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Abstract

Single aperture speckle interferometry (Labeyrie, 1970) is a method that de-

ciphers diffraction limited spatial Fourier spectrum and image features of

stellar objects by counteracting blurring effect caused by the atmospheric

turbulence. Together with pupil-plane techniques, as well as hybrid methods

(speckle techniques with non- redundant pupils), it has made impacts in sev-

eral important fields in astrophysics. The field of research that has benefited

the most from such high angular resolution techniques and will still benefit in

the future, is the origin and evolution of stellar systems. However, classical

speckle interferometry falls short of obtaining phase information of the ob-

ject, but provides a second-order moment (power spectrum) analysis which

is the modulus of the object Fourier transform. Triple Correlation technique

and other advanced image retrieval methods has been developed which also

allows the reconstruction of the phase information. Such algorithmic tech-

niques allows to retrieve diffraction limited information from the short expo-

sure images. The thesis discusses the development of two image reconstruc-

tion algorithms based on triple correlation to be used with direct images from

optical interferometers. Direct bispectrum algorithm uses a computationally

intensive yet efficient triple correlation technique to reconstruct object infor-

mation from two dimensional speckle images. Tomographic speckle masking

algorithm has been developed to offer a computationally efficient method to

reconstruct images from speckle data. It uses one dimensional projections

and Radon transform to gain considerable savings in computational time and

memory. Both these algorithms were tested with numerical simulations, real

data and experimental simulations. Numerical simulations of different optical

interferometric techniques was built to understand the possibility of recon-

struction using these methods in multi-aperture optical interferometry. In

the simulations the advantages of the all-in-one beam combination is over

the use of pair-wise combination was also analyzed. We layout a study of

the signal advantage we obtain at low light levels through all-in-one beam



combination in cophased and non-cophased speckle mode. The usability of

these algorithms with diluted aperture interferometers which use pupil den-

sification (Hypertelescopes) is also explored in this thesis. It is seen from the

numerical simulations of image recontructions that the developed algorithms

can be used to restore atmospherically degraded images from hypertelescopes

with good signal to noise ratio.
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the driving wires. These are controlled by ground winches,

computer driven, located at the East side, the West side and

the South side at the polar projection of C1. The motors at

all three points, spaced about 200m apart, are synchronized by

innovative wireless links. The gondola motion is equatorial and

allows a Coude focus to be projected toward the South winch.

The power need for the winches is minimized by tensioning

the wires with counterweights. All the system use solar energy

relayed by batteries during the night. (Labeyrie et al., 2012b) 101
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Chapter 1

Introduction

1.1 History of high resolution imaging.

Two important methods used in observational astronomy are imaging and

spectroscopy. One of the important factors required in astronomical spec-

troscopy is the light gathering power of the telescope, which is determined

mainly by the telescope collecting area and efficiency of the detector and op-

tical subsystems. In imaging the light gathering power of the telescope is

important for observing fainter stars, but the other equally important aspect

of astronomical imaging is the optical resolution. Resolution determines the

smallest details in the image, and is directly proportional to the size of the

telescope aperture. Thus, it has been the quest of the mankind to build tele-

scopes of bigger sizes and larger collecting areas. In this quest we have been

faced with a number of challenges, including technological limitations with

optics and detectors, degradation by atmosphere and other factors. Still, us-

ing ingenious workarounds and ideas we have been seeing objects further and

further away with increasing detail.

Stellar interferometry was pioneered by H. Fizeau in 1860’s. In 1867

Fizeau remarked that interference fringes produced from a source of finite

dimensions must necessarily be smeared by an amount depending on the size

of the source. He suggested that observation of the smearing, or lack of clarity

of the fringes, created by a star through a large telescope, whose aperture was
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masked by a pair of well-separated apertures, could be used to put an upper

limit on its angular dimensions. Stéphan (1874) worked on the idea and

within a few years he masked the aperture of the 30′′ telescope at Marseille

Observatory. He did it in a manner which gave two identical apertures the

largest possible separation and observed fringes crossing the now enlarged

image of a star.

Michelson’s 1 papers in 1890 and 1891 rejuvenated the idea of stellar inter-

ferometry by describing in detail how it should be carried out by measuring

the fringe visibility, as a function of aperture separation. The technique he

used for these calculations was to understand the superposition of the inter-

ference fringes created from each point on the extended disk of the star. The

concept of the coherence function, usually used for such calculations today,

arose decades later from the work of Zernike in 1938. Michelson pointed

out that for useful measurements of stellar diameters to be made, apertures

separated by up to 10m would be required. Michelson soon applied this tech-

nique to resolve the satellites of Jupiter using the 40′′ Yerkes refractor with

a fizeau mask. This was followed by observations from Schwarzchild and Vil-

liger (1891). In 1920 Anderson placed a fizeau mask on top of 100′′ telescope

in Mount Wilson and measured separation of binary star Capella. In 1921

Michelson and Pease built what is now called the ’Michelson Stellar Inter-

ferometer’ (see Figure 1.1). It had two 6′′ mirrors mounted in a periscopic

fashion and could have baselines up to 20feet. Michelson used this instru-

ment to measure the diameter of α-Orionis. Pease followed up this work with

the measurement of 6 more stars (Pease, 1931). In 1946 a radio analog of the

Michelson Interferometer was built (Ryle and Vonberg, 1946) to study radio

1

“If now it be possible to find a relation between the size of the object, and

clearness of the interference fringes, an independent method of measuring such

minute objects will be furnished; and the purpose of this paper is to show

that such a method is not only feasible but in all probability gives results far

more accurate than micro metric measurements of image” –Michelson (1891)
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Figure 1.1: Layout of Michelson Stellar Interferometer. M1, M2, M3 and M4 are

mirrors used to form the periscopic arrangement (image courtesy: A. Labeyrie).

emissions. This led to the development of aperture synthesis, which is the

technique of synthesizing large telescopes using movable apertures. The next

big step in high resolution imaging was the invention of intensity interferom-

etry by Brown and Twiss in 1956. An intensity interferometer measures the

correlations between intensities at two points observing the same source. The

principle of intensity interferometry was used to build the Narrabi intensity

interferometer (Brown et al., 1974) which had two separate telescopes with

separations up to 188m. Tolerance to mechanical precision and immunity to

atmospheric scintillation are remarkable properties of such an interferometer.

An intensity interferometer measures correlations in light intensity, which

gives the modulus of complex degree of coherence. Another break through

in the quest for high resolution was made by Antoine Labeyrie in 1970 with

invention of speckle interferometry. It takes advantage of the randomness of

atmospheric fluctuations to obtain the Fourier amplitude of the object. This

was a milestone in observational astronomy using single aperture telescopes.

In 1975, Labeyrie constructed the first two telescope interferometer called

I2T (interferometer a deux telescope) with 12m base line (see Figure 1.2). He



1.1 History of high resolution imaging. 4

Figure 1.2: I2T Interferometer (Labeyrie et al. 2006).

Figure 1.3: GI2T Interferometer in Calern (Labeyrie et al. 2006).

obtained interferometric fringes of Vega this interferometer. Following the

success he moved to a better site, at Centre d’Étude et de Recherches en

Géodynamique et Astronomie (CERGA) (Labeyrie, 1978). Soon followed the

construction of the GI2T (Grand Interféromètre à 2 telescopes) interferom-

eter with two boule telescopes each with 1.5m telescopes that run on North

South Tracks (see Figure 1.3). The first fringes with GI2T were obtained in

There was also a great deal of development in the active and adaptive systems

used for atmospheric correction during the 1980’s, though this concept was

already developed earlier in 1953 by Babcock.

One of the remarkable fields that developed together with high reso-
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lution optical interferometry is image restoration algorithms. Deconvolu-

tion schemes like MEM (Maximum Entropy Method; Frieden (1972); Pon-

sonby (1973); Ables (1974)) and CLEAN (Högbom, 1974) together with phase

restoration schemes, like closure of phase by Jennison (1958), supplemented

the technological advancements in radio interferometry. In speckle interfer-

ometry Knox-Thompson and Weigelt led the development of Knox-Thompson

Technique (Knox and Thompson, 1974) and Triple Correlation (Weigelt,

1977) respectively. Several new image reconstruction algorithms have been

developed since to particularly work with the long baseline optical inter-

ferometric data. MIRA (Multi Aperture Image Reconstruction Algorithm)

(Thiébaut, 2008) seeks for image restoration based on direct minimization

technique. The MEM based techniques has been exploited in optical in-

terferometry algorithm developed at Cavendish Laboratory called BSMEM

(Bispectrum Maximum Entropy Method) by Buscher (1994). The Build-

ing Block Method developed by Hofmann and Weigelt (1993) uses principles

close to CLEAN. WISARD (Weak-phase Interferometric Sample Alternating

Reconstruction Device), an algorithm developed by Meimon et al. (2009)

at ONERA (Office National d’ Etudes et de Recherches Aerospatiales) with

JMMC (Jean-Marie Mariotti Center) uses the method of self calibration. The

Interferometric Imaging Beauty Contest (Lawson et al., 2004; Baron et al.,

2012) conducted by International Astronomical Union’s Working Group on

Optical/Infrared Interferometry allows a very good platform to compare the

reconstruction capabilities of these algorithms.

1.2 Basics of Optical Interferometry

1.2.1 A simple model for a two telescope interferome-

ter

Consider a basic two aperture interferometer as shown in Figure 1.4 with

apertures A1 and A2 located at positions x1 and x2 respectively. The dis-
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Figure 1.4: A basic model of a two telescope interferometer. The plane wavefronts

from the star are incident on the two apertures, A1 and A2. The path lengths are

adjusted using delaylines, d1 and d2, for the beams to coherently combine to form

an interference pattern.

placement vector for such a baseline is B equal to x2 − x1. The unit vector,

ŝ, gives the direction of the baseline to a single point source. Consider for

simplicity that the astronomical source is monochromatic with wavelength λ.

The optical fields at positions x1 and x2 are given by,

φ1 = e−ikŝ.x1e−iωt, (1.1)

φ2 = e−ikŝ.x2e−iωt

(1.2)

φ2 can be also written as,

φ2 = e−ikŝ.x1e−ikŝ.Be−iωt. (1.3)

After normalization we can write,

φ1 = e−iωt,

φ2 = e−ikŝ.Be−iωt. (1.4)
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After arrival at A1 and A2 the fields travel distances d1 and d2 incurring

additional phase.

φ1 = e−ikd1e−iωt,

φ2 = e−ikd2e−ikŝ.Be−iωt. (1.5)

The combined field at the detector is given by,

φcom = φ1 + φ2 = e−iωt(e−ikd1 + e−ikd2e−ikŝ.B). (1.6)

From this we can deduce the time averaged power at the detector,

P ∝ φ∗

comφcom = 2
[
1 + cos k(ŝ.B+ d1 − d2)

]
. (1.7)

If the incident source flux power is F and collecting area of Apertures is A

then

P = 2AF
[
(1 + cos k(ŝ.B+ d1 − d2)

]
,

= 2AF
[
1 + cos kD

]
. (1.8)

The equation 1.8 has the form of interference fringes with power as a

function of optical delay D. This is shown in Figure 1.5. The adjacent fringe

crests are separated by an angle,

∆s =
λ

B
. (1.9)

1.2.2 Coherence Function

The coherence function or complex degree of coherence is a normalized corre-

lation function between the complex wave fields φ(x, t) at two points x1 and

x2.

ν(x1, x2) =
〈φ(x1, t)φ

∗(x2, t)〉√
〈|φ(x1, t)|2〉〈|φ(x2, t)|2〉

, (1.10)

where 〈..〉 is average taken in time. Physically the coherence function tells

you how good the interference pattern between the points will be.
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Figure 1.5: The power measured at the detector of the 2 telescope interferometer

as a function of optical delay.

1.2.3 Visibility and Van Cittert–Zernike theorem

Visibility, V of the fringes is defined as the contrast between light and dark

areas (Pmax and Pmin) of the observed fringes. This is a dimensionless quantity

given by the equation,

V =
Pmax − Pmin

Pmax + Pmin

. (1.11)

An important property of visibility is that it is dependent on source size and

resolution of interferometer. When the sources are unresolved, the fringe visi-

bility is 1. As the sources becomes more and more extended and thus resolved

by the interferometer the fringes decrease in amplitude and the visibility be-

comes less than 1. An example of the two sources with different visibilities is

given in Figure 1.6.

The fringe visibility V is directly related to coherence function ν. If P 2
1

and P 2
2 are mean intensities of optical fields at A1 and A2 respectievely. The

visibility of the fringes V at the detector is given by

V =
2P1P2

P 2
1 + P 2

2

.|ν(A1, A2)|. (1.12)

The Van Cittert–Zernike theorem (Van Cittert, 1934; Zernike, 1938) gives

the relationship between the interferometer response and the brightness dis-

tribution of the target. It states that, for a monochromatic incoherent source,
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Figure 1.6: The fringes of a point source (blue) and an extended source (red

dotted)

the Fourier transform of the complex spatial coherence function is the angu-

lar intensity distribution of the source. This theorem is the spatial analog of

the Wiener–Khinchin theorem (Wiener, 1930; Khintchine, 1934) for a time-

dependent wave, which states that power spectrum is the Fourier transform

of its temporal autocorrelation function. The Van Cittert–Zernike theorem

gives us the ability to find out the details about the observed object from

measuring fringe visibilities. This is a fundamental theorem of astronomical

interferometry.

1.3 Speckle Masking and Speckle Interferom-

etry

If an ideal infinite aperture telescope is used to observe a monochromatic

point star, the image would be a single peak δ(r0) in the focal plane r. But

because of both the atmosphere and the limited telescope aperture, the im-

age recorded is S(r; t), which is the instantaneous atmospherically degraded

monochromatic, point spread function (PSF) of the telescope, at time t. This

is called a “speckle pattern”. The image of a source object observed by a

telescope, I(x, y) is the convolution between this PSF, S(x, y) and the ideal
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image of the source, O(x, y).

I(x, y) = S(x, y) ∗O(x, y). (1.13)

The above equation represents the intensity of the image. For large tele-

scopes the phase distortions across the aperture gives rise to speckle patterns

rather than airy diffraction pattern. Because atmospheric turbulence results

in changes of the PSF in the order of milli-seconds, the speckle pattern needs

to be recorded using a short exposure detector. These speckle images can

be recorded directly using an image intensifier and a video camera recorder,

or with the newer Electron Multiplying Charge Coupled Device (EMCCD)

systems (Saha,2015 and references therein). In long exposure images these

speckle patterns gets averaged out in the image plane and results in a blurred

image. This effect is shown in Figure 1.7. This atmospheric degradation is

the major challenge in astronomical imaging. In 1970 A.Labeyrie found out

a way to get around atmosphere through the ingenious method of speckle

interferometry (Labeyrie, 1970). The technique is to take a two-dimensional

Fourier transform of the images and to sum the square modulus of the Fourier

transforms. From this one can obtain the spatial power spectrum of the ob-

ject. Details of this are explained in Section 3.2.3. From the spatial power

spectrum function one can calculate by Fourier transform, the spatial auto-

correlation, but not the actual star image. Thus, since the spatial autocor-

relation function cannot uniquely be translated to an image, the application

of speckle interferometry seems to be limited even though it does provide a

wealth of information about simple stellar objects. For example, a binary pair

can easily be recognized, and the separation of the elements, their relative in-

tensities and their orientation deduced; but one cannot distinguish between

two centro-symmetric possibilities for the image (e.g. brighter element on the

left or on the right).

Again, limb darkening or other intensity variations as a function of radius

of the star determined this way must also be assumed to be centro-symmetric.

