Swapan K. Saha

Diffraction-Limited Imaging with Large and Moderate Telescopes

Diffraction-Limited Imaging with Large and Moderate Telescopes Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Diffraction-Limited Imaging with Large and Moderate Telescopes This page intentionally left blank

Diffraction-Limited Imaging with Large and Moderate Telescopes

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

DIFFRACTION-LIMITED IMAGING WITH LARGE AND MODERATE TELESCOPES

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN-13 978-981-270-777-2 ISBN-10 981-270-777-8 In memory of my wife, KALYANI

Preface

Diffraction-limited image of an object is known as the image with a resolution limited by the size of the aperture of a telescope. Aberrations due to an instrumental defect together with the Earth's atmospheric turbulence set severe limits on angular resolution to $\sim 1''$ in optical wavelengths. Both the sharpness of astronomical images and the signal-to-noise (S/N) ratios (hence faintness of objects that can be studied) depend on angular resolution, the latter because noise comes from the sky as much as is in the resolution element. Hence reducing the beam width from, say, 1 arcsec to 0.5 arcsec reduces sky noise by a factor of four. Two physical phenomena limit the minimum resolvable angle at optical and infrared (IR) wavelengths - diameter of the collecting area and turbulence above the telescope, which introduces fluctuations in the index of refraction along the light beam. The cross-over between domination by aperture size ($\sim 1.22\lambda/aperture$ diameter, in which λ is the wavelength of light) and domination by atmospheric turbulence ('seeing') occurs when the aperture becomes somewhat larger than the size of a characteristic turbulent element, that is known as atmospheric coherence length, r_0 (e.g. at 10- 30 cm diameter). Light reaching the entrance pupil of a telescope is coherent only within patches of diameters of order r_0 . This limited coherence causes blurring of the image, blurring that is modeled by a convolution with the point-spread function (PSF), which prevents the telescope from reaching into deep space to unravel the secrets of the universe. The deployment of a space-bound telescope beyond the atmosphere circumvents the problem of atmosphere, but the size and cost of such a venture are its shortcomings.

This book has evolved from a series of talks given by the author to a group of senior graduate students about a decade ago, following which, a couple of large review articles were published. When Dr. K. K. Phua invited the author, for which he is indebted to, for writing a lecture note based on these articles, he took the opportunity to comply; a sequel of this note is also under preparation. This book is aimed to benefit graduate students, as well as researchers who intend to embark on a field dedicated to the high resolution techniques, and would serve as an interface between the astrophysicists and the physicists. Equipped with about two hundred illustrations and tens of footnotes, which make the book self-content, it addresses the basic principles of interferometric techniques in terms of both post-processing and on-line imaging that are applied in optical/IR astronomy using ground-based single aperture telescopes; several fundamental equations, Fourier optics in particular, are also highlighted in the appendices.

Owing to the diffraction phenomenon, the image of the point source (unresolved stars) cannot be smaller than a limit at the focal plane of the telescope. Such a phenomenon can be seen in water waves that spread out after they pass through a narrow aperture. It is present in the sound waves, as well as in the electro-magnetic spectrum starting from gamma rays to radio waves. The diffraction-limited resolution of a telescope refers to optical interference and resultant image formation. A basic understanding of interference phenomenon is of paramount importance to other branches of physics and engineering too. Chapters 1 through 3 of this book address the fundamentals of electromagnetic fields, wave optics, interference, and diffraction at length. In fact, a book of this kind calls for more emphasis on imaging phenomena and techniques, hence the fourth chapter discusses at length the imaging aspects of the same.

Turbulence and the concomitant development of thermal convection in the atmosphere distort the phase and amplitude of the incoming wavefront of the starlight; longer the path, more the degradation that the image suffers. Environment parameters, such as fluctuations in the refractive index of the atmosphere along the light beam, which, in turn, are due to density variations associated with thermal gradients, variation in the partial pressure of water vapour, and wind shear, produce atmospheric turbulence. Random microfluctuations of such an index cause the fluctuation of phase in the incoming random field and thereby, produce two dimensional interferences at the focus of the telescope. These degraded images are the product of dark and bright spots, known as speckles. The fifth chapter enumerates the origin, properties, and optical effects of turbulence in the Earth's atmosphere.

