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Chapter 1

Introduction to AGN

Active galactic nuclei (AGN) are the compact central regions of certain galaxies whose luminosity

ranges between ∼ 1042 - 1048 erg/s is much greater than that of their host galaxies. The emission

from this central region spans a wide range of wavelengths from the infra-red to γ-rays unlike regular

galaxies where the emission typically is from infra-red (dust), optical (stars) and UV (nebulae,

stars). A canonical model of an AGN consists of the following constituents: the central super-

massive black hole, whose mass can range from between 106 M⊙ (e.g. for Seyfert galaxies) to 109

M⊙ (e.g. for blazars); surrounding this is the accretion disk which is the main source of optical, UV

and soft X-ray emission; an obscuring torus shaped region spanning a size > 0.1 pc consisting of gas

and dust and is much further away from the black hole and is hence more cooler; a region consisting

of broad line emission from gas clouds which are gravitationally bound by the central black hole

spanning a typical size of ∼ 10 light days with a number density of 108 to 1011 particles/cm3,

known as the broad line region (BLR) and another region consisting of orbiting gas clouds with

narrow emission lines, known as the narrow line region (NLR) which spans a size of 1 to 1000 pc

from the central region with a number density of 102 to 106 particles/cm3. These components are

supplemented by models of radio loud AGN where powerful jets consisting of accelerated particles

aligned with the axis of rotation of the black hole are observed. Various observational properties

from AGN are believed to arise due to the observer line of sight passing through any of the above

mentioned components. A simple model of an AGN with the above components is presented in

Fig. 1.1.

AGN possess the following properties:

• Broadband spectrum: the distribution of spectral flux with frequency, the spectral energy

distribution (SED) of an AGN indicates strong and continued non-thermal emission in a wide

range of wavelengths from radio and infra-red to X-rays and γ-rays e.g. [1]. The spectrum

is typically characterized by the energy flux (erg/cm2/s in C.G.S. units) per unit frequency

(Hz), Fν expressed as a function of the frequency ν (Hz). The spectrum of the AGN is broad

compared to stars whose spectrum is typically black body dominated and spans a decade in

frequency in the optical wavelengths. A schematic of typical SEDs for different types of AGN

is shown in Fig. 1.2.

1
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Figure 1.1: Simple representation of an AGN model showing the main features: supermassive
black hole, accretion disk, BLR and NLR regions and the obscuring torus. Image courtesy: Mike
Crenshaw.

Figure 1.2: Typical SED of an AGN showing emission from the radio to γ-rays with the various
contributing components in each of the wavelength bands. Image courtesy: [2].



3

Figure 1.3: X-ray light curve of the blazar PKS 2155-304 (0.3 keV to 10 keV) indicating strong
variability with a possible QPO. Image courtesy: [11]

• Rapid variability: the light curve which is the measured band or total integrated flux as

a function of receiving time indicates rapid short timescale variability with small to large

amplitude fluctuations which are generally aperiodic e.g. [3]. Variability occurs over a wide

range of timescales: ∼ 100 s to a few 100 s in the γ-rays e.g. [4] where a 600 s variability is

inferred from the TeV emission based power spectrum and well resolved bursts are observed

at regular intervals of ∼ 200 s; ∼ 1000 s to a few hours in the optical/UV and X-rays e.g.

[5, 6], (see analysis of light curves of blazars in Chapter 4 or that of the Seyfert galaxies in

Chapter 5) where typical aperiodic variations are present with moderate to strong variability

as characterized by the variability amplitude (for optical) or the excess fractional variability

amplitude (for X-rays); less than a day to a few days in the optical e.g. [7] and radio e.g. [8]

and months to years in the optical and radio e.g. [9, 10] depending on the type of AGN thus

allowing us to ascribe these timescales to either disk or jet based physical processes. A figure

showing typical short timescale variability (∼ few hours) is shown in Fig. 1.3.

• Size of emitting region: emission from AGN dominates that from the background host galaxy

if observed at lower redshifts. Upper limits to the size of source of the broadband spectrum

and rapid variable emission can be placed using the light crossing time argument, ∆r = c∆t.

This typically yields a broad line region (BLR) size of around a few to tens of light days e.g.

[12]. In addition, the angular size of the AGN is very small compared to the host galaxy, again

owing to the emission being dominated by it. Effects due to the cosmological redshift and

the wavelength of observation play an important role in enhancing this contrast. These must

be taken into consideration after a careful study of the luminosity of the AGN as a function

of redshift and the properties of the host galaxy. The flux (F )- luminosity (L) relation for

the flux from an AGN at an effective distance deff and redshift z is given by

F =
L

4πd2eff

1

(1 + z)2
. (1.1)

The factor (1+z)2 arises due to the frequency shift of a single light ray coupled with the time

delay between two pulses getting redshifted in the observer frame. The effective distance is
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given by

deff =
1

H0Ω
1/2
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(1.2)

depending on whether the universe is closed, flat or open. For a cosmological scale factor ã,

χ(Ωv,Ωr,Ωm) = (Ωc)
1/2

∫ 1

1/(1+z)

dã

ã[Ωc − 2Ueff (ã)]1/2
(1.3)

where Ωv,Ωr, Ωm are the vacuum, radiation and matter energy densities. ã = a(t)/a(t0)

is the scale factor re-scaled in terms of the initial value a(t0) and the effective potential

Ueff = −(1/2) (Ωvã
2+Ωm/ã+Ωr/ã

2) with Ωc satisfying the relation Ωv+Ωm+Ωr+Ωc = 1.

Once the above integral is carried out for measured energy densities and H0, deff (z) can be

determined. For a source with a physical size r, the angular size subtended measured by an

observer is θ = r/d. Using the above relation and

L = 4πr2σT 4
Eff , (1.4)

a rough expression for the angular size [13] is given by

θ = 87(1 + z)2
(

F

10−11 erg cm−2 s−1

)1/2

(TEff/10
3 K)−2 (1.5)

where F roughly corresponds to the bolometric flux from the AGN and Teff is the effective

temperature of the inner region, typically ∼ 103 K to 105 K. For a known or measured Teff

and z, the angular size of the AGN scales as F 1/2 such that apparently bright AGN also

subtend a larger angular size.

• Bi-directional jets in radio to X-ray wavelengths: highly relativistic components which are

confined within narrow opening angles (bulk Lorentz factor Γ between ∼ 3 - 30 and opening

angles 0.5◦ - 10◦ e.g. [14]) over large distances from the central region (∼ a few kpc). This is

illustrated in a false colour image in Fig. 1.4.

• High luminosity: a balance between the outward bound radiation pressure built up through

Thomson scattering on free electrons with the gravitational collapse yields an upper lumi-

nosity limit, the Eddington luminosity, LEdd ∼ 1.3× 1046M8 erg/s where M8 =M/(108M⊙).

The luminosities of typical AGN range between 1042 − 1048 erg/s which is in the close vicin-

ity of the Eddington luminosity indicating a powerful, active source of emission within the

compact emitting region. This luminosity is ∼ 0.01 to 104 times the luminosity of ∼ 1044

erg/s observed for a typical field galaxy distribution indicating that the energy output from

this small nuclear region is quite large.

Mechanisms which can generate and sustain such a large luminosity output in a wide variety

of wavelengths over long durations of time are very few. Using a similar argument as that in
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Figure 1.4: Multiconfiguration VLA observations of Cygnus A at 1.4 GHz and 5 GHz have been
used to produce detailed maps of exceptional dynamic range. A radio jet extends from the core
into the northwest lobe. The pressure of the cluster gas in which Cyg A is embedded appears to be
insufficient to confine either the jet or the filamentary structures within them. From the necessarily
high mechanical luminosity of the jet and the high energy densities of the hot spots, it is concluded
that the jet is probably relativistic. Image courtesy: NRAO/AUI and studied by [15].

[16], the available accretion based energy due to a mass m is ∆Eacc ∼ GMm/R ∼ 0.5mc2 for

a Schwarzschild black hole with a mass M and radius R = 2GM/c2 and the nuclear burning

process based energy ∆Enuc ∼ 0.007mc2 indicating that the accretion energy yield per unit

mass is ∼ 2 orders of magnitude greater.

1.1 Classification of AGN

AGN are known to show a varying set of observationally distinct and unique characteristics. This

has led to many proposals for classification schemes.

1.1.1 Optical spectra and line widths

The presence of lines with a broad profile can be used to demarcate various objects into classes.

Early classification schemes were based on Seyfert galaxies where the host galaxy was visible and

a certain population, the type 2 objects indicated narrow emission lines while another population,

the type 1 objects indicated multiple broad as well as narrow emision lines. Currently classification

schemes for the Seyfert galaxies have also used sub-classes [17] such as types 1, 1.2, 1.5, 1.8, 1.9

and 2 based on more well resolved spectroscopic observations which reveal more detailed features

measured in the narrow Balmer lines. Seyfert galaxies are typically have an absolute B magnitude

MB > -21.5, a bolometric luminosity between 1043 erg/s and 1045 erg/s. The broad permitted

emission lines possess a full width at half maximum (FWHM) ranging between 800 km/s and

8000 km/s while the narrow emission lines which includes both permitted as well as forbidden

lines possess a FWHM ranging between 200 km/s and 500 km/s. In addition, the Seyfert type 1

galaxies indicate a strong non-stellar continuum emission in their spectrum while the Seyfert type

2 galaxies indicate a weak stellar continuum. Another set of objects, the narrow line Seyfert 1

galaxies indicate a typical FWHM ranging between 800 km/s and 2000 km/s with strong Fe II
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ionized emission. There is a strong excess emission contributing at and below the 1 keV to 2 keV

soft X-rays accompanied by a rapid X-ray variability.

1.1.2 Radio power (radio loud or radio quiet)

Some of the first AGN were identified through various surveys, beginning with those conducted in

the radio wavelengths due to the availability of large sky coverage, good instrumental sensitivity

and a strong emission by AGN in radio. The third Cambridge (3C) catalogue consisted of ∼ 500

sources with a flux > 9 Jy at 178 MHz and the third Cambridge revised (3CR) catalogue [18]

consisted of 328 sources with declination δ > -5◦ and flux > 9 Jy. These and the fourth Cambridge

(4C) catalogue [19, 20] which covered a large part of the northern sky with source flux > 2 Jy

were compiled during the 1950s and 1960s using observations on a 178 MHz radio telescope at

Cambridge University. This was followed by the Parkes survey (PKS) and others.

Radio power, which was measured in many of these surveys played an important role in the

identification of two distinct populations of AGN e.g. [21]. The radio loudness parameter is defined

as

RL = Log
f5 GHz

fB
(1.6)

where f5 GHz is the radio flux measured at 5 GHz and fB is the optical B band flux measured at

4400 Å. AGN with a measured RL ≥ 1 are classified as radio loud and those with RL < 1 are

classified as radio quiet.

