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Preface

The development of quantum mechanics in the 1920s, coupled with the gen-
esis of advanced computational algorithms and techniques, culminated in a
solid foundation for the development of quantum chemistry, aimed at solving
problems associated with atomic and molecular systems, in a wide range of
contexts. The problem becomes non-trivial since the many-body Schrödinger
equation is not solvable exactly even for the smallest of systems, and one
has to resort to techniques of approximation. The prime focus of quantum
chemists is toward the development of accurate, formally simple, computa-
tionally tractable, and consistently applicable methods of approximation that
can be applied to a plethora of systems having arbitrary levels of complexity
and generality.

Thus, electronic structure theorists are confronted with the challenge of
dealing with the electron correlation problem for many-particle systems. The
present book deals with two major classes of theories of electron correlation,
namely, the many-body perturbation theory and coupled cluster methods.
In the parlance of modern strategies dealing with electronic structure, both
methods have withstood the test of time and proved to be of great impor-
tance in chemical physics. While the linked cluster theorem takes care of
single reference situations, both in the context of coupled cluster and pertur-
bation theories, the corresponding multireference analog is yet to be realized
with full-fledged generality. Multireference situations appear in many cases
in the domain of chemistry and physics, in general, where the traditionally
accepted single reference techniques seem to be inadequate, or at times for-
mally wrong, and often lead to an incomplete physical insight. In view of this,
recent decades have witnessed a tremendous methodological development in
the realm of multireference electronic structure methods, both in coupled clus-
ter and perturbative contexts, and have created a profound impression in the
arena of modern electronic structure theories. Such a set of multireference de-
velopments in the realm of perturbation theories sets the tone of the present
book.

This book primarily aims to discuss the issues related to the formal devel-
opment and the consequent numerical implementation of the multireference
coupled cluster and perturbation theories from the standpoint of a practicing
theoretician. The theoretical nitty-gritty associated with such developments
has been emphasized amply, and the related algebraic (and many times di-
agrammatic) derivations have been put forth in a comprehensive manner to

xv



xvi Preface

assist the reader to have a grip on the subject. It has been assumed, through-
out this work, that the reader is acquainted with the fundamental nuances
of quantum chemistry. There are, nevertheless, numerous textbooks dealing
with quantum chemistry at the beginner’s level, like the one by Szabo and
Ostlund, and a good number of professionally written monographs, like the
one by Shavitt and Bartlett [Many-Body Methods in Chemistry and Physics:
MBPT and Coupled Cluster Theory] that pave the foundation to the modern
nuances of electronic structure. This book is more like an advanced refer-
ence text, that would carry forward the reader from the doorstep of modern
research to the very frontier of it.

The book is organized as follows. The opening chapter, Chapter 1, at-
tempts to introduce the reader, in a very succinct manner, to a set of issues
relevant to the development of explicitly correlated many-body methods in
general. We initiate this chapter by formally dealing with the basic issues like
the Born–Oppenheimer approximation and general treatment of approxima-
tion methods, and proceed to discuss atomic/molecular electronic structure
methods by setting the tone with the trivial-most independent particle model.
We move ahead, in a very concise fashion, to discuss advanced methods like
configuration interaction. As we have already pointed out, since this book is
not a beginner’s guide to modern electronic structure and is attuned more
toward advanced readers, we have given extensive bibliographical support to
augment the issues that we have left out of this book.

Chapter 2 is a formally rigorous treatment of the issues that pave the foun-
dation toward the theoretical development of methods attuned to tackle the
problem of electronic correlation in a balanced and systematic manner. This
chapter is somewhat technical in the sense that here we have developed the
pivotally crucial hole-particle formalism through the normal ordering of the
creation-annihilation operators using Wick’s theorem. In addition, we have
also introduced the diagrammatic representation of the involved operator ex-
pansions, which eventually leads to the diagrammatic simplification of the
working equations (in the chapters that follow), as compared to their com-
plete algebraic form.

In Chapter 3 we consider the perturbation theory, initially in the philos-
ophy of a typical textbook pattern to set the tone of the development. As
we progress, we deal with the projection operator route to the perturbation
theory, and the Rayleigh–Schrödinger and the Brillouin–Wigner variants in
the realm of a completely single-reference situation. In doing so, we discuss in
detail the underlying issues that lead to intuitively intelligent partitioning of
the Hamiltonian, and have ultimately compared and contrasted the relative
performance of the variants under different sets of conditions.

We carry forward the ideas developed in Chapter 3 to deal with pertur-
bation theory in the multireference domain in Chapter 4 by invoking the idea
of an appropriate multiconfiguration space and suitably redefine the orbital
space as being tailored into core, active, and valence. We bring to the fore the
issue of improved virtual orbitals and discuss the formal issues associated with
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multireference perturbation theories in both complete and incomplete model
spaces.

In Chapter 5 we formally introduce the idea of state-specific theories by
discussing the second-order state-specific multireference perturbation theory
in the context of a Möller–Plesset partitioning. Various other multiconfigura-
tion and multistate variants are also addressed in this chapter.