One of the most promising developments in the field of observational

Preface

astronomy in visible waveband is the usage of speckle interferometry (Labeyrie, 1970) offering a new way of utilizing the large telescopes to obtain diffraction-limited spatial Fourier spectrum and image features of the object. Such a technique is entirely accomplished by *a posteriori* mathematical analysis of numerous images of the same field, each taken over a very short time interval. In recent years, a wide variety of applications of speckle patterns has been found in many areas. Though the statistical properties of the speckle pattern is complicated, a detailed analysis of this pattern is useful in information processing. Other related concerns, such as pupil plane interferometry, and hybrid methods (speckle interferometry with non-redundant pupils), have also contributed to a large extent. Chapter 6 enumerates the details of these post-detection diffraction-limited imaging techniques, as well as the relationship between image-plane techniques and pupil-plane interferometry.

Another development in the field of high angular resolution imaging is to mitigate the effects of the turbulence in real time, known as adaptive optics (AO) system. Though such a system is a late entry among the list of current technologies, it has given a new dimension to this field. In recent years, the technology and practice of such a system have become, if not in commonplace, at least well known in the defence and astronomical communities. Most of the astronomical observatories have their own AO programmes. Besides, there are other applications, namely vision research, engineering processing, and line-of-sight secure optical communications. The AO system is based on a hardware-oriented approach, which employs a combination of deformation of reflecting surfaces (i.e., flexible mirrors) and post-detection image restoration. A brief account of the development of such an innovative technique is presented in chapter 7.

The discovery of the corpuscular nature of light, beyond the explanation of the photo-electric effect, by Albert Einstein almost 100 years ago, in 1905, has revolutionized the way ultra-sensitive light detectors are conceived. Such a discovery has far reaching effects on the astrophysical studies, in general, and observational astronomy, in particular. The existence of a quantum limit in light detection has led to a quest, through the 20th century (and still going on), for the perfect detector which is asymptotically feasible. The advent of high quantum efficiency photon counting systems, vastly increases the sensitivity of high resolution imaging techniques. Such systems raise the hope of making diffraction-limited images of objects as faint as $\sim 15-16 m_v$ (visual magnitude). Chapter 8 elucidates the development of various detectors that are being used for high resolution imaging. It is well known that standard autocorrelation technique falls short of providing reconstruction of a true image. Therefore, the success of single aperture interferometry has encouraged astronomers to develop further image processing techniques. These techniques are indeed an art and for most part, are post-detection processes. A host of image reconstruction algorithms have been developed. The adaptive optics system also requires such algorithms since the real-time corrected images are often partial. The degree of compensation depends on the accuracy of the wavefront estimate, the spacing of the actuators in the mirror, and other related factors. The mathematical intricacies of the data processing techniques for both Fourier modulus and Fourier phase are analyzed in chapter 9. Various schemes of image restoration techniques are examined as well, with emphasis set on their comparisons.

Stellar physics is the study of physical makeup evolutionary history of stars, which is based on observational evidence gathered with telescopes collecting electromagnetic radiation. Single aperture high resolution techniques became an extremely active field scientifically with important contributions made to a wide range of interesting problems in astrophysics. A profound increase has been noticed in the contribution of such techniques to measure fundamental stellar parameters and to uncover details in the morphology of a range of celestial objects, including the Sun and planets. They have been used to obtain separation and position angle of close binary stars, to measure accurate diameter of a large number of giant stars, to determine shapes of asteroids, to resolve Pluto-Charon system, to map spatial distribution of circumstellar matter surrounding objects, to estimate sizes of expanding shells around supernovae, to reveal structures of active galactic nuclei (AGN) and of compact clusters of a few stars like R 136a complex, and to study gravitationally lensed QSO's. Further benefits have been witnessed from the application of adaptive optics systems of large telescopes, in spite of its limited capability of retrieving fully diffraction-limited images of these objects. The last two chapters (10 and 11) discuss the fundamentals of astronomy and applications of single aperture interferometry.