On the other hand, if one looks at the speckle images of a binary star for
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Figure 1.7: Atmospheric degradation in astronomical imaging. a) The phase

perturbations across a single aperture telescope. b) The short exposure speckle

PSF. c) The ideal diffraction limited PSF. d) The long exposure PSF which is the

average of several short exposure PSF.

example, one can identify with manual observation, which component is on

the left and which on the right. This happens because the individual speckles

are like diffraction-limited PSF patterns. Thus it was clear that the technique

should not really be limited by the spatial autocorrelation function; and after

publication of the first speckle results it quickly became a challenge to find

algorithmic methods to extract image information directly.

The first successful method of deducing the phases of the Fourier com-

ponents was by Knox and Thompson (1974). The algorithm involved trans-

forming the image in frequency plane and then correlating it with a shifted

version of itself. The shift vector is chosen very small and the correlation is

summed over many frames to obtain diffraction limited image.

Another method of determining the phase of the transform S(u) is to

use the ideas behind phase closure. The idea was proposed by Weigelt and

Hoffman (1977). It has the advantage that larger discrete steps in spatial fre-

quency u can be used, so that it is less error prone than the Knox–Thompson

algorithm. Despite the large computation times involved in processing speckle

sequences by this method, it has produced excellent quality images of quite

complicated scenes. Till now this remains one of the better methods of image
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reconstruction.

1.4 Long Baseline Optical Interferometers

The success of GI2T prompted the development of many new optical interfer-

ometers. These interferometers has contributed in understanding and discov-

ering new science in high resolution. VLTI (Very Large Telescope Interferome-

ter) is an optical interferometer at ESO (European Southern Observatory). It

consists of four 8m telescopes and four small 1.4m telescopes. The telescopes

are used individually or used in interferometric mode using different instru-

ments like MIDI (Mid Infrared Instrument) and AMBER (near-infrared/red

focal instrument for the VLTI). Keck Interferometer, located in Mauna Kea

in Hawaii, consists of two large 10 m segmented mirrors separated at baseline

of 85 m. Like VLTI, the telescopes can work individually or in interferometric

mode. The CHARA (Center for High Angular Resolution Astronomy) array

is maintained by Georgia State University. It has six 1 m telescopes with a

maximum separation of 330 m.

These current interferometers use 2-4 telescopes and can only sample a

small part of the spatial frequency space at once. Techniques like aperture

synthesis allows compensation of this drawback and helps to produce usefule

results with these interferometers. But snapshot imaging with these interfer-

ometers are difficult owing to their poor spatial frequency coverage. Diluted

aperture interferometers like Hypertelescopes offer an innovative way to ob-

tain snapshot images of stellar objects.

1.5 Hypertelescope

Multi-aperture interferometric arrays could provide direct snapshot images.

Such arrays can be of diluted design, with a large number of smaller mir-

rors spread over a large area. A problem with such type of direct imaging

is that the PSF will contain a broad halo of diffracted light surrounding the
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Figure 1.8: Layout of a hypertelescope showing the different parts.

central interference peak. A considerable amount of energy is diffracted in to

this side halo and leaves only a smaller part of energy in the central peak.

De-convolving the complex speckle structure in the halo also will be a diffi-

cult problem. A solution to this is an innovative beam combination scheme

called densified pupil imaging or ’hypertelescope imaging’. The hypertele-

scope is essentially a multi-aperture Fizeau interferometer which is equipped

with auxiliary optics to “densify ” the exit pupil (see Figure 1.8). This inten-

sifies the central peak and makes it usable, with the diluted array. Most of

the light received from an on-axis star is concentrated in to the central peak

if the diluted array is phased accurately. This peak also moves correspond-

ing to the star motion within a limited field of view. These properties have

been already verified by numerical simulations, laboratory experiments and

prototypes.
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1.6 Motivation

Interferometric imaging through aperture synthesis with many baselines have

been highly successful at radio wavelengths and has also given significant

results in optical wavelengths. But it has been only recently that it was re-

alized that many-aperture optical arrays can provide snapshot images, with

arbitrarily diluted apertures using hypertelescope imaging. This “hyperte-

lescope” (Labeyrie, 1996) approach to imaging may be viewed as a simple

modification of the classical Fizeau interferometer employing pupil densifi-

cation. It has a vast potential, particularly in space where large arrays of

relatively small apertures may become easy to implement with forthcoming

techniques of formation flying. Prototypes of such systems already have been

developed (Le Coroller et al., 2012a, 2015) and tested. Large scale prototype

versions like Ubaye Hypertelescope are under development (Labeyrie et al.,

2012b).

A major challenge for these type of hypertelescopes is the adaptive phasing

system. Modified wave sensing techniques such as dispersed speckle analysis

(Borkowski et al., 2005) are planned to be used with these systems. But

development and installation of such advanced techniques will take time. In

such a scenario speckle mode observations with hypertelescopes becomes a

viable alternative. Even in the initial versions of hypertelescopes (Pedretti

et al., 2000) phase variations resulted in speckle images. In this thesis we

aimed to study imaging with such diluted aperture interferometers in speckle

mode with techniques like speckle interferometry (Labeyrie, 1970) and speckle

masking (Weigelt, 1977; Lohmann et al., 1983).

For adaptively phased imaging and speckle imaging, the incomplete out-

put pupil filling provides a serious challenge for perfect imaging. Even after

densification of the input diluted aperture, the PSF will have a dominant

speckle halo surrounding the central peak, due to partial filling of the out-

put pupil. Similar to a study by Reinheimer et al. (1993) for VLTI (Very

Large Telescope Interferometer) and Reinheimer et al. (1997) for LBT (Large
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Binocular Telescope), it is shown in this thesis work with the help of nu-

merical simulations that even with smaller pupil filling rate in output pupil,

high resolution imaging can be done with these interferometers by utilizing

aperture rotation through the night. Techniques for using aperture rotation

with speckle techniques for better reconstruction are discussed in the thesis.

The study of speckle reconstruction algorithms with hypertelescopes is

important for two main reasons. The imaging equation of hypertelescopes

are different from normal imaging system due to use of pupil densification.

Unlike normal imaging systems, the pseudo-convolution equation of the hy-

pertelescope imposes a field of view restrictions. Also in a pupil densified

system the PSF is not anymore space-invariant. Secondly gaps in spatial fre-

quency sampling due to the large baselines of diluted apertures are a problem

for imaging and reconstruction and use of aperture rotation through night is

required to fill the gaps in u-v plane. How this can be achieved in speckle

imaging, is probed in this thesis.

The imaging properties of hypertelescope in cophased mode have been

studied extensively before by Lardière et al. (2007) and Patru et al. (2009).

In this thesis we try to develop our own image reconstruction algorithms using

triple correlation and try to understand its applications to diluted arrays with

speckle imaging simulations.

1.7 Thesis Overview

This thesis mainly concentrates on the development of speckle interferomet-

ric and speckle masking code for obtaining diffraction limited images from

optical telescopes and its applications to direct imaging optical interferom-

eters. The algorithms developed have been tested with real speckle images,

experimental simulations and numerical simulations. The image processing

techniques developed can be used with data of any type of optical telescope,

but the application of the code in this thesis is mainly concentrated on long-

baseline interferometer and hypertelescope simulations. Hypertelescope and
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long-baseline interferometer simulation software was also developed as part

of the thesis which simulates both cophased and speckle imaging.

Chapter two discusses the details of the numerical algorithms used to sim-

ulate different optical interferometers and their images. We have developed

a numerical simulation code to simulate imaging of different direct imaging

optical interferometers. Different beam combination schemes and different

array configurations could be simulated using this software. The codes are

used extensively in our study of different image reconstruction algorithms.

The details of these numerical simulation code are described in the Chapter.

Chapter three describes the technique of triple correlation and direct bis-

pectrum based image reconstruction from speckle images. The algorithm uses

four dimensional bispectrum of short exposure speckle images to reconstruct

the phase of the observed object. We have developed a direct bispectrum

based image reconstruction code to retrieve stellar images. This algorithm

with the technique is explained with details and results.

Chapter four explains the Tomographic Speckle masking algorithm. The

direct bispectrum algorithms are computationally expensive and a signifi-

cant gain in running time and computational resources can be achieved by

utilizing tomographic techniques. We have also developed such a technique

called Tomographic speckle masking using Radon Transform that used one

dimensional projections of speckle images to retrieve object information. This

technique achieves savings in computational time and memory. The results

of the developed algorithm with real and experimentally simulated speckle

data are also discussed in this Chapter. Also the algorithm is compared with

Direct bispectrum code to understand its usability.

Chapter five concentrates on speckle imaging with hypertelescopes. De-

veloped algorithms of bispectrum based reconstruction has been used with

simulations of hypertelescope imaging to obtain reconstructed images of sig-

nificant Signal to Noise Ratio (SNR). In the absence of adaptive optics for

such diluted aperture telescopes, speckle imaging could be a real alternative

to obtain high resolution stellar images. The Chapter discusses the details
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of the simulations with the prospects of using the developed algorithms with

future hypertelescopes.

The sixth chapter concludes the thesis with brief discussion of the results

that has been achieved and the important lessons that has been learned during

the study. The chapter also discusses the future prospects of the algorithms

that have been developed and its application to the upcoming large optical

interferometers.



Chapter 2

Numerical Simulation of

Optical Interferometers

2.1 Importance of phase in signals

Phase variations in the incident wavefront effects the image formation. The

complex field distribution at focal plane of a telescope is related to that at

the image plane through a Fourier transform. The intensity of a point source

recorded at the image plane is the spatial power spectrum of the complex field

at the entrance aperture (Goodman, 2005). By the autocorrelation theorem

(Wiener Khinchin theorem; Wiener (1930); Khintchine (1934)), the inverse

Fourier transform of the intensity image is then equivalent to the autocorre-

lation of the complex field distribution at the entrance aperture. Thus the

presence of any degradation in the phase of the wavefront at the aperture

plane would mean degradation of the Fourier transform at the image plane.

In this context it is important to probe the influence of phase in a signal.

The importance of phase in signals have been studied in detail by papers by

Oppenheim and Lim (1981) 1 and Roddier (1987). We have done our own

1

“In the Fourier representation of signals spectral magnitude and phase tends

to play different roles and in some situations,many of the important features

of signals are preserved if only the phase is retained.” - Oppenheim and Lim
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Figure 2.1: Example demonstrating importance of phase in signals

numerical experiments to better understand the importance of phase. The

results are shown in Figure 2.1. It is seen that from phase information most of

the signal can be recovered. Two images, one the portrait of a sports women,

and the other, an image of VBT (Vainu Bappu Telecope) dome were used

in the experiment. When each other’s Fourier phase and amplitudes where

exchanged, it was observed that the resultant image showed dominance of the

phase part that was used. This experiment clearly shows the dominance of

phase in signals.

2.2 Atmospheric phase variations

The atmosphere behaves like a very thick bad piece of glass in front of your

telescope, a piece which is constantly changing2. This essentially is a bad

(1981)

2

“Doubtless this rather unexpected result may be explained as follows: The

confusion of the image in poor seeing is due to the integrated effect of elements

of the incident light waves, elements which are not in constant phase relation

in consequence of inequalities in the atmosphere due to temperature differ-

ences; the optical result being a “boiling” of the image, closely resembling

the appearances of objects viewed over a heated surface.” – Michelson.A.A,

’Studies of Optics’ (1927)
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Figure 2.2: A speckle image (Saha, 1999)

optical element in the imaging process of the telescope. The result of this

bad optical element is that the image of a point star is not the diffraction

pattern of the geometrical entrance aperture, but a much more complicated

and diffused image. The image has two properties: an envelope, which is

the image recorded in a long-exposure photograph (> 1 s) and, within it,

an internal speckle structure which is continuously and rapidly changing and

can only be photographed using a very short-exposure(< 100 ms). On the

other hand, even if the speckle structure is continuously changing, the angular

diameter of its smallest distinguishable features correspond to the diffraction

limit of the complete telescope aperture. Figure 2.2 shows a real speckle

image by the speckle interferometer developed by Saha et al. (1997).

2.2.1 Kolmogorov Turbulence Model

The history of turbulence analysis begins with two famous papers by Kol-

mogorov (Kolmogorov, 1941; Kolmogorov, 1991) called as K41 which de-

scribed for the first time a simple model for the spatial and temporal be-

havior of turbulent motion of a fluid. Turbulent motion arises when motion

is dominated by inertial rather than viscous effects, so that kinetic energy of

flow may be transferred from one direction to another, or from one scale to

another, but is not damped out and converted to heat by viscosity.

Correlation functions are widely used to describe statistically varying



2.2 Atmospheric phase variations 21

fields, so we might find it natural to express the fluctuations in such terms.

Kolmogorov (1941) devised a slightly different way of expressing measures of

turbulence. He defined a structure function to relate the values of a function

f(r) at neighboring points r1 and r2,

Df (r1, r2) =
〈
[f(r1)− f(r2)]

2〉 , (2.1)

where 〈〉 > indicates a time-averaged value. In a homogeneous region, this

is a function only of r = r1 − r2 and not of their individual values, so that

we can write

Df (r) =
〈
[f(r + r1)− f(r1)]

2〉 . (2.2)

For such a structure function a correlation function can also be related.

Bf (r) =
〈[
f(r + r1)− f

] [
f(r1)− f

]〉
, (2.3)

where f is the mean value.

The structure function Dn(r) for the refractive index fluctuations contains

enough information to build up a good representation of the atmospheric

degradation of an optical telescope, which can also be confirmed experimen-

tally. The main effect of the turbulence is to disturb the relative phases of the

incident wave at different points in the aperture. Following the methods used

in an important review by Roddier (1981), we can calculate the integrated

effect of the whole atmosphere at the ground plane. We assume that the

phase fluctuations are relatively small, so that when a plane wave is incident

from outside the atmosphere, we can calculate its phase properties. This is

done by integrating along columns of air, determined by the geometrical path

it would have if the atmosphere were completely uniform.

2.2.2 Fried’s Parameter

If a telescope has an aperture diameter d, which is small enough that the

atmospherically distorted phase wavefront from a point star is well correlated
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over the whole of it, the resolution of the telescope is determined by d, as

if the atmosphere had no effect. On the other hand, if d is very large, the

resolution is determined by the atmospheric properties (’the seeing’), and the

large telescope diameter is only important in collecting more light. A physi-

cally intuitive parameter which describes the phase correlations was defined

by Fried (1966). Fried’s parameter r0 is the value of d for which the two

limitations are equivalent.

Dφ(r) = 6.88
( r

r0

) 5

3

(2.4)

Fried’s parameter can be expressed in terms of refractive index structure

constant by the following equation

r0 = 0.185λ
6

5 cos
3

5 z[

∫
C2

N(h)dh]
−

3

5 , (2.5)

where λ is the wavelength, z is the zenith angle, C2
N(h) is the atmospheric

turbulence strength which is a function of height h.

2.2.3 Simulating Kolmogorov Phase Screen

The atmospheric fluctuations are modeled by representing the phase φ(r) as

a random function which changes by amounts in the range of [−π, π] from

point to point on the distance scale of Fried’s parameter r0. The model-

ing of atmosphere in simulation allows any wavefront structure function to

be used, although it appears that the differences between the results for the

Kolmogorov structure function and a random Gaussian approximation are

very minor. The speckle PSF is an image of a point source degraded by the

phase distortions produced by the atmosphere. Assuming that the ampli-

tude variations are relatively insignificant, we can describe the image as the

Fraunhofer diffraction pattern (i.e. Fourier transform, F (u)) of the function

f(r) = S0(r)e
iφ(r). Here, S0(r) describes the telescope aperture, i.e. has

value 1 within it and 0 outside, and would generally be circ(r/R), where R

is the radius, or maybe an annular function to allow for a central obscuration
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(secondary mirror). We describe here a simple model which has the right

features and illustrates the physics. The technique used by us to simulate the

atmospheric turbulence is the FFT (Fast Fourier Transform) technique (Lane

et al., 1992). It is computationally very fast. A major disadvantage of this

technique is its inability to represent tilt based shifts due to turbulence. This

is due to the problems of the technique with low frequencies. To avoid this

effect, we create very large phase screens using the FFT method, but use only

a smaller portion of it. This simple process allows to simulate phase screens

where the lower frequencies are well represented. Random wavefronts with

turbulence parameters are generated for different layers and they are super-

posed to simulate the resultant wavefront which simulates the effect of the

whole column of the atmosphere. The temporal evolution of individual phase

screens is obtained by moving the phase screens at each layer at a certain

wind velocity obtained from the wind profile. A representation of the model

of atmosphere is shown in Figure 2.3.