Each of these are further sub-divided into types 1 and 2. Type 1 radio loud AGN which

show a low luminosity and indicate the presence of broad emission lines are known as broad line

radio galaxies (BLRGs) while those with high luminosity are known as radio loud quasars. Steep

spectrum radio quasars (SSRQs) and the flat spectrum radio quasars (FSRQs) are types of radio

loud quasars, bifurcated based on the slope of their radio spectrum which if represented by a power

law can be written as Fν ∝ ν−α. For the radio spectral index α being ≥ 0.5, the AGN is known

as a SSRQ. For flatter α, typically < 0.5, the AGN is known as a FSRQ. Type 2 radio loud AGN

are those where optical emission lines are narrow and are known as the narrow line radio galaxies

(NLRGs) which are further classified into the Fanaroff-Riley type 1 and type 2 galaxies [22] based

on their morphological properties and the environment surrounding the jet. Blazars are another

set of radio loud AGN where the emission across all wavelengths of study are strongly variable on

time-scales ∼ 1 day e.g. [23, 24, 25]. They indicate a strong polarization of 1 % to 4 % and are

moderate to strongly radio loud. They can be further sub-divided into BL Lacertae objects where

emission lines are generally absent or very weak with typical equivalent widths of < 5 Å[26, 27],

optically violently variable quasars which indicate a high polarization and have broad emission

lines and the FSRQs. The BL Lacertae objects can be further sub-divided into the high-frequency

BL Lacs (HBLs) where the synchrotron emission peaks in the X-rays and the low-frequency BL

Lacs (LBLs) where the synchrotron emission peaks in radio wavelengths. Radio quiet AGN include

the Seyfert galaxies, sub-divided into the Seyfert types 1 and 2 based on the earlier mentioned

observability of narrow as well as broad emission lines from their optical spectra.
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Figure 1.5: Spectral energy distributions for three kinds of blazars. The synchrotron power of strong
emission line blazars (FSRQ) and low-frequency peaked blazars (LBL) peaks at submillimeter to
infrared wavelengths, while that of high-frequency peaked blazars (all known HBL are BL Lac
objects) peak at UV to X-ray wavelengths. The Compton powers peak at GeV energies for FSRQ
and LBL and at much higher (TeV) energies for HBL. In general, FSRQ and LBL (dashed lines)
are more luminous than HBL (dotted lines). Figure courtesy: [28]

Quasars are AGN with typical high luminosities ranging between 1045 erg/s and 1047 erg/s

which have been observed to redshifts ∼ 7, obtained from their strongly redshifted emission lines.

They typically have strong blue continuum emission constituting their spectra with broad emission

lines and strong variability in optical and X-ray wavelengths. In addition, their spectra resemble

those from Seyfert 1 galaxies though with an absence or weakly detected stellar absorption features

with weak, narrow lines. Interestingly, only 5 to 10 % of the quasars studied till date indicate a

clearly marked radio loudness e.g. [29], which is ≥ 10, much more powerful than other radio loud

objects with suggestions of disruption of jets by gas from tidal disruption of stellar material [30],

the black hole spin affecting the magnetic field structure in the jet launching and collimation region

[31] and others.

1.1.3 Morphology of the AGN, its jet or the host galaxy

The NLRGs, as mentioned above can be sub-divided into the Fanaroff-Riley type 1 (FR I) and

type 2 (FR II) galaxies. FRI galaxies are those when studied in the radio wavelengths indicate a

strong emission from the nucleus with diffuse lobes indicating a decrease in the brightness towards

their edges, suggesting that they are present in a host galaxy enviroment rich in gas and dust. FR

II galaxies meanwhile indicate powerful emission near the edges of a bi-directional outflowing lobe

structure. They are generally observed in environments containing minimal contamination by gas

and dust surrounding the host galaxy.
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1.2 Unification and a physical AGN model

Proposals have been made in literature e.g. [32, 33] that the various classes of AGN can be

explained by ascribing their differing properties to the viewing angle of the observer towards the

AGN. According to this paradigm, the AGN can be described by the canonical model presented

earlier.

Early unification models arose from the study of Seyfert galaxies and their subsequent class-

fication into the Seyfert 1 and 2 observation. As mentioned earlier, Seyfert type 2 galaxies emit

narrow emission lines while the Seyfert type 1 galaxies emit both narrow as well as broad emission

lines. Polarization studies of Seyfert type 2 galaxies in the optical reveal an obscured broad line

region, which is not observed in the regular optical spectrum e.g. [34, 35]. Such studies suggest

that obscuration by a dusty torus indeed prevent us from observing the inner region, possible due

to observer line of sight effects and thus adding evidence to unification schemes. The same sug-

gestion is also carried over to the description of the variety of observational results for radio loud

AGN where there is an astrophysical jet in addition. In these too, it is believed that the observer

line of sight decides the object being viewed. The NLRGs, similar in their properties to Seyfert

type 2 galaxies, except for the inability to resolve a host galaxy in them has an observer line of

sight intersection through the dusty torus, thus obscuring the inner broad line region. The BLRGs,

similar to the Seyfert type 1 galaxies though, with a poorly resolved host galaxy have an observer

line of sight which intersects through both the broad as well as a portion of the narrow line clouds.

They typically have Balmer profiles which are broader with weaker Fe II emission lines and a higher

Hα/Hβ line ratio. The radio loud quasars which includes the SSRQs and FSRQs are believed to

have an observer line of sight intersecting through the narrow line clouds at a smaller angle to the

line of sight perpendicular to the accretion disk axis. Finally, the blazars, where emission is highly

variable in multiple wavelengths is believed to be observed due to the observer looking almost head

on into the heart of the AGN through the jet. The inclination angle towards the observer line of

sight which is the polar or co-latitudinal angle, defining the opening angle of the jet is highly con-

strained, typically ≤ 10◦ for these objects. Thus, if the material along the jets is moving at special

relativistic velocities, these will be beamed towards the observer. Thus, even small disturbances in

the jet get amplified due to beaming and the jet based emission dominates the observed spectrum

of these objects. The unification schemes for the radio loud and radio quiet galaxies are presented

as a schematic in Fig. 1.6.

A physical model of AGN emerges from all the previous discussion involving their classification

and the proposal of unification modes. The canonical model of an AGN can be supplemented by

finer detailed features and possible explanations for the origin of emission in the various wavelengths

constituting the SED as well as their strong variability in both spectra as well as in their light curves.

A schematic showing a physical model of a quasar is shown in Fig. 1.7. When the nucleus

of the AGN is not spatially resolved as is the case for typical radio quiet AGN, the components

giving rise to emission in various wavelengths are inferred through multiple schemes. The optical,

UV and the soft X-ray continuum emission is believed to arise from the accretion disk. A striking
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Figure 1.6: Schematic showing the observation angle related dependence of the type of AGN.
Radio loud and radio quiet AGN along with the various components of a canonical AGN model
are presented. Image courtesy: Adapted from [33].

Figure 1.7: Physical model of a quasar showing multiple components beginning with the accretion
disk, the corona surrounding it, the inner and expanding jet to large scales. Image courtesy: [36].

feature in the SED known as the big blue bump is often observed in Seyfert galaxies, especially the

type 1s and is believed to offer evidence for the existence of the accretion disk e.g. [37]. The hard

X-ray continuum is believed to arise from a corona sandwiching the disk consisting of relativistic

thermal population of electrons. The infra-red emission can be ascribed to the re-processed thermal

emission from the dusty torus and the NLR dust. In the case where the AGN is better resolved,

especially in radio loud AGN where the morphology including the presence of a jet is discernable,

the components giving rise to emission in a particular wavelength can be identified better. Radio

emission is clearly observed from the core, jets and lobes of features of the AGN.
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1.3 Determination of black hole mass in AGN

There is growing evidence from observational studies based on multiple physical schemes to support

the hypothesis that these complex phenomena can be explained by a canonical model of an actively

accreting central supermassive black hole (SMBH). These include direct astrometric measurements,

gas dynamics based tests, stellar dynamical tests, studies on water maser emission, reverberation

mapping and searches for interesting features such as quasi-periodic signals.

Recent advancements in observational techniques have allowed us to infer the SMBH in our

galaxy. Direct astrometric imaging measurements tracing the highly elliptical orbit of a star close

to the compact core in Sagittarius A* indicate a Keplerian orbital period of 15.2 years and a

pericentric distance of ∼ 17 light hours with the best fit to the observations requiring a mass of ∼
106 M⊙ [38]. As similar studies are not currently possible to conduct in other galaxies, alternate

schemes have been developed.

1.3.1 Water maser emission

H2O maser emission at λ = 1.35 cm (∼ 22 GHz) can be used to trace single gas clouds orbiting

massive black holes in galactic nuclei. Radio interferometers such as the VLBA which can reach a

high spatial and velocity resolution compared to optical and near-IR instruments can be used in

the detection and the tracking of such features from an extended disk. As the motion of the maser

sources is gravitationally bound to the central black hole, the mass of the SMBH can be precisely

measured. For a disk inclined at an angle i towards the observer line of sight and a radial distance

s to the center of the galaxy, the velocity of the source on the disk can be written as

vobs =

(

G MBH

s

)1/2

sin i. (1.7)

The velocity towards and away from the observer line of sight will be oppositely directed. For a

source with velocity directed towards and then away from the observer line, a schematic plot of v

versus sobs is shown in Fig. 1.8.

A strong signature was observed in NGC 4258 where a SMBH mass of 3.6 × 107 M⊙ was

inferred in [39]. A black hole mass of (8.0 ± 0.3) × 106 M⊙ is obtained for NGC 1068 where the

disk is modelled as self gravitating [40]. A VLBI study of emission from seven galaxies is used to

obtain a black hole mass in the range of 0.75 × 107 to 6.5 × 107 M⊙ [41]. A compilation of known

sources and the inferred SMBH masses is presented in [42].

1.3.2 Gas and stellar dynamics based measurements

The dynamical motion of gas and stars in the nuclear region of a galaxy are studied in a statistical

manner to derive their average velocity v from the velocity distribution and the dispersion σ in

the velocity. The stellar continuum emission is used in the determination of v and σ. Though, the

parameters obtained from stellar kinematics are not as accurate owing to effects on the emission
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Figure 1.8: The rotation curve showing the velocity of a water maser emission source as a function
of the radial distance from the central black hole. The disk, likely to be the outer portion or an
extension of an accretion disk is gravitationally bound to the central black hole. Image courtesy:
Alessandro Marconi.

lines due to contributions from magnetic fields in the galaxy and contamination by gas and dust.

The surface brightness of the galaxy is then determined, modelled using a de Vacouler’s profile or

a general Sersic profiles, expressing it as a function of the radial distance from the center of the

galaxy. This can then be used in combination with the to infer the contribution to the gravitational

potential of the galaxy from the stellar components.

The study of the dynamics of the orbiting gas clouds, assumed to be in close proximity to the

central black hole are used to determine their v and σ from observed emission lines. Just as in

the case of the emitting source on Keplerian orbits in the case of the water maser emission, the

emission is believed to originate from gas in Keplerian orbits around the central potential. This can

then use similar a similar relation between v and the radial distance r from the central black hole

to determine the SMBH mass. As an estimate of σ for the gas is available in many cases and the

relationship between σ and r is known (σ ∼ 0 at the edges and slowly increases to a maximum of 2

v at exactly the observer line of sight), there is an additional advantage in the use of gas motion as a

tracer as the profile of v can also be confirmed with that of σ. Absorption lines from orbiting gas are

studied with a measurement of the characteristics of their profile. Spectroscopic and narrowband

observations of the region near the core of the galaxy are used to infer the kinematics such as radial

velocity and the mass to light ratio, which are then compared with models of the gas kinematics

to infer the presence and mass of the central SMBH. Hubble Space Telescope (HST) studies on

M 87, a giant elliptical galaxy indicate a SMBH mass of ∼ 2.4 ± 0.7 × 109 M⊙ from narrowband

Hα imaging [43] and O [III] 4959 Å line [44] and another consistent estimate of 3.2 ± 0.9 × 109

M⊙ from the O [II] 3727 Å line [45]. A similar HST narrowband Hα imaging study on another

giant elliptical galaxy, NGC 6251 indicates a SMBH mass of 4 − 8 × 108 M⊙ [46] and HST based

spectroscopic study in the S [III] 9533 Å line of the nearby radio galaxy Centaurus A indicates a
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SMBH mass of ∼ 108 M⊙ [47].