The author expresses his gratitude to many colleagues, fellow scientists, and graduate students at Indian Institute of Astrophysics and elsewhere, particularly to A. Labeyrie, J. C. Bhattacharyya, and M. K. Das Gupta (late) for their encouragement and to Luc Damé, A. K. Datta, L. N. Hazra, Sucharita Sanyal, Kallol Bhattacharyya, P. M. S. Namboodiri, N. K. Rao, G. C. Anupama, A. Satya Narayana, K. Sankar Subramanian, B. S. Nagabhushana, Bharat Yerra, K. E. Rangarajan, V. Raju, D. Som, and A. Vyas, for assistance as readers of draft chapters. He is indebted to S. C Som for careful editing of preliminary chapters. Thanks are also due to V. Chinnappan, A. Boccaletti, T. R. Bedding, S. Koutchmy, Y. Y. Balega, S. Morel, A. V. Raveendran, L. Close, M. Wittkowski, R. Osterbart, J. P. Lancelot, B. E. Reddy, P. Nisenson (late), R. Sridharan, K. Nagaraju and A. Subramaniam, for providing the images, figures etc., and granting permission for their reproduction. The services rendered by B. A. Varghese, P. Anbazhagan, V. K. Subramani, K. Sundara Raman, R. T. Gangadhara, D. Mohan, S. Giridhar, R. Srinivasan, L. Yeswanth, and S. Mishra are gratefully acknowledged.

Swapan K. Saha

This page intentionally left blank

Principal symbols

\vec{E}	Electric field vector
\vec{B}	Magnetic induction
\vec{H}	Magnetic vector
\vec{D}	Electric displacement vector
\vec{J}	Electric current density
$\vec{r}(=x,y,z)$	Position vector of a point in space
σ	Specific conductivity
μ	Permeability of the medium
ϵ	Permittivity or dielectric
q	Charge
$ec{F}$	Force
\vec{v}	Velocity
\vec{p}	Momentum
\vec{a}	Acceleration
e	Electron charge
$S(\vec{r,t})$	Poynting vector
$V(\vec{r},t)$	Monochromatic optical wave
\Re and \Im	Real and imaginary parts of the quantities in brackets
t	Time
κ	Wave number
ν	Frequency of the wave
A	Complex amplitude of the vibration
$U(\vec{r},t)$	Complex representation of the analytical signal
$I(\vec{x})$	Intensity of light
$I_{ u}$	Specific intensity
$\langle \rangle$	Ensemble average
*	Complex operator

λ	Wavelength
$\vec{x} = (x, y)$	Two-dimensional space vector
$P(\vec{x})$	Pupil transmission function
*	Convolution operator
^	Fourier transform operator
$\widehat{P}(\vec{u})$	Pupil transfer function
$S(\vec{x})$	Point spread function
$\widehat{S}(\vec{u})$	Optical transfer function
$ \widehat{S}(\vec{u}) ^2$	Modulus transfer function
\mathcal{R}	Resolving power of an optical system
ω	Angular frequency
T	Period
\vec{V}_i	Monochromatic wave vector
j^{\dagger}	= 1, 2, 3
\mathcal{J}_{12}	Interference term
$\Delta \varphi$	Optical path difference
λ_0	Wavelength in vacuum
c	Velocity of light
$ec{\gamma}(ec{r_1},ec{r_2}, au)$	Complex degree of (mutual) coherence
$\vec{\Gamma}(\vec{r}_1, \vec{r}_2, au)$	Mutual coherence
$\vec{\Gamma}(\vec{r}, \tau)$	Self coherence
$ au_c$	Temporal width or coherence time
$\Delta \nu$	Spectral width
l_c	Coherence length
$\vec{\gamma}(\vec{r_1},\vec{r_2},0)$	Spatial coherence
$J(\vec{r}_1, \vec{r}_2)$	Mutual intensity function
$\mu(ec{r_1},ec{r_2})$	Complex coherence factor
\mathcal{V}	Contrast of the fringes
f	Focal length
v_a	Average velocity of a viscous fluid
l	Characteristic size of viscous fluid
R_e	Reynolds number
$n(\vec{r},t)$	Refractive index of the atmosphere
$\langle \sigma \rangle$	Standard deviation
m_v	Apparent visual magnitude
M_v	Absolute visual magnitude
L_{\odot}	Solar luminosity
L_{\star}	Stellar luminosity