Figure 2.3: The multilayer model of turbulence used in the simulations.

The start of the process is to generate the power spectral density. The

power spectral density in case of Kolmogorov phase screen is given by,

ΦN(κ, h) = 0.033C2
N(h)κ

−
11

3 , (2.6)

where κ is the scalar wave number and h is the distance from the aperture. A
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random process of known power spectrum can be simulated by applying an

inverse Fourier transform on the square root of the power spectrum filtered

with Gaussian noise. This principle is used to create different atmosphere

layers. There are two important parameters required for such a simulation,

they are the wind velocity model vw(h) and the turbulence strength C2
N(h).

The wind velocity is dependent usually on site measurements, but a general

model can be assumed to be a triangular function. We have obtained the

wind velocity measurements from the following studies, Gentry et al. (2004);

Roopashree et al. (2010) and Garćıa-Lorenzo et al. (2011).

The C2
N(z) profile is site dependent and choice of a standard model is very

difficult. We have adopted the modified Hufnagel-Valley turbulence profile

(Parenti and Sasiela, 1994) given by

C2
N(h) = 8.16× 10−5h10e−h/1000 + 3.02× 10−17e−h/1500

+1.90× 10−15e−h/100 (2.7)

Subsequently the phase screens are generated using the two models and

the entire atmosphere column is simulated. The structure function and other

statistics are verified to closely represent Kolmogorov turbulence. We then

constrain this phase screen by the bounding aperture S0. Finally, we trans-

form this back to the image plane u to see the speckle image or the atmo-

spherically degraded point spread function.

2.3 Earth Rotation Aperture Synthesis

A very important development in the field of interferometry was the utiliza-

tion of projected array baseline with earth’s rotation. The rotation of earth

enables an interferometer to sample visibilities at various spatial frequen-

cies with the same ground baseline. This phenomenon has been exploited

to increase the spatial frequencies sampled by the interferometer. We have

incorporated the simulation of this time variance of baselines with time of

observation. The detailed study of synthesis mapping has been done by Ryle
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and Vonberg (1946); Thompson et al. (2001). If we consider a right-handed

coordinate system (X, Y, Z) where X and Y are measured parallel to earth’s

equator. Y is measured towards east and Z towards the north pole. The

(u, v, w) coordinates are defined for observation in the direction of point S,

which has hour-angle and declination H and δ respectively. The coordinate

Figure 2.4: Earth Rotation Aperture Synthesis as simulated by the developed

software. (Top) The 3 mirror aperture used in the simulation. (Middle and Bot-

tom) Aperture synthesis with different latitudes, source declinations and hours of

observation.

system (u, v, w) can be obtained from the array coordinates (X, Y, Z) by the

following transformation.



u

v

w



=




sinH cosH 0

− sin δ cosH sin δ sinH cos δ

cos δ cosH − cos δ sinH sin δ







X

Y

Z




(2.8)
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The array rotation as simulated by the software using such a transformation

is shown in figure 2.4.

2.4 Simulation of techniques in optical inter-

ferometry

For our study of image reconstructions from optical interferometers we have

concentrated on direct imaging. For such simulations we have build a soft-

ware package in MATLAB called IMAGIN which produces realistic images of

different optical interferometers under atmospheric turbulence. The different

types of optical interferometric techniques simulated by us are

� Aperture masking over single aperture telescope

� Long base line optical interferometers with large mirrors

� Diluted Optical interferometers

2.4.1 Aperture masking over single aperture telescope

Aperture masking is a technique of using masked apertures on a single aper-

ture telescope (Baldwin et al., 1986; Haniff et al., 1987) and to process the

fringe systems thus obtained to reconstruct the image. Aperture masking has

been used together with speckle imaging to obtain results with better SNR

(Saha, 2007). For aperture masking simulations we consider the equation of

the PSF as

I(x, y) = A(x, y) ·

∣∣∣∣∣

N∑

j=1

e−
2πi
λ

(xuj+yvj) · eiφj

∣∣∣∣∣

2

, (2.9)

with uj and vj the positions of the jth subaperture, φj the corresponding

atmospheric piston error and with A(x, y) being the Diffraction Function

corresponding to subaperture give by,

A(x, y) =

∣∣∣∣
2J1(ρR)

ρR

∣∣∣∣
2

, (2.10)
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Figure 2.5: A simulated aperture mask with 4 sub-pupils

where ρ = 2π
λ

√
x2 + y2 is the radial distance in reciprocal space and R is the

radius of subaperture.

2.4.2 Multi-speckle images from long baseline interfer-

ometry

We have simulated imaging with pupil configurations similar to VLTI and

LBT (see Section 1.4), which are optical interferometers in which sub-apertures

are large in size (1m−10m) and small in number (2−6). Such interferometers

rely mainly on earth rotation synthesis to sample visibilities at different spa-

tial frequencies. The simulations also include atmospheric degradation, earth

rotation and photon noise. For such interferometric systems, with Fried’s

parameter r0 is less than the sub-pupil aperture size, we will obtain ’multi-

speckles’ in the image plane. Multi-speckles are speckle images with the

interference fringes inside each speckle. These fine interference fringes corre-

spond to the larger baselines. The first long baseline interferometer to obtain

such multi-speckle images is the GI2T interferometer at CERGA. We have

developed simulations that closely resemble the observations of multi-speckles

that can be obtained from interferometers like VLTI and LBT. Some of the

data that was simulated are shown in Figure 2.6. These data were used for

speckle masking reconstruction with the direct bispectrum code we developed
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(Surya and Saha, 2014). The results are discussed in Section 3.5.3. A ma-

jor advantage of using multi-speckle data with speckle masking is that the

baselines need not be non-redundant.

Figure 2.6: The simulated multi speckle images with different configurations of

large telescope interferometers. (Top) The two telescope aperture configuration

similar to LBT and the corresponding multi-speckle image. (Middle) 3 telescope

aperture configuration and multi-speckle image. (Bottom) 4 telescope aperture

configuration similar to VLTI and the corresponding multi-speckle image.
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2.4.2.1 Steps in the simulation of multi-speckles

The procedure for the simulation of multi-speckles is as follows:

� First step is the simulation of the turbulent atmosphere phase distor-

tions. Using the FFT method, discussed in the Section 2.3, we obtain

the degraded phase screen across the interferometer aperture.

� Next we create the interferometer aperture, which are bounding masks

that will be multiplied with the phase screen to obtain the phase dis-

tortions across the interferometer.

� The simulation of earth rotation aperture synthesis is also a key element

of the process. The instantaneous projection of the interferometer pupil

function as seen from the target object is simulated.

� A Fourier transform and modulus square operation of the pupil plane

provides us the multi-speckled image.

� Photon noise is added to the obtained images from the simulation.

The simulated images of multi-speckles from different aperture configurations

are shown in Figure 2.6.

2.4.3 Diluted Aperture Interferometers

Current optical interferometers are of 3-4 individual telescopes. Such inter-

ferometers use aperture synthesis and image reconstructions to obtain useful

informations regarding the target object using fringe visibility and closure of

phase measurements. A more useful step in future would be to achieve the

capability of direct imaging. This requires the interferometer beams com-

bined together coherently. One of the proposed models of achieving this is

to use a large number of smaller mirror elements to built a dilute aperture

interferometer. This will allow to increase the resolution drastically while

keeping the mirrors small and easy to manufacture. The main issue with

dilute aperture interferometers is the beam combination. If the light from
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all the subpupils are combined in a normal Fizeau mode, it results in a PSF

with a peak in the center but also has a dominant halo outside. A lot of the

energy is dissipated in to these side lobes. This limits the usability of diluted

aperture interferometers to image fainter stars. Several new beam combina-

tion schemes have been devised to go around this limitation. It has been an

important aspect of our study to simulate these beam combination schemes

for imaging interferometry. This is discussed in the next section.

2.4.4 Different types of beam combinations

The beam combination schemes directly affect the field of view in direct imag-

ing interferometers. We have mainly studied 3 types of beam combination

schemes which are expected to be used in the upcoming direct imaging inter-

ferometers.

� Fizeau beam combination

� Hypertelescope beam combination

� Interferometric Remapping Array Nulling (IRAN)

We have incorporated all these beam combinations in the simulation of

optical interferometers. A detailed analysis of the three beam combination

schemes have been done already by Lardière et al. (2007), Saha (2010) and

Glindemann (2011). We would in the following section explain briefly about

these beam combination schemes and the results of simulation of these beam

combination schemes with our software.

2.4.4.1 Fizeau beam combination

Fizeau beam combination is a strict homothetic mapping beam combination

where the ratio of baselines to subaperture diameter in the input baselines is

same as the ratio in the output pupil. The entrance pupil of the interferometer

is mapped on the exit pupil conserving the scale ratios, orientations and

directions. This is the most natural form of beam combination. One of the
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Figure 2.7: Layout of Fizeau beam combination and corresponding PSF

main advantages of a Fizeau beam combination is that it can be described

by the incoherent space-invariant imaging equation

I(x) = O(x) ∗ S(x). (2.11)

The PSF corresponding to the Fizeau beam combination is shown in Fig-

ure 2.7.

2.4.4.2 Hypertelescope beam combination

This type of beam combination was introduced by Labeyrie (1996). In such

type of beam combination the exit-pupil is a densified copy of the entrance

aperture. The centers of the exit pupil subapertures is same relative to input

pupil but the size of the sub pupils are magnified. We define a parameter

called ’pupil concentration coefficient’ γd given by

γd = [do/Do]/[di/Di], (2.12)

where Di and di are entrance pupil diameters of array and the subaperture

respectively. Do and do are the corresponding diameters in the exit pupil. In

a hypertelescope there is no position invariant PSF. The classical convolution

is replaced by a ’pseudo-convolution’ given below.

I(x) = γ2
d .A(x).[O(x/γd) ∗ I0(x)], (2.13)
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Figure 2.8: Layout of hypertelescope beam combination and corresponding PSF.

The beam combination scheme uses small inverted Galilean telescopes in the exit

pupil to densify the input pupil.

where A(x) is the Airy diffraction envelope of the sub-pupil and I0x is the

interference function corresponding to the array. Figure 2.8 depicts the tech-

nique of hypertelescope beam combination. A detailed discussion regarding

this is done in Chapter 5.

2.4.4.3 IRAN

The IRAN (Interferometric Remapped Array Nulling) beam combination was

introduced by F. Vakili et al. (2004). This type of beam combination proposes,

recording the interference in the pupil plane and not in the image plane. IRAN

beam combination performs a non-pure homothetic remapping. An advantage

of such a beam combination is that the moving Airy diffraction envelope is

replaced by a top-hat envelope. The position of this envelope is independent

of the position of the source. The PSF itself is translation invariant inside

the top-hat. The imaging equation can be written as

I(x) = T (x).[O(x) ∗ I0(x)], (2.14)

where T (x) is the tophat envelope, O(x) the object function and I0(x) the

interference function. Figure 2.9 depicts the IRAN beam combination and
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Figure 2.9: Layout of IRAN beam combination and corresponding PSF. The

beam combination is done in this case in the image plane.

the corresponding PSF.

2.4.5 Comparison of all-in-one and pair-wise beam com-

bination

At present most of the optical interferometric facilities follow the setup of

several large telescopes (1 − 8 m) with few baselines. Aperture synthesis is

used to cover the spatial frequency range. Beam combination geometry is also

a major issue in determining the sensitivity of an interferometer. On one side

we can have the pair-wise beam combination, in which, for an interferometer

with n mirrors, beams are divided in to n(n − 1) sub-beams and pair-wise

combined at n(n − 1)/2 detectors. This is a common beam combination

method used in todays interferometers. In such a setup there is one detector

for each baseline. In the other side all the n beams can be combined in one

detector. Such type of beam combination is called all-in-one beam combina-

tion. With the newer optical interferometers like hypertelescopes, which will

use all-in-one beam combination, it is important to understand the gain in

sensitivity that can be obtained from an all-in-one beam combination.

A basic idea in optical interferometry is that the co-addition of different
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interferometric fringes obtained for different baselines should generate the

image of the source (Menut et al., 2008). The addition need not be done in

Fourier space but can also be in image space. This process can give a lot of in-

sights in to the problem of choice of all-in-one or pair-wise beam combination

in future interferometers. It is well known that all-in-one combination gives

an advantage over pair-wise beam combination because of the advantage it

gives in terms of Signal to Noise Ratio due to lower photon noise effect. This

is discussed in detail by Prasad and Kulkarni (1989); Roddier and Ridgway

(1999); Nakajima (2001) and Labeyrie (2007). But we have done further basic

simulations of our own to understand the results better.

2.4.5.1 One dimensional simulations for non-redundant apertures

for cophased beam combinations

For this type of simulations we considered 1-dimensional array of δ functions

with non-redundant baselines as our aperture. The visibility of the Point

Spread Function from such an aperture in all-in-one combination will be the

autocorrelation of the aperture itself. Thus visibility will have a central-peak,

which is n times the secondary peaks. But if we take pair-wise fringes of each

baseline in the aperture and add their visibilities we will have a central peak

which is n(n − 1) times the secondary peaks. This is because each pairwise

visibility will have a central peak which is 2 times the secondary. And we will

add n(n−1)
2

such visibilities corresponding to each baseline. Thus finally our

central peak will be 2.n.(n−1)
2

= n(n− 1) times the secondary peak.

Figure 2.10: Three delta functions with non redundant baselines used as the

aperture.
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Figure 2.11: Visibity comparison 3 subapertures. (Top) The visibility of the

all-in-one combination. The ratio (central-peak/secondary-peak) = n = 3. (Bot-

tom) The visibility of combined pairwise combination, ie visibilities of each pair in

aperture added together. The ratio (central-peak/secondary-peak) = n(n-1) = 6.

Figure 2.12: Four delta functions with non redundant baselines used as the aper-

ture.

Consider A(x, y), an interferometric array of δ-functions. The square of

the Fourier transform will give the fringe system of the aperture if all-in-one

beam combination is used.

I = |F (A)|2. (2.15)

Similarly if pairwise beam combination is considered,

Ik = |F (Aij)|
2 (2.16)

is the equation of the kth pair fringe from subapertures i and j. The pair-wise
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Figure 2.13: Visibility comparison for 4 subapertures. (Top) The visibility of

the all-in-one combination. The ratio (central-peak/secondary-peak) = n = 4.

(Bottom) The visibility of combined pairwise combination, ie visibilities of each

pair in aperture added together. The ratio (central-peak/secondary-peak) = n(n-

1) = 12.

combined image will be,

I =

n(n−1)/2∑

k=1

Ik. (2.17)

We will then take the Fourier Transform of I to get the visibility.

V = F (I). (2.18)

It can be proved that the ratio of central visibility to secondary peaks in a

non redundant aperture will be as follows. For all-in-one beam combination,

CentralPeak

SecondaryPeak
= n. (2.19)

For pair-wise beam combination,

CentralPeak

SecondaryPeak
= n(n− 1). (2.20)

For these simulations we used n= 3 to 10 with three different photon

counts [240, 2400, 24000]. Photon noise was also added to the final fringes.