1.4 The M-σ relation

Dynamical measurements involve the study of the distribution and evolution of stellar parameters

near the central region of various types of galaxies [48]. The SMBH mass is correlated with the

measured velocity dispersion of the bulge as MBH ∝ σα with estimates of α in the range of ∼ 4

- 5 [49, 50]. Physical motivations for the existence of this observed relationship have been probed

in terms of the relationship between the SMBH and their host galaxies [51] by simulating galaxy

mergers through the inclusion of contributing effects such as gas dissipation, cooling, star formation,

and the accretion and feedback by the SMBH. It has been suggested here that theMBH−σ relation

may be part of a black hole fundamental plane based relation where MBH ∝ σ3.0±0.3R0.43±0.19
e and

MBH ∝ M0.54±0.17
Stellar σ2.2±0.5. If we use a suitable Re such that MBH ∝ σ4, then we recover the

Magorrian relation MBH ∝MStellar.

1.5 Reverberation mapping and virial estimation

Reverberation mapping of the broad line region (BLR) clouds e.g. [52] is currently a much favoured

technique owing to it being almost independent of the angular resolution, making it effectively useful

over a wide span of distances. For a virialized gas cloud,

M = frv2/G (1.8)

where f is a covering fraction which must be used to account for the shape of the BLR clouds and

other geometrical effects, r is the size of the emitting region and v2 is the average velocity of the

gas. The expression for the virial mass thus contains three parameters f , r and v2 which must be

constrained from observational studies.

Continuum emission from the inner accretion disk could experience fluctations caused by the

detailed flow in this region. These fluctuations will be imprinted on the outgoing radiation. The

BLR clouds which lie close to the inner region will then re-processes the incoming variable radiation

over a very small timescale before it reaches the observer. BLR clouds lying on iso-delay surfaces

will indicate the same time delay. Due to the geometrical alignment of these clouds, there will be a

time delay between the variations in the line flux as compared to that in the continuum flux. For

an iso-delay surface, ∆t = (r/c)(1 + cos θ) where r is the distance from the central BH. The ∆τ

between continuum and line variations are used to place upper limits on r as r = c∆τ . A cross

correlation of the continuum light curve Lc(t) with an emission line light curve Le(t) gives ∆τ for

that pair. ∆τ is obtained for different emission lines. Thus, a statistical determination of the time

delay for each pair of line variability with respect to the continuum variability maps out a structure

of the broad line region at each radius.

In the absence of reverberation based time delay measurements, r can be determined through
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Figure 1.9: (a) In this illustrative model, the BLR clouds are distributed along a counter-clockwise
circular orbit centered on the central continuum source at inclination i = 90◦. Emission-line clouds
respond to a continuum fluctuation with delay ∆τ , which compared with the photons from the
central source that travel directly to the observer, is the additional path length this signal must
travel to the distant observer to the left, as shown by the dotted line. At the ∆τ shown, two clouds
are responding, the upper one approaching the observer and the lower one receding. (b) The points
on the circular orbit in (a) project to an ellipse in the velocity - time-delay plane. The locations
of the two clouds in (a) are shown. (c) For circular orbits at inclinations less than 90◦, the axes of
both ellipses are decreased by a factor sin i and the center remains at v = 0, ∆τ = r/c. Thus, for
a random distribution of inclinations, the response of the BLR occurs over the full range of radial
velocities and time delays limited by the i = 90◦ case. Image courtesy: [53].

a virial relationship between the broad line region radius for the Hβ or C[IV] emission line and

the bolometric luminosity. r ∝ L0.6±0.1. The line width from multiple emission lines are used to

measure v2 by considering the full width at half maximum. Once these are known, the only unknown

quantity is the covering fraction f . An estimation of f is generally carried out by comparing the

estimated M/f with the black hole mass obtained from the M − σ relation. It is found to be a

fairly accurate manner of estimation and the value of f is typically constrained to ∼ 0.75 to 1.

Thus, MBH can then be determined. This technique can be used to deduce the mass of the SMBH

and kinematic properties of the inner BLR region close to the center e.g. [12, 54].

1.6 Quasi-periodic signals

The SMBH mass and spin can also be inferred from arguments based on observational signatures

from disk based orbital features, specifically a quasi-periodic oscillation or a break frequency in

the power spectrum. If a statistically significant quasi-periodic oscillation (QPO) is detected in

the light curve of an AGN, e.g. a QPO centered at 3733 s in the narrow line Seyfert 1 galaxy

REJ 1034+396 [55], then, based on the type of AGN (disk or jet dominated emission) and on the

wavelength it was detected in (optical/UV or X-ray), it can be argued that the QPO arises due to

an orbital feature in the inner disk close to the SMBH. Even if the physical origin is due to disk

oscillations or other physical mechanisms, the above argument can be used to place upper limits
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Figure 1.10: The left-hand columns show the light curves of NGC 7469 obtained with IUE during
an intensive AGN Watch monitoring campaign during the summer of 1996. The right-hand column
shows the result of cross-correlating the light curve immediately to the left with the 1315 Å. A light
curve at the top of the left column; the panel at the top of the right column thus shows the 1315
Åcontinuum autocorrelation function. Image courtesy: [53].

on the SMBH mass. If a break is detected in the power spectrum e.g. [56], it is possible that

its physical origin is due to matter infall into the SMBH from the innermost stable circular orbit

(ISCO) or any characteristic disk based inner radius, which would still be close to the ISCO.

As these physical schemes can be used to infer and set constraints on the SMBH mass and spin

and on the region of emission of the observational signatures, it merits further detailed theoretical

studies complemented by the analysis of observational data. The location of these phenomena is

in the inner accretion disk and developing jet in the close vicinity of the central SMBH.

1.7 Determination of black hole spin in AGN

For many Seyfert type 1 galaxies, the observer line of sight intersects through the inner region

which includes the accretion disk as proposed by the unification models. These objects are also
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a source of strong emission in the soft to hard X-rays (0.1 keV to a few 100 keV). Once the soft

X-ray spectrum below 1 keV is fit, accounting for various sources of absorption such as gas clouds

towards the observer line of sight, the remaining portion is a falling power law with a spectral index

∼ -0.9 which extends into the hard X-ray region of the spectrum (20 keV to 100 keV) with a high

energy bump. This entire region is well fit through a model involving a large distribution of cold

gas which takes part in the Compton scattering of X-rays to lower energies. As this material must

cover a large region, there is indirect evidence for the presence of a disk which could be constituted

by it. Further, in the soft X-rays (0.1 keV to 10 keV), a striking emission line in the spectrum at

6.4 keV is identified as a fluorescence emission line due to the excitation of iron where the K-shell

electron is ejected due to an interaction with an incoming high energy photon. This line emission

is very broad as indicated by its measured FWHM and its measurement at 6.4 keV implies that

the temperature of the gas taking part in the fluorescence is cold and is getting irradiated by high

energy X-rays from the inner-most region. Thus, the region containing this colder population of gas

is likely to exist on a disk very close to the black hole. If the black hole has a sufficient intrinsic spin,

it can influence the rotation rate of the surrounding disk through frame dragging and other effects.

Further, the shape of the 6.4 keV FeKα line profile will then be influenced by strong gravitational

effects such as black hole spin, Doppler shifts, gravitational red-shift, light bending and others. One

can then take into account all these parameters which influence the shape and model it in order to

compare them with spectral studies in these energies, possible due to a good coverage from X-ray

missions such as the XMM Newton (0.1 keV to 10 keV), Chandra (0.1 keV to 10 keV), Suzaku (0.2

keV to 700 keV) and recent interest due to high resolution spectroscopy possible from NuSTAR (3

keV to 79 keV).

Figure 1.11: The main components of the X-ray spectra of unobscured accreting BH are shown:
soft X-ray emission from the accretion disc (red); power law from Comptonization of the soft X-rays
in a corona above the disk (green); reflection continuum and narrow Fe line due to reflection of the
hard X-ray emission from dense gas (blue). Image courtesy: [57].

The SMBH mass and spin can be inferred from arguments based on orbital signatures from
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Figure 1.12: The profile of a narrow emission line is modified by the interplay of
Doppler/gravitational energy shifts, relativistic beaming, and gravitational light bending occur-
ring in the accretion disc (from Fabian et al. 2000). The upper panel shows the symmetric
double-peaked profile from two annuli on a non-relativistic Newtonian disc. In the second panel,
the effects of transverse Doppler shifts (making the profiles redder) and of relativistic beaming
(enhancing the blue peak with respect to the red) are included. In the third panel, gravitational
redshift is turned on, shifting the overall profile to the red side and reducing the blue peak strength.
The disc inclination fixes the maximum energy at which the line can still be seen, mainly because
of the angular dependence of relativistic beaming and of gravitational light bending effects. All
these effects combined give rise to a broad, skewed line profile which is shown in the last panel,
after integrating over the contributions from all the different annuli on the accretion disc. Image
courtesy: [57].

the accretion disk by means of a QPO or a break frequency in the power spectrum as briefly

discussed in the previous section. If the black hole mass is independently measured through any of

the previously described techniques such as reverberation mapping, one can then reduce the free

parameters in the theoretical description to the region of emission and the black hole spin. If we

assume that the region of emission is very close to the inner-most stable circular orbit (ISCO),

the description can then be cast only in terms of spin as the ISCO radius is related to the spin.

Further, a cut-off break time-scale is expected if the accretion disk has a well defined inner edge.

This timescale is imprinted onto the power spectral density shape and is identifiable by a fit to

the observed periodogram. Spin of the black hole can then be constrained based on the mass and

time-scale based constraints. This method of determination of black hole spin is purely from timing
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Figure 1.13: The line profile of iron K emission in the ASCA SIS spectrum of the Seyfert 1 galaxy
MCG-6-30-15. The emission line is very broad, with full width at zero intensity of ∼ 100,000 km/s.
The line shape is skewed toward energies lower than the rest energy of the emission line (6.35 keV
at the source with z = 0.008). The dotted line shows the bestfit line profile from the model of [58],
an externally illuminated accretion disk around a Schwarzschild black hole. Image courtesy: [59].

analysis and is further developed in Chapter 5.

1.8 Models of accretion disk and jet based variability

Any detailed theoretical study must involve specific models of variable emission and the develop-

ment of the spectrum and its evolution at different wavelengths. Commonly used physical models

for accretion disks include:

• Standard thin disks [60, 61] which are geometrically thin (i.e. the ratio of the disk height,

z to its radial extent r, z/r ≪ 1) and optically thick, rendering them radiatively efficient

thus emitting a modified black body spectrum. The physical quantities representing the disk

structure are vertically averaged, only possessing a radial dependence. The dominant flow

velocity is the azimuthal component which can tend to relativistic speeds. These disks can

be used to model emission and its variability from objects with disk dominated emission such

as Seyfert Type 1s and NLS1s where the big blue bump feature is inferred from the SED in

the optical/UV portion.