M_{\odot}	Solar mass
M_{\star}	Stellar mass
R_{\odot}	Solar radius
R_{\star}	Stellar radius
$\langle \sigma \rangle^2$	Variance
k_B	Boltzmann constant
g	Acceleration due to gravity
H	Scale height
n_0	Mean refractive index of air
P	Pressure
T	Temperature
ε	Energy dissipation
$\Phi_n(ec{k})$	Power spectral density
k_0	Critical wave number
l_0	Inner scale length
k_{l_0}	Spatial frequency of inner scale
\mathcal{C}_n^2	Refractive index structure constant
$\mathcal{D}_n(ec{r})$	Refractive index structure function
$\mathcal{B}_n(ec{r})$	Covariance function
$\mathcal{D}_v(ec{r})$	Velocity structure function
\mathcal{C}^2_v	Velocity structure constant
$\mathcal{D}_T(ec{r})$	Temperature structure function
\mathcal{C}_T^2	Temperature structure constant
h	Height
$(ec{x},h)$	Co-ordinate
$\Psi_h(\vec{x})$	Complex amplitude at co-ordinate, (\vec{x}, h)
$\langle \psi_h(\vec{x}) \rangle$	Average value of the phase at h
δh_j	Thickness of the turbulence layer
$\mathcal{D}_{\psi_j}(ec{\xi})$	Phase structure function
$\mathcal{D}_n(ec{\xi},\zeta)$	Refractive index structure function
$\mathcal{B}_{h_j}(ec{\xi})$	Covariance of the phase
$\mathcal{B}(ec{\xi})$	Coherence function
γ	Distance from the zenith
r_0	Fried's parameter
$O(\vec{x})$	Object illumination
$\left\langle \widehat{S}(\vec{u}) \right\rangle$	Transfer function for long-exposure images
\vec{u}	Spatial frequency vector with magnitude \boldsymbol{u}

u

$\widehat{I}(\vec{u})$	Image spectrum
$\widehat{O}(ec{u})$	Object spectrum
$B(\vec{u})$	Atmosphere transfer function
$\mathcal{T}(ec{u})$	Telescope transfer function
F #	Aperture ratio
F	Flux density
$arg \mid$	The phase of ' '
p_j	Sub-apertures
β_{123}	Closure phase
$ heta_i, heta_j$	Error terms introduced by errors at the individual
	antennae
$\mathcal{A}\delta(\vec{x})$	Dirac impulse of a point source
\otimes	Correlation
$\widehat{\mathcal{N}}(ec{u})$	Noise spectrum
$\left< \hat{I}(\vec{u}) ^2 \right>$	Image energy spectrum
$\hat{\theta}_j$	Apertures
UBV	Johnson photometric system
B(T)	Brightness distribution

List of acronyms

AAT	Anglo-Australian telescope
A/D	Analog-to-digital
AGB	Asymptotic giant branch
AGN	Active galactic nuclei
AMU	Atomic mass unit
AO	Adaptive optics
ASM	Adaptive secondary mirror
ATF	Atmosphere Transfer Function
BC	Babinet compensator
BDM	Bimorph deformable mirror
BID	Blind iterative deconvolution
BLR	Broad-line region
CCD	Charge Coupled Device
CFHT	Canada French Hawaii telescope
CHARA	Center for high angular resolution astronomy
CS	Curvature sensor
DM	Deformable mirror
EMCCD	Electron multiplying CCD
ESA	European space agency
ESO	European Southern Observatory
ESPI	Electronic speckle pattern interferometry
FOV	Field-of-view
DFT	Discrete Fourier Transform
\mathbf{FFT}	Fast Fourier Transform
\mathbf{FT}	Fourier Transform
FWHM	Full width at half maximum
Hz	Hertz

