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We revisit the geometrical meaning of statistical isotropy that is manifest in excursion sets of smooth
random fields in two dimensions. Using the contour Minkowski tensor, W1, as our basic tool we first
examine geometrical properties of single structures. For simple closed curves in two dimensions we show
that W1 is proportional to the identity matrix if the curve has m-fold symmetry, with m ≥ 3. Then we
elaborate on how W1 maps any arbitrary shaped simple closed curve to an ellipse that is unique up to
translations of its centroid. We also carry out a comparison of the shape parameters, α and β, defined using
W1, with the filamentarity parameter defined using two scalar Minkowski functionals—area and contour
length. We show that they contain complementary shape information, with W1 containing additional
information of orientation of structures. Next, we apply our method to boundaries of excursion sets of
random fields and examine what statistical isotropy means for the geometry of the excursion sets. Focusing
on Gaussian isotropic fields, and using a seminumerical approach we quantify the effect of finite sampling
of the field on the geometry of the excursion sets. In doing so we obtain an analytic expression for α which
takes into account the effect of finite sampling. Finally we derive an analytic expression for the ensemble
expectation of W1 for Gaussian anisotropic random fields. Our results provide insights that are useful for
designing tests of statistical isotropy using cosmological data.
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I. INTRODUCTION

The symmetry properties and statistical nature of cos-
mological fields are central to our understanding of the
universe. The ΛCDM model which is currently the most
widely accepted cosmological model rests on the
assumption that the universe is statistically isotropic on
large scales. This assumption continues to be tested using
different observed data such as the cosmic microwave
background (CMB) (see [1] and references therein) or the
distribution of matter (see, e.g., [2–4]). On the other hand,
the statistics that we use to extract information often
implicitly assume that the data is isotropic—for example,
we typically measure two-point statistics as a function of
pairwise separation. In examples where anisotropy is
known to be present, such as redshift space distortion,
specific corrections can be made and the signal measured.
However, to search for unknown anisotropic signals,
statistics must be constructed that are agnostic on the
underlying structure of the field.

Isotropy is the property of a geometric object to be
invariant under rotations. For random fields on a metric
space M, the property of isotropy is defined as the
covariance function being a function of only the distance
between two points on M. One may then ask how this
property manifests as a geometrical property of the level or
excursion sets of the field. Specifically we ask whether we
can construct a rotationally invariant geometric object using
the excursion sets. In two dimensions, given an isotropic
field one can intuitively expect that it should be possible to
construct a circle for every excursion set, such that the
radius varies with the threshold field value indexing the
excursion set. In [5] the contour Minkowski tensor, which
is a rank two tensor belonging to the class of morphological
descriptors known as Minkowski tensors [6–9], was used to
show the existence of such a series of circles indexed by the
field threshold. The ratio of the eigenvalues, denoted by α,
of this tensor, was then introduced as a statistical tool to test
for statistical isotropy using cosmological data.
The basic idea of the test is simple. Exact statistical

isotropy implies that α must be unity, which physically
means that isofield boundaries of excursion sets do not
exhibit relative alignment. Any alignment will lead to*prava@iiap.res.in
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α < 1, and the closer α is to zero the higher is the degree of
alignment. In practice, cosmological data is available on
spatial regions of finite extent, such as a subset of flat space,
or compact unbounded space such as the surface of the
sphere. The finiteness of the spatial extent, combined with
the resolution of sampling or pixel size, results in relative
alignment of the isocontours that is intrinsic to the sampling.
Any real alignment due to a true departure from statistical
isotropy will be in addition to this sampling effect. In
applications, the value of α obtained from a cosmological
dataset can be compared with the value obtained from
corresponding simulations. In doing so we implicitly
assume that the sampling effect in the observed data and
the simulations are similar, and can be subtracted. This
method has been applied to CMB temperature,E-mode, and
lensing convergence data from Planck [10–14].
In this paper we revisit how the contour Minkowski

tensor (CMT) extracts shape information of arbitrary
shaped structures and how it provides a means to sensibly
answer questions of the statistical “geometry” of random
fields. In doing so we extend the results of [5]. We first
focus on single structures whose boundaries are simple
smooth curves and show that the CMT is proportional to the
identity matrix if the curve has m-fold symmetry, with
m ≥ 3. Then we discuss how the CMT maps any arbitrary
curve to an ellipse that is unique up to translations
of its centroid. We also carry out a comparison of the
shape parameters defined using the CMT with the fila-
mentarity parameter defined using two scalar Minkowski
functionals—area and contour length, and discuss the
complementary nature of the shape information that they
provide. Next, we apply our method to boundaries of
excursion sets of random fields. Focusing on Gaussian
isotropic fields we clarify the effect of finite sampling on
the CMT. Using a seminumerical approach we obtain an
analytic expression for the alignment parameter, α, which
takes into account the sampling effect. We further obtain an
analytic expression for the CMT for Gaussian anisotropic
random fields.
Minkowski tensors have used to study a variety of

physical effects in astrophysics and cosmology. They have
been used to probe the large scale structure of the universe
[15–17] and the epoch of reionization [18–20]. They have
also been used to analyse the non-Gaussian nature and
statistical isotropy of Galactic synchrotron emissions [21],
to identity structures in the Large Magellanic Cloud [22]
and to study galaxy shapes [23–25]. Apart from astro-
physics and cosmology, they have also been applied to a
wide variety of physical phenomena such as in condensed
matter physics (e.g., [26]) and bio-physics (e.g., [27]).
This paper is organized as follows. In Sec. II we give a

brief overview of smooth random fields and definitions of
their symmetry properties. In Sec. III we focus on geo-
metric structures in two dimensional space whose bounda-
ries are simple closed curves, define Minkowski tensors

and discuss various morphological properties. Section IV
contains our main investigation of the CMT for Gaussian
isotropic fields and the effect of finite sampling. In Sec. V
we discuss the analytic derivation of the ensemble expect-
ation of the contour Minkowski tensor for Gaussian
anisotropic fields. We end with concluding remarks in
Sec. VI. Appendix A contains the numerical calculation of
probability density functions of the anisotropy parameters.
Appendix B contains the estimation of the numerical error
associated with the numerical calculation of the CMT.