• Thick disks [62] are geometrically thick (i.e. z/r > 1) and optically thick. As radiative

pressure is dominant in the inner region over the gas pressure, the disk gets “puffed” up and

resembles a “Polish Doughnut”. These could be used to model emission from objects with

high luminosities such as radio loud quasars e.g. [63].

• Slim disks [64] are geometrically thick (i.e. z/r ∼ 1) and optically thick. These can be used
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to represent scenarios when the observed luminosity is significant compared to the Eddington

luminosity e.g. L ∼ 0.3LEdd. In these conditions, the radial velocity also becomes important

and cooling can occur by a combination of radiation and advection of matter into the black

hole. They can be applied to quasars [65] as X-ray emission is possible from them and to

X-ray binaries [66].

• Advection dominated accretion flow [67] where the flow in the inner region becomes opti-

cally thin and a large portion of it is advected into the hole. It results in a quasi-spherical

distribution of material around the black hole whose emission luminosity is very low. This

mechanism is believed to power the SMBH in quiescent galaxies such as the Milky Way, e.g.

[68]; and in FR I galaxies, e.g. [69]. Studies have indicated that the disk in many AGN

such as the low-luminosity active galactic nuclei (LLAGN) may be truncated [70]. In these

phenomenological models, the optical/UV spectra of these systems indicate that the inner

edge of a standard thin disk is at ∼ 50 M , truncated at a characteristic radius. Inside this,

leading to the central SMBH is an ADAF inferred from X-ray radiation.

The types of disk models and their characteristics and applicability are discussed in [71]. Some

general properties of the disk can be illustrated by the use of the thin disk model.

Short timescale variability ranging between a few 1000 s and a few 10000 s in optical and

ultraviolet emission is expected in from the accretion disk. Strong X-ray emission spanning from

soft X-rays (∼ 0.3 - 10 keV) to hard X-rays (> 10 keV) contributes a power law portion with

an exponential cut-off in AGN SEDs e.g. [72]. If virial equilibrium is established in an optically

thin population of electrons surrounding the disk, the virial temperature, kT = GMme/R =

mec
2/r where me is the electron rest mass, r = R/(GM/c2) is the dimensionless radial distance

in geometrized units. For r = rISCO = 6, kT ∼ 85.4 keV, the effective accretion energy per

electron. Emission and variability in the soft to hard X-rays is then expected from this optically

thin, thermally energetic corona where disk based seed photons (UV photons) are inverse-Compton

(IC) scattered to higher energies e.g. [73].

Typical variability due to disk based processes and time-scales over which the disk structure

can change include the dynamical time-scale, thermal time-scale and the viscous time-scale. Using

the α prescription for a geometrically thin disk [60] which represent a Newtonian disk rotating

with a Keplerian velocity around the central black hole, for an orbital velocity vφ = (GM/r)1/2,

Mach number M = vφ/cs, kinematic viscosity ν, radial velocity vr and surface density Σ(r), typical

timescales for disk based physical processes include:

• Viscous timescale due to the radial evolution of the surface density, Σ(r) of a ring of gas

through viscous torque action, given by tvisc ∼ r/vr. It can be interpreted as the timescale

over which matter diffuses radially through the disk due to the viscous torque action. Here,

vr ≪ vφ due to which, this is the longest timescale.

• Dynamical timescale due to orbital processes and inhomogeneities in inner disk and jet such

as flares, given by tφ ∼ r/vφ. This is the shortest timescale as it is associated with events

which occur at high velocities vφ which could be relativistic.
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• Hydrostatic balance timescale over which there is a smoothing of deviations from hydrostatic

equilibrium in the vertical direction (along the disk height z), given by tz ∼ z/cs ∼ r/vφ = tφ.

• Thermal timescale over which there is a smoothing of deviations from thermal equilibrium,

given by tth =
heat content per unit area

dissipation rate per unit area
. For a gas in thermal equilibrium, the heat

content per unit area ∼ Σ(r)c2s and the dissipation rate per unit area D(r) =
9

8
νΣ(r)

GM

r3

∼ tvisc/M2.

Thus, tφ ∼ tz ∼ αtth ∼ α

M2
tvisc. For typical physical conditions α ∼ 0.01 − 0.001, M =

vφ/cs ≫ 1 =⇒ tφ < tth ≪ tvisc , tφ ∼ 0.86 M8r
3/2 hour ∼ 12.6 hour for M8 = 1 and

taking r = R/M = rISCO = 6. Thus, the smallest timescale, tφ is likely to represent physical

processes which lead to short time-scale variability over a few thousands of seconds to a day. It is

then important to study orbital signatures which can cause variability in the emission over these

timescales.

Preliminary models of disk based microvariability in X-ray and optical/ultra-violet wavelengths

are discussed in [74, 75, 76, 77] and references therein. Here, emission from orbital features (hotspots

and flares) with Keplerian motion on the disk in Schwarzschild space-time are modelled as the

cause for the variability. Time delay, gravitational and Doppler shift, disk structure, eclipsing

based effects and intrinsic disk based variability are some of the effects considered in these models.

They provide a good match when compared to observational data. Some of the results predicted

include a power law red noise portion P (f) ∝ f−α in the observed periodogram for reasonable

choices of physical parameters, a low frequency flattening possibly due to decrease in the physical

and emission coherency of orbital features and a high frequency cut-off due to the presence of an

inner edge of the disk beyond which orbital features are absent. Simulations considering all the

above general relativistic effects are carried out in [77] and show a good agreement with observed

UV based power spectra for short durations, predicting a power law with slope between -1.1 and

-2.4. In a recent model [78], an analytic approximation for light bending [79] is considered in the

calculation of the effective redshift factor g as measured by an observer in the local static frame.

The g factor used in [76, 77] is given by

g =

√

r − 2M

r(r − 3M)
(M1/2 sin i sinφ+

√
r − 2M ) (1.9)

Where r is the radial distance in units of the geometrized massM , i is the inclination angle towards

the observer line of sight and φ is the azimuthal coordinate describing the orbital motion. The

quantity g4 represents the ratio of the observed intensity to the emitted intensity of radiation in

a particular wavelength band such as optical/UV or X-rays. Changes in g4 as a function of the

proper time due to orbital motion of the emitting source and a combination of general relativistic

effects thus represent the variability and hence, the observed light curve.

Radial or vertical perturbations to the orbit of test particles on Keplerian trajectories on the disk

can be studied as additional sources of observed time-scales. As the disk can be thought of as being
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composed by a population of cold accreted gas (T < 105 K), thermodynamical properties of this

gas such as its pressure, density, entropy and equations of state can be identified in the relativistic

regime. As this gas is composed of plasma, interacting in the presence of magnetic fields and could

be highly turbulent, there could be perturbations produced in the thermodynamical parameters

during their orbital motion. Time-scales for dynamic, vertical and the radial oscillation modes

[80, 81] include

TD(M6, r, a) = 30.93 (r3/2 + a) M6 (1 + z) s (1.10)

TV (M6, r, a) = TD(M6, r, a)/(1 − 4a/r3/2 + 3a2/r2)1/2 (1.11)

Tκ(M6, r, a) = TD(M6, r, a)/(1 − 6/r + 8a/r3/2 − 3a2/r2)1/2 (1.12)

where TD(M6, r, a) is the orbital time period of timelike particles on Keplerian trajectories,

TV (M6, r, a) is the time period induced by vertical perturbations and Tκ(M6, r, a) is the time period

induced by radial perturbations. For a Schwarzschild black hole, TD(M6, r, a) = TV (M6, r, a) <

Tκ(M6, r, a). The time-scales in general (a > 0) are related by TD(M6, r, a) < TV (M6, r, a) <

Tκ(M6, r, a). Contour plots of these time-scales for a fixed r = 6M are plotted in Fig. 1.14. The

black hole mass M6 is taken in the range 1 - 10 (M6 - M7), typical for Seyfert galaxies. The spin

range is assumed to be from 0 - 1. Dynamic and vertical time-scales of the order ∼ 1000 - 10000 s

are calculated for these parameter ranges. The radial oscillation time-scales are ∼ 5 times this as

seen in Fig. 1.14.
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Figure 1.14: A comparison of the vertical and radial oscillation time-scales to the dynamic time-
scale is presented for a given radial distance r = 6 M . Left plot: Dynamic time-scale. Middle plot:
ratio of vertical oscillation time-scale to dynamic time-scale. For a = 0, these are identical; Right
plot: ratio of radial oscillation time-scale to dynamic time-scale. Typical dynamic time-scales range
between > 1000 s and ∼ 10000 s. The dynamic time-scale is seen to be the least of the three.

In addition, the Brunt-Vaisala frequency due to the vertical perturbation of the stratified gas

which leads to buoyancy of the gas due to the presence of the gravitational potential is given by

[80]

N2
Z = −Ω2

V (r, a)

(

z
∂A
∂z

)

(1.13)
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where z is the vertical height and A is a factor related to the equation of state prescribed for

the gas and is given by A = ln(p/ρΓ) where Γ depends on the type of gas, typically taken to be

5/3 for a relativistic gas. Together, these frequencies will decide the oscillation modes of the disk.

It has been argued that QPOs determined in X-ray binaries [82] could have a time-scale which

corresponds to any of the above frequencies.

Vertical perturbations to the gas on equatorial orbits with a frequency ΩV (M6, r, a) =

2π/TV (M6, r, a) is also known as the Lense-Thirring frequency which is a gravito-magnetic phe-

nomenon. In the case of X-ray binaries where the accretion disk extent is likely to be small, such

a perturbation could lead to distortions in the shape of the disk [83, 84]. The material on the disk

then begins to precess with this frequency along their orbital motion. The time-scale associated

with ΩV (M6, r, a) ranges between ∼ 1000 s and 10000 s as discussed above.

In the inner disk where radiation pressure is dominant over gas pressure and the opacity is

contributed to mainly by Thomson scattered radiation, the temperature of the disk and magnetic

field strength, relevant to the current discussion are given by

T = 2.3 × 105α−1/4M
−1/4
8 r−3/4 (K) (1.14)

B ≤ 104M
−1/2
8 r−3/4 (Gauss) (1.15)

where α is the viscosity parameter used to characterize the scale of turbulent motions due to the

dynamics in the disk, M8 = 108M⊙ is the mass of the SMBH in units of the solar mass M⊙

with a Schwarzschild radius RSch and r = R/(3RSch). Taking α = 0.01, M8 = 1 and r = 1,

we obtain T = 7.27 × 105K and B ≤ 104 Gauss. From the calculated T , we can infer that the

radiation is peaked in the UV band as λmax ∼ 4 nm from Wien’s displacement law, applicable to

blackbody radiation. The magnetic field is expected to be chaotic and confined to small scales due

to the action of the differentially rotating disk. Though, if the magnetic field strength generated by

dynamo action in the inner disk is in equipartition with the gas pressure as inferred from numerical

simulations e.g. [85], a reasonably well developed vertical structuring can occur [86].