HF	High frequency
$_{\rm HR}$	Hertzsprung-Russell
HST	Hubble space telescope
ICCD	Intensified CCD
IDL	Interactive Data Language
IMF	Initial mass function
IR	Infrared
I2T	Interféromètre à deux Télescopes
KT	Knox-Thomson
kV	Kilovolt
laser	Light Amplification by Stimulated Emission of Radiation
LBOI	Long baseline optical interferometers
LBT	Large Binocular Telescope
LC	Liquid crystal
\mathbf{LF}	Low frequency
LGS	Laser guide star
LHS	Left Hand Side
LSI	Lateral shear interferometer
L3CCD	Low light level CCD
maser	Microwave Amplification by Stimulated Emission of Radiation
MCAO	Multi-conjugate adaptive optics
MCP	Micro-channel plate
MEM	Maximum entropy method
MHz	Megahertz
MISTRAL	Myopic iterative step preserving algorithm
MMDM	Micro-machined deformable mirror
MMT	Multi mirror telescope
MOS	Metal-oxide semiconductor
MTF	Modulus Transfer Function
NGS	Natural guide star
NICMOS	Near Infrared Camera and Multi-Object Spectrograph
NLC	Nematic liquid crystal
NLR	Narrow-line region
NRM	Non-redundant aperture masking
NTT	New Technology Telescope
OPD	Optical Path Difference
OTF	Optical Transfer Function
PAPA	Precision analog photon address

xviii

PHD	Pulse height distribution
\mathbf{PMT}	Photo-multiplier tube
PN	Planetary nebula
\mathbf{PSF}	Point Spread Function
PTF	Pupil Transmission Function
PZT	Lead-zirconate-titanate
QE	Quantum efficiency
QSO	Quasi-stellar object
RA	Right Ascension
RHS	Right Hand Side
RMS	Root Mean Square
SAA	Shift-and-add
SDC	Static dielectric cell
SLC	Smectic liquid crystal
\mathbf{SH}	Shack-Hartmann
SL	Shoemaker-Levy
SN	Supernova
S/N	Signal-to-noise
SOHO	Solar and heliospheric observatory
SUSI	Sydney University Stellar Interferometer
TC	Triple-correlation
TTF	Telescope Transfer Function
UV	Ultraviolet
VBO	Vainu Bappu Observatory
VBT	Vainu Bappu Telescope
VTT	Vacuum Tower Telescope
WFP	Wiener filter parameter
WFS	Wavefront sensor

YSO Young stellar objects

This page intentionally left blank

Contents

Pr	eface			vii
Pr	incip	al syml	bols	xiii
Lis	st of	a crony	ms	xvii
1.	Intr	oducti	on to electromagnetic theory	1
	1.1	Intro	luction	1
	1.2	Maxw	rell's equations	1
		1.2.1	Charge continuity equation	3
		1.2.2	Boundary conditions	5
	1.3	Energ	y flux of electromagnetic field	7
	1.4	Conse	ervation law of the electromagnetic field	10
	1.5	Electr	comagnetic wave equations	14
		1.5.1	The Poynting vector and the Stokes parameter	16
		1.5.2	Harmonic time dependence and the Fourier transform	21
2.	Way	ve opti	cs and polarization	27
	2.1	Electr	comagnetic theory of propagation	27
		2.1.1	Intensity of a light wave	28
		2.1.2	Harmonic plane waves	30
		2.1.3	Harmonic spherical waves	34
	2.2	Comp	lex representation of monochromatic light waves	35
		2.2.1	Superposition of waves	37
		2.2.2	Standing waves	40
		2.2.3	Phase and group velocities	41
	2.3	Comp	lex representation of non-monochromatic fields	44

		2.3.1	Convolution relationship	47
		2.3.2	Case of quasi-monochromatic light	49
		2.3.3	Successive wave-trains emitted by an atom	51
		2.3.4	Coherence length and coherence time	54
	2.4	Polari	ization of plane monochromatic waves	57
		2.4.1	Stokes vector representation	61
		2.4.2	Optical elements required for polarimetry	65
		2.4.3	Degree of polarization	71
		2.4.4	Transformation of Stokes parameters	74
			2.4.4.1 Polarimeter	77
			2.4.4.2 Imaging polarimeter	79
3.	Inte	erferenc	ce and diffraction	81
	3.1	Funda	amentals of interference	81
	3.2	Interf	erence of two monochromatic waves	81
		3.2.1	Young's double-slit experiment	86
		3.2.2	Michelson's interferometer	90
		3.2.3	Mach-Zehnder interferometer	94
	3.3	Interf	erence with quasi-monochromatic waves	96
	3.4	Propa	agation of mutual coherence	102
		3.4.1	Propagation laws for the mutual coherence	102
		3.4.2	Wave equations for the mutual coherence	104
	3.5	Degre	e of coherence from an extended incoherent source:	
		partia	al coherence	106
		3.5.1	The van Cittert-Zernike theorem	107
		3.5.2	Coherence area	110
	3.6	Diffra	ction	112
		3.6.1	Derivation of the diffracted field	114
		3.6.2	Fresnel approximation	117
		3.6.3	Fraunhofer approximation	119
			3.6.3.1 Diffraction by a rectangular aperture	121
			3.6.3.2 Diffraction by a circular pupil	123
4.	Ima	ge forr	nation	127
	4.1	Image	e of a source	127
		4.1.1	Coherent imaging	132
		4.1.2	Incoherent imaging $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	134
		4.1.3	Optical transfer function	135
		4.1.4	Image in the presence of aberrations	139