For both the beam combination schemes the visibility was calculated and
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visibility amplitude ratio was calculated. For all-in-one beam combination,

V isibilityRatio =
SecondaryPeak · n

CentralPeak
. (2.21)

For pair-wise beam combination,

V isibilityRatio =
SecondaryPeak · n(n− 1)

CentralPeak
. (2.22)

We then compared the standard deviation of visibility ratio for all-in-one

and pair-wise beam combination with different photon-count/mirror over 100

frames. The results are shown in the Figures 2.14, 2.15 and 2.16.
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Figure 2.14: Standard deviation of visibility amplitude ratio calculated for 24

photon events per mirror.

From these basic 1-dimensional simulations it is easy to understand that

all-in-one beam combination offers a greater signal to noise ratio compared

to pair-wise recombination especially at low photon levels.

2.4.5.2 Two dimensional simulations of turbulence degraded im-

ages

We consider the 2 dimensional optical interferometer with N sub-apertures

spread in a 2 dimensional plane. We also consider the effect of turbulence
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Figure 2.15: Standard deviation of visibility amplitude ratio calculated for 240

photon events per mirror
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Figure 2.16: Standard deviation of visibility amplitude ratio calculated for 2400

photon events per mirror

across the subapertures. For the current study we consider the mirrors to be

of size lesser than the r0. In this type of setup we need to consider only piston

errors introduced at each sub-aperture. One of the non phased fringe system

for subapertures with positions (uj, vj) and (uk, vk) with corresponding piston
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Figure 2.17: The point spread functions for all-in-one and pair-wise combination

in cophased and non-phased cases. a) all-in-one cophased PSF b) pair-wise- com-

bined cophased PSF c) all-in-one turbulence PSF d) pair-wise combined turbulence

PSF.

errors φj and φk extracted from their corresponding positions in phase screen

is given by,

Ijk(x, y) = A(x, y) ·
∣∣∣e− 2πi

λz
(xuj+yvj) · eiφj + e−

2πi
λz

(xuk+yvk) · eiφk

∣∣∣
2

. (2.23)

with A(x, y) being the Diffraction Function corresponding to subaperture

give by,

A(x, y) =

∣∣∣∣
2J1(ρR)

ρR

∣∣∣∣
2

. (2.24)

where ρ = 2π
λz

√
x2 + y2 is the radial distance in reciprocal space,R is the

radius of subaperture and z is the distance to image plane.

The pair-wise speckle PSF can be obtained by adding the individual fringe

patterns of each baseline.

Pair-wise Combined Turbulence PSF : The summed non-cophased

pairwise fringe systems which is curiously showing the speckles.

I(x, y) =
N∑

j=1

N∑

k=1

A(x, y) ·
∣∣∣e− 2πi

λz
(xuj+yvj) · eiφj + e−

2πi
λz

(xuk+yvk) · eiφk

∣∣∣
2

(2.25)
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with j 6= k.

All-in-one Turbulence PSF: Normal speckle PSF with all-in-one beam

combination is given by,

I(x, y) = A(x, y) ·
N∑

j=1

∣∣∣e− 2πi
λz

(xuj+yvj) · eiφj

∣∣∣
2

. (2.26)

Figure 2.17 shows the cophased and speckle PSF’s for pair-wise and all-in-

one beam combination. As it is visible from the figure the pair-wise-combined

PSF in both cases have less contrast.

Speckle Interferometry results with all-in-one and pair-wise beam

combination : We used the all-in-one and pair-wise speckle PSF’s gener-

ated by simulation as shown in Figure 2.17 to simulate the image of a binary

star in both cases. One of the speckle image in each case is shown in Fig-

ure 2.18. We then used speckle interferometry to retrieve the auto-correlation

of the binary star for each beam combination. The results are shown in Fig-

ure 2.19. We clearly observe from the Figure 2.19, that the correlation peaks

Figure 2.18: The speckle image of binary star: a) all-in-one snapshot image from

array of 20 sub apertures with different atmospheric piston errors and b) image from

co-addding pairwise fringe systems from the same array. The pair wise fringes were

recorded same time across a single phase screen.

in pair-wise beam combination is very difficult to isolate from the background.
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Figure 2.19: Autocorrelation of Binary Star with speckle interferometry: a) from

all-in-one speckle images and b) from the co-added pair-wise-speckle-frames.

This clearly demonstrates that all-in-one is a clear choice for beam combina-

tion even in turbulence degraded imaging.

2.5 Conclusions

In this Chapter we have discussed the numerical algorithms to simulate dif-

ferent optical interferometers which use different techniques under various

conditions. The methods to simulate atmospheric turbulence is very impor-

tant in our study. The layer based model of the atmosphere and the methods

to simulate it has been discussed in the first sections of the Chapter. Also

the use of earth rotation aperture synthesis, to sample more of the spatial

frequencies, is also studied and used in the simulations. Different types of in-

terferometers are simulated in our study. These include large telescope optical

interferometers with few baselines, masking the aperture of a single aperture

telescope and diluted aperture interferometers called ’Hypertelescopes’.

In the case of optical interferometers the beam combination scheme also

plays a very important role in determining the properties of imaging in terms

of sensitivity. Two approaches of combining the beams in an optical interfer-

ometer is pair-wise combination and all-in-one combination. The simulations

done by us indicate that all-in-one beam combination is superior in terms of
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sensitivity both in cophased and non-cophased imaging.

In all-in-one beam combination there are different ways of beam combina-

tion methods used. The main beam combination methods that were simulated

are Fizeau, IRAN and pupil densification. The simulation of different opti-

cal interferometers used with different beam combination schemes and under

various atmospheric turbulence profiles gives the opportunity to undertake

and analyze novel interferometric methods numerically.



Chapter 3

Triple Correlation Algorithm

3.1 Introduction

As we have already seen the resolution of a conventional telescope is not lim-

ited by diffraction. The affect of turbulent aperture is worse than diffraction.

Typically the size of a turbulence cell is 10 cm. With this kind of turbulence

we usually end up with an angular blur of 1 sec of arc. In spite of this we try

to achieve diffraction limited imaging through various interferometric meth-

ods. One of the importent method is using speckle interferometry and triple

correlation reconstruction. Speckle interferometry depends on short exposure

images to freeze the phase perturbations over telescope aperture due to at-

mospheric turbulence. Such images consist of fine structures called speckles,

each of which are of size of diffraction limit. They have high resolution object

information, but the information itself is convolved with these random speckle

spread functions. Triple correlation and speckle interferometry allows us to

retrieve the high resolution information. In this chapter we try to understand

the method of triple correlation and its use in retrieving turbulence degraded

speckle images. The algorithm developed by Surya et al. (2014) will be also

discussed with the results obtained with it on numerical simulations and real

data.
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3.2 Speckle interferometry

3.2.1 What is a Speckle?

The term ’speckle’ refers to the grainy pattern observed when an uneven

surface of an object is illuminated by a coherent source. A good example

of speckle is in a swimming pool when many swimmers are present. Each

swimmer creates water wavefronts and interference between these random

wavefronts causes a speckled wave field on the water surface. Depending on

the randomness of the source, spatial or temporal, speckles appear. Spa-

tial speckles may be observed when all parts of the source vibrate at same

constant frequency but with different amplitude and phase. With a non-

monochromatic vibration spectrum, in the case of random sources of light,

spatio-temporal speckles are produced.

3.2.2 Double Correlation and Power Spectrum

Double correlation analysis has been used in signal processing for a long

time. We will analyze how such a second order analysis is advantageous in

understanding key properties of the signal. Some of the interesting reasons

for using ordinary double correlation are as follows.

Sometimes the original signal itself is not visible, but its autocorrelation

is. For example the complex wave amplitude of light cannot be recorded

since the frequencies are really high (1015 Hertz). But it is easy to perform a

Fourier transform optically and to measure its modulus square.

A major application of auto correlation is in relation to speckle interferom-

etry in astronomy. The signal in this case is the intensity in the image plane

of the telescope. This signal fluctuates due to turbulence in atmosphere. The

long time average of the image only contains lower frequencies while average

power spectrum has bandwidth up to diffraction limit of the primary mirror,

as we will see in the next sections. It must be admitted that we cannot infer

everything about the signal from the autocorrelation.
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3.2.3 Stellar speckle interferometry

Stellar speckle interferometry consists of taking many short exposure images

of an object. Each such image will be the convolution of the instantaneous

PSF of telescope and atmosphere, S(x) with the actual object, O(x). The

intensity distribution I(x) of the speckle interferograms, in the case of quasi-

monochromatic incoherent source can be described by the following space-

invariant imaging equation.

I(x) = O(x) ∗ S(x) (3.1)

In a seminal paper in 1970 Antoine Labeyrie found out that diffraction lim-

ited amplitude information could be obtained from a series of speckle frames.

In this paper he discussed the technique of averaging Fourier transformed im-

ages to obtain the object power spectrum, which runs as follows. The general

imaging equation of a classical telescope in frequency domain is given by

Î(u) = Ô(u).P̂ (u), (3.2)

where P̂ (u) is the transfer function of the telescope. In speckle interferometry

the image, I(x) is Fourier transformed and its mod-square,
∣∣∣Î(u)

∣∣∣
2

is averaged

over all frames. This averaged value can be written as

〈
∣∣∣Î(u)

∣∣∣
2

〉 =
∣∣∣Ô(u)

∣∣∣
2

.〈
∣∣∣P̂ (u)

∣∣∣
2

〉 (3.3)

The function 〈
∣∣∣P̂ (u)

∣∣∣
2

〉 is called the speckle interferometry transfer function

and has a real non zero value up to the cutoff frequency of the telescope.

By using a reference point star or modeling the atmosphere this function is

estimated. Thus we can find out the object power spectrum

∣∣∣Ô(u)
∣∣∣
2

=
〈
∣∣∣Î(u)

∣∣∣
2

〉

〈
∣∣∣P̂ (u)

∣∣∣
2

〉
(3.4)

And by inverse Fourier transform we obtain the object auto correlation. Fig-

ure 3.1 depicts the speckle images of 3 stars and their averaged powerspec-

trum. It was soon realized that the object phase information can be also
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Figure 3.1: Speckle images (above) and corresponding spatial power spectra (be-

low). From left to right, Betelgeuse (resolved disk), Capella (resolved binary) and

an unresolved reference star. The power spectra are each the sums of about 250

frames (Labeyrie, 1970).

obtained from the speckle images. In the binary star speckle images the

alignment of the binary stars was almost visible. But the techniques to ex-

tract phase information from these images was not yet developed then. It was

later in 1974 that the Knox-Thompson technique was developed which really

gave the ability to extract phase information. But a btter method was discov-

ered even later by Weigelt (1977) called speckle masking or speckle imaging,

which was an image plane version of phase closure method (Jennison, 1958)

used in radio astronomy. Speckle masking still remains the best method to

date for phase recovery. Several variations of the method has been developed

which decreased computational time and improved the reconstruction.

We have simulated numerically speckle interferometric observations with

diluted aperture arrays. These results are shown in Figure 3.2. The apertures

used were diluted apertures with 17 and 50 mirrors.

3.3 Triple Correlation

While second order correlation has several advantages over third order corre-

lation, one being that it takes very less storage space and computing time to

handle, it does come with the handicap of missing out on phase reconstruc-
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Figure 3.2: Speckle interferometry reconstruction simulation of a binary star.

The images are autocorrelations of the binary stars retrieved from speckle images

from a 17 and 50 mirror array with and without earth rotation aperture synthesis.

a) Binary star autocorrelation retrieved from speckles images of 17 mirror array,

b) binary star autocorrelation retrieved from speckles images of 17 mirror array

with aperture rotation of 8 hours, c) binary autocorrelation retrieved from speckles

images of 50 mirror array and d) binary star autocorrelation retrieved from speckles

images of 50 mirror array with aperture rotation of 8 hours.

tion. Thus, the next step in speckle based reconstruction was to use triple

correlation based reconstructions.

An importent property of triple-correlation that gives it its advantage is

that it is possible to deduce the signal, I(x) uniquely from its triple correla-

tion, I(3)(x1,x2).

3.3.1 Basic Properties of Triple Correlation

One of the earliest references on Triple correlation is Brillinger (1975). A lot

of the properties of triple correlation has also been discussed by Lohmann and

Wirnitzer (1984). Some of the main properties of triple correlation is given

below.
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� The auto triple correlation is defined as

I(3)(x1,x2) =

∫ +∞

−∞

I(x)I(x+ x1)I(x+ x2)dx. (3.5)

� The Fourier transform of triple correlation is bispectrum and is related

to the signal spectrum as

Î(3)(u1,u2) = Î(u1)Î
∗(u1 + u2)Î(u2). (3.6)

� The bispectrum is 3/4 redundant due to the two inherent symmetries

Î(3)(u1,u2) = Î(3)(u2,u1) = Î(3)(−u1−u2,u1). (3.7)

� If the signal is real both signal spectrum and bispectrum are Hermitian.

Î(u) = Î∗(−u). (3.8)

Î(3)(u1,u2) = Î(3)∗(−u1,−u2). (3.9)

In which case only one angular octant of the bispectrum is non redun-

dant.

� If a system acts linear and time invariant upon the signal I(x), then it

also acts linear and time invariant for the triple correlation I(3)(x1,x2).

Io(x) = Ii(x) ∗ S(x). (3.10)

Îo(u) = Îi(u).Ŝ(u). (3.11)

Î(3)o (u1,u2) = Î
(3)
i (u1,u2).Ŝ

(3)
i (u1,u2). (3.12)

Multiplication in Fourier domain corresponds to convolution in time

domain. Thus we can also write the equaion in time domain as,

I(3)o (x1,x2) = I
(3)
i (x1,x2) ∗ S

(3)
i (x1,x2). (3.13)
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The bispectrum and triple correlation of two simple objects are shown in

Figure 3.3 and Figure 3.4.

Figure 3.3: (Left) One dimensional binary star object, (Center) corresponding

2-dimensional bispectrum, (Right) corresponding triple correlation.

Figure 3.4: (Left) One dimensional extended binary star object, (Center) corre-

sponding 2-dimensional bispectrum, (Right) corresponding triple correlation.

3.3.2 Limitations of signal retrieval from triple corre-

lation

Using the definition of bispectrum we find that bispectrum is immune to a

factor of eβ.u, i.e. for

ÎF (u) = Î(u).eβ.u, (3.14)

Î
(3)
F (u1,u2) = Î(u1)Î

∗(u1 + u2)Î(u2).e
fi.[u1+u2−u1−u2] = Î(3)(u1,u2). (3.15)
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Another class of signals that cannot be reconstructed from triple correla-

tion are those with skewness of zero. Or in other words signals whose triple

correlation is zero.

3.3.3 The generalized speckle masking transfer func-

tion

We now try to formulate the speckle masking transfer function in triple cor-

relation. For the following analysis consider the signal to be one-dimensional.

Transfer function Ŝn(u) of the incoherent image forming system is the auto-

correlation of the pupil function Ĥ(ξ).

Ŝn(u) =

∫
Ĥ(ξ)Ĥ∗(ξ′ + ξ)dξ′ =

∫
Ĥ(λfu′)Ĥ∗(λfu′ + λfu)dξ′, (3.16)

where the variable ξ denotes the coordinate in the telescope pupil and is

related to the spatial frequency by ξ = λfu. With the scaled pupil function

H(u′) = Ĥ(λfu′),

Ŝn(u) =

∫
H(u′)H∗(u′′ + u)du′. (3.17)

In astronomical imaging the function H(u′) can be split in to one representing

pupil function and one representing effect of random media.