The inner region consisting of the disk and the developing jet is dominated by effects due to

plasma flow and its interactions, magnetic field structures, differential rotation of the disk and

radiative structuring. For P and ρ being the gas pressure and density, if the magnetic field is

strong enough to resist perturbations due to gas pressure (in a region where the Alfvén speed

vA = B/(4πρ)1/2 is much greater than the sound speed cs = (P/ρ)1/2) as in the external portion of

the disk, stable magnetic structures can develop. This could be shown to arise due to the advection

of externally dynamo generated magnetic fields into the inner region [87] or a self-generated field

in the inner region due to dynamo action [88]. For an axi-symmetric flow with a velocity v in a

magnetic field B, the flux freezing condition ∇× (v×B) = 0 leads to v being parallel to B. Hence,

the vP ‖ BP and vφ ‖ Bφ [89]. But, there is a slippage in the sense that the angular velocity of the

flow and the field lines differ, known from Ferraro’s law. In the inner portions of the disk, if we
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assume that vertical hydrostatic balance holds good, then

1

ρ

∂P

∂z
=

∂

∂z

(

GM

(r2 + z2)1/2

)

(1.16)

where M is the mass of the central black hole and (r, z) are the radial and height coordinates of

the disk. For the thin disk, we can make the assumptions that z ≪ r. For this condition to hold

good, the sound speed cs ≪ vφ where vφ = (GM/r)1/2 is the orbital speed. The Alfvén speed vA

also satisfies vA ≪ vφ in the inner disk when ρ is large. Then, the structured magnetic field lines

in the inner disk can be considered to be rooted with foot points on the disk and rotating with a

Keplerian angular velocity Ω = r
−3/2
o where ro is the radial distance from the center to the foot

point [13]. It could then be expected that material from the disk can be advected into an ordered

flow along the vertically structured rotating field lines which would contribute to the loss of angular

momentum in addition to magnetized winds and the disk viscosity, allowing for the in-spiralling of

disk material.

Simplified models treating the flow in terms of test particles (bead on a wire model) assume their

ballistic motion along open magnetic field structures e.g. [86] where there is an initial centrifugal

acceleration of the flow which dies down as its velocity reaches the local Alfvén speed. Confinement

at this stage is brought about by the co-rotation enforced by the rotating magnetic field lines in

the expanding region of the jet. For radiation pressure dominated disks, there is a combination of

acceleration from the centrifugal force action and the radiation pressure from the disk based outward

flux [90]. Variability in the emission is expected from the inner jet at this stage, when the material

has not yet attained asymptotic relativistic velocities (such as those close to the light cylinder and

beyond) and the flow is constrained by the expanding vertical magnetic field component.

Astrophysical jets as mentioned earlier are generally observed as bi-directional and indicate a

high degree of collimation to large distances. The processes of launching and collimation of the

jet are believed to have an origin in the interaction between the disk, strong magnetic fields on

the disk near the black hole and the availability of material through a process of active accretion.

Variability in blazars is strong and occurs over rapid time-scales typically ∼ a few minutes to a

few hours. As blazar emission is believed to be strongly dominated by the jet component leading

to the identification of specific physical mechanisms that can give rise to variability.

Relativistic beaming and Doppler boosting play an important role in the amplification of vari-

ability in the jet due to the jet material moving at special relativistic velocities towards the observer

line of sight. If Sν is the spectral flux density observed and S
′

is the spectral flux density in the

comoving frame, these are related by the expression

Sν(t) = δ(t)nS
′

ν (1.17)
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where n = 3+α for a resolved blob of plasma and n = 2+α for a continuous flow and a spectral

index α which is defined by Sν ∝ ν−α. δ is the Doppler factor given by

δ =
1

γb(t)[1− βb(t) cos θ(t)]
(1.18)

where θ(t) is the angle between the velocity βb(t)= ẋb(t)/c of the emission region and the observer

line of sight and γb(t) = 1/(1 − βb(t)
2)1/2 is the corresponding bulk Lorentz factor. In our jet

models presented in Chapter 7, we have presented a full general relativistic form of the above used

Doppler factor.

Early models of outbursts and associated variability invoked the propagation of a shock wave

through an adiabatic, conical, relativistic jet [91]. The propagating shock front in this model

accelerates electron populations in the jet to relativistic velocities. These electrons then undergo

cooling through the emission of synchrotron and the inverse Compton process. In a simple model

of a shock propagation through a relativistically moving fluid with energy density E, gas pressure

density p and having a particle number density n e.g. [13], the post shock fluid can be accelerated

to a maximum velocity of c/3 and the ratio of the number density in the post shock region to the

pre-shock region the compression ratio ∝ (E2/E1)
1/2 where E2 is the energy density in the post

shock region and E1 is the energy density in the pre-shock region such that E2 > E1. Thus, the

shock front compresses the material in the jet leading to an increased energy density and velocity.

With R and x being characteristic sizes of the magnetic field B perpendicular and along the observer

line of sight and νM being the frequency at which at turnover occurs in the spectrum (∼ 300 GHz),

the angular size of the emitting region and the variability timescale are given by [91]

θ ∼ 0.04H0.6
0 (R/R0) mas, (1.19)

∆tvar ∼ 0.03H−4
0 (ν/νM )−1/2 days (1.20)

where H0 is the Hubble constant, assumed to be ∼ 70 km/s/Mpc, R0 is the radius at which a

component is injected into the flow thus inducing the shock. For R ∼ R0, θ = 0.05 mas. For 3C

273, νM = 70 GHz is measured and a typical timescale of ∼ few days is predicted from this model.

Rapid variability is produced in the total and polarized flux density over time-scales of hours to

days due to changes in relativistic aberration are produced when there is a non-uniform propagation

of shocks down relativistic jets [92]. As emission is beamed and boosted due to special relativistic

effects, small variability features in the co-moving frame of the propagating jet are amplifed in the

observer frame of reference. It can also be caused when emission from orbital material on helical

trajectories gets beamed when their local angle is close to the angle to the observer line of sight e.g.

[93, 94, 95]. This is likely to be quasi-periodic in nature as the number of cycles over which beaming

occurs will be less (≤ 6). Also, if the flow is sourced from a hot corona, there is an expectation of

observing this variability in X-ray wavelengths.

In models of swinging jets or when there is an internal rotation of the fluid e.g. [93, 95], the

fluid is spun up to large relativistic Mach numbers by the time it reaches the light cylinder radius
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RL. The proper time interval ∆τ2 can be related to the coordinate time and the polar spatial

coordinates for a special relativistic fluid by

c2dτ2 = c2dt2 − (dr2 + r2dθ2 + r2 sin2 θdφ2). (1.21)

Re-arranging the terms, we obtain

(
dt

dτ
)2 − u2P − u2φ =⇒ γ2jet = γ2φ(1 + u2P ). (1.22)

Using the above relation, one can determine γjet at large R. Using this in the Doppler factor eqn.

1.18, light curves showing a QPO can be simulated e.g. [93]. For typical γjet ∼ 5 - 15 [96], a

time-scale of ∼ a few days can be simulated [95] for Quasars and BL Lacertae objects. In Chapter

7, we make use of a full general relativistic jet model in Schwarzschild geometry to calculate γjet

for the inner developing jet upto the light cylinder distance. R > RA where RA = xARL is the

Alfven point and xA ≤ 1, the specific angular momentum l is conserved with vφ = l/(Rc). The

angular velocities of the fluid Ω and that due to rotating field lines ΩF differ due to slippage of the

fluid. At and beyond the Alfven point, these coincide with the relation

l = R2Ω ∼ R2
AΩF , (1.23)

ignoring the contribution from the angular momentum of the field. The quantities RA and ΩF can

thus be identified as the asymptotic, constant l can be calculated from specific models.

Jet based variability over long time-scales (days - years) can be caused by three important

processes: nonballistic helical motion due to orbital motion in a binary black hole system with

time-scale Torb, ballistic or nonballistic helical motion due to precession of the jet with time-scale

Tprec and nonballistic helical motion due to an internally rotating jet flow with a time-scale Tint.

The time-scales for orbital motion Torb and the internally rotating jet Tint are similar. For an

inclination angle to the observer i and a half-opening angle of the precession cone α such that

α ≤ i, the time-scales involved in each of these processes [95] are

Torb = (1 + z)
(

1− vz
c
cos i

)

TK , (1.24)

Tprec = (1 + z)
(

1− vz
c
cos i− vz

c
tanα sin i

)

TP , (1.25)

where TK = 2π/ΩK =

√

2πd3

G(M +m)
for a binary system with masses M and m seperated by a

distance d, TP = 2π/ΩP =
4πdc2

(3m+ µ)GΩK
for a precession driven in a system with reduced mass

µ and vz is the velocity of the bulk flowing plasma in the vertical direction. Typical timescales are

Torb ∼ Tint = few days and Tprec = few years.
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Strong variability is often observed in a wide variety of wavelengths ranging from radio to optical

to γ-ray from AGN with strong jet components such as blazars. Perturbations produced on the

disk can be advected into relativistic jets and amplified there via Doppler boosting e.g. [97]. It is

thus important to study the inner region composed of the disk and developing jet with footpoints

on the disk. Variability can occur only if the flow is mass dominated. Poynting flux can develop

in the inner jet (spine) to further accelerate the mass loaded in the outer sheath through radiation

pressure. The magnetic field based pressure and tension can also contribute to the developing

kinetic energy of the jet. Ejected material may not be able to travel to large distances (few light

cylinder radii) due to inertial effects, interaction with external earlier expelled gas and Compton

drag from radiation pressure, at which time the flow could become Poynting flux dominated.

1.9 Aims of this thesis

• Theoretical modelling of orbital signatures from AGN in optical/UV and X-ray wavelengths,

relevant to the physics of the accretion disk and developing jet close to the SMBH.

• Use these disk and jet models to place constraints on physical parameters such as black hole

mass and spin.

• Development of a suite of time series analysis techniques to analyze light curves from AGN

in the above wavelengths and to aid in the extraction of physically relevant quantities to aid

theoretical models including constraining the shape of the PSD, inference of break frequencies,

QPO detection and its properties.

This thesis aims at addressing the understanding of the above described complex phenomena

using two complementary approaches: the construction of theoretical models and statistical analysis

of observational data.

1.10 Thesis constituents

The structure of this thesis is arranged into the next seven chapters. Chapter 2 introduces and

develops a suite of time series analysis techniques which will be used in the subsequent analysis

of optical and X-ray light curves from AGN. Chapter 3 presents an analysis methodology which

includes analytic and MC simulations based significance testing with key inputs from numerical

experiments, conducted with the analysis suite on synthetic light curves with varying properties. A

data characterization and search strategy is then formulated for application to AGN light curves.

Chapter 4 presents an analysis of variability from optical and X-ray light curves of a sample of

blazars as an application of the developed analysis suite and data characterization and search

strategy. Chapter 5 first presents the development of a break frequency model applicable to the

inner region of an accretion disk followed by a model for the QPO quality factor Q for a radially

infalling bulk flow on the disk. This is followed by an analysis of variability from X-ray light
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curves of Seyfert galaxies which are believed to be dominated by disk contributions. Then, we

apply the models to the analysis of the light curves to present revised constraints on the black hole

mass, spin and region of emission. Chapter 6 presents a theoretical model of accretion disk based

variability, formulated in Kerr geometry and incorporating the properties of a bulk flowing plasma.

