

)

−Q′2Σr2Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

,

(124)
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Σr2Ω
(

∂`

∂t
+ v̄r

∂`

∂r

)
= I ′1 + I ′2,

= Q1IrΩ2 ∂`

∂r
+

1
r

∂

∂r

(
Q2Ir3Ω2 ∂`

∂r

)
+ Q2Ir2Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

`

+
1
r

∂

∂r

(
Q3Ir3Ω2`× ∂`

∂r

)

+Q′
1Σr3Ω2 ∂`

∂r
+

1
r

∂

∂r

(
Q′2Σr5Ω2 ∂`

∂r

)
+ Q′2Σr4Ω2

∣∣∣∣
∂`

∂r

∣∣∣∣
2

`

+
1
r

∂

∂r

(
Q′3r

5Ω2`× ∂`

∂r

)
.

(125)

where we used relations (31), (32). It has been considered that the disc matter will lie
close to θ = π/2. So we write ` in terms of spherical polar unit vectors (er, eθ, eφ),

` = −eθ

∣∣
θ=π/2

(126)

hence
∂`

∂t
= −er(β̇E cosφ + γ̇ sin βE sin φ) + eφ[β̇E sin φ− γ̇ sin βE sin θ cos φ], (127)

∂`

∂r
= −er(β′E cos φ + γ′ sin βE sin φ) + eφ[β′E sin φ− γ′ sin βE sin θ cos φ]. (128)

To compare the present work with Pringle’s work (1992), we present the following
equations (Pringle,1992),

∂Σ
∂t

+
1
r

∂

∂r
(rΣv̄r) = 0, (129)

for the surface density Σ(r, t), and

∂

∂t
(Σr2Ω`) +

1
r

∂

∂r
(Σv̄rr

3Ω`) =
1
r

∂

∂r

(
ν1Σr3 dΩ

dr
`

)
+

1
r

∂

∂r

(
1
2ν2Σr3Ω

∂`

∂r

)
, (130)

for the angular momentum L = ΣR2Ω`, in the absence of external torques. Here ν1

and ν2 are the viscosity corresponding to the azimuthal and vertical shears, respectively.
From these equations, one can derive

Σv̄r
∂

∂r
(r2Ω) =

1
r

∂

∂r

(
ν1Σr3 dΩ

dr

)
− 1

2ν2Σr2Ω
∣∣∣∣
∂`

∂r

∣∣∣∣
2

, (131)

for the component of angular momentum parallel to `, and

Σr2Ω
[
∂`

∂t
+

(
v̄r − ν1

d lnΩ
dr

)
∂`

∂r

]
=

1
r

∂

∂r

(
1
2ν2Σr3Ω

∂`

∂r

)
+ 1

2ν2Σr2Ω
∣∣∣∣
∂`

∂r

∣∣∣∣
2

`, (132)
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for the tilt vector.
Comparing equations (124), (125) (present work) and (131), (132) (Pringle, 1992), equa-
tions (124) and (125) are defined for the component of angular momentum parallel to `
and the tilt vector,respectively.

We may simplify the equations (124), (125) and (129) to find the general form of the
angular momentum equation as follows

∂

∂t

(
Σr2Ω`

)
+

1
r

∂

∂r

(
Σv̄rr

3Ω`
)

=

1
r

∂

∂r

(
Q1Ir2Ω2`

)
+

1
r

∂

∂r

(
Q2Ir3Ω2 ∂`

∂r

)
+

1
r

∂

∂r
(Q3Ir3Ω2`× ∂`

∂r
)

+
1
r

∂

∂r

(
Q′1Σr4Ω2`

)
+

1
r

∂

∂r

(
Q′

2Σr5Ω2 ∂`

∂r

)
+

1
r

∂

∂r

(
Q′3Σr5Ω2`× ∂`

∂r

)
. (133)