	4.2	Imagin	ng with partially coherent beams	141
		4.2.1	Effects of a transmitting object	141
		4.2.2	Transmission of mutual intensity	143
		4.2.3	Images of trans-illuminated objects	146
	4.3	The of	ptical telescope	149
		4.3.1	Resolving power of a telescope	154
		4.3.2	Telescope aberrations	156
5.	The	ory of	atmospheric turbulence	159
	5.1	Earth	's atmosphere	159
	5.2	Basic	formulations of atmospheric turbulence	161
		5.2.1	Turbulent flows	162
		5.2.2	Inertial subrange	164
		5.2.3	Structure functions of the velocity field	166
		5.2.4	Kolmogorov spectrum of the velocity field	167
		5.2.5	Statistics of temperature fluctuations	170
		5.2.6	Refractive index fluctuations	172
		5.2.7	Experimental validation of structure constants	176
	5.3	Statist	tical properties of the propagated wave through turbu-	
		lence		179
		5.3.1	Contribution of a thin layer	180
		5.3.2	Computation of phase structure function	182
		5.3.3	Effect of Fresnel diffraction	184
		5.3.4	Contribution of multiple turbulent layers	185
	5.4	Imagin	ng in randomly inhomogeneous media	187
		5.4.1	Seeing-limited images	188
		5.4.2	Atmospheric coherence length	192
		5.4.3	Atmospheric coherence time	195
		5.4.4	Aniso-planatism	196
	5.5	Image	motion	197
		5.5.1	Variance due to angle of arrival	198
		5.5.2	Scintillation	200
		5.5.3	Temporal evolution of image motion	201
		5.5.4	Image blurring	202
		5.5.5	Measurement of r_0	204
		5.5.6	Seeing at the telescope site	205
			5.5.6.1 Wind shears	207
			5.5.6.2 Dome seeing	207
			$5.5.6.3$ Mirror seeing \ldots	209

6.	Speckle imaging			
	6.1	Speck	le phenomena	211
		6.1.1	Statistical properties of speckle pattern	213
		6.1.2	Superposition of speckle patterns	215
		6.1.3	Power-spectral density	216
	6.2	Speck	le pattern interferometry with rough surface	220
		6.2.1	Principle of speckle correlation fringe formation	220
		6.2.2	Speckle correlation fringes by addition	224
		6.2.3	Speckle correlation fringes by subtraction	225
	6.3	Stella	r speckle interferometry	227
		6.3.1	Outline of the theory of speckle interferometry	229
		6.3.2	Benefit of short-exposure images	232
		6.3.3	Data processing	233
		6.3.4	Noise reduction using Wiener filter	235
		6.3.5	Simulations to generate speckles	238
		6.3.6	Speckle interferometer	240
		6.3.7	Speckle spectroscopy	243
		6.3.8	Speckle polarimetry	244
	6.4	Pupil	-plane interferometry	246
		6.4.1	Estimation of object modulus	246
		6.4.2	Shear interferometry	248
	6.5	Apert	sure synthesis with single telescope	253
		6.5.1	Phase-closure method	253
		6.5.2	Aperture masking method	255
		6.5.3	Non-redundant masking interferometer	257
7.	Ada	aptive o	optics	259
• •	7.1 Basic principles			
		7.1.1	Greenwood frequency	260
		7.1.2	Thermal blooming	$\frac{-00}{262}$
	72	Wave	front analysis using Zernike polynomials	264
		7.2.1	Definition of Zernike polynomial and its properties	264
		722	Variance of wavefront distortions	267
		723	Statistics of atmospheric Zernike coefficients	269
	7.3	Eleme	ents of adaptive ontics systems	271
	1.0	731	Steering/tip-tilt mirrors	273
		7.3.2	Deformable mirrors	274
		1.9.2	7.3.2.1 Segmented mirrors	275
			7.3.2.2 Ferroelectric actuators	276
				0

xxiv

Diffraction-Limited Imaging with Large and Moderate Telescopes Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