A g-factor is calculated which includes Doppler and gravitational shifts, aberration and time delay.

Simulations are carried out for a range of parameters and the development of a power law PSD

shape and a QPO are discussed. Chapter 7 presents a theoretical model of jet based variability,

formulated in Schwarzschild geometry and incorporating the properties of a bulk flowing plasma

in helical motion along a funnel shaped surface. The g-factor is calculated including Doppler and

gravitational shifts, aberration, light bending and time delay. Simulations are carried out for a

range of parameters and the development of a power law PSD shape and a QPO are discussed.

The role of the beaming effect on the appearance of the QPO and its number of cycles as inferred

by a distant observer is discussed. Chapter 8 then presents a summary of the conclusions from

all chapters. This is followed by a section on novel aspects of the current body of work with its

impact. Then, we present future work which includes papers under preparation.



Chapter 2

Time series analysis

2.1 Introduction

The light curve is a time series, the ordinate generally being the variable flux from the emitting

source which is ordered along the abscissa based on the time of reception.
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Figure 2.1: Illustration of variability: X-ray light curve in the 0.3 keV to 10 keV energy range from
the narrow line Seyfert 1 AGN REJ 1034+396. This light curve was analyzed in [55] where the
presence of a quasi-periodic oscillation centered at ∼ 3700 s was reported.

Properties of light curves from AGN can be classified broadly into intrinsic source based prop-

erties due physical processes at the emission source and measurement induced properties which the

light curve acquires due to instrumental effects in the observation of these sources.

The variability of a light curve is the changes in flux as a function of the reception time. The

light curve in Fig. 2.1 has a mean of ∼ 4.2 counts/s and varies between a minimum of 2.77 counts/s

27
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and a maximum of 5.64 counts/s during the observation duration. There are many instances in

this duration where the flux variation is rapid within a short interval of time. As an illustration,

the flux at the start of the light curve is 4.36 counts/s. This flux increases to 5.17 counts/s within

25200 s and then falls to 3.64 counts/s within the next 1700 s. The variability in the light curve

can be rapid and short as in the illustrated example in Fig. 2.1 where flux variations occur on

timescales of a few 1000 s to a few 10000 s or can be long term with large changes in amplitudes

occurring over long durations of time e.g. [98] where variability in the optical light curve of the

blazar S5 0716+714 is observed on timescales of a day or more.

The variability amplitude can be quantified in terms of the fractional excess rms variability

amplitude Fvar [99]. If σerr,k is the uncertainty or measurement error for each point of the light

curve x(tk) evaluated at times tk, then, σ̂
2
err =

1

N

N
∑

k=1

σerr,k is the mean square error. If σ2 is the

variance and µ is the mean of the light curve evaluated from the points of the light curve,

Fvar =

√

σ2 − σ̂2err
µ2

(2.1)

The variable light curve shows smaller fluctuations superimposed on a larger, longer duration

background trend. The light curve in Fig. 2.1 shows a roughly parabolic trend between the start of

the observation and ∼ 46000 s and no major trend if we consider the light curve as a whole. Trends

in an AGN light curve could occur before and after a flaring phase. If this phase lasts for some time

and the data is obtained during this time, we would observe a slowly decaying trend. One could

also possibly observe the rising portion just before the maximum of the flare for a continuously

monitored source.

The above mentioned properties relating to variability and trends depend on the observation

wavelength and the type of AGN from which the light curve is obtained. For an AGN such as

a Seyfert 1 galaxy, the unified model of AGN [33] suggests that the observer is measuring the

flux emanating from possibly the inner region close to the central super-massive black hole. Thus,

variability will be strong in the optical/UV emission which is believed to be the black body radiation

from an optically thick disk. Variability is also strong in the soft and hard X-rays (0.1 - few 10s

of keV) which could be re-processed black body radiation from a external corona consisting of

thermally supported electrons surrounding the disk.

The measurement of the flux emitted at the source by the detector could occur at even intervals

of time with constant time steps ∆t or at uneven times. Depending on the reception times at

which the flux is measured, the former is an evenly sampled light curve while the latter is unevenly

sampled. The light curve illustrated in Fig. 2.1 was obtained using the X-ray Multi-Mirror Mission

- Newton (XMM Newton) space based observatory in the 0.3 - 10 keV energy range [55].

An emission source can be observed continuously only for certain durations of time due to

constraints imposed by the observing instruments and their properties. The final light curve could

be made up of a set of segments obtained during consecutive days or a few days each month. Thus,

light curves could have small duration (upto a day) to long duration (few days to a month) gaps.The
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Figure 2.2: Left plot: synthetic sinusoidal light curve of duration 60 s with a periodicity of 20
s. Right plot: Fourier power spectrum |F (fj)|2 evaluated in the positive frequencies indicating a
strong peak centered at 0.05 Hz.

finite observation duration in the obtained light curve segment must be taken into consideration

while analyzing the light curve using frequency domain time series analysis techniques.

In this chapter, we describe the motivation for and the development of a suite of time series

analysis techniques which can be employed in the analysis of light curve properties from AGN

in relevant wavelengths such as optical/UV and X-rays. They can extract physically relevant

properties such as variability characteristics of the source, presence of a quasi-periodic oscillation

and its evolution, duration and number of cycles, breaks in the Fourier power spectrum; results

from this analysis would aid in developing and constraining parameters in theoretical models of

variability in emission.

These techniques include: the periodogram, Lomb-Scargle periodogram (LSP), multi-harmonic

analysis of variance (MHAoV) and wavelet analysis. Brief descriptions of the development, appli-

cation and advantages of each of the above techniques are discussed in [100, 98, 101].

2.2 Periodogram

This technique is the primary component of the developed analysis suite owing to its computational

efficiency, though being applicable only to evenly sampled light curves. If an interesting, prominent

feature is detected, a detailed analysis can then be carried out with the periodogram and the other

components of the analysis suite: LSP, MHAoV and wavelet analysis.

2.2.1 Definition and evaluation frequencies

The discrete Fourier transform (DFT) of an evenly sampled, mean subtracted light curve x(tk), k

spanning N points with a time step size between consecutive points of ∆t is given by,

F (fj) =

N
∑

k=1

x(tk)e
i2πfj tk (2.2)
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evaluated at frequencies fj = j/(N∆t) with j = 1, 2, .., (N/2) such that the evaluation is carried

out upto the Nyquist frequency fN/2. Any evenly sampled time series will not contain information

on x(t) at intermediate points < ∆t. The Fourier transform of this then samples only the discrete

time step grid thus omitting contributions with frequencies higher than 1/∆t. Also, sampling a

time series is equivalent to a convolution with a Comb function which in the Fourier domain will

show contributions at integer multiples of the sampling frequency. The contributions to the power

spectrum would thus come from analyzed frequencies fj and other frequencies that differ from fj

by an integer multiple of the sampling frequency. Higher frequencies outside this range will alias

or mix into the sampled power spectrum. The maximum frequency upto which aliasing effects

are negligible is the Nyquist frequency, fN/2. The periodogram is the normalized Fourier power

spectrum and is given by:

P (fj) =
2∆t

µ2N
F (fj).F

∗(fj) =
2∆t

µ2N
|F (fj)|2 (2.3)

Where µ is the mean of the light curve evaluated before subtraction from x(tk). The normalization
2∆t

µ2N
is used to express P (fj) in units of (rms2/mean2) Hz−1 = (σ2/µ2) Hz−1 such that the

integrated periodogram over the limits f1 = 1/(N∆t) and fN/2 = 1/(2∆t) yields the fractional

variance of the time series [99]. The Fourier power spectrum is illustrated with an application to

an evenly sampled sinusoidal light curve in Fig. 2.2.

2.2.2 Least squares fit and properties

The power spectrum P (fj) is obtained by the least squares fit of the light curve x(tk) with the

model

xM (tk) = α cos 2πfj(tk) + β sin 2πfj(tk) (2.4)

Let the square of the residue be R2.

R2 =

N
∑

k=1

(x(tk)− α cos 2πfj(tk)− β sin 2πfj(tk))
2 (2.5)



2.2. PERIODOGRAM 31

The extrema of R2 with respect to the parameters α and β are then determined. If we use the

following representation

C2 =

N
∑

k=1

cos2 2πfj(tk) (2.6)

S2 =
N
∑

k=1

sin2 2πfj(tk)

SC =

N
∑

k=1

sin 2πfj(tk) cos 2πfj(tk)

XC =

N
∑

k=1

x(tk) cos 2πfj(tk)

XS =
N
∑

k=1

x(tk) sin 2πfj(tk)

(2.7)

then, the extrema equations can be represented by the matrix equation

(

C2 SC

SC S2

)(

α

β

)

=

(

XC

XS

)

We then invert the above equation to obtain

(

α

β

)

=
1

C2S2 − (SC)2

(

S2XC − SCXS

SCXC − C2XS

)

Let 2πfj(tk) = θjk = 2π
j

N∆t
(∆t)k = 2π

jk

N
. Then

SC =
N
∑

k=1

sin θjk cos θjk =
1

2
sin 2θjk (2.8)

=
1

2
Im

(

N
∑

k=1

ei2θjk

)

=
1

2
Im

(

N
∑

k=1

ei2π
jk
N

)

= 0

for 1<j<N/2 and k < N . For k ≥ N , the above quantity goes as 2πj.

Thus, by a suitable choice of the sampling length (< reciprocal of the Nyquist frequency), the

cross term SC = 0 for all tk.

The power spectrum is given by

PN (fj) =
(

XC XS
)

(

α

β

)
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=
(

XC/C2XS/S2
)

then reduces to the expression in eqn. (2.3)

P (fj) =
XC2

C2
+
XS2

S2
(2.9)

The expressions C2 and S2 from eqn. (2.7) can be evaluated for all tk.

C2 =

N
∑

k=1

cos2 2πfj(tk) =

N
∑

k=1

cos2 2π
jk

N
(2.10)

=
N
∑

k=1

1

2
(1 + cos 4π

jk

N
) = (N/2) +

1

2

N
∑

k=1

(e4πi
jk
N + e−4πi jk

N )

C2 = N/2

S2 =

N
∑

k=1

sin2 2πfj(tk) =

N
∑

k=1

sin2 2π
jk

N
(2.11)

=
N
∑

k=1

1

2
(1− cos 4π

jk

N
) = (N/2) − 1

2i

N
∑

k=1

(e4πi
jk
N − e−4πi jk

N )

S2 = N/2.

Using these, the expression for the power spectrum becomes

P (fj) =
2

N
(XC2 +XS2) (2.12)

It is to be noted here that the reduction C2 = S2 = N/2 can only occur when the light curve

is evenly sampled such that the exponential terms in their expressions sum to 0.

2.2.3 The power spectral density (PSD)

The PSD which we represent here as P̂ (f) is the underlying, true power spectrum which is presumed

to be shaped by the physical process leading to the emission of the light curve. A primary objective

in the analysis of a light curve is the characterization and constraining of the shape of this PSD.