Chapter 6 is dedicated to the development and application of the tradi-
tional coupled cluster techniques in the single-reference context. In this chap-
ter, we address the crucial issue of the size-extensive nature of the computed
energies, and compare the coupled cluster method with the traditional con-
figuration interaction technique. We put forth a detailed survey of the meth-
ods to represent the working equations in a diagrammatic format, leading
to the extensive simplification of the algebraic forms involved. We also show
the method to develop perturbation theories starting from a coupled cluster
equation. Numerical applications are provided to supplement the theoretical
discussion in this chapter.

Chapter 7 deals with Fock-space based multireference coupled cluster
methods. In this chapter we delineate the issues of the choice of the wave
operator for multireference systems, the connectivity of the effective Hamil-
tonian, and the systematic generation of cluster equations for various valence
sectors. We deal with the equation of motion coupled cluster method, and
its relation to the Fock-space-based multireference coupled cluster technique.
Numerical illustrations form a major attraction of this chapter, since these
provide a suitable window for the reader to judge the efficacy of the different
methods discussed here and the preceding ones.

We conclude this book with Chapter 8, which deals with state-of-the-art
methods of modern electronic structure. We emphasize the state-universal and
the state-specific methods in the contexts of perturbation and coupled cluster
theories, and assess their relative performances. This chapter discusses the
frontier areas of explicitly correlated methods and provides the reader with a
scope to push the frontier ahead.

We want to thank all the people who have made it possible for this book to
reach your hands. First, we are deeply indebted to Professor Debashis Mukher-
jee and Professor Karl F. Freed for the training that they bestowed upon us.
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1.1 Background

Perturbation theory, in the arena of quantum mechanics, refers to a set
of physically motivated and intuitive approximations engineered by mathe-
matical perturbation to describe and explore the properties of a complicated
system. The philosophy of perturbation theory is to begin with a simpler sys-
tem, whose mathematical solution is known to the best of one’s knowledge,
and then “perturb” the system by means of an externally tunable influence.
For a disturbance that is not too strong, the physical quantities associated
with the perturbed system can be expressed in terms of the “corrections” of
the corresponding quantities of the simpler (unperturbed) system. For small
perturbation, the magnitudes of these correction terms are really small in
light of the magnitude of the quantities themselves and are therefore subject
to treatments by approximations like the asymptotic series. The accuracy of
the evaluated physical quantity, among other factors, depends on the extent to
which such correction terms are incorporated. Therefore, perturbation theory
is a useful avenue to explore the properties of a complicated system, where
the exact (analytic) solution of the system is either difficult or impossible to
achieve.

In early 1950s, Löwdin [1, 2, 3] and others [4] demonstrated that the “par-
titioning technique” can be used to develop perturbation theory for many-
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particle systems. A series of seminal works by P. O. Löwdin [5] entitled “Stud-
ies in Perturbation Theory” during 1963–1971 led to a deep insightful under-
standing of the expansions of perturbation theory. These explorations also
provided pivotal knowledge of the interrelations among the various forms of
such expansions, and their immediate consequence and capabilities in tackling
quantum mechanical problems pertaining to chemistry.

The perturbation theory for many-electron closed-shell systems [the so-
called many-body perturbation theory (MBPT)] was formally developed dur-
ing the 1950s by Brueckner [6, 7], Goldstone [8], Hugenholtz [9] and Hubbard
[10]. Kelly [11] was probably the first to apply this method to the atomic
structure problem. These applications used the numerical solutions of the
Hartree–Fock equations, which are available for atoms, because of the special
coordinate system. Kelly also reported applications to some simple hydrides
in which the hydrogen atom nucleus is treated as an additional perturbation.
Historically, the diagrammatic representation of MBPT was first introduced
by Brueckner [6, 7] and by Brueckner and Levinson [12] in nuclear physics.
On the other hand, Bethe [13], Bethe and Goldstone [14] and Rodberg [15]
introduced the concepts of “wave” and “reaction” operators to extend this
method to study the nuclear many-body problem. Goldstone [8] derived the
completely linked (to all order) diagrammatic MBPT using the field theoretic
form of the time-dependent perturbation theory and adiabatic hypothesis [16].
Hugenholtz [9] arrived at the same conclusion via a time-independent resol-
vent approach, leading to the emergence of the famous “linked cluster theo-
rem” (LCT) for closed-shell systems. An early attempt on a degenerate case
was made by Morita [17]. The first complete proof of this theorem for a de-
generate situation was provided by Brandow [18] using the time-independent
approach and later by Lindgren [19].