			7.3.2.3 Deformable mirrors with discrete actuators . 2	78
			7.3.2.4 Bimorph deformable mirror (BDM) 2	80
			7.3.2.5 Membrane deformable mirrors	81
			7.3.2.6 Liquid crystal DM	84
		7.3.3	Deformable mirror driver electronics	85
		7.3.4	Wavefront sensors	86
			7.3.4.1 Shack Hartmann (SH) wavefront sensor 2	87
			7.3.4.2 Curvature sensing $\ldots \ldots \ldots \ldots \ldots 2$	91
			7.3.4.3 Pyramid WFS	93
		7.3.5	Wavefront reconstruction	95
			7.3.5.1 Zonal and modal approaches 2	96
			7.3.5.2 Servo control $\ldots \ldots \ldots \ldots \ldots \ldots 2$	98
		7.3.6	Accuracy of the correction	00
		7.3.7	Reference source	04
		7.3.8	Adaptive secondary mirror	08
		7.3.9	Multi-conjugate adaptive optics	09
8.	Hig	h resol [.]	ution detectors 3	11
	8.1	Photo	-electric effect	11
		8.1.1	Detecting light	12
		8.1.2	Photo-detector elements	14
		8.1.3	Detection of photo-electrons	18
		8.1.4	Photo-multiplier tube	23
		8.1.5	Image intensifiers	27
	8.2	Charg	ge-coupled device (CCD) $\ldots \ldots \ldots \ldots \ldots 3$	31
		8.2.1	Readout procedure	34
		8.2.2	Characteristic features	36
			8.2.2.1 Quantum efficiency $\ldots \ldots \ldots \ldots 3$	36
			8.2.2.2 Charge Transfer efficiency	37
			8.2.2.3 Gain	37
			8.2.2.4 Dark current $\ldots \ldots \ldots \ldots \ldots \ldots 3$	38
		8.2.3	Calibration of CCD	39
		8.2.4	Intensified CCD	41
	8.3	Photo	on-counting sensors $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$	43
		8.3.1	CCD-based photon-counting system	45
		8.3.2	Digicon	46
		8.3.3	Precision analog photon address (PAPA) camera \therefore 3	47
		8.3.4	Position sensing detectors	48
		8.3.5	Special anode cameras	49

Diffraction-Limited Imaging with Large and Moderate Telescopes Downloaded from www.worldscientific.com by INDIAN INSTITUTE OF ASTROPHYSICS BANGALORE on 02/02/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

	8.4	Solid s	state technologies	353
		8.4.1	Electron multiplying charge coupled device (EMCCD) 3	353
		8.4.2	Superconducting tunnel junction	357
		8.4.3	Avalanche photo-diodes	357
	8.5	Infrare	ed sensors	358
9.	Ima	ge proc	cessing	361
	9.1	Post-d	letection image reconstruction	361
		9.1.1	Shift-and-add algorithm	362
		9.1.2	Selective image reconstruction	364
		9.1.3	Speckle holography	365
		9.1.4	Cross-spectrum analysis	366
		9.1.5	Differential speckle interferometry	367
		9.1.6	Knox-Thomson technique (KT)	368
		9.1.7	Triple-correlation technique	371
			9.1.7.1 Deciphering phase from bispectrum	375
			9.1.7.2 Relationship between KT and TC	379
	9.2	Iterati	ve deconvolution techniques	382
		9.2.1	Fienup algorithm	383
		9.2.2	Blind iterative deconvolution (BID) technique	384
		9.2.3	Richardson-Lucy algorithm	387
		9.2.4	Maximum entropy method (MEM)	388
		9.2.5	Pixon	389
		9.2.6	Miscellaneous iterative algorithms	390
	9.3	Phase	retrieval	390
		9.3.1	Phase-unwrapping	392
		9.3.2	Phase-diversity	394
10.	As	tronom	y fundamentals	397
	10.1	Black	body radiation	397
		10.1.1	Cavity radiation	398
		10.1.2	Planck's law	400
		10.1.3	Application of blackbody radiation concepts to stellar	
			emission	403
		10.1.4	Radiation mechanism	405
			10.1.4.1 Atomic transition	406
			10.1.4.2 Hydrogen spectra	408
	10.2	2 Astron	nomical measurements	409
		10.2.1	Flux density and luminosity	409