This would then lead to us being able to constrain in turn theoretical models of variable emission

which gave rise to it. The shape of the PSD can be deduced from P (fj) using non-parametric

procedures such as smoothing it by using a kernel function, weights or by binning as well as

parametric procedures which fit the averaged periodogram with a model such as a power law,

broken power law or bending power law. Details regarding the procedure we adopt to determine

the PSD are presented in the Chapter 3.
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2.2.4 Statistical properties of the periodogram

For a time series constructed from normal random variables, the periodogram P (f) at a given

frequency is exactly χ2
2 distributed about the underlying constant PSD as the real and imaginary

parts of the Fourier transform of the evenly sampled time series are normally distributed for a

stochastic process e.g. [16], and the sum of two squared normally distributed variables is a χ2
2

distributed variable. Thus, P (f) is χ2
2 distributed about the underlying constant PSD,

P̂ (f) = Constant = σ2. (2.13)

The periodogram is generally evaluated upto the Nyquist frequency. For an unevenly sampled time

series, timescales corresponding to frequencies above the Nyquist frequency can contribute to the

power at longer time-scales and hence influence the slope of the periodogram. Power is thus aliased

to lower frequencies as described in §2.2.1. For processes whose spectrum deviates from a flat,

constant value, P (f) is still approximately χ2
2 distributed about P̂ (f), though, N must be large

with small aliasing and biasing effects. i.e.

P (f) = P̂ (f)χ2
2/2. (2.14)

Its expectation, E(χ2
2/2) = σ2 and variance, V (χ2

2) = σ4 when P̂ (f) = σ2 suggesting that

P (f) is an inconsistent estimator of P̂ (f) as this constant variance will not tend to zero under the

limit of large N [16, 102]. This issue can be addressed by averaging the periodogram by binning in

the frequency domain. Further, if the binning is carried out in the log-log space, the convergence

towards a consistent estimator of the PSD occurs even for reasonable N [102].

2.2.5 Periodogram: the algorithm

1. Determine the frequencies at which the periodogram is to be calculated.

2. Determine the periodogram of a light curve using eqn. (2.3).

3. Express P (fj) in the log-log space.

4. Bin this log-log periodogram and average over the bins to obtain a smoothed periodogram.

Typical number of points per bin is ∼ 10.

5. The smoothed periodogram can now be used to determine and constrain the PSD shape.

The definition used for the periodogram and an illustration of a simple fit procedure to determine

significant features is discussed in [103]. Non-parametric smoothing using binning and averaging

the periodogram in the log-log space in order for it to converge faster to the underlying PSD is

discussed in [102]. The normalization used in our definition of the periodogram in eqn. (2.3) is

useful for the current problem under study in this thesis. A discussion on other normalizations in

use and their context of use is discussed in [99]. The periodogram is computationally the simplest



34 CHAPTER 2. TIME SERIES ANALYSIS

amongst the time series techniques discussed in the preceding sections. Though, it is applicable

only to evenly sampled light curves. When applied to unevenly sampled light curves, it could

introduce spurious features. It is also noisy for real astrophysical light curves and techniques have

to be developed in order to smooth it to get a better estimate of the true underlying PSD, either

by parametric or non-parametric methods. For a light curve of finite length N , the expression

for its DFT can be thought of as containing the light curve convolved with a rectangular window

function. This causes spurious ringing features in the frequency domain when the DFT and hence

the peridogram are determined. The finite length also leads to cyclic behaviour which results in

spurious features at low frequencies. When the periodogram is binned and averaged in the log-log

space, the scatter due to all the above intrinsic sources and external sources of noise reduces in

turn reducing the variance estimate. The periodogram estimate at a given frequency is then χ2

distributed about the underlying PSD. Once the shape of the PSD is well constrained, an analytic

significance test (presented in Chapter 3) can be carried out to eliminate spurious features in the

periodogram. The advantage is that once we account for all sources of intrinsic noise that are

present in the periodogram, the noise due to external sources can be identified and studied.

2.3 Lomb-Scargle Periodogram (LSP)

The LSP is used as a primary technique when the input light curve is unevenly sampled. The LSP

reduces the contributions from spurious, noisy features as it is independent of the time step ∆t and

hence changes in it.

2.3.1 Definition and evaluation frequencies

The power spectrum for the LSP evaluated from a light curve x(tk), k spanning N points is

determined by a least squares fit to a mean subtracted time series using

x(tk) = α sin 2πfj(tk − τ) + β cos 2πfj(tk − τ) (2.15)

and is given by [104]

PN (fj) =
1

2σ2

[

(
∑N

k=1(x(tk)− µ) cos 2πfj(tk − τ))2
∑N

k=1 cos
2 2πfj(tk − τ)

+
(
∑N

k=1(x(tk)− µ) sin 2πfj(tk − τ))2
∑N

k=1 sin
2 2πfj(tk − τ)

]

, (2.16)

where τ is a time shift parameter and is given by

tan (4πfjτ) =

∑N
k=1 sin(4πfjtk)

∑N
k=1 cos(4πfjtk)

(2.17)
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where µ is the mean of the light curve and PN (fj) is evaluated at frequencies fj = j/(tN − t1)

where j = 1, 2, .., N/2 and (tN − t1) is the total duration of the observation. The LSP power

spectrum [105, 106, 104] is constructed using the algorithm presented in [107] in order to achieve

fast computational speeds. Using the simplifications,

Sh =

N
∑

k=1

(x(tk)− µ) sin 2πfjtk (2.18)

Ch =
N
∑

k=1

(x(tk)− µ) cos 2πfjtk

S =

N
∑

k=1

sin 4πfjtk

C =

N
∑

k=1

cos 4πfjtk

The components of PN (fj) can be expressed as:

N
∑

k=1

(x(tk)− µ) cos 2πfj(tk − τ) = Ch cos 2πfjτ + Sh sin 2πfjτ (2.19)

N
∑

k=1

(x(tk)− µ) sin 2πfj(tk − τ) = Sh cos 2πfjτ −Ch sin 2πfjτ (2.20)

N
∑

k=1

cos2 2πfj(tk − τ) = (N/2) + (C/2) cos(4πfjτ) + (S/2) sin(4πfjτ) (2.21)

N
∑

k=1

sin2 2πfj(tk − τ) = (N/2) − (C/2) cos(4πfjτ)− (S/2) sin(4πfjτ) (2.22)

The LSP is illustrated with an application to an unevenly sampled sinusoidal light curve in Fig.

2.3.

2.3.2 Least squares fit and properties

This method of deriving the LSP power spectrum was presented in [105]. An alternative approach

was adopted in [106] where the LSP power spectrum was derived from statistical considerations

applied to a generalized Fourier transform of a time series. This was shown to be equivalent to the

earlier result. The power spectrum PN (fj) is obtained by the least squares fit of the light curve

x(tk) with the model

x(tk) = α cos 2πfj(tk − τ) + β sin 2πfj(tk − τ) (2.23)
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Figure 2.3: Left plot: synthetic unevenly sampled sinusoidal light curve of duration 60 s with a
periodicity of 20 s. Right plot: LSP evaluated in the positive frequencies indicating a strong peak
centered at ∼ 0.05 Hz.

Let the square of the residue be R2.

R2 =

N
∑

k=1

(x(tk)− α cos 2πfj(tk − τ)− β sin 2πfj(tk − τ))2 (2.24)

The extrema of R2 with respect to the parameters α and β are then determined. If we use the

following representation

C̃2 =

N
∑

k=1

cos2 2πfj(tk − τ) (2.25)

S̃2 =

N
∑

k=1

sin2 2πfj(tk − τ)

S̃C =

N
∑

k=1

sin 2πfj(tk − τ) cos 2πfj(tk − τ)

X̃C =
N
∑

k=1

x(tk) cos 2πfj(tk − τ)

X̃S =

N
∑

k=1

x(tk) sin 2πfj(tk − τ)

then, the extrema equations can be represented by the matrix equation

(

C̃2 S̃C

S̃C S̃2

)(

α

β

)

=

(

X̃C

X̃S

)
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We then invert the above equation to obtain

(

α

β

)

=
1

C̃2S̃2 − S̃C
2

(

S̃2X̃C − S̃CX̃S

S̃CX̃C − C̃2X̃S

)

For the choice of τ from eqn. (2.17), the cross term S̃C vanishes.

The power spectrum

PN (fj) =
(

X̃C X̃S
)

(

α

β

)

then reduces to the expression in eqn. (2.16)

PN (fj) =
X̃C

2

C̃2
+
X̃S

2

S̃2
(2.26)

The use of a τ makes the power spectrum independent of a shift in all tk by a constant, i.e.

PN (fj) is rendered invariant under time translation. If the light curve is evenly sampled, then,

τ = 0 and PN (fj) reduces to the periodogram P (fj) in eqn. (2.3). The LSP can thus be employed

in the detection of regular sinusoidal signals in both evenly and unevenly sampled data. The LSP

for unevenly sampled data must be preferably determined without conversion to evenly sampled

data. By performing such a conversion, one introduces additional artificial sampling frequencies

whose power contributions lead to the suppression of any actual significant peaks.

2.3.3 Statistical properties of the LSP

For a light curve x(tk) whose ordinates are normally distributed with zero mean and variance =

σ2, the components
X̃C

2

C̃2
and

X̃S
2

S̃2
are also normally distributed with zero mean and variances

σ2. The power spectrum PN (fj) is then χ
2
2 distributed provided that the correct normalization by

σ2 is used in the expression for PN (fj).

2.3.4 LSP: the algorithm

1. Determine the frequencies at which the LSP is to be calculated.

2. Determine the time shift factor τ using eqn. (2.17).

3. Determine the power spectrum PN (fj) using the eqn. (2.16) and the above calculated value

of τ .

The LSP power spectrum is derived in [105] by a model fit to the time series which is then solved

using the method of least squares. An alternative approach demonstrating the independence of the

polynomials components X̃C
2
/C̃2 and X̃S

2
/S̃2 of PN (fj) was used to show an equivalence to the

former in [106]. The correct normalization and its statistical implications are discussed in [104].
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An algorithm which can be used to speed up the numerical procedure of evaluation of the LSP is

presented in [107].

The LSP can be used to detect sinusoidal signals in both even and unevenly sampled light curves

due to time shift property (not dependent on a constant time step ∆t) and frequency sampling.

Since the polynomials components X̃C
2
/C̃2 and X̃S

2
/S̃2 of the LSP are orthogonal, their statistical

properties are independent of each other. The LSP evaluation is fast owing to the simplifications

made in the evaluation expressions as presented earlier. The LSP reduces and is identical to the

periodogram for τ = 0 when the light curve is evenly sampled.

2.4 Multi-Harmonic Analysis of Variance (MHAoV)

The MHAoV periodogram is used for the following reasons: confirm the results from the peri-

odogram/LSP if the analysis is carried out on an evenly sampled light curve; confirm the results

from the LSP if the analysis is carried out on an unevenly sampled light curve; stronger detection

of non-sinusoidal signals which may be present in the light curve.

2.4.1 Definition and evaluation frequencies

The multi-harmonic analysis of variance (MHAoV) is constructed using the algorithm presented in

[108]. The mean subtracted light curve x(tk), k spanning N points is fit with a Fourier series with

M harmonics, F (M)(tk). A complex polynomial ψM (z) of order 2M given by

ψ2M (z) = zMF (M)(k) (2.27)

is generated such that its constituents are expressed in an orthogonal basis.