II. REVIEW OF SMOOTH RANDOM FIELDS

Let us briefly review the definition of a smooth random
field and the symmetry properties of homogeneity and
isotropy. The definitions follow [28–30].
Let M be a smooth n dimensional manifold, and let x ¼

ðx1; x2;…; xnÞ be a coordinate system on a local neighbor-
hood on M. Given a probability space let f be a random
variable on the probability space. Consider the family of
random variables fðxÞ, where each variable is indexed by a
point x onM. Let fðxÞ be such that for any finite k number
of points x1;x2;…;xk on M, the joint probability
density function (PDF), which we denote by Pðfðx1Þ;
fðx2Þ;…; fðxkÞÞ, of the random variables at those k points
is given. Then fðxÞ is called a random field on M.
The covariance function ξðx;x0Þ of f is defined as the

covariance between the random variables at any two points
x and x0,

ξðx;x0Þ ¼ hðfðxÞ − μxÞðfðx0Þ − μx0 Þi; ð1Þ

where μx, μx0 are the mean values of the random variables f
at x and x0. The autocovariance gives the variance of f at x,

ξðx;xÞ ¼ σ2x: ð2Þ

Homogeneity: A random field is said to be (strictly)
homogeneous or stationary under a transformation
x → xþ a, if the joint PDF Pðfðx1Þ; fðx2Þ;…; fðxkÞÞ
is invariant under this transformation. This symmetry
property results in the following consequences that are
relevant for our discussion:
(1) The probability distributions of the random variables

f at different points on M are identical.
(2) μx and σ2x are constant functions on M. We will

simply denote them as μ and σ20.
(3) ξ satisfies ξðx;x0Þ ¼ ξðx − x0Þ.

So, the general dependence of ξ on 2n coordinate variables
is reduced to dependence on n variables only.
Isotropy: A field f is said to be isotropic if ξ is

rotationally invariant, satisfying

ξðx;x0Þ ¼ ξðkx − x0kÞ; ð3Þ

where k:k denotes the geodesic distance on M.
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Derivatives of a random field: If the second partial
derivative ∂2ξ=∂xi∂x0i exists and is finite at the point
x ¼ x0, then the first derivative of the field exists at x. Let∇
denote the covariant derivative with respect to a connection
defined onM. Given that f is a homogeneous field, we can
write

∇xi∇x0jξðx;x0Þ ¼ h∇xifðxÞ∇x0jfðx0Þi: ð4Þ

On the right-hand side above the homogeneity of f implies
that the derivative of the mean function is zero, and the
resulting term is the covariance of the covariant derivatives
of f. Let us denote f;i ≡∇xif. The auto-covariance for
x ¼ x0 of the components f;i is then denoted by

∇xi∇xiξðx;xÞ ¼ hf;if;ii: ð5Þ

We can similarly define higher order derivatives. Further, if
f is a homogeneous (and isotropic) field, then it follows
that its derivatives are also homogeneous (and iso-
tropic) field.
Ergodicity: A homogeneous field is said to be ergodic if

the ensemble expectation can be replaced by spatial
average over a realization of the field.

Z
dfP½f�ð::Þ ⇔

R
M dVð::ÞR
M dV

; ð6Þ

where dV is the infinitesimal volume element. In cosmol-
ogy it is crucial to assume ergodicity because we have one
realization of the universe.
Gaussian field: A random field fðxÞ is Gaussian if

P½fðx1Þ; fðx2Þ;…; fðxkÞ� has the form

P½fðx1Þ; fðx2Þ;…; fðxkÞ� ¼
1

N
exp

�
−
1

2
FTΞ−1F

�
; ð7Þ

where F is the array given by

F≡ ðfðx1Þ; fðx2Þ;…; fðxkÞÞ; ð8Þ

Ξij ¼ ξðxi;xjÞ; ð9Þ

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞkDetΞ

q
; ð10Þ

with i; j ¼ 1;…; k. The derivative of a Gaussian field is
also a Gaussian field. Then the field and its derivatives at
each point form a set of multivariate Gaussian random
fields. We will use this in Sec. V.

III. MORPHOLOGY OF STRUCTURES IN 2D

Let us now consider M to be a two-dimensional smooth
manifold. Here we are interested in the cases where M is a
subset of either flat two-dimensional space R22, or the

surface of the sphere S2. We use the word structure to mean
a compact subset of M. The subset can be either a
connected region or a hole. A simply connected region
has no hole inside it, and has one closed curve as its
boundary. A doubly connected region has one hole inside
one connected region. The boundary consists of two closed
curves—one that encloses the connected region and
another that encloses the hole, and they can be distin-
guished by assigning different sense of direction. We count
a doubly connected region as two structures—one con-
nected region and one hole. A multiply connected region
consisting of three structures—one connected region and
two or more holes. Figure 1 shows examples of simply (left
panel), doubly (middle panel) and multiply (right panel)
connected regions. We can generalize the correspondence
between a structure and a boundary curve further, and state
that each structure can be identified with one unique
closed curve.

A. Minkowski tensors for a single structure

Minkowski tensors (henceforth MTs) for a structure, or
its associated curve C, on R2 [9] are defined by

Wm
0 ¼

Z
r⃗m da; ð11Þ

Wm;n
1 ¼

Z
C
r⃗m ⊗ n̂nds; ð12Þ

Wm;n
2 ¼ 1

2π

Z
C
r⃗m ⊗ n̂nκ ds; ð13Þ

where da is the area element within the structure, ds is the
infinitesimal arc length onC, r⃗ is the position vector of each
point in the structure, n̂ is the unit normal to the curve, and
κ is the signed curvature at each point on the curve.⊗ is the
symmetric tensor product of two vectors v and w given by
ðv ⊗ wÞij ¼ ðviwj þ vjwiÞ=2. Note that the coefficients on
the right-hand sides of Eqs. (11)–(13) differ from earlier
papers, e.g., [9].
The MTs that have rankmþ n ¼ 2 can be classified into

translation invariant and covariant ones. There are four
translation invariant MTs, of which three are independent
in terms of information content. The translation invariance
implies that their expressions can be reduced to forms that

FIG. 1. Examples of simply, doubly and multiply connected
regions. This figure shows that count of structures is equivalent to
count of closed curves.
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do not contain r⃗. To incorporate this reexpression we
denote the three independent translation invariant MTs by
Wi, where i ¼ 0, 1, 2. They are given by,

W0 ≡W1;1
1 ¼

Z
daI ; ð14Þ

W1 ≡W0;2
1 ¼

Z
C
n̂ ⊗ n̂ds; ð15Þ

W2 ≡W0;2
2 ¼ 1

2π

Z
C
n̂ ⊗ n̂κds: ð16Þ

On the right-hand side of Eq. (14), I is the identity matrix
in two dimensions, and Gauss law has been used to reduce
W0 to the form given on the right-hand side [8]. W0;2

1 is
related toW1;1

2 , which is the fourth translation invariant MT,
by a 90° rotation. In [5] we had usedW1;1

2 , whereas here we
will use W0;2

1 since the expression carries over to higher
dimensional manifolds.
The rank zero MTs are the three scalar Minkowski

functionals (MFs), Wi, where W0 is the area, W1 is the
perimeter, andW2 is the number of structures.Wis contain
the scalar MFs as their traces:

TraceðWiÞ ¼ Wi: ð17Þ

In [5] the Wi tensors were generalized to structures on
curved manifolds and the special case of the unit sphere
was considered. In this case invariance under translations
on flat space is replaced by invariance under rotations on
S2. The space, T �

p, of all possible normal vectors at a point
p ∈ M is isomorphic to the space T�

p0 at another point
p0 ∈ M. The tensor n̂ ⊗ n̂ in the integrands ofW1 andW2

is an element of the symmetric subspace of the product
space T �

p ⊗ T �
p, at each p. Tangent (or cotangent) vectors

and elements of product spaces can be summed (or
integrated) only when they belong to the same vector
space. Implicit in the integral of n̂ ⊗ n̂ is the geometrical
step of parallel transporting all cotangent vectors to one
fiducial point on M. This step is trivial for flat space and
usually not explicitly stated. The translation (or rotational)
invariance of Wi implies that the location of the fiducial
point on the curve is not important. In fact, the location of
the point on M is not important. Wi then transforms as a
rank 2 tensor under a local rotation R ∈ SOð2Þ at the
fiducial point p.
We now focus on W1 which we refer to as the contour

Minkowski tensor (henceforth CMT). We can express it as

W1 ¼
�
τ þ g1 g2
g2 τ − g1

�
; ð18Þ

where

τ ¼ 1

2

Z
C
ds; ð19Þ

g1 ¼
1

2

Z
C
ðn̂21 − n̂22Þds; ð20Þ

g2 ¼
Z
C
n̂1n̂2ds: ð21Þ

n̂1, n̂2 are the components of n̂. Since 2τ is the perimeter of
the curve, τ is always positive, and it is easy to see that
jg1j < τ and jg2j < τ.
The right-hand side of Eq. (18) expresses W1 as a linear

combination of the Pauli matrices, with the coefficient of
the complex Pauli matrix σ2 being zero. It separates the
scalar degree of freedom τ from the pair ðg1; g2Þ which
captures the true tensorial nature of W1. This pair trans-
forms under a local rotation by angle θ as

�
g1
g2

�
→

�
g01
g02

�
¼

�
cos 2θ sin 2θ

− sin 2θ cos 2θ

��
g1
g2

�
: ð22Þ

In a given coordinate system, g1 gives a measure of the
anisotropic difference between the two components of the
normal vectors to the curve, while g2 gives a measure of
how correlated the components of the normal vectors are.
Using g1 and g2 we can define the scalar quantity g and
angle φ as

g≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

q
; ð23Þ

φ≡ 1

2
tan−1

�
g2
g1

�
; −π=4 ≤ φ < π=4: ð24Þ

g represents the magnitude of the tensor while φ represents
the orientation of elongation or anisotropy with respect to
the coordinate system.
Besides translation invariance,W1 is also invariant under

parity transformations since all terms are quadratic.
Moreover it transforms linearly under size scaling.

1. Relation of m-fold symmetry of the curve to rotational
symmetry of W1

The expression forW1 given by Eq. (18) implies that for
it to be proportional to the identity matrix we must have
g1 ¼ 0 and g2 ¼ 0. These conditions must translate into
some symmetry properties of the curve. One can then ask
the question, what is the class of shapes of the curve that
makeW1 rotationally invariant? It was stated without proof
in [5] that if the curve has m-fold rotational symmetry with
m ≥ 3, then W1 is invariant under any local rotation.
To prove this statement we proceed as follows. If the

curve has m-fold symmetry, then under a local rotation by
angle δ ¼ 2π=m (or multiples of δ), we must have
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W1 → W 0
1 ¼ W1: ð25Þ

Since g1 and g2 are the components that transform
under rotations, if W1 remains invariant, we must have
g1 ¼ 0 ¼ g2 under local rotation by δ. Further, if g1 ¼ 0
and g2 ¼ 0 in one coordinate system, then they must be
zero in any other coordinate system. Therefore, if the curve
possessesm-fold symmetry, thenW1 is invariant under any
arbitrary rotation. Note that m must be greater than or
equal to 3 because W1 cannot be invariant for 2-fold
symmetry.

2. Mapping of a single arbitrary smooth curve to an
ellipse, uniqueness and shape anisotropy parameter

In this section we discuss how an arbitrary smooth curve
can be mapped to an ellipse. This mapping simplifies the
visualization as well as quantification of relative alignments
when we study distributions of arbitrary shaped curves in
later sections.
The eigenvalues of W1 for an arbitrary curve are

given by

λ1 ¼ τ − g; λ2 ¼ τ þ g: ð26Þ

Since W1 is real, symmetric and positive definite, the
eigenvalues are real and positive. Inverting Eq. (26) gives

τ ¼ ðλ1 þ λ2Þ=2; g ¼ ðλ2 − λ1Þ=2: ð27Þ

On R22 let us consider the given curve to be an ellipse
whose principal axes are a1 and a2, with a1 < a2. Using
orthogonal coordinates, let a2 be aligned with the x-axis.
Then it is straightforward to show thatW1 is diagonal, with
the eigenvalues given by

λ1 ¼ ða1a2Þ2
Z

2π

0

cos2 t

ða21 sin2 tþ a22 cos
2 tÞ3=2 dt; ð28Þ

λ2 ¼ða1a2Þ2
Z

2π

0

cos2 t

ða21 cos2 tþ a22 sin
2 tÞ3=2 dt: ð29Þ

Given a1, a2, using these two equations, we can determine
λ1, λ2.
Conversely, we can ask—given λ1, λ2 computed for an

arbitrary closed curved, can we invert Eqs. (28) and (29) to
determine a1, a2 uniquely, such that the perimeter remains
the same? The answer is yes. The reason is as follows. Let
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a21=a

2
2

p
be the ellipticity of the ellipse, andE be the

complete Elliptic integral of the second kind. The perimeter
of the ellipse is given by P ¼ 4a2Eðπ=2; eÞ ¼ λ1 þ λ2. This
provides a relation between λ1, λ2 and a2; e. Since E is a
monotonous function of e there is a one-to-one invertible
mapping between e, P and a1, a2. To summarize, the
mapping between