H(u′) = H0(u
′).A(u), (3.18)

where A(u) can be considered to be a stationary random variable. Substitu-

tion of equation 3.18 to equation 3.17 gives,

Ŝn(u) =

∫
A(u′).A∗(u′′ + u).H0(u

′)H0
∗(u′′ + u)du′. (3.19)

The transfer function of long exposure can be found out using ensemble av-

erage of Ŝn(u). In case of large telescopes 〈Ŝn(u)〉 falls to zero much lower

frequencies than the telecope cutoff frequencies. For triple correlation, the

transfer function concerned is,

Ŝ(3)
n (u, v) =

∫ ∫ ∫
H0(u

′)H0
∗(u′′+u)H0(v

′)H0
∗(v′

′

+v)H0(w)H0
∗(w−u−v)

〈A(u′)A∗(u′′ + u)A(v′)A∗(v′
′

+ v)A(w)A∗(w − u− v)〉du′dv′dw.
(3.20)
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In order to calculate the sixth order moment, we assume that real and imag-

inary parts of A(w) have zero mean Gaussian distribution. For a complex

Gaussian process the momentum theorem can be used to show that,

(3.21)
〈A1A

∗

2A3A
∗

4A5A
∗

6〉 = 〈A1A
∗

2〉〈A3A
∗

4A5A
∗

6〉+ 〈A1A
∗

2A3A
∗

4〉〈A5A
∗

6〉+
〈A1A

∗

2A5A
∗

6〉〈A3A
∗

4〉 − 2〈A1A
∗

2〉〈A3A
∗

4〉〈A5A
∗

6〉+
〈A1A

∗

4〉〈A3A
∗

6〉〈A5A
∗

2〉+ 〈A1A
∗

6〉〈A3A
∗

2〉〈A5A
∗

4〉.

Since the complex amplitude is A(u) is stationary random variable, its auto-

correlation function may be defined by,

〈A(u′)A∗(u′′ + u)〉 = CA(u). (3.22)

Since for usual seeing conditions the complex amplitude A(u) can be a fine

structure compared to telescope aperture, A(u) can be assumed to be δ cor-

related, i.e. CA(u) = const.δ(u). Substitution yields,

(3.23)

〈Ŝ(3)
n (u, v)〉 = 〈Ŝn(u).〉〈Ŝn(v)Ŝn(−u− v)〉+

〈Ŝn(u).Ŝn(v)〉〈 Ŝn(−u− v)〉+

〈Ŝn(u)〉〈Ŝn(v).Ŝn(−u− v)〉 −

2〈Ŝn(u)〉.〈Ŝn(v)〉〈 Ŝn(−u− v)〉+

const.B̂(3)(u, v),

where,

B̂(3)(u, v) =

∫
|H0(w)|

2.|H0(w + u+ v)|2x[|H0(w + u)|2 + |H0(w + v)|2]2dw.

(3.24)

The term B̂(3)(u, v) depends on the modulus square of the pupil function.

Thus it is independent of image degradation and telescopic aberrations. It

is also positive and non zero for all frequencies up to diffraction limit of the

telescope.

3.4 Image reconstruction from Bispectrum

3.4.1 Theory

The triple correlation technique developed by Lohmann et al. (1983) runs as

follows. The object speckle pattern I(x), is multiplied with an appropriately
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shifted version of it, i.e. I(x+ x1). The result is then correlated with I(x).

I(3)(x1,x2) = 〈

∫ +∞

−∞

I(x)I(x+ x1)I(x+ x2)dx〉, (3.25)

where, xj = xjx + xjy is the 2-dimensional spatial co-ordinate vector. 〈〉

stands for ensemble average. The Fourier transform of the triple correlation

is called bispectrum and its ensemble average is given by,

〈Î(3)(u1,u2)〉 = 〈Î(u1)Î
∗(u1 + u2)Î(u2)〉 (3.26)

where, Î(u) =
∫
I(x)e−i2πu.xdx, Î∗(u1 + u2) =

∫
I(x)ei2π(u1+u2).xdx,

uj = ujx + ujy. In the second order moment, phase of the object’s Fourier

transform is lost. But in the third order moment or in the bispectrum, it is

preserved. The argument of equation 3.26 can be expressed as,

arg | Î(3)(u1,u2) |= φb(u1,u2) = φ(u1)− φ(u1 + u2) + φ(u2) (3.27)

Equation 3.27 gives the phase of the bispectrum. Observed image is the

convolution of the object and the point spread function (PSF) of the combina-

tion of telescope and the atmosphere. Its Fourier transform is the product of

the Fourier transform of the object and the transfer function of the telescope

and the atmosphere.

Î = Ô(u) · Ŝ(u) (3.28)

Using equations 3.28 into equation 3.26 we can write,

〈Î(3)(u1,u2)〉 = Ô(u1)Ô
∗(u1 + u2)Ô(u2)〈Ŝ(u1)Ŝ

∗(u1 + u2)Ŝ(u2)〉. (3.29)

Thus the image bispectrum is the product of object bispectrum and bis-

pectrum transfer function, 〈Ŝ(u1)Ŝ
∗(u1 + u2)Ŝ(u2)〉. It has been proved

elsewhere (Lohmann et al., 1983) that this transfer function is real. Thus

the phase values of the averaged image bispectrum are equal to that of the

object bispectrum. This allows the opportunity to extract real phase infor-

mation from the object bispectrum. The modulus | Ô(u) | and phase φ(u)

of the object Fourier transform Ô(u) can be derived from the object bispec-

trum Î
(3)
O (u1,u2). The object phase-spectrum is thus encoded in the term

eiφb(u1,u2) = ei[φ(u1)−φ(u1+u2)+φ(u2)].
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Equation 3.27 is a recursive equation for evaluating the phase of the object

Fourier transform at coordinate u = u1 + u2. The phase of the bispectrum

is recursive in nature and the object phase-spectrum at (u1 + u2) can be

expressed as,

φ(u1 + u2) = φ(u) = φ(u1) + φ(u2)− φb(u1,u2) (3.30)

If the object spectrum at u1 and u2 are known, the object phase-spectrum

at (u1 + u2) can be computed. Thus Triple correlation technique provides a

very good method of obtaining the Fourier phase of the object distribution.

Modified version of the same technique is also applied to extract information

from closure of phase measurements.

3.4.2 Direct Bispectrum Algorithm

Using triple correlation based recursive technique we have developed a code in

MATLAB to process images degraded by atmospheric turbulence. The code

works on 2-dimensional images and uses its corresponding 4-dimensional bis-

pectrum to recover the Fourier phase information of the object. The direct

bispectrum code can process 200 x 200 pixels images of 300 frames in 15 min-

utes in an Intel i5 computer with 4 GB of RAM. The unit amplitude phasor

method, used in algorithms by Sridharan (2000), is applied in the code for

phase reconstruction. The code uses direct computation of the 4-dimensional

bispectrum I(3)(u, v, u
′

, v
′

), which demands large amount of computer mem-

ory. The 4-D bispectrum is computed and averaged out for all the speckle

frames. The retrieved Fourier phase from bispectrum is then combined with

Fourier amplitude from speckle interferometry to reconstruct the object. The

steps in the developed algorithm is as follows

1. Convert each of the speckle image I1(x, y), I2(x, y), I3(x, y).. in to its

Fourier Transform Î1(u, v), Î2(u, v), Î3(u, v)..

2. Find the averaged bispectrum 〈Î(3)(u1, u2, u3, u4)〉 over all frames.
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3. Retrieve the Fourier phase φ(u) of the object projection from the aver-

aged bispectrum using recursion formula used in equation 3.30.

4. Retrieve the Fourier amplitude of the object from the averaged power

spectrum 〈Î(2)(u1, u2)〉 using classical speckle interferometry.

5. Combine the Fourier phase and amplitude to recreate the true object

image.

3.5 Results

In this section we will discuss some of the results we have obtained from

the direct bispectrum algorithm reconstruction of real speckle images and

numerical simulations.

3.5.1 Results with real images

The developed algorithm was used with images of β Coronae Borealis (HR5747)

taken on 16 and 17 March 1990 from the 2.34 meter Vainu Bappu Telescope

(VBT) in Kavalur using a speckle camera system developed by Saha et al.

1997, the description of which is given below. VBT has two accessible foci for

backend instrumentation, such as a prime focus (f/3.25 beam) and a casseg-

ranian focus (f/13 beam). The latter has an image scale of 6.7 arcseconds

per mm, which was further slowed down to ∼1.21 arcseconds per mm, us-

ing a Barlow lens arrangement. This enlarged image was recorded through

a 5nm filter centered on H using an EEV uncooled intensified CCD (ICCD)

(Chinnappan et al.,1991) camera with exposure times of 20 ms (Saha et al.,

1999). The interface between the intensifier screen and the CCD chip is a

fiber-optic bundle which reduces the image size by a factor of 1.69. A Data

TranslationTM frame-grabber card DT-2851 digitizes the video signal. This

digitizer re-samples the pixels of each row (385 CCD columns to 512 digitized

samples) and introduces a net reduction in the row direction of a factor of

1.27. The video frame grabber cards digitize and store the images in the
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memory buffer of the card. The available frame grabber could store upto

two interlaced frames images on its onboard memory. These images are then

written onto the hard disc of a personal computer. The observing conditions

were fair with an average seeing of 2 arcseconds during the nights of 16/17

March 1990. The binary star was earlier resolved using Blind Iterative Decon-

volution (BID) technique (Saha & Venkatakrishnan, 1997) and the seperation

was found to be 0.20 arcsecond and magnitude difference of 1.65. The results

of direct bispectrum on the same speckle images gave results that show a sep-

aration of 0.21 arcseconds. This is shown in Figure 3.5. The position angles

and separations of the binary components were seen to be consistent with

results of the auto-correlation technique and with the published observations

of the binary orbit of HR5747 (Labeyrie et al., 1974).

Figure 3.5: Reconstruction from speckle images of β Coronae Borealis (HR5747):

a) one of the speckle images of HR5747, b) the reconstructed image using direct

bispectrum algorithm (Surya and Saha, 2014).

3.5.2 Results with Aperture Masking Simulations

In Chapter 2 we have discussed the process of simulating aperture masking.

It is an important technique used quite often with speckle based reconstruc-

tion techniques. It is also easy to implement with the current single aperture

telescopes. In our study of triple correlation based reconstructions, we have

carried out numerical simulations of speckle imaging with aperture masks,

having randomly arranged subapertures. The baselines used in the simula-
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tions were non-redundant. For this simulation we considered a mask with

non redundant aperture of 17 holes. The aperture is shown in Figure 3.6.

Figure 3.6: The aperture used for the simulation

For the numerical simulations we considered the maximum baseline of the

mask Smax to be 1 m and the minimum baseline between the subapertures

as 20 cm. The diameter of the subaperture D is 10 cm. The atmospheric

piston errors of subapertures were taken from the Kolmogorov phase screen

of Fried parameter 20 cm which was been simulated using the Fast Fourier

Transform based power density method (Lane et al., 1992). This algorithm is

discussed in Section 2.2.3. The phase screens were moved with a wind velocity

of 10 m/s between successive speckle frames to simulate seeing changes in real

conditions. All the major parameters of the simulation are shown in Table 3.1.

The results of the speckle simulations from such an aperture for a binary

star and a sextuple star group is shown in Figure 3.7 and Figure 3.8. As

seen from the figure we were able to reconstruct the binary star and sextu-

ple star with good signal. A detailed study of the quality of reconstruction

is done in chapter 4. The sparse nature of the aperture affects the recon-

struction. The same aperture with earth rotation aperture synthesis is used

to produce speckle imaging reconstructions as shown in figure 3.8. When
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Frames used in speckle masking 100

Plate scale for each frame 0.2 arc sec /pixel

Wavelength 500 nm

Fried Parameter 0.2 m

Wind Velocity 10 m/s

Maximum Baseline 1 m

Minimum Baseline (between subapertures) 20 cm

Diameter of subaperture 10 cm

Table 3.1: Parameters used in the numerical simulations of aperture masking

speckle imaging

speckle frames from different time of the night were used, the time-dependent

bispectrum, I
(3)
i (u, v, u′, v′, ti), of each frame was computed and averaged.

From the averaged bispectrum,
∑

I
(3)
i (u, v, u′, v′, ti), the image of the object

was reconstructed. The averaged bispectrum contains the u-v coverage as

sampled through the night by earth rotation and hence provides a better

reconstruction of object phase.

Figure 3.7: Speckle Reconstruction using direct bispectrum from simulations of

17-hole aperture masking: a) binary star, b) six star group.
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Figure 3.8: Speckle Reconstruction using direct bispectrum from simulations of

17-hole aperture masking using images taken at equal intervals through the night

over 8 hrs: a) binary star. b) six star group.

3.5.3 Results with Multispeckle Simulations

We have discussed about simulations of multi-speckle observations in long

baseline interferometers like VLTI and LBT in Section 2.4.2. We have also

shown the multispeckle images produced from different configurations of large

interferometers in Figure 2.6. These images were processed by the direct bis-

pectrum algorithm to obtain reconstructions. Just as in aperture masking

simulations, when speckle frames from different time of the night were used,

the time-dependent bispectrum, I
(3)
i (u, v, u′, v′, ti), of each frame was com-

puted and averaged before reconstruction. In Figure 3.9 it is clearly shown

that such use of earth rotation with speckle imaging can work sucessfully

even with multi speckles. The binary star which is unresolved by a single

aperture speckle imaging gets resolved by using multi-speckle reconstruction

with two apertures. Figure 3.10 shows the reconstructions together with the

multi-speckle image.



3.5 Results 59

Figure 3.9: Multi-speckle reconstruction of binary star: a) cophased image of bi-

nary star with single aperture, b) reconstructed image of binary star from speckles

images from single aperture, c) cophased image of binary star averaged by earth

rotation synthesis in a 2 telescope interferometer, d) reconstructed image of bi-

nary star from multi speckles of the same two telescope interferometer using earth

rotation.

Figure 3.10: Multi-speckle reconstruction using direct bispectrum algorithm:

(Left) the multispeckle image from a 2-telescope interferometer, (Sidebox Top)

the ideal image as obtained by aperture rotation of two telescope interferometer

through 8 hrs with out considering atmospheric turbulence, (Sidebox Bottom) the

reconstructed image from the multi-speckle images of the 2-telescope interferometer

taken at different times during 8 hrs.
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3.6 Conclusions

Triple correlation based speckle reconstruction is a very useful technique in

high resolution astronomy. We have developed our own direct bispectrum

algorithm to reconstruct object from speckle images. The algorithm uses the

phase-retaining properties of triple correlation. The developed algorithm has

been used with reconstruction of Coronae Borealis. The code has been also

used together with aperture masking simulations and with the multi speckle

simulations. It has given fruitful results with these simulations and is also

able to reconstruct images utilizing earth rotation aperture synthesis. The

rotation of the earth is used in such a technique to fill the gaps in the spa-

tial frequency coverage of an interferometer. The direct bispectrum code

developed is computationally very expensive. It uses a lot of memory and

computational time. In the next chapter we discuss about the Radon trans-

form based tomographic speckle masking algorithm, which has reduced the

computational time considerably.



Chapter 4

Tomographic Speckle Masking

4.1 Introduction

Triple Correlation technique and other advanced image retrieval methods have

been developed to allow the reconstruction of the Fourier phase information.

Such algorithmic techniques retrieve diffraction limited information from the

short exposure images. The advantages of this technique is in providing infor-

mation about the object phases with better signal to noise ratio (SNR). The

disadvantage of this technique is that it demands very large computational

resources with 2-dimensional data since the calculations are 4-dimensional.

It requires extensive evaluation-time and data storage requirements, even if

the correlations are performed by using digitized images on a computer.

Tomographic methods using Radon transform (Radon, 1986) offers a bet-

ter alternative since they are computationally efficient. We have developed

a tomographic technique which reduces the memory and processing require-

ments in bispectrum technique. The tomographic technique transforms the

images in to a set of projections and applies bispectrum based reconstruc-

tion on these one dimensional projections. By transforming two dimensional

speckle images in to its one dimensional speckle projections, huge savings

in memory and processing time have been achieved. The developed algo-

rithm combines two powerful mathematical techniques, Triple Correlation

and Radon Transformation. The results obtained from the developed code
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Figure 4.1: An image function and the projection at an angle. f(x, y) is two

dimensional image in the x − y plane. R(x‘, θ) is one of the projections in the

Radon transform at angle θ.

with numerical simulations, laboratory simulations and real speckle images

of binary stars are presented in this chapter.