The closed-shell coupled cluster (CC) method, which is an all-order version
of the MBPT, was first introduced by Coester[20] and Coester and Kümmel
[21] in nuclear physics. Coester and Kümmel [21] pioneered the use of the
exponential ansatz in formulating a quantum mechanical many-body theory
in the realm of nuclear physics, although the origin of the cluster expansion
approach to many-fermion systems dates back to the early 1950s through at-
tempts to understand the correlation effect in nuclear matter and electron gas
by Bethe [13] and Gell-Mann and Brueckner [22]. At about the same time,
Čížek [23] developed the formalism of the CC approach for use in the con-
text of molecular electronic structure theory. With the advent of computing
methodologies and algorithms during the 1970s, both CC and MBPT were
implemented numerically for molecular systems having a reasonably high de-
gree of complexity. Applications of the ab initio CC theory using finite basis
set expansions were put forth in 1972 by Paldus, Čížek and Shavitt [24], and
in the following year Kaldor [25] came up with his application of the MBPT to
the hydrogen molecule ground state by invoking the algebraic approximation.
The development of high-speed computers, the refinement of algorithmic tech-
niques, and a plethora of fundamental formal advancements during the 1970s
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and early 1980s culminated in a rapid and vivid understanding of electron
correlation problems in atomic and molecular systems.

1.2 Born–Oppenheimer approximation

It is well known that particles at the atomic or subatomic scale, like elec-
trons and the nucleus in atoms and molecules, must be treated quantum
mechanically, as Newtonian mechanics fails to provide the correct descrip-
tion of the behavior of these particles. The quantum mechanical methodology
finds one of its most important domains of application in the evaluation of
atomic and molecular properties. The method is nowadays applied to almost
all branches of physics and chemistry. It also finds its applications in atomic
and nuclear physics to characterize spectral lines and nuclear structure.

In this methodology, a wave function is needed to explain the kinematics
of electrons in atoms and molecules, where the wave function Ψ defines the
quantum state of a system. The wave function Ψ generally depends on time
and has the physical interpretation that |Ψ(ζ, t)|2 represents the probability
density of finding the system at position ζ at the instant of time t. The quan-
tum state Ψ is governed by the Schrödinger equation, which is the first-order
differential equation in t of the form

i~
dΨ(ζ, t)
dt

= HΨ(ζ, t) (1.1)

where H is the Hamiltonian of the system. The fundamental task is to partition
Equation (1.1) into space (ζ) and time (t) and solve the time-independent part
of the Schrödinger equation

H|Ψ(r,R)〉 = E|Ψ(r,R)〉 (1.2)

In atomic units, the Hamiltonian H for N electrons and M nuclei is given by

H = −1
2
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(1.3)
in which MA is the ratio of the mass of nucleus A to the electron mass. The first
two terms in the above equation represent the kinetic energies of the electron
and the nucleus. The third term refers to the electrostatic interaction between
the nucleus and the electrons, while the last two terms denote the electron-
electron and nucleus-nucleus repulsions. This Hamiltonian is universal in the
sense that it describes all of everyday matter from biological macro molecules,
such as proteins, enzymes and nucleic acids, to metals and semiconductors to
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synthetic materials such as plastics. Thus, if we could solve for the eigenvalues
and eigenfunctions of this Hamiltonian, we could predict any property we
wished of a given system. This fact led the physicist P. A. M. Dirac to comment
that all of chemistry is a solved problem, at least in principle. Of course, the
problem cannot actually be solved exactly, so approximations are needed and
it is the development of reliable approximate methods on which quantum
chemistry is focused.

Electrons, being lighter than the nuclei, move faster than the nuclei, and
hence, to a good approximation one can assume the nuclei to be stationary.
The large separation in the time scales of electronic and nuclear motions is ra-
tionalized by the fact that the energy separation between the electronic energy
levels is much larger than the rotational and/or the vibrational energy levels.
This is akin to a situation where one might contemplate that the electrons
are being dragged along with the nuclei. From a dynamical perspective, this is
equivalent to stating that electrons follow the motion of the nuclei in an adi-
abatic manner. This is the so-called Born–Oppenheimer (BO) approximation
[26, 27]. In this approximation, the nuclear kinetic energy terms are neglected
and the nuclear repulsion energy terms are considered to be constant. The rea-
son it is an approximation is because, in principle, one cannot ignore the role
of the non-adiabatic effects such as spontaneous and instantaneous motion of
the electrons along with the nuclei. Nevertheless, in the case of many-electron
systems, the adiabatic approximation is an excellent idea to work with. The
mass difference between the nuclei and the electrons in molecules generates
yet another effect. The nuclear components of the wave function are seen to
be much more localized, spatially, in comparison to electronic wave functions
(making the nuclear wave functions rise more steeply than the corresponding
electronic counterparts). This effect, in the classical limit, allows one to treat
the nuclei as classical point masses. Thus, the electronic Hamiltonian or the
Hamiltonian describing the motion of N electrons in a field of M point charges
can be expressed as

He = −1
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(1.4)

Assuming the eigenfunction of the Hamiltonian H to be product separable

Ψ(r,R) = Φe(r, {R}) Φn(R) (1.5)

the Schrödinger equation for the electronic Hamiltonian can be written as

He Φe(r, {R}) = Eelec(r, {R}) Φe(r, {R}) (1.6)

in which the parametric dependence of the eigenvalue Eelec(r, {R}) and the
eigenfunction Φe(r, {R}) on the nuclear coordinate is explicitly acknowledged.
The total energy of the system at a given geometry can then be obtained by