ðλ1; λ2;φÞ ↔ ða1; a2;φÞ or ðP; e;φÞ; ð30Þ

is a one-to-one invertible mapping. Therefore, for any
arbitrary simple closed curve there is an ellipse correspond-
ing to it which is unique up to the location of its centroid.
W1 for open curves:W1 is well defined as a tensor even

when the curve is not closed. It is still independent of which
fiducial point onM is used for computing it, and so we can
use the above mapping to construct an ellipse correspond-
ing to any smooth open curve. In fact, we can go further and
state that given any real, symmetric and positive definite
2 × 2 matrix, using this mapping we can construct an
ellipse which is unique up to translations of its centroid.
Generalization of the correspondence between arbitrary

curve and ellipse to curves on the unit sphere: On the unit
sphere, an ellipse may be defined as the locus of points for
which the sum of the geodesic distances from the two loci is
constant. It is straightforward to generalize the above
arguments from flat 2D space to the unit sphere.
Anisotropy parameter: Next, to quantify the anisotropy

of a curve, let us define the quantity β to be the ratio of the
eigenvalues [9],

β≡ λ1
λ2

¼ τ − g
τ þ g

: ð31Þ

The value of β lies between zero and one. From the result of
the previous subsection we get β equal to one for a closed
curve having m-fold symmetry, with m ≥ 3. Deviation of β
from one, or g from zero indicates anisotropy of the curve.
Fig. 2 shows how β varies with increase of the aspect ratio
a1=a2 of ellipses onR2. The function 1 − e, where e is the
ellipticity, is also shown for comparison.

FIG. 2. β versus the aspect ratio, a1=a2 of an ellipse.
The function 1 − e, e being the ellipticity, is also shown for
comparison.
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B. Many curves and their relative alignment

We now discuss W1 for a collection of many arbitrary
shaped smooth simple curves. For simplicity let us first
consider two closed curves C0 and C00 whose CMTs areW 0

1

andW 00
1 , respectively. Let their tensor sum be W̃1 ≡W 0

1 þ
W 00

1 is

W̃1 ¼
�
τ þ g1 g2
g2 τ − g1

�
; ð32Þ

where

τ ¼ ðτ0 þ τ00Þ; g1 ¼ ðg01 þ g001Þ; g2 ¼ ðg02 þ g002Þ;

φ ¼ 1

2
tan−1

�
g2
g1

�
: ð33Þ

Using the mapping between eigenvalues and principle
axes of an ellipse described earlier we can construct the
ellipse that corresponds to W̃1. It is then straightforward to
generalize the mapping to a distribution of many curves.
Figure 3 shows a schematic diagram showing mapping of
many curves to a final single ellipse.
Alignment parameter: Given a spatial distribution of

many curves the relative alignment between the curves is
encoded in the parameter [9],

α≡ Λ1

Λ2

; ð34Þ

where Λ1 and Λ2 are the eigenvalues of W̃1 such that
Λ1 ≤ Λ2. By definition we have 0 ≤ α ≤ 1. α gives a
measure of the deviation from rotational symmetry in the
spatial distribution of structures. We obtain α ¼ 1 if there is
no preferred orientation in the arrangement of the struc-
tures. For example, two identical ellipses placed such that
their semi-major axes form 90° between them gives α ¼ 1.
For α < 1, its value gives the degree of anisotropy, while
the orientation information is given by φ obtained from
W̃1. For a single curve we have α ¼ β.
We can expand α in terms of g=τ as

α ¼ τ − g
τ þ g

¼ 1 − 2
g
τ
þ 2

g2

τ2
−O

�
g3

τ3

�
: ð35Þ

This expression for α shows that there can be degeneracy
between the number of structures and the total perimeter, in
the way α captures the information of alignment. Any
disproportionate change of τ and g will make α change,
with the shift either toward one or toward zero determined
by increase or decrease of their ratio.
Note that g, or g=τ, or ðα; βÞ are equivalent measures of

intrinsic anisotropy. Which of these three is best suited for
statistical analysis will be determined by the size of the
standard deviation when we apply to random fields. We
will see in section V that the statistical fluctuations of α are
considerably smaller than that of g. This is due to
cancellation of the fluctuations when taking the ratio of
the eigenvalues (see Fig. 3). Hence ðα; βÞ are better suited
as anisotropy parameters.

C. Comparison with shape finders

Using the scalar MFs,W0 andW1—normalized such that
they correspond to area and perimeter respectively—one
can define the filamentarity parameter, which is one of the
so-called shape finders [31,32], as:

FðνÞ ¼ W2
1 − 4πW0

W2
1 þ 4πW0

: ð36Þ

F provides a measure of the morphology of a structure,
specifically its filamentarity. By definition its value lies
between 0 and 1, and takes extremal values F ¼ 0 for a
spherical disc and F ¼ 1 for a filament of vanishing
thickness. It was shown in [33] that the shape finders
can be mapped to isoperimetric ratios (see Appendix B in
this paper).
It is of interest to compare how the anisotropy of

structures manifests in F and α (or β for individual
structures). To do so we have taken two simple examples
of sums of Gaussian functions given by

fðx; yÞ ¼
Xn
i¼1

exp

�
−
ðx − xiÞ2 þ ðy − yiÞ2

2σ2i

�
; ð37Þ

(a) (b)

FIG. 3. Schematic diagram for mapping from a distribution of
curves (top panel) to a distribution of ellipses (a), and then to a
single ellipse (b). The direction of the arrows indicate that we can
obtain the final ellipse in panel (b) with or without first mapping
each individual curve to an ellipse.
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such that the Gaussian peak locations xi, yi and widths σi
are chosen depending on how we want to arrange the
isocontours.
The top panels of Fig. 4 show two examples of f where

xi, yi are arranged linearly (left) and curvilinearly (right).
The bottom panels show α, β and F for the function in the
corresponding panel above. The thresholds at which the
isocontours fragment are marked by the dotted lines. When
the excursion sets fragment, we define F as the linear sum
of (36) obtained from each individual structure.
We find for both cases that F is low for ν ∼ 0 but

increases as the contours shrink, as the area decreases
relative to the perimeter. F detects elongation of structures
but is not sensitive to whether the overall structure is linear
or curved. At each fragmentation point, the function
exhibits discontinuity. At high thresholds ν ∼ 1, the con-
tours reduce to four circular peaks and F approaches zero.
F is qualitatively similar for the two fields presented in the
figure. The statistic α, on the other hand, is strongly
sensitive to the manner in which the isocontours change.
Therefore, it contains more information of the morphology
of the curve compared to F. However, the caveat is that it
will not sensitively distinguish a structure which is, say,
mildly elliptical from one which is elongated but curved,
such as the example on the right panel of Fig. 4. Therefore,
for practical applications it will be best to use a combina-
tion of both F and α. One important distinction between the
two statistics is that the CMT provides directional

information, encoded in φ [Eq. (24)] which cannot be
obtained from the scalar MFs.
It is also interesting to observe the behavior of β for

individual structures. As we can see in the bottom panels of
fig. 4, till the first fragmentation there is only structure and
so α ¼ β. After each fragmentation threshold the blue curve
for β bifurcates into two curves for each individual
structure. Each blue curve approaches unity as the excur-
sion sets reduce to a set of circular perimeters enclosing the
peaks at ν ∼ 1.