10.2.2	Magnitude scale	412
	10.2.2.1 Apparent magnitude	413
	10.2.2.2 Absolute magnitude	413
	10.2.2.3 Bolometric corrections	414
10.2.3	Distance scale	415
10.2.4	Extinction	418
	10.2.4.1 Interstellar extinction	418
	10.2.4.2 Color excess	420
	10.2.4.3 Atmospheric extinction	422
	10.2.4.4 Instrumental magnitudes	423
	10.2.4.5 Color and magnitude transformation	424
	10.2.4.6 UBV transformation equations	425
10.2.5	Stellar temperature	427
	10.2.5.1 Effective temperature	427
	10.2.5.2 Brightness temperature	428
	10.2.5.3 Color temperature	428
	10.2.5.4 Kinetic temperature	429
	10.2.5.5 Excitation temperature	430
	10.2.5.6 Ionization temperature	431
10.2.6	Stellar spectra	432
	10.2.6.1 Hertzsprung-Russell (HR) diagram	435
	10.2.6.2 Spectral classification	438
	10.2.6.3 Utility of stellar spectrum	442
10.3 Binary	v stars	445
10.3.1	Masses of stars	445
10.3.2	Types of binary systems	446
	10.3.2.1 Visual binaries	447
	10.3.2.2 Spectroscopic binaries	447
	10.3.2.3 Eclipsing binaries	450
	10.3.2.4 Astrometric binaries	452
10.3.3	Binary star orbits	453
	$10.3.3.1$ Apparent orbit \ldots	454
	10.3.3.2 Orbit determination	456
10.4 Conve	ntional instruments at telescopes	459
10.4.1	Imaging with CCD	460
10.4.2	Photometer	461
10.4.3	Spectrometer	464
10.5 Occult	tation technique	468
10.5.1	Methodology of occultation observation	469

10.5.2 Science with occultation technique $\ldots \ldots \ldots$	472
11. Astronomical applications	475
11.1 High resolution imaging of extended objects	475
11.1.1 The Sun	476
11.1.1.1 Solar structure	477
11.1.1.2 Transient phenomena	484
11.1.1.3 Solar interferometric observations	489
11.1.1.4 Solar speckle observation during eclipse	491
11.1.2 Jupiter	493
11.1.3 Asteroids	495
11.2 Stellar objects	497
11.2.1 Measurement of stellar diameter	497
11.2.2 Variable stars	500
11.2.2.1 Pulsating variables	500
11.2.2.2 Eruptive variables	503
11.2.2.3 Cataclysmic variables	504
11.2.3 Young stellar objects	506
11.2.4 Circumstellar shell	514
11.2.4.1 Planetary nebulae	518
11.2.4.2 Supernovae	523
11.2.5 Close binary systems	526
11.2.6 Multiple stars	529
11.2.7 Extragalactic objects	531
11.2.7.1 Active galactic nuclei (AGN)	534
11.2.7.2 Quasars	541
11.2.8 Impact of adaptive optics in astrophysics	542
11.3 Dark speckle method	547
Appendix A Typical tables	553
Appendix B Basic mathematics for Fourier optics	557
B.1 Fourier transform	557
B.1.1 Basic properties and theorem	558
B.1.2 Discrete Fourier transform	561
B.1.3 Convolution	561
B.1.4 Autocorrelation	563
B.1.5 Parseval's theorem	564
B.1.6 Some important corollaries	565

xxviii

Contents

B.1.7	Hilbert transform	566
B.2 Laplac	ce transform	567
B.3 Proba	bility, statistics, and random processes	569
B.3.1	Probability distribution	569
B.3.2	Parameter estimation	573
B.3.3	Central-limit theorem	575
B.3.4	Random fields	575
Appendix C	Bispectrum and phase values using triple-	
correlation	algorithm	577
Bibliography		579
Index		595