4.2 Radon Transform

A basic problem encountered in Tomography is given a set of one dimensional

projections and the angles at which these projections were taken, how to

reconstruct the two dimensional image from this given data. Lets define

R(x′, θ) as a 1-D projection at an angle θ. R(x′, θ) is the line integral of

image intensity, f(x, y), along the line l that is x′ distance away from the

origin at an angle θ of the x-axis.

R(x′, θ) =

∫

l

f(x, y)dl (4.1)

This collection of R(x′, θ) at all θ is called the Radon transform of image

f(x, y). We can also define Radon Transformation as a method by which a

one dimensional image is transformed in to a set of projections. This trans-

formation essentially allows us with the capability of dealing with a set of

one dimensional signals for a two dimensional signal. Radon transform for
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function f(x, y) is described mathematically as,

R(x′, θ) =

∫ +∞

−∞

f(x′cosθ − y′sinθ + x′sinθ − y′cosθ)dy′, (4.2)

where, 
x

′

y′


 =


 cos θ sin θ

− sin θ cos θ




x

y


 (4.3)

Figure 4.1 shows a sample projection of a two dimensional image.

4.2.1 Properties of Radon Transform

Symmetry

The parameter set of x′ ∈ [0,∞] and θ ∈ [0, 2π] describes every element

of Radon Transform since

R(x′, θ) = R(−x′, θ + π) (4.4)

Linearity

For αi constants and fi functions

R(αi.fi) =
∑

i

αi.R(fi) (4.5)

Fourier Slice Theorem

The Fourier Slice theorem states that the 1-dimensional Fourier trans-

form of the projection function R(x′, θ) is equal to the 2-dimensional

Fourier transform of the image evaluated on the line the projection was

taken.

4.2.2 Inverse Radon Transform

Just like Radon transform converts a two dimensional signal into a set of

projections taken at different angles, inverse Radon transform aims at con-

structing the two dimensional signal from this set of projections. There are

several algorithms that perfoms an inverse Radon transform. But the most

commonly used algorithm is filtered back projection.
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4.2.2.1 Filtered Back Projection

By Fourier slice theorem discussed earlier, if we know the projections functions

at several angles of the image, we can get a sample of lines in the Fourier

transform of the image. In filtered back projection we sum all the Fourier

slices obtained this way creating a sampled Fourier map of the object. This

Fourier map can be inverse Fourier transformed to obtain the object image.

This is called back projection. The simple back projected image is blurry

since the lower frequencies would be added multiple times, since they are

sampled by each Fourier slice. To counter act this blur effect, we multiply

each Fourier slice with a ramp function. This technique is called filtered back

projection. Thus the image is obtained as follows,

f(x, y) =
1

4π2

∫∫
R̂(u, φ)eiu(xsinφ−ycosφ)|u|dudφ, (4.6)

where, R̂(u, φ) is the Fourier transform of projection function R(x′, θ). Note

that the Fourier slices are multiplied by |u| in the Fourier domain. An example

of Radon transformation of an image and its inverse transformation using

filtered back projections is shown in Figure 4.2.

4.3 Tomographic Speckle Masking Algorithm

In radon transform based triple correlation method, we will perform radon

transformation on each two dimensional speckle frame, to produce set of

projections I1, I2, ..In. Then we compute the averaged triple correlation for

each projection over all frames

〈I(3)(x1, x2)〉 = 〈

∫ +∞

−∞

I(x) · I(x+ x1) · I(x+ x2)dx〉 (4.7)

or compute the averaged bispectrum

〈Î(3)(u1, u2)〉 = 〈Î(u1) · Î(u2) · Î
⋆(u1 + u2)〉 (4.8)

From this averaged bispectrum the real projections are reconstructed and they

are inverse radon transformed to recover the original signal. Radon transform



4.3 Tomographic Speckle Masking Algorithm 65

Figure 4.2: Process of Radon transform and inverse Radon transform of a 2

dimensional image. (Bottom) The inverse Radon transformed images from different

number of projections [18, 36, 90].



4.3 Tomographic Speckle Masking Algorithm 66

Figure 4.3: A two dimensionsl speckle image and its sample one dimensional

projections obtained at different angles using Radon Transform.

based image retrieval takes less computational time and also requires less

memory at the expense of reconstruction quality. In the TSM algorithm

we combine Triple correlation and Radon transform techniques to develop

a robust and fast algorithm to retrieve images. The steps in the developed

algorithm is as follows

1. Radon Transform each 2 dimensional speckle frame in to set of projec-

tions I1, I2, I3..etc as shown in Figure 4.3

2. Find the averaged bispectrum 〈Î(3)(u1, u2)〉for each projection over all

frames.

3. Retrieve the Fourier phase φ(u) of the object projection from the aver-

aged bispectrum using recursion formula used in equation 3.30.

4. Retrieve the Fourier amplitude of the object projection from the aver-

aged power spectrum 〈Î(2)(u1, u2)〉.

5. Combine the Fourier phase and amplitude to recreate the true object

projections.
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6. Inverse Radon transform the retrieved projections to obtain the object

image.

4.4 Numerical Simulations

We have carried out extensive numerical simulations of tomographic speckle

imaging reconstruction of aperture masking images. The basic parameters

of the simulations are same as used in the earlier example with Direct Bis-

pectrum Algorithm discussed in Section 3.5.2. The parameters and aperture

used are shown respectively in Table 3.1 and Figure 3.6. The results with

TSM algorithm are shown in Figure 4.4 and Figure 4.5. Figure 4.4 shows

the results with a binary star and Figure 4.5 shows the reconstruction results

with an extended object.

We have quantified the reconstruction quality using 2-dimensional corre-

lation coefficient c which measures the correlation between the reconstructed

image and the cophased image in the absence of atmospheric turbulence. The

correlation coefficient, c is computed according to the following equation

c =

∑
m

∑
n(Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(4.9)

where A and B are the cophased and reconstructed images respectively

with size m×n. The corrosponding correlation coefficients of the reconstruc-

tions are given in Table 4.1.

As it is visible from the reconstructed images, the tomographic speckle

imaging algorithm has been found to obtain good reconstructions of the ob-

ject configurations. But since the reconstructions rely on one dimensional

projections from the image and the reconstructed projections are used to

retrieve the object image, the resulting images have artifacts due to the pro-

jection operations which results in a lower c value. But when we increase

the number of projections used in radon transformation of image, the quality

of reconstruction increases and there are visibly less projection artifacts in

recovered image which results in a better c value. The reconstruction quality
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Figure 4.4: The image recovery results from the tomographic speckle imaging

algorithm of a 6 star group using a 17 hole aperture mask: The aperture consists

of randomly arranged 10 cm holes inside 1 m radius disk, a) the 6 star object

distribution used in the simulation with the corresponding brightness ratio, b) The

cophased image from the aperture masked mirror, c) The simulated speckle image

of the object by imaging through turbulence, d) The recovered image using Direct

Bispectrum with 100 frames, e) The recovered image using tomographic speckle

masking from 18 projections with 100 frame and f) the recovered image using

tomographic speckle masking from 180 projections with 100 frames.

is still not comparable to the direct bispectrum algorithm as seen from the

results and the c values given in the Table 4.1. But tomographic speckle

imaging offers a very high computational advantage over direct bispectrum

imaging. With lesser number of projections the computational time and mem-

ory requirements reduces very significantly. Thus it required to find a trade
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Figure 4.5: The image recovery results from the tomographic speckle imaging

algorithm of an extended planet object group using a 17 hole aperture mask: The

aperture consists of randomly arranged 10 cm holes inside 1 m radius disk, a) the

6 star object distribution used in the simulation with the corresponding brightness

ratio, b) The cophased image from the aperture masked mirror, c) The simulated

speckle image of the object by imaging through turbulence, d) The recovered im-

age using Direct Bispectrum with 100 frames, e) The recovered image using tomo-

graphic speckle masking from 18 projections with 100 frames and f) the recovered

image using tomographic speckle masking from 180 projections with 100 frames.

off between computational time and recovery requirements for larger sized

images and more number of frames.
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Direct Bispectrum Tomographic Code Tomographic Code

180 Projections 18 Projections

Computational Time 1 hr 21 mins 15 mins 2 mins

Size Limit for Frames 200 x 200 pixels 104 x 104 pixels 104 x 104 pixels

c for 6-star Group 0.94 0.83 .94

c for Extended Object 0.96 0.92 .95

Table 4.1: Comparison of computational requirements and reconstruction quality

parameter, c of direct bispectrum and tomographic algorithms. The values are

calculated based on MATLAB 32-bit used in a 32-bit Windows system with 4 GB

of RAM.

4.5 Laboratory Simulations

The experimental setup for the simulation of aperture masking is shown in

Figure 4.6. A binary star was simulated using two laser sources. The setup

consisted of two 5mw laser sources which were collimated using a lens, phase

screen, aperture mask and an imaging lens which focuses on the detector. The

laser sources used are 5mW red lasers at 633 nm. The lasers were arranged

such that they subtend an angle of 20 arc second in the detector plane. The

phase screen is made from spraying glycerin over a glass surface. Several

phase screens with different atmospheric coherence lengths were prepared

as part of the experiment. The results of the reconstructions using TSM

algorithm on the speckle frames of the artificial binary star are shown in

Figure 4.7. The speckle images obtained from the experiment had an average

of 1000 counts/frame and 100 such frames were processed by the Tomographic

Speckle Masking Code to obtain the reconstructed image. One of the speckle

image is shown in Figure 4.7.b. The results of the reconstructions using TSM

algorithm on the speckle frames of the artificial binary star are shown in

Figure 4.7.c. The reconstruction resolved the binary stars with the correct

separation. This laboratory experiment clearly demonstrates the performance

of tomographic algorithm with aperture masking.
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Figure 4.6: Laboratory setup for simulation of aperture masking in presence of

atmospheric turbulence. Laser source is collimated using a lens, and the collimated

beam passes through the phase screen and aperture mask of 20 random holes. The

beam then passes through an imaging lens to form a speckle image in the detector.

Figure 4.7: Reconstruction from laboratory simulations of speckle imaging: a)

image of the artificial binary star from the experiment with out using turbulence

phase screen, b) speckle image of binary star imaged with a Kolmogrov phase screen

in laboratory and c) reconstructed image from tomographic speckle masking from

100 speckle frames.

4.6 Results with Real Speckle Images

The developed algorithm was applied on images of β Coronae Borealis (HR5747)

taken on 16 and 17 March 1990 from the 2.34 meter Vainu Bappu Telescope

(VBT) in Kavalur using a speckle camera system developed by Saha et al.

(1997), the description of which was given in earlier Section 3.5.1. The re-

sults are shown in Figure 4.8. The binary star was earlier resolved using

Blind Iterative Deconvolution (BID) (Saha & Venkatakrishnan, 1997 Saha

and Venkatakrishnan (1997)) and the separation was found to be 0.20 arc-
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Figure 4.8: Tomographic image reconstruction of speckle images of β Coronae

Borealis (HR5747): a) one of the speckle images of HR5747, b) the bispectrum of

a one dimensional projection of the speckle image and c) the reconstructed image

using TSM Algorithm.

second and magnitude difference of 1.65. The results of tomographic speckle

masking on the same speckle images gave results show a separation of 0.21

arc seconds in figure. The difference of separation values with BID and TSM

may be attributed to the fact that tomographic speckle masking utilized 8

frames of the binary star as compared to a single frame used in blind iterative

deconvolution technique.

4.7 Conclusions

We have successfully developed two algorithms based on triple correlation

technique to process atmospherically degraded astronomical images. One

uses the direct bispectrum technique and the other is the tomographic speckle

masking algorithm, that uses radon transformation. In this chapter we dis-

cussed about the tomographic algorithm. The developed tomographic speckle

masking algorithm has been found to obtain good reconstructions with smaller

evaluation time and memory requirements, compared to the direct bispectrum

technique. Since the number of projections used for the radon transform can

be varied, it is possible to obtain smaller evaluation times at the cost of recon-

struction quality. The developed algorithm can be used with short exposure

speckle frames to obtain astronomical images of high resolution. Bayesian and

regularization techniques could be used to improve the reconstructions from

the algorithm, and also enable it to be used with long baseline interferometric
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data. Tomographic speckle imaging offers a unique way to implement very

fast reconstruction algorithms based on triple correlation. It has been shown

with the help of simulations and laboratory experiments that tomographic

speckle masking code can be used with aperture masking interferometry to

obtain very good reconstructions of stellar objects.



Chapter 5

Speckle Imaging with

Hypertelescopes

5.1 Introduction

In high-resolution optical astronomy with interferometric arrays, producing

better images will require more apertures for a denser sampling of the optical

wave. As few as three apertures can suffice in principle to reconstruct images

through “optical aperture synthesis” (Baldwin et al., 1986), using earth ro-

tation or baseline changes to sample the needed Fourier components of the

object. But a better sensitivity can be reached with systems using more aper-

tures simultaneously, even if these are smaller for a conserved collecting area.

The gain arises from the coherent combination of light vibrations achievable

with many apertures working simultaneously, as opposed to the “optical aper-

ture synthesis” approach where interference fringes are recorded with fewer

apertures, repeatedly with different baseline settings, and then combined in

the computer, i.e. incoherently. N number of phased beams combined coher-

ently with a simple Fizeau arrangement indeed produces a highly constructive

interference, in the form of a peak which is N times more intense than the

average side-lobes. Instead, successive exposures with subsets of the sub-

apertures, even if they are enlarged to conserve the photon flux and moved
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to improve the spatial frequency coverage, reduce the peak intensity and thus

the dynamic range in the convolved image of a complex source (Labeyrie,

2007). Fizeau combination however becomes inefficient with highly diluted

apertures, since the narrow interference peak appearing in the image of a point

source, at the center of the much broader envelope diffracted by the subaper-

tures, contains a small proportion of the energy. A way of retrieving most

energy in the peak, for efficiently observing faint sources with many-aperture

interferometers capable of rich direct imaging, has appeared in the form of

the hypertelescope or “densified aperture ”scheme (Labeyrie, 1996; Lardière

et al., 2007). Practical designs for large hypertelescopes, with a spherical ge-

ometry inspired from the Arecibo radio telescope (Altschuler, 2002), are under

testing for terrestrial versions (Le Coroller et al., 2004, 2012b; Enmark et al.,

2011; Labeyrie et al., 2012b) and also studied for space versions (Labeyrie

et al., 2009, 2010). These future large direct imaging interferometers using

many apertures will greatly benefit from adaptive optics systems for ultimate

performance on faint sources, providing usable imaging with large exposure

time. But even in the absence of adaptive phasing, high resolution imaging

can be done in speckle mode. Speckle mode techniques like speckle interfer-

ometry (Labeyrie, 1970) and speckle masking (Weigelt, 1977; Lohmann et al.,

1983), heretofore successfully used with large monolithic telescopes, can also

produce useful results with such interferometers.

We describe the numerical simulations done to understand the scope and

explore the performance of speckle imaging techniques with this type of di-

luted aperture interferometers. We have built a numerical simulation code in

MATLAB that simulates cophased and speckle mode imaging with diluted

apertures in different configurations. The imaging performance of interfer-

ometers is much affected by their beam combination scheme, as analyzed in

detail by Lardière et al. (2007). In our simulation we have adopted the pupil

densification scheme (Labeyrie, 1996), also adopted for the Ubaye Hyper-

telescope Project currently undergoing preliminary testing in the Southern

Alps (Labeyrie et al., 2012b). Pupil densification concentrates the diffracted
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energy in the central part of the PSF without degrading the resolution. A

detailed analysis of the PSF and imaging properties of these diluted aper-

ture interferometers has been done by Patru et al. (2009) and Lardière et al.

(2007). In this Chapter, our simulations extend these results to the case of

randomly phased apertures exploited with speckle imaging, and also in the

use of aperture rotation which enhances the quality of reconstructed images.