IV. STATISTICAL ISOTROPY OF SMOOTH
RANDOM FIELDS

Having discussed in the previous section the morphology
of individual structures and spatial distribution of many
structures, we are now equipped to discuss smooth random
fields. Our focus here is on clarifying the meaning of
statistical isotropy geometrically and to quantify the effect
of finite resolution on α.
Let f be a Gaussian field whose mean and standard

deviation are μ and σ0, respectively. Let σ1 be defined as

σ21 ≡ hf2;1i þ hf2;2i ¼ σ2f;1 þ σ2f;2 : ð38Þ

We will work with the mean subtracted and normalized
field u≡ ðf − μÞ=σ0. For a chosen threshold value of u,
denoted by ν, the set of all points on M where u > ν is
referred to as an excursion or level set, denoted by Qν. It
consists of a set of connected regions, each of which may
be simply or multiply connected with holes in them. The
boundary of Qν, denoted by ∂Qν, consists of closed
isothreshold contours that enclose connected regions
and holes.

A. Contour Minkowski tensor for random fields

Let W̃1 be the sum over the individualW1 of each curve
at a threshold ν, In order to express W̃1 in terms of the field,
we use n̂i ¼ u;i

j∇uj. Then, we get

ðW̃1Þij ¼
1

V

Z
∂Qν

ds
u;iu;j
j∇uj2 : ð39Þ

Note that we have introduced a factor 1=V in the definition
above in comparison to the expression in Sec. III A. By
taking V to be proportional to the volume of M (which is
the area in this case), V ¼ 4 × Area ofM, we can relate the
trace of W̃1 to the standard definition of the contour length
MF in cosmology. Here we will use V ¼ Area ofM.
For explicit calculations, both numerical and analytic, it

is convenient to express the integral over ∂Qν into area
integral over the entire manifold M by introducing a
Jacobian and delta function δðu − νÞ constraint, as

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

FIG. 4. Top: iso-contours for two functions given by Eq. (37)
with peak locations arranged linearly (left) and non-linearly
(right). Bottom: F, α and β for individual structures after
fragmentation versus threshold, for the corresponding function
in the panel above. The percolation thresholds are indicated by
the black dashed lines.
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ðW̃1Þij ¼
1

V

Z
M
daδðu − νÞ u;iu;jj∇uj ; ð40Þ

where da is the area element. The expressions for g1, g2 and
τ in terms of the field derivatives are then given by

τ ¼ 1

2V

Z
M
daδðu − νÞj∇uj; ð41Þ

g1 ¼
1

2V

Z
M
daδðu − νÞ u

2
;1 − u2;2
j∇uj ; ð42Þ

g2 ¼
1

V

Z
M
daδðu − νÞ u;1u;2j∇uj : ð43Þ

and we also define g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
. To numerically compute

W̃1 we follow a method that was first put forth in [34] and
adapted in [5,35]. It involves expressing the area integral of
W̃1 as a sum over equal area pixels onM. LetΔν denote the
threshold bin size. Then the δ-function can be approxi-
mated as δðu − νÞ ¼ 1=Δν, if u ∈ ðν − Δν

2
; νþ Δν

2
Þ and

zero otherwise. Let the total number of pixels be Npix.
The estimator for W̃1 can then be expressed as

ðW̃1Þij ¼
1

Npix

XNpix

k¼0

wk

Δν
u;iðkÞu;jðkÞ
j∇uðkÞj : ð44Þ

The variable wk is the weight factor of the delta function for
the kth pixel. It has value one if the field at k pixel has value
in the range ν − Δν=2 to νþ Δν=2, and zero otherwise. In
case there is masking of parts of the manifold M, Npix

denotes the total number of unmasked pixels.
Let h:i denote ensemble averaging. The ensemble

expectation of W̃1 gives,

hW̃1i ¼
� hτi þ hg1i hg2i

hg2i hτi − hg1i

�
: ð45Þ

Then α, denoted with an overbar, computed from hW̃1i is

ᾱ ¼ hτi −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg1i2 þ hg2i2

p
hτi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg1i2 þ hg2i2

p : ð46Þ

Alternatively, we can first diagonalize W̃1 for each reali-
zation, with the convention that the (11) element is less than
the (22) element, and then carry out the ensemble averag-
ing. Geometrically the diagonalization means we rotate the
ellipse obtained for each realization of the field such that its
axes are aligned with the coordinate system. And choosing
the (11) element to be less than the (22) element means the
rotation is by angle π − φ, using the right hand convention.
φ is given by Eq. (35). We denote the rotated W̃1 by W̃

R
1 . φ

is a random angle and will be different for different

realizations in general. Then the ensemble expectation of
the corresponding α is

hαi ¼
�
τ − g
τ þ g

�
: ð47Þ

In general, Eqs. (46) and (47) give different answers.
For comparing between observation and simulations

Eq. (46) is not appropriate since g1, g2 depend on the
coordinate choice. The coordinate independent way to
compare is to use Eq. (47). If g and τ are uncorrelated,
as they should be since they are independent degrees of
freedom, we get

hαi ≃ 1 − 2
hgi
hτi þO

�hgi2
hτi2

�
: ð48Þ

In [5] it was shown for Gaussian and Rayleigh isotropic
fields that the ensemble expectation of W̃1 is proportional to
the identity matrix. The reason is that statistical isotropy
implies hg1i ¼ 0 ¼ hg2i. As a consequence, α given by
Eq. (46) is one at every threshold. In fact, this will be true in
general for any isotropic field, regardless of its PDF. This
result is however not useful for comparison between
observed data and simulations, as mentioned above. What
we need instead is an analytic expression for Eq. (47) or (48).
In practical applications where data is available over

finite spatial extent, and finite pixel size, g1, g2, g will be
nonzero even though the field is given to be isotropic. This
is due to statistical fluctuations caused by the sampling. We
expect hg1i, hg2i and hgi to carry characteristic information
of the finite sampling and this is what we investigate in the
next subsection.