We have also tried to find out the limiting magnitude for such a technique by

comparing Signal to Noise Ratio (SNR) of reconstructions at different photon

levels.

5.2 Numerical Simulations

According to the usual definition of hypertelescope imaging we consider a

multi-aperture Fizeau interferometer equipped with a non-distorting pupil

densifier i.e., one which does not distort the pattern of sub-aperture cen-

ters. This makes the interference function field-invariant, while the spread

function depends on the star’s position, through its diffraction factor. This

variable spread function, hereafter called “pseudo spread function ”, results

in a pseudo-convolution process which describes the image formation on ex-

tended sources. For nT identical sub-apertures with position vectors (uk, vk),

the cophased Pseudo Spread Function Labeyrie (1996) is expressed as

IPSF (x, y) = A(x, y)× I0(x, y), (5.1)

where A(x, y) is the diffraction function and the term on the right side, I0(x, y)

is the Interference function given by,

I0(x, y) =

∣∣∣∣∣

nT∑

k=1

e−
2πi
λ

(xuk+yvk)

∣∣∣∣∣

2

. (5.2)

The interference function depends only on the array configuration while the

diffraction function A(x, y) depends on the beam combination scheme used

Lardière et al. (2007). For our analysis we have considered A(x, y) to be

an Airy function corresponding to the densified subaperture diameter d0. In
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our simulation we are considering highly diluted arrays, approximated to

array of δ-functions, in which pupil densification is so strong that the shift

of the Airy envelope is negligible. In such a case the image formation of the

hypertelescope can be defined by a Pseudo Convolution Equation

I(x, y) = A(x, y)× (I0(x, y) ∗O(x, y)) , (5.3)

where O(x, y) is the object intensity distribution. The pseudo convolution

creates the Direct Imaging Field of the interferometer which is the diffraction

function envelope corresponding to the densified subaperture. This modeling

of hypertelescope imaging is similar to the study by Aime (2008). In order to

Figure 5.1: Random phase screen across the 17 mirror aperture used for the

simulations, following a Kolmogorov distribution. The dots indicate positions of

the subapertures in the fully diluted array.

simulate the seeing conditions we have generated Kolmogorov phase screens

(see Figure 5.1) with different values of Fried’s parameter. These screens

move with different wind velocities which simulate seeing changes. In this we

assume that the wavefront is coherent across an individual subaperture. This

will be the case if one uses small mirrors (< 10 cm) in a site with good seeing

conditions, and hence only piston errors associated with each subaperture



5.2 78

was considered. The random atmospheric piston error eiφk from the corre-

sponding position of the sub-aperture in the phase screen is introduced into

the interference function.

I0(x, y) =

∣∣∣∣∣

nT∑

k=1

e−
2πi
λ

(xuk+yvk).eiφk

∣∣∣∣∣

2

(5.4)

This new speckle interference function is used in the pseudo-convolution equa-

tion (5.3) to simulate speckle observations. Some of the speckle images cor-

responding to sample objects used in the study are shown in Figure 5.2.

Figure 5.2: The object distributions used in the simulations (first column) along

with their corresponding speckle frames (second column) as imaged by the 17 mirror

array: a) six star group b) ten star group c) extended object. Speckle frames in

average have 10000 photon events per each exposure.
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5.2.1 Aperture Configuration

Though there are several aperture configurations under consideration for the

big imaging interferometers, the one we studied was of randomly distributed

mirrors with non-redundant baselines. The number of diluted apertures, nT of

17 (Figure 5.1) and 50 were considered for this study. The details of aperture

configuration used in the simulations are in Table 5.1. Details of the pupil

17 mirror 50 mirror

Maximum Baseline 100 m 100 m

Minimum Baseline 21 m 12 m

Output Pupil Filling rate τo 0.2 0.5

Sub-aperture diameter 10 cm 10 cm

Table 5.1: Parameters associated with aperture configuration.

densification beam combination scheme used in the simulations are discussed

in depth by Lardière et al. (2007) and Labeyrie (1996). The pupil densification

of 17 mirror aperture is shown in Figure 5.3. Densification is constrained by

the smallest baseline S
′

min in the output pupil, since any further densification

will cause subapertures to overlap. Thus in maximum densification, length of

the smallest baseline in output pupil will be equal to the densified subaperture

diameter, i.e. S
′

min = do. In our simulation for all the array configurations

we have taken densified diameter of each diluted subaperture do to be 1/10

of the largest baseline in the output pupil. Output pupil which is partially

filled creates a speckle halo surrounding the central peak in cophased case.

The dominance of this halo is dependent on the output pupil filling rate (τo).

The parameters associated with numerical simulation are shown in Table 5.2.



5.2 80

Figure 5.3: Pupil densification of the aperture configuration used in the simula-

tions. a) The input pupil of a diluted random 17 mirror array. b) The exit pupil

after densification

Frames used in speckle masking 500

Earth Rotation time simulated 8 h

Plate scale for each frame 0.2 milli arc sec /pixel

Wavelength 550 nm

Bandwidth 88 Å

Fried Parameter 0.1 m

Wind Velocity 10 m/s

Latitude of the place +600

Declination of the source +900

Table 5.2: Parameters used in the simulation of hypertelescope imaging in the

presence of atmospheric turbulence

5.2.2 Speckle Imaging Algorithms

For the speckle images generated from numerical simulation of hypertele-

scopes, techniques like speckle interferometry and bispectrum technique were

applied to reconstruct the object distribution. The speckle interferometry

code was written in MATLAB and produces the Fourier amplitude informa-

tion and autocorrelation of the object distribution. In speckle interferometry,

the average power spectrum
∑

|I(u, v)|2 is found out from the speckle frames
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and object Fourier amplitude information is extracted from it. The computed

Fourier amplitude information is used in speckle masking. Though a compu-

tationally efficient tomographic speckle masking (TSM) code Surya and Saha

(2014), has also been developed, we have for the current study used the direct

bispectrum code which gives a better quality of reconstruction because it uses

the four dimensional bispectrum. The direct bispectrum code can process 200

x 200 pixels images of 300 frames in 15 minutes in a i7 Intel computer with

8 GB of RAM. The unit amplitude phasor method, used in algorithms by

Sridharan (2000) Sridharan (2000), is used in the code for phase reconstruc-

tion. The details of the reconstruction code is explained in Chapter 3. The

code uses direct computation of the 4-dimensional bispectrum I(3)(u, v, u
′

, v
′

)

which poses severe constraints on the computer memory. The 4-D bispectrum

is computed and averaged out for all the speckle frames. The Fourier phase

is retrieved from the bispectrum using the techniques explained in Section

2.2, and is combined with Fourier amplitude from speckle interferometry to

reconstruct the object.

5.2.3 Earth Rotation Aperture Synthesis

The sparse filling of the entrance aperture, although enhanced in the densified

exit pupil, affects the performance of the speckle imaging reconstruction. But

part of it is retrieved if the entrance aperture, as seen from the observed star,

can be modified or rotated during an observation. This happens naturally

for interferometers of fixed ground elements due to earth’s rotation. Earth

Rotation Aperture Synthesis is a common technique frequently exploited in

radio interferometry to increase the coverage of the frequency plane by an

interferometric array. With the help of simulations, we have tried to study

the possible techniques of using aperture rotation through night with diluted

aperture hypertelescope systems. Reinheimer et al. (1993, 1997) had earlier

studied the use of aperture rotation with speckle masking for studies of LBT

and VLTI interferometers in multi speckle mode. We have detailed our own
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multi-speckle simulations in Chapter 2 and Chapter 3. In this Chapter we

will study the use of such techniques with long baseline hypertelescope arrays.

Using speckle frames from different time of the night averaged power spec-

trum,
∑

i|I(u, v, ti)|
2, provides a better u-v coverage and thus a better esti-

mate of the Fourier modulus to be used in reconstruction. When speckle

frames from different time of the night were used, the time dependent bispec-

trum, I(3)(u, v, u
′

, v
′

, ti), of each frame was computed and averaged. From the

averaged bispectrum,
∑

i I
(3)(u, v, u

′

, v
′

, ti), the image of the object was re-

constructed. The averaged bispectrum contains the u-v coverage as sampled

through the night by earth rotation and hence provides a better reconstruc-

tion of object phase.

5.3 Results

The numerical simulations provide a clear picture of how speckle masking

can be used together with hypertelescope imaging utilizing aperture rota-

tion to yield high resolution images of stellar objects. The bispectrum code

was utilised to reconstruct images from the speckle images simulated from

the diluted hypertelescope. We have quantified the reconstruction quality

using correlation coefficient c which measures the correlation between the

reconstructed image and the cophased image in the absence of atmospheric

turbulence. The correlation coefficient, c is computed according to the equa-

tion 4.9 discussed in Chapter 4. Such quantification of reconstruction gives

us the ability to compare the reconstructions with different parameters.

5.3.1 Reconstruction results with sextuple star and ex-

tended objects

We have simulated sequences of short exposures, shorter than the lifetime of

”seeing”, and each exploiting the full set of sub-apertures. The parameters

associated with this simulation are shown in Table 5.1 and Table 5.2. Two
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Aperture Rotation 17 mirror 50 mirror

Sextuple Star
No .60 .71

Yes .77 .78

Extended Object
No 0.5 0.90

Yes 0.88 0.92

Table 5.3: The values of correlation coefficient c corresponding to the reconstruc-

tion of sextuple star and extended object from the speckle images with 17 mirror

and 50 mirror array.

different sequencing regimes were simulated,

� a) Dense sequences, with 1000 short exposures made in a matter of

minutes while the slow Earth rotation causes a negligible rotation of

the meta-aperture with respect to celestial North;

� b) Night-long sequences, where Earth rotation becomes significant and

exploitable for aperture-synthesis.

The speckle images from the simulations were processed by the bispectrum

technique to obtain reconstructions. The results of these simulations are

shown in Figure 5.4 and 5.5. When available, long sequences thus exploited

improve the result quality, especially if there are a small number of sub-

apertures. The correlation coefficient c between reconstructed image and the

corrosponding cophased image for both the objects with different arrays are

shown in Table 5.3.

5.3.2 Improvement of Reconstruction with Aperture

Rotation

The improvement of signal reconstruction in speckle masking using aperture

rotation is clearly demonstrated in Figure 5.6. The object used is a star cluster
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Figure 5.4: Speckle imaging results for a six star cluster from turbulence degraded

interferograms from a) 17 mirror aperture without aperture rotation, b) 17 mirror

aperture with rotation through the night for 8 hrs, c) 50 mirror aperture without

rotation and d) 50 mirror aperture with aperture rotation through night for 8 hrs.

Each simulated exposure on average had 10,000 photon events.

with 10 stars (Figure 5.2.b). The aperture used is a 17 mirror array with

rotation synthesis corrsponding to 1 hour, 3 hour and 8 hour. The respective

correlation coefficient for each of the reconstructions is shown in Table 5.4.

We have correlated the reconstructed image here with the true object image.

The improvement in c shows the improvement of the reconstruction with
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Figure 5.5: Speckle imaging results for an extended object from turbulence de-

graded interferograms from a) 17 mirror aperture without aperture rotation, b) 17

mirror aperture with rotation through the night for 8 hrs, c) 50 mirror aperture

without rotation and d) 50 mirror aperture with aperture rotation through night

for 8 hrs. Each simulated exposure on average had 10,000 photon events.

better spatial frequency coverage. It is also curious to note the field of view

limitation due to pupil densification as also seen from the Figure 5.6. Only 8

stars out of the 10, which are inside the Direct Imaging Field are seen from

the reconstructed image.



5.3 Results 86

Figure 5.6: Improvement of reconstructed image of star cluster with ten stars

(Figure 5.2.b), utilizing aperture rotation through night. a) u-v coverage of 17

mirror array over 1 hr of observation b) u-v coverage of 17 mirror array over 3 hr

of observation c) u-v coverage of 17 mirror array over 8 hr of observation. d,e and

f are the corresponding reconstructed images obtained by speckle imaging in each

case. The latitude of the site was taken as 600 North and the declination of the star

cluster is considered to be 900. The images where reconstructed from 500 speckle

frames each with an average of 10,000 photon counts.

3 hour 6 hour 8 hour

Correlation coefficient c 0.49 0.52 0.62

Table 5.4: The correlation coefficient values corresponding to the reconstruction

of the star cluster with increasing hours of observation to utilize aperture rotation.

The array used is of 17 sub-apertures.

5.3.3 Limiting Magnitude

We wanted to compute the limiting magnitude of objects retrievable through

such a technique. For this we have simulated imaging of two objects, a binary

star and a resolved star with spots. Both the objects were imaged assuming
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Figure 5.7: Reconstruction of a Binary Star with Brightness ratio 1000:1 at

different magnitudes. The aperture used is an array of 50 mirrors with 7 hours of

earth roatation aperture synthesis, which increases the spatial frequency coverage.

(Top row) The ideal cophased image and speckle image of the binary star. (Bottom

three rows) The reconstructed images using the bispectrum technique with the

corrosponding photon counts. The region inside the red circle is used to compute

the SNR.

different magnitudes progressively and the Signal to Noise Ratio was com-

puted for each recontruction. Since the photon levels of speckle images used

for reconstructions to compute limiting magnitude were very low, we have

used another measure to compute the Signal to Noise Ratio instead of the
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Figure 5.8: Reconstructions of a resolved star with spots at different magni-

tudes. The aperture used is an array of 50 mirrors with 7 hours of earth roatation

aperture synthesis, which increases the spatial frequency coverage. (Top row) The

ideal cophased image and speckle image of the resolved star. (Bottom three rows)

The reconstructed images using the bispectrum technique with the corrosponding

photon counts.

correlation coefficient. The SNR for the binary star was computed as the

contrast of the fainter star in the background halo of noise.

SNR =
µstar

σbackground

(5.5)
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where µstar is the mean flux level from the pixel positions corresponding to the

star and σbackground the standard deviation of the average background noise.

The average noise was computed in the encircled area in the Figure 5.7. For

the star spots the contrast level of one of the spots was used as the measure

of SNR. To calculate the SNR, 20 reconstructions were computed at each

magnitude photon level. The resulting SNR plotted against the photon levels

are shown in Figure 5.9 for both binary star and the resolved spotted star.

Figure 5.9: The SNR of the reconstructed images plotted against photon count

in the speckle images for both Binary star and the resolved star with spots. The

magnitude is calculated corresponding to the parameters used in the simulation as

listed in table 5.1 and 5.2.
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5.4 Simulation of imaging science targets with

hypertelescope

As part of the study of imaging simulations for hypertelescope, we have also

studied possible numerical simulations of observing certain specific science

objects that could be of interest in high resolution. Active Galactic Nuclei

(AGN), transiting exo-planets and binary stars could be a few of the major

science targets. In this section we present these simulations.

5.4.1 Simulation of imaging Active Galactic Nuclei

We present simulated observations of clumpy dust structures surrounding

Active Galactic Nuclei (AGN) using hypertelescopes. Hypertelescopes can

achieve direct imaging at sub-milli-arc second resolution. Their theoretical

imaging performance calculated and simulated is expected to exceed that of

first generation interferometers. Observing AGN’s and the dust tori around

them could be a major science goal for such hypertelescopes. For our AGN

Figure 5.10: A schematic distribution of the dust clouds and AGN core model

assumed in Schartmann et al. (2008) . (Left) The AGN core is the red dot at

the center, while the pale blue regions show which clouds have direct lines of sight

to the core and hence are heated. (Right) Clumpy torus model. Yellow regions

indicate the directly illuminated surfaces of the clumps. i is the inclination angle,

θ is the half opening angle of the torus. (Schartmann et al., 2008)

performance simulations, we used the model of Schartmann et al. (2008) and

Young et al. (2014) (Figure 5.10). In this scenario, the “dust torus”, which
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in the standard is assumed to be comprised of an assemblage of discrete

clouds. i.e., it does not correspond to a smooth continuous distribution of

dust. As a result some lines of sight to the more distant dust clouds may be

obscured while not the others. The upshot of this is that the hottest dust,

can exist both very close to and distant from the nuclear core. This leads to

a much clumpier near-IR brightness distribution than a smooth dust torus in

the model. We use an AGN model in pole-on and edge-on torus geometry

similar to a study by Young et al. (2014). We have used the images from

3D radiative transfer code MC3D which gives the temperature and surface

brightness distributions of the resulting heated dust distribution. For the

AGN simulations, we chose to model both a pole-on and an edge-on model.