B. Quantifying the effect of finite sampling and
resolution

In any realistic calculation there are two inherent length
scales—the size of M, which can be either a box on flat
space or the sky region on the sphere, denoted by L, and the
typical size of structures, which we denote by ls. Since the
pixel size is typically smaller than ls we need not consider it
as another scale. ls is determined by a convolution of the
inherent correlation length of the physical interaction(s) of
the stochastic process that generate the field, and any
smoothing applied to the field. Here we consider smoothing
using a Gaussian kernel. Then we can define the finite
sampling parameter s to be

s≡ ls
L
: ð49Þ

s quantifies the effect of finite sampling of the field which is
determined by L and ls. Note that s can approach zero in
two ways—ls approaching zero, or L approaching infinity.
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We will work with Gaussian isotropic CMB temperature
simulations generated using HEALPix [36], with the input
angular power spectrum obtained from CAMB [37]. Here
isotropy refers to the fact that the input angular power
spectrum Cl for the simulated maps is obtained from a
primordial power spectrum, PðkÞ, which depends only on
the amplitude k of the wave modes. The maps have input
cosmological parameters given by Planck [38]. PðkÞ has
the functional form PðkÞ ¼ Asðk=k0Þns−1, where As and ns
are the amplitude and spectral index, respectively, of the
primordial perturbations, and k0 is the pivot scale.
Since ns is close to one the field has fluctuations (hence

the excursion sets have structures), at all scales. Smoothing
has the effect of introducing a cut-off of the fluctuations at
the scale set by the smoothing scale. The variation of ls is
therefore determined by the variation of the smoothing
scale. We use the full sky for our calculations here, and so L
is a constant given by the surface area of a unit sphere,
L2 ¼ 4π. Consequently, the variation of s is determined by
the variation of the smoothing scale. We denote the
smoothing scale by θs which we take to be the same as
the full width at half maximum (FWHM).
We focus on the following two questions. First, for a

given s, what are the functional forms of the ensemble
mean values hgi and hτi as functions of threshold values?
Second, how do the functional forms of hgi and hτi scale or
vary with s? For hτi, the answers to both these questions for
a Gaussian field having exact isotropy symmetry and input
power law power spectrum, are well known. Its functional
dependence on ν is given by [39],

hτiexactðνÞ ∝ σ1
σ0

e−ν
2=2: ð50Þ

The dependence on the smoothing scale is encoded in the
correlation length rc ¼ σ1=σ0, which scales roughly as
rc ∝ θ−1s [40,41]. We can expect that the anisotropy of the
field introduced by finite sampling will modify Eq. (50).
For hgðνÞi, however, we don’t know the answers to the
above questions and we will answer them using numerical
computations.
We numerically calculate g1, g2, g, τ, α for different

values of θs from 104 simulated CMB temperature maps.
We use threshold bin size Δν ¼ 0.5. The blue dots in Fig. 5
show the numerically computed values of hjg1ji (top row),
hjg2ji (second row), hgi (third row), hτi (fourth row) and
hαi (bottom row) versus ν for two different smoothing
scales. The error bars are the standard deviations obtained
from the simulations.
Functional forms of hjg1ji, hjg2ji and hgi: It can be

discerned from the panels in the top two rows of fig. 5 that
hjg1ji and hjg2ji can be fit well by Gaussian functions of ν,
which we write as,

hjg1ðνÞji ¼ Ag1e
−ν2=2σ2g1 ; ð51Þ

hjg2ðνÞji ¼ Ag2e
−ν2=2σ2g1 : ð52Þ

It is also clear that hjg1ji ≃ hjg2ji, and so Ag1 ¼ Ag2 and
σ2g1 ¼ σ2g2 . The red solid lines in the figure correspond to fits
to these Gaussian functions.
Next, using Ag1 ¼ Ag2 and σ2g1 ¼ σ2g2 we get hgi as

hgðνÞi ¼ Age−ν
2=2σ2g ; ð53Þ

where Ag ¼
ffiffiffi
2

p
Ag1 and σg ¼ σg1 . The red solid lines in the

panels showing hgi correspond to the fits to Eq. (53).
We can also define an angle φ̃

hjg2ji
hjg1ji

¼ j tan 2φ̃j; ð54Þ

where we have put a tilde over φ̃ on the right-hand side to
distinguish it from φ which is defined without the modulus
on g1 and g2. Using hjg1ji ¼ hjg2ji we get

φ̃ ¼ π=8: ð55Þ

Functional form of hτi: For hτi the Gaussian fitting
function is

hτðνÞi ¼ Aτe−ν
2=2σ2τ : ð56Þ
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FIG. 5. The blue dots are mean values of jg1j (top row), jg2j
(second row), g (third row), τ (fourth row), and α (bottom row),
calculated from 104 Gaussian isotropic simulations for two
smoothing scales. For jg1j, jg2j, g and τ, the red solid lines are
Gaussian fitting functions. For α, the red solid line is the
corresponding function defined by Eq. (58). The error bars are
the standard deviations obtained from the 104 simulations.
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The difference between this equation and Eq. (50) is that
we have introduced στ which can be different from one, due
to the sampling effect. The red solid lines in the panels
showing hτi again correspond to the fit to Eq. (56).
The parameters Ag, σg, Aτ and στ are dependent on s.

Figure 6 shows how they vary with θs. As expected, Aτ

exhibits approximate power law behavior. We find that Ag

also follows power law behavior, which we express as,

Ag ∝ θ−γs : ð57Þ

The value of the exponent is obtained to be γ ¼ 0.13. Next,
we find that στ is marginally larger than one at all
smoothing scales, while σg exhibits approximately linear
increase with increase of θs.
Functional form of hαi: We can now use the functional

forms of hgi and hτi to determine the functional form of
hαi. The ensemble mean of αðνÞ to first order in hgi=hτi is
then given by

hαðνÞi ≃ 1 −
Ag

Aτ
eν

2=2Δg ; ð58Þ

where Δg ≡ 1=ð 1
σ2τ
− 1

σ2g
Þ. Since σg > στ, we have Δg > 0.

This expression reproduces the shape of hαðνÞi very well,
as seen in the bottom panels of Fig. 5 where this analytic fit
is also plotted (red solid lines). Note that if we take στ to be
exactly one, without accounting for the sampling effect,
Eq. (58) gives deviation from the numerical computation
especially at higher thresholds. It is important to mention
that g increases with decreasing s, due to increase of both g1
and g2. So, the manner in which α tends to one as s → 0 is
via τ increasing faster than g, and not via g tending to zero.
Therefore, the geometric meaning of isotropy for a random
field is fundamentally different from that of individual
structures.
In Fig. 7 we show a schematic representation of a

Gaussian isotropic field defined on a compact space and
sampled at a finite number of pixels as a series of ellipses,
with each ellipse corresponding to each ðs; νÞ. The perim-
eters of the ellipses are Gaussian functions of ν, and
become more elliptic as jνj → ∞, at each s. This repre-
sentation captures the essence of statistical isotropy of
smooth random fields at finite sampling.
In Appendix A we discuss the probability density func-

tions for g1 and g2, and the resulting statistical nature of g and
φ. The results described in this section contain numerical
errors introduced by the approximation of the delta function
by the inverse of the threshold bin size [42]. In Appendix B
we estimate the errors and show that they are small.

V. ENSEMBLE EXPECTATION VALUE OF W̃1
FOR GAUSSIAN ANISOTROPIC FIELDS

Let f be Gaussian random field on the manifoldM. Then
f;1 and f;2 are also Gaussian fields. The joint PDF of
X≡ ðf; f;1; f;2Þ is given by the Gaussian form

PðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πDetΣ

p exp

�
−
1

2
XTΣ−1X

�
; ð59Þ

FIG. 6. Top: scaling of amplitudes of g and τ, denoted by Ag
and Aτ, respectively, with variation of the smoothing scale.
Bottom: scaling of σg and στ with θs.

s

21−2 −1 0

FIG. 7. Schematic representation of a Gaussian isotropic field
for each resolution, s, as a series of ellipses at different thresholds.
The vertical arrow shows the direction of increasing s.
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where Σ is the covariance matrix. Let f be also given to be
anisotropic. Then we can model the covariance matrix as

Σ ¼

0
B@

σ20 0 0

0 σ2f;1 0

0 0 σ2f;2

1
CA; ð60Þ

where for i ¼ 1; 2 we have used

hff;ii ¼ 0; hf2;ii≡ σ2f;i ; hf;1f;2i ¼ 0: ð61Þ

For a general anisotropic field we have σ2f;1 ≠ σ2f;2 , while for

isotropic case we can choose σ2f;i ¼ σ2f;2 ¼ σ21=2,. We have
taken the cross correlations hff;ii and hf;1f;2i to be zero
even for anisotropic fields. This corresponds to choosing
appropriate coordinates for which these cross-correlations
vanish.
To keep the discussion general, we also consider σ2f;1 and

σ2f;2 to be dependent on the field threshold, f ¼ νσ0,
keeping in mind that the finite sampling may introduce
such threshold dependence, in addition to a difference
between σ2f;1 and σ2f;2 . we are assuming that the sampling
effect does not induce departure from Gaussian nature of
the field, which need not be true. A discussion incorpo-
rating such a deviation is beyond the scope of this paper.
Then PνðXÞ becomes

PνðXÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ20σ

2
f;1
σ2f;2

q exp

�
−
1

2

�
f2

σ20
þ f2;1
σ2f1

þ f2;2
σ2f2

��
;

ð62Þ

where the index ν on P is kept to remind us that it can be
dependent on ν via Σ. On the right hand side ν is not
explicitly written.
The ensemble expectation value of the ði; jÞ element of

W̃1 at threshold ν is obtained to be

hW̃1i ¼
2

ffiffiffi
2

p

σ0

�
A1F1 0

0 A2F2

�
e−

ν2

2 ; ð63Þ

where

A1 ¼
σ2f;1σ

2
f;2

ð2σ2f;2 − σ2f;1Þ3=2
; A2 ¼

σ2f;1σ
2
f;2

ð2σ2f;1 − σ2f;2Þ3=2
: ð64Þ

The factor Fi, for i ¼ 1; 2, is given by

Fi ¼
Z

π=2

0

dy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
i þ tan2 y

p 1ffiffiffiffiffiffiffiffiffiffi
cos y

p cos

�
3

2
y

�
; ð65Þ

with

D1 ¼
σ2f;1

2σ2f;2 − σ2f;1
; D2 ¼

σ2f;2
2σ2f;1 − σ2f;2

: ð66Þ

Equation (63) gives hg2i ¼ 0. Let us denote ḡ ¼ jhg1ij.
Then we can express hτi and ḡ as

hτðνÞi ¼
ffiffiffi
2

p

σ0
ðA1F1 þ A2F2Þe−ν2

2 ; ð67Þ

ḡðνÞ ¼
ffiffiffi
2

p

σ0
ðA2F2 − A1F1Þe−ν2

2 : ð68Þ

Equation (67) generalizes the well known expression for
the second scalar MF, the contour length, for Gaussian
isotropic fields to Gaussian but anisotropic fields.
Recovering the result for exact isotropy (limit s → 0 if

the anisotropy is due to sampling effect): If σ2u1 ¼ σ2u2 , then
Eq. (63) gives

hW̃1i ¼
1

8rc
e−ν

2=2 × I ×A; ð69Þ

where I is the identity matrix, and rc is the correlation
length of the field given by rc ¼ σ0=σ1. This is the
expression obtained in [5].
From the ensemble expectation value of the rotated

CMT, W̃R
1 , we recover the same expression for the expect-

ation value of τ as Eq. (67). The ensemble expectation of g,
on the other hand, involves cross-correlations of f;i at
different spatial locations. The full computation is beyond
the scope of this paper.

VI. CONCLUSION AND DISCUSSION

In this paper we have addressed the question of statistical
isotropy of smooth random fields in two dimensions from a
geometrical perspective. Before discussing random fields,
we first carry out a detailed study of the geometry of single
structure that is encoded in the CMT, building on our earlier
work [5]. We prove that the CMT is proportional to the
identity matrix for a smooth closed curve that has m-fold
symmetry, with m ≥ 3. The proportionality constant is just
the perimeter of the curve. Next, we use the CMT to
construct a mapping of an arbitrary closed curve to an
ellipse that is unique up to translations of the centroid.
Lastly, we show that the shape parameters that are defined
using the CMT, and the filamentarity that is defined using
the scalar MFs (area and the perimeter), carry comple-
mentary shape information. Therefore, using a combination
of both will maximize extraction of shape information in
practical applications. However, the directionality informa-
tion that is inherent in the CMT cannot be obtained from the
scalar MFs.
Then we focus on excursion sets of simulated Gaussian

isotropic CMB temperature maps, as examples of smooth
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random fields on a compact space. In [5] we had shown that
we can associate a circle with each excursion set of the
isotropic field such that the radius depends on the PDF of the
field. Here we show that finite sampling, due to finite extent
of the space and pixelization, introduces threshold dependent
distortion of the circle associated with each excursion set, to
an ellipse. Then we show that the parameter g, that encodes
the sampling anisotropy, scales as a power law function of the
sampling scale (equivalent to smoothing scale for our
consideration here), with scaling index γ ¼ 0.13. We then
use a semi-numerical approach to obtain an analytic expres-
sion for the shape parameter α.We further extend the analytic
derivation of the CMT of Gaussian isotropic fields to
Gaussian anisotropic fields, and obtain expressions for the
ensemble expectations of the perimeter and the anisotropy
parameter g (without sampling effect).
Our results provide a deeper understanding of the effect of

finite sampling on the statistical isotropy of random fields.
The main underlying point is that a random field measured
over a finite domain will always present some level of
statistical anisotropy due to finite sampling, similarly to the
violation of exact ergodicity within a finite volume. The
contour Minkowski tensor provides a measure of this
anisotropy via the quantity α. Exact isotropy is an idealized
state for which the Minkowski tensor is proportional to the
identitymatrix in every coordinate system,which results inα
being one. That is, the symmetry of the field is reflected in
the structure of the tensor. This is true for both Gaussian and
non-Gaussian fields. We have shown that both τ and g
increase as the resolution of the sampling increases.
Importantly, the manner in which the field approaches state
of exact isotropy in the limit of infinite resolution is by τ
increasing faster than g, and not by g approaching zero.
Actual anisotropic signals in the data can be distin-

guished from statistical anisotropy by comparing the
eigenvalues of the tensor to its components in any given
coordinate system. For an isotropic field defined on a finite
domain, fluctuations of the off-diagonal components, and
the inequality between diagonal elements, are drawn from
the same distribution in any coordinate system. And their
magnitudes are quantified by the difference between the
eigenvalues via α. This knowledge allows us to infer the
statistical significance of any detected anisotropic signal,
beyond random fluctuations due to sampling.
Our analysis will be extended in the following directions.