The central AGN engine was assumed obscured for this edge-on case. For

full details of the modeling the reader in encouraged to read Schartmann

et al. (2008) and references therein. We have used IMAGIN, a simulation

package developed by us to simulate hypertelescope observations and the

image deconvolution. Atmosphere induced piston errors and additive noise

are added to the images from MC3D code. The results of this simulation is

shown in Figure 5.11.

5.4.2 Imaging exoplanet transits with Hypertelescope

In 1983 feasibility of formation flying interferometric space arrays were ex-

plored by many (Labeyrie et al., 1982a,b, 1984). A major science target

for these space arrays was to image planets around nearby stars (exoplan-

ets). Resolving an “exo-Earth” in sufficient detail will require an array size

larger than 100 km also with coronographic abilities. Periodic eclipses of

exoplanets over the resolved star disk can be observed with hypertelescopes.

This is an easier way of imaging exoplanets without the use of coronographic

techniques. Jupitar like planets which may eclipse its parent star may be 10

times smaller, thus covering 1 resel if star was resolved over 10 resels. The

planet’s darkness will be filled by the side lobes of the spread function, but
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Figure 5.11: The reconstructed images of the dusty torus around the AGN. The

aperture used for imaging and the corresponding u-v coverage is also shown. The

3rd column is of edge-on geometry model and 4th column is of the pole on geometry.

(Surya et al., 2015)

sufficient contrast still remains to properly resolve it. Observations at several

wavelengths will also give planets with information about planets extended

atmosphere. Simulated images of exoplanet transits are shown in Figure 5.12

and Figure 5.13.
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Figure 5.12: Exoplanet transit across a resolved star, as imaged by a 17 mirror

cophased diluted Hypertelescope with maximum baseline of 100m. The star disk

is 27 resels while the exoplanet is 3 resels in the image. The simulated image is a

combination of 3 seperate images at different wavelengths.

Figure 5.13: Simulated Hypertelescope Image of the Exoplanet Transit in differ-

ent wavelengths.

5.4.3 Binary Stars and Small Clusters

Binary stars have been always an importent target for speckle interferometric

techniques. Classical speckle interferometry itself can be used to gain a sig-

nificant amount of information regarding binary systems. It can be used to

find out the seperations between the binary systems. With the use of speckle

masking the Fourier information that was extracted gives a more complete

picture of the binary sytem, by giving information about the orientation.

Such binary stars will be an importent science target with hypertelescopes.

Multi wavelength observations of such targets can give very interesting in-

sights in to these systems. An imaging simulation of observation of binary

stars and a sextuple star with hypertelescope are shown in Figure 5.14
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Figure 5.14: Simulated Hypertelescope Images of binary stars and star clusters.
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5.5 Conclusions

The simulations have successfully shown that even in the absence of adaptive

phasing, hypertelescope systems employing pupil densification can be used for

direct imaging using speckle imaging techniques. It is shown that with utiliz-

ing the aperture rotation of the diluted array through night, reconstruction

quality could be increased substantially. Other ways of changing the aper-

ture pattern during observation may also be considered, and should similarly

be expected to improve the imaging performance. Though as with cophased

imaging, speckle imaging also is constrained by the field of view limitations

in a hypertelescope. The use of speckle imaging for future Earth-based hy-

pertelescopes Labeyrie et al. (2012a) can be of interest for faint sources which

cannot be phased in the absence of adaptive optics, or because of the absence

of a sufficiently bright guide star. With the parameters of hypertelescope used

in the simulation we have obtained a good SNR for the speckle technique at

a magnitude of 8-9 for a simple binary star and 6-7 for a resolved star with

spots. The improvement in limiting magnitude of the technique with different

amounts of pupil densification need to be studied further. Also the technique

could give better results with deconvolution algorithms and pupil re-dilution

as studied by Aime et al. (2012). While modified forms of adaptive optics have

been proposed specifically for hypertelescopes Martinache (2004); Borkowski

et al. (2005), it remains unclear at this stage whether suitable forms of a Laser

Guide Star can also be operated for such instruments Nuñez et al. (2014). If

not, Earth-based hypertelescopes will have to use speckle-imaging on faint

sources, which should provide useful results, according to our simulation re-

sults, although with lesser performance than in phased conditions. For space

hypertelescopes, phasing is expected to be much easier Labeyrie et al. (2009,

2010). Although the huge sizes considered, 100 km for an Exo-Earth Imager

and 100,000 km for a Neutron Star Imager, can make them sensitive to new

forms of seeing such as “gravitational seeing”.



Chapter 6

Summary and Future Work

6.1 Introduction

In the field of high resolution tremendous advancements have been made.

Interferometric methods have shown great promise and delivered in multiple

fronts. The current interferometers are limited by the number of baselines and

thus use aperture synthesis to obtain useful results with visibility measure-

ments and closure of phase. Such model based approach has paid dividend

in obtaining very useful results. An important step forward in optical inter-

ferometry would be to use diluted aperture interferometers to image in high

resolution. Such optical interferometers increase the resolution with same

amount of light collection area as a single aperture telescope. And the man-

ufacturing and construction cost would be similar to a single aperture even

with the large baselines. A major problem that these diluted interferometers

could face is to compensate the turbulence related effects from the atmo-

sphere. The adaptive optics technology for these diluted telescopes are still

under investigation. Image reconstruction algorithms have contributed in the

field of optical interferometry. For single aperture telescopes the reconstruc-

tion algorithms based on triple correlation has provided with very fruitful

results. In this thesis we have tried to establish and verify use the traditional

triple correlation based reconstructions in diluted aperture interferometers,

aperture masking and multi speckle long baseline interferometry.
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6.2 Summary

We started by giving introduction to the importance of phase and how atmo-

spheric turbulence affects the phase of the wavefronts, creating speckle pat-

terns and destroying our ability to obtain diffraction limited images. Our aim

in this thesis have been to develop image reconstruction techniques related

to optical interferometers. In this scenario it was important to realistically

simulate the affects of atmospheric turbulence. We discuss in detail the model

used by us to simulate atmospheric turbulence using the basic principles of

Kolmogorov Turbulence model. We also discuss the important aspects of

our simulation like, the simulation of earth rotation aperture synthesis, beam

combination modes, multispeckles etc. These studies allows us to simulate

different modes of optical interferometry with different configurations. In this

phase of study we have also analyzed in detail how advantageous the all-in-

one beam combination is over the use of pair-wise combination currently used

in most interferometers. We layout a study of the signal advantage we ob-

tain at low light levels through all-in-one beam combination in cophased and

non-cophased speckle mode.

The image reconstruction technique used in this thesis is the triple corre-

lation based reconstruction. It has great potential since it allows the recon-

struction of phase information. The theory of triple correlation is studied and

its application to developing a direct bispectrum algorithm is discussed. The

algorithm has been used with real speckle images, aperture masking simula-

tions and multispeckle simulations. The software based on the algorithm is

able to reconstruct the objects in each of the three scenarios.

A major drawback of the direct bispectrum algorithm has been the com-

putational time and memory requirements. A tomographic algorithm based

on radon transform has been developed which significantly reduces the time

of processing since the computations are reduced to 1-dimensional signals.

We have compared the direct bispectrum and tomographic speckle masking

algorithm to find that the TSM algorithm gives similar results at faster time.
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A significant part of the study in this thesis is dedicated to hypertele-

scopes which are diluted aperture optical interferometers which can produce

high resolution images. These telescopes use small mirrors setup in arecibo

kind of mountain valley with the beams combined in the gondola above. The

technique of pupil densification allows them to be useful in imaging fainter

stars by reducing energy getting dissipated in to side halo of the PSF. This

thesis discusses the principles behind hypertelescope in detail and also lays out

the numerical simulations to simulate the images from such a system. Speckle

imaging with hypertelescopes, is a new technique that has been developed in

this thesis. Development of adaptive optics systems for large diluted tele-

scopes like hypertelescopes will be very challenging. it has been verified by

numerical simulations that the use of speckle imaging with hypertelescopes

can offer a viable observational method for such systems in the absence of

adaptive cophasing.

6.3 Future Prospects

6.3.1 Bispectrum algorithm to work on OIFITS data

from long baseline interferometers.

The developed algorithms in the thesis works with direct imaging interferom-

eters. Current interferometers, as discussed in earlier sections, take visibility

and closure of phase measurements instead of real images. The image re-

construction algorithms that work with long baseline interferometry data use

regularization techniques to infer the object distribution from the measured

visibilities and closure of phases. Such techniques that work on VLTI and

CHARA data have contributed immensely in the science cirumstellar env-

iorment around stars (Meilland et al., 2007a,b) and stellar surfaces (Tuthill

et al., 1997, 1999). It would be interesting to use regularization based tech-

niques with the direct bispectrum algorithm. This would enable us to work

with data from the current interferometers. The format for the data from
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long baseline interferometers has already been standardized in to a FITS file

format. This format is called OI-FITS. A possible future direction of work

with the current algorithm could be enabling it to work with OI-FITS data.

Baeysian techniques like simulated annealing, maximum entropy etc could be

utilized to make it better.

6.3.2 Laboratory simulations of pupil densification

Optical Interferometers use large arrays with telescopes separated by hun-

dreds of meters and achieves imaging at very high angular resolution. Yet if

optical interferometry has to make significant contributions to astronomy it

has to demonstrate ability to image fainter stellar objects with higher con-

trast. However the science capabilities of the current generation of interfero-

metric instruments and the proposed ones are strongly limited by sensitivity

and dynamic range of observations. The modern optical interferometers need

to employ new technologies in optics and photonics to achieve better sensi-

tivity to observe fainter objects and better dynamic range for high contrast

imaging. Pupil remapping techniques like pupil densification (Labeyrie, 1996)

have developed as a key technology to improve these characteristics of optical

interferometers. Together with coronographic techniques (Ricci et al., 2010),

which blocks the direct light from the star to detect nearby objects or struc-

tures, it can be used for exo-planet detection, imaging of circumstellar disks

and other high dynamic range applications in astronomy. Pupil densifica-

tion is the scheme of concentrating the diffracted energy in to the central

part of the PSF. This increases the ability of the system to detect more

fainter sources from the background noise. Modelling these new technologies

and characterizing their performance for near infrared optical interferometry

will be an interesting future work. Experimental simulations could involve

building small prototypes of pupil densification using single mode optical fi-

bres (Patru et al., 2008) or micro lens array (Gillet et al., 2003). Once such

prototypes are modeled their characteristics can be studied in detail. Inte-
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grated photonics research has already brought very interesting technologies in

the field of Optical Interferometry by developing of on-chip pupil remapping

techniques (Jovanovic et al., 2012). It still needs to be studied how pupil

densification can be implemented through on-chip techniques.

6.3.3 The 57m Hypertelescope in La Moutière

To understand broadly the capabilities and to realize the technological im-

provements to setup a large diluted hypertelescope a prototype version is

under development in Vallon de la Mouti‘ere at the limit of the Parc National

du Mercantour (2100-2300m altitude) in the southern Alps. The valley is

only accessible during the summers and under challenging circumstances the

team led by Prof. Antoine Labeyrie have been tirelessly trying to built a

diluted aperture interferometer in the valley. The priliminary baseline being

developed is 57 m to be expanded later by adding more mirrors. The discrete

Figure 6.1: The optical scheme planned in the prototype at Moutiere valley. The

light from the star is reflected on to the gondola by the mirrors in the valley, and

then the image is observed indirectly through a coude setup. (Labeyrie et al.,

2012b)

elements of the diluted primary are primarily arranged in spherical locus in

the valley. A spherical corrector is used to correct the spherical aberration

at the focal gondola which also houses the detector. The focal gondola is

hanging 100 m above the valley. Once the initial fringes are obtained, next
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step would be to attain observational ability using speckle imaging. The de-

veloped algorithms can be used with the developed prototype to obtain some

interesting results. Figure 6.1 and Figure 6.2 shows the basic structure of the

setup being developed.

Figure 6.2: Driving system built at Ubaye. The gondola is suspended 100 m above

ground at a 800 m meridian traversing cable, via a rolling pulley, with oblique

wires defining its x,y,z position. The cables attachment points in the cliffs on

both valley sides are approximately aligned with C1, the center of curvature of the

primary dilute mirror, so that it can pendulate to allow the East-West motion of the

gondola. The angle of its chainette sag at the gondola provides a spring-like lifting

force which tensions the driving wires. These are controlled by ground winches,

computer driven, located at the East side, the West side and the South side at the

polar projection of C1. The motors at all three points, spaced about 200m apart,

are synchronized by innovative wireless links. The gondola motion is equatorial

and allows a Coude focus to be projected toward the South winch. The power need

for the winches is minimized by tensioning the wires with counterweights. All the

system use solar energy relayed by batteries during the night. (Labeyrie et al.,

2012b)
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6.3.4 The Extremely Large Hypertelescope

The development at Vallon de la Moutière will give enough impetus to move

towards the development of larger versions which can have baselines upto

1200m. The Arecibo like structure of these interferometers does not require

large mount or dome which is a major cost contributer in 30m TMT(Thirty

Meter Telescope) and the planned 40m ELT(European Large Telescope). For

the same cost, an ”Extremely Large Hyper Telescope” (ELHyT) may there-

fore have a larger collecting area. It may thus in principle reach higher limiting

magnitudes, both for seeing-limited and, if equipped with a Laser Guide Star

and adaptive phasing, for high-resolution imaging with gain as the size ratio,

i.e. about 30 with respect to a 40m ELT. One of the key advantages of such

telescopes are that they can be grown progressively like a radio array and also

setup with multiple gondolas tracking different sources. Array apodization

and coronography can further increase the potential of such arrays by increas-

ing the dynamic range of imaging thus being useful to image exoplanet tran-

sits and in resolving stellar chromospheres. Extremely Large HyperTelescope

can achieve a large gain in spatial resolution, direct-imaging performance and

in interferometric limiting magnitude with Laser Guide Star. This will open

broad science niches, including possibly deep field cosmology. Embryonic ver-

sion can rapidly grow to full size but the design is highly site-dependent and

thus an early selection will be needed

6.4 Conclusion

The thesis discusses the development of two image reconstruction algorithms

to be used with direct images from optical interferometers. Direct bispectrum

algorithm uses a computationally intensive but efficient technique to recon-

struct object information from speckle images. Tomographic speckle masking

algorithm has been developed to offer a computationally efficient method to

reconstruct images from speckle data. Both these algorithms were tested

with numerical simulations, real data and experimental simulations. Numeri-
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cal simulations of different optical interferometric techniques have been built

to understand the possibility of reconstruction using these methods. A part of

the thesis concentrates on usability of these algorithms with diluted aperture

interferometers which use pupil densification. It is seen from the simulations

that the developed algorithms can be used with these diluted interferometers

to obtain useful results.
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Stéphan, M.: 1874,. Comptes Rendus 78, 1008.

Surya, A., Saha, S.K., Labeyrie, A.: 2014, Speckle imaging with hypertele-

scopes. Mon. Not. R. Astron. Soc. 443, 852 – 859.



BIBLIOGRAPHY 118

Surya, A., Saha, S.: 2014, Computationally efficient method for retrieval of

atmospherically distorted astronomical images. Journal of Optics, 1 – 8.
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