Our main results are based on numerical calculations. The
value of γ is expected to depend on cosmological param-
eters, and may depend on the curvature of M. It would be
interesting to understand γ from first principles, and relate it
to cosmological parameters and the geometry of M. The
expression of α that we have obtained semi-numerically is
specific to the Gaussian nature of the field. It will be
interesting to determine how it encodes the nature of the
field for other types of fields. The extension of the analysis
carried out in this paper to random fields on three dimen-
sional space will be the subject of our upcoming paper.
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APPENDIX A: PROBABILITY DENSITY
FUNCTIONS OF g1, g2, g, AND φ

If the variables g1 and g2 have Gaussian probability
density functions (PDFs), then the PDF of g will be
Rayleigh form and that of φ will be uniform. Here, we
compute the PDFs numerically and show that g1 and g2
have approximately Gaussian PDFs.
The integrand for g1 is the random field q1ðxÞ≡

ðu2;1 − u2;2Þ=j∇uj, while that of g2 is q2ðxÞ≡ u;1u;2=j∇uj.
We can express the numerator of q2 as a linear combination

u;1u;2 ¼
1

4
fðu;1 þ u;2Þ2 − ðu;1 − u;2Þ2g: ðA1Þ

If u;1, u;2 at each x are Gaussian variables with the same
values of the mean and variance, then their sum and differ-
ence are also Gaussian variables. Therefore, q1 and q2, and
consequently g1 and g2, must have identical PDFs.
Figure 8 shows the PDFs (yellow bars) of g1, g2 and g

obtained using 104 simulations of Gaussian isotropic CMB
temperature. The smoothing scale is θs ¼ 600, and the
threshold value is ν ¼ 0. We find that g1, g2 are approxi-
mated very well by identical Gaussian PDFs (orange solid
lines), with standard deviation value 0.0074. g is fit by the
corresponding Rayleigh distribution (orange solid line).
The variance of g1 and g2 will vary with the threshold value
and with the smoothing scale.
The numerically computed PDFs of g1 and g2 will

actually deviate from the exact Gaussian forms due to
finite sampling. This will result in φ deviating from
uniform distribution, which will then leads to the value
of α deviating from one. Analytic expressions for the PDFs
of g1, g2 and the other related statistics will be discussed in
a separate work.
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APPENDIX B: NUMERICAL ERROR DUE TO
THRESHOLD BINNING ON APPROXIMATION

OF THE δ FUNCTION

The threshold binning introduces numerical error in the
calculation of W̃1 due to the approximation of the delta
function [42]. In [12] we had argued why this error is
expected to be small when computing α. Here we make the
argument quantitative and estimate the error as follows.
Let h represent the numerically calculated value of either

of the four quantities—hg1i, hg2i, hgi or hτi. Then writing h
as the sum of “true” and “error” components, we get

ΔherrðνÞ ¼ hðνÞ − htrueðνÞ: ðB1Þ

The numerically calculated h can be expressed as

hðνÞ ¼ 1

Δν

Z
νþΔν=2

ν−Δν=2
dν0htrueðν0Þ: ðB2Þ

Let htrueðνÞ ¼ Ae−ν
2=2σ2 . Then inserting htrueðνÞ and hðνÞ in

Eq. (B1) we get,

ΔherrðνÞ ¼
ffiffiffi
π

2

r
σA
Δν

�
erf

�
νþ Δν=2ffiffiffi

2
p

σ

�

− erf

�
ν − Δν=2ffiffiffi

2
p

σ

��
− htrueðνÞ: ðB3Þ

This gives the fractional error to be

Δherr

htrue
ðνÞ ¼

ffiffiffi
π

2

r
σ

Δν
eν

2=2σ2
�
erf

�
νþ Δν=2ffiffiffi

2
p

σ

�

− erf

�
ν − Δν=2ffiffiffi

2
p

σ

��
− 1: ðB4Þ

We can see that the right-hand side of Eq. (B4) depends
only on the threshold bin size and σ, and is independent of
the amplitude of h. This, combined with the fact that the
values of σg and στ are comparable and of order one,
implies that the errors of all four quantities—hg1i, hg2i, hgi
and hτi—will be comparable.

Figure 9 shows Δherr=htrue versus ν, for two values
Δν ¼ 0.25, 0.5, and for σ ¼ 1 and 1.34 (which are roughly
the values relevant for Sec. IV B). We see that the error is
smaller for larger value of σ. So the fractional error for
calculating τ is larger than for g. The fractional error also
decreases as we decrease Δν.
The error for hgi=hτi can now be estimated as

hgi
hτi ≃

hgitrue
hτitrue

�
1þ Δgerr

gtrue
−
Δτerr

τtrue

�
: ðB5Þ

Let us denote the sum of the last two terms as

Δα ¼
Δgerr

gtrue
−
Δτerr

τtrue
: ðB6Þ

Δα is shown by the magenta lines, solid for Δν ¼ 0.5 and
dashed for 0.25, in Fig. 9. We see that it is subpercent
toward smaller threshold and for smaller Δν.
There can be small residual error, in addition to Δα, due

to inaccuracy in the determination of σ and the difference
between the fractional errors of g and τ which we
ignore here.

FIG. 8. PDFs of g1, g2 and g obtained from 104 CMB temperature simulations. The smoothing scale is θs ¼ 600 and threshold value is
ν ¼ 0. g1, g2 are well fit by identical Gaussian PDFs (orange solid lines) with zero mean, while g is fit by the corresponding Rayleigh
distribution (orange solid line).

FIG. 9. Plots of the fractional error given by Eq. (B4) for two
different values of σ and Δν ¼ 0.25 and 0.5. The magenta lines
represent Δα which is the corresponding difference between the
blue and red lines, defined by Eq. (B6).
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