ψM (z) =

M
∑

n=0

cnφn(z) (2.28)

where cn are the coefficients of the complex, orthogonal polynomials, φn(z) are the unique or-

thonormal base vectors, z = eiωk and n is the index of the polynomial. φn(z) can be generated by

the recurrence relation [108],

φ̃0(z) = 1 (2.29)

φ̃n+1(z) = zφ̃n(z)− αnz
nφ̃∗n(z) (2.30)

φn(z) =
φ̃n(z)

√

∑N
k=1 φ̃n(z) φ̃n

∗
(z)

(2.31)

where φ̃∗n(z) are the complex conjugates of the polynomials, φ̃n(z). The coefficients cn and αn are

determined by the use of the polynomial expansion equation and the above recurrence relations
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respectively.

αn =

∑N
k=1 z φ̃n(z)φ̃n

∗
(z)

∑N
k=1 z (φ̃n

∗
(z))2

(2.32)

cn =

∑N
k=1 ψ φ̃n

∗
(z)

√

∑N
k=1 φ̃n(z) φ̃n

∗
(z)

(2.33)

where, ψ = zNx(k). For n = −1, φ̃−1(z) =
1

z
and α−1 = 0 are set from which further cn and αn are

generated using the above relations. cn are representative of the normalized Fourier transform of

the light curve and can be thought of as a measure of the data variance when fit with a polynomial

of order n. From the application of Parseval’s theorem

N
∑

k=1

(F (M)(tk))
2 =

2M
∑

n=0

|cn|2 (2.34)

The MHAoV statistic, Θ(f) is used as the power spectrum. It is a comparison of the variances

of the data to that of the noise. The MHAoV periodogram is given by

Θ(fj) =
(N − 2M − 1)

∑2M
n=0 |cn(f)|2

(2M)[(N − 1)σ2 −∑2M
n=0 |cn(f)|2]

(2.35)

where σ2 is the variance of the data and Θ(fj) is evaluated at frequencies fj = j/(tN − t1) where

j = 1, 2, .., N/2 and (tN − t1) is the total duration of the observation.

The MHAoV is illustrated with an application to an unevenly sampled sinusoidal function in

Fig. 2.4 and an unevenly sampled square tooth wave in Fig. 2.5.
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Figure 2.4: Left plot: synthetic unevenly sampled sinusoidal light curve of duration 60 s with a
periodicity of 20 s. Right plot: MHAoV periodogram evaluated in the positive frequencies indicating
a strong peak centered at ∼ 0.05 Hz.
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Figure 2.5: Left plot: synthetic unevenly sampled square wave based light curve of duration 60 s
with a periodicity of 10 s. Right plot: MHAoV periodogram evaluated in the positive frequencies
indicating a strong peak centered at ∼ 0.1 Hz.

2.4.2 Statistical properties

The orthogonal polynomial generation based approach is an extension of that used in the LSP as

even there, the orthogonal sinusoidal polynomials are obtained after setting the cross terms to zero

by the use of the time shift operator τ . For M = 1, |cn|2 reduces to the LSP power spectrum

PN (fj). Though, in this case, the periodogram is the statistic Θ(fj). This periodogram follows the

Fischer’s F probability distribution given by F (2M,N − 2M − 1). In the periodogram and LSP,

the normalization is the variance of the data which is related to the harmonic components of the

power spectrum. Hence, the distribution of the ratio of the harmonic components of the power

spectrum to the variance does not follow the Fischer’s probability distribution.

2.4.3 MHAoV periodogram: the algorithm

1. Determine the frequencies at which the MHAoV periodogram is to be calculated.

2. Use the recursion procedure to generate the basis polynomial vectors φn(z) and the coefficients

cn.

3. Use the above generated cn in the expression for the periodogram in eqn. (2.35).

The construction of the MHAoV periodogram and its statistical advantages over other tech-

niques such as the LSP are presented in [108]. The MHAoV periodogram can also be used to detect

sinusoidal signals in both even and unevenly sampled light curves due to frequency sampling. In

addition, it can be used to detect even non-sinusoidal signals in light curves owing to its construc-

tion making use of higher order orthogonal polynomials. The MHAoV periodogram reduces to the

LSP for order of polynomialM = 1. The MHAoV technique has many advantages over the discrete

Fourier transform (DFT) and the LSP [108, 109]. Some of them include the ability to better handle

periodic variations that are non sinusoidal and an improvement in computational efficiency as the
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number of steps for computing a MHAoV is ∝M compared to ∝M3 for the LSP, where M is the

number of harmonics considered.

2.5 Wavelet Analysis

Wavelet analysis is used to analyze evenly sampled light curves which indicate possible quasi-

periodicity as characterized by the other techniques. This can be used to add to the existing set of

properties of the data set and could offer new insights into the physics of the process causing the

quasi-periodicity if the evolution of the interesting feature is studied in a statistical manner.

2.5.1 Definition and evaluation frequencies

The DFT of an evenly sampled, mean subtracted light curve x(tk), k spanning N points is given

by F (fj) as expressed in eqn. (2.2).

The wavelet transform can be expressed in the time domain as the convolution of x(tk) with

a wavelet analysing function ψ(n − tk, s) which can be scaled in size at any given position n in

the time series by means of a scaling parameter s to sample a variable number of points in its

immediate neighborhood as well as at a distance which can be as large as half the length of the

data set. This can be repeated at all points of the time series by the use of the time shift parameter

n and yields

Wn(s) =

N
∑

k=1

x(tk)ψ(n − tk, s). (2.36)

In our analysis, we make use of the Morlet wavelet function as the wavelet analysing function.

In the time domain, it has the functional form

ψ(tk/s) = π−1/4ei(ω0tk/s)−(tk/s)
2/2. (2.37)

where Morlet wavelet is a sinusoidal wave modulated by a Gaussian envelope and ω0 is the

frequency of oscillations contained within the Gaussian envelope. The wavelet transform can be

carried out in the Fourier space due to computational advantages. It is then given by the inverse

Fourier transform of the product of the Fourier transform of the time series with the normalized

Fourier transform of the wavelet function

Wn(s) =

N/2
∑

j=1

F (fj)ψ
∗
(

2πsj

N

)

ei
2πj
N
n. (2.38)

Where ψ̂∗
(

2πsj

N

)

is the complex conjugate of the Fourier transform of the Morlet analyzing

function which is given by

ψ̂

(

2πsj

N

)

= π−1/4e−( 2πsj
N

−ω0)2/2 (2.39)

The term inside the summation in eqn. (2.38) is evaluated at frequencies fj = j/(N∆t) with
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j = 1, 2, .., (N/2) such that the evaluation is carried out upto the Nyquist frequency. ∆t is the time

step size between consecutive points of x(tk). The wavelet power spectrum (WPS) is then given by

WPS(n, s) =Wn(s).W
∗
n(s). (2.40)

The global wavelet power spectrum (GWPS) which is the analogue of the Fourier power spectrum

is given by

GWPS(s) =
1

N

N
∑

n=1

Wn(s).W
∗
n(s). (2.41)

The GWPS gives an indication of the various periodic oscillations present in the data by means

of power. It is a sum of the power at all the times n from the wavelet power spectrum and is a

function of scale, s. Wavelet analysis is applied to an evenly sampled sinusoidal function for which

GWPS(n, s) and WPS(n, s) are evaluated as illustrated in the bottom row of Fig. 2.6.
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Figure 2.6: ]
Top row: the left plot is a synthetic unevenly sampled sinusoidal light curve of duration 200 s
with a periodicity of 20 s; the right plot is the Morlet sampling wavelet function. Bottom row:
the left plot is the global wavelet power spectrum (GWPS) indicating a strong peak centered at
20 s; the right plot is the wavelet power spectrum WPS(n, s). The WPS(n, s) has the following
components: the ordinates are the sampled frequencies converted to the Fourier wavelength space
(in s), the abscissas are the observation times (in s), the cone of influence is defined here as the
region inside the triangular region which can be used to interpret accurate results. TheWPS(n, s)
indicates a strong feature at 20 s which lasts for the entire observation duration.
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2.5.2 Shift and scale parameters

The time shift parameter n = k∆t is taken from and is in the same units as the observation times

tk. The scale parameter s is also in the same units as the observation times tk. For convenience and

comparison with the power spectrum results from other techniques, we express it as the inverse of

the evaluation frequencies. The relationship between the Fourier wavelength λ (time period) and

the shift parameter s is given by

λ =
4πs

ω0 +
√

2 + ω2
0

(2.42)

The numerical algorithm constructed based on the equations in the previous section incorporates

the result from eqn. (2.42) and expresses WPS =WPS(n, λ) and GWPS = GWPS(λ).

2.5.3 Cone of influence (COI)

The Fourier transform of the light curve F (fj) treats the light curve x(tk) of finite length N as a

cyclic quantity in order to evaluate the sinusoidal coefficients. As F (fj) is used in the evaluation

of the wavelet transform Wn(s), the wavelet power spectrum WPS(n, s) will indicate this at the

beginning and near the end. In order to reduce these edge effects, x(tk) is padded with zeroes

such that its length is now equal to the closest power of two. Though, this has the effect that the

amplitude of the wavelet power in WPS(n, s) decreases with increasing scale s as the sampling

wavelet function will pick up more zeroes in the evaluation. There will thus be a gradual increase

in the size of the edge with scale s.

The COI is the region in the wavelet power spectrumWPS(n, s) which serves as a demarcation

between the amplitudes at a particular (n, s) which are evaluated with least error and those close

to the edge which suffer from the above mentioned errors. An e-folding time in the current context

is used to specify the time at which the wavelet power falls off by a factor 1/e2 near the edge. The

COI contour includes all points COI = COI(ne, se) near the edge at which this transition occurs.

This demarcation contour is illustrated in the right plot of the bottom row of Fig. 2.6 which is the

wavelet power spectrum WPS(n, s). It is defined here as the region inside the triangular region

which can be used to interpret accurate results.

2.5.4 Statistical properties

For a time series whose constituents are Gaussian distributed, the power spectrum = |F (fj)|2 is

approximately χ2
2 distributed about the true spectrum, which was referred to as the PSD in the

context of the periodogram. As the wavelet power spectrum WPS(n, s) is the convolution of x(tk)

with a wavelet analysing function ψ(n − tk, s), in the frequency domain, it is effectively smoothed

by this window function and is hence a reasonable, though smooth approximation of the underlying

PSD. Thus, WPS(n, s) is also χ2
2 distributed about the underlying PSD or the mean spectrum.
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2.5.5 Wavelet analysis: the algorithm

1. Determine the frequencies at which WPS and GWPS are to be calculated.

2. Use eqn. (2.40) to determine the WPS of the light curve which can be represented by a

contour plot as WPS =WPS(n, s).

3. Use eqn. (2.41) to determine the GWPS of the light curve which is the equivalent of a

smoothed Fourier power spectrum.

We have developed a numerical realization of the wavelet analysis technique based on the

algorithm presented in [110]. Various types of wavelet sampling functions, their contexts of use

and general properties of the discrete and continuous wavelet transform with their applications

are discussed in [111]. The wavelet analysis can be used to detect sinusoidal signals in evenly

sampled light curves only. In a similar manner as the periodogram, it could lead to the presence

of spurious peaks in the wavelet power spectrum Wn(s). This technique, though lacking in the

strong characterization of a feature when compared to the other discussed techniques offers a much

more information than them. The strength of a possible quasi-periodicity in the light curve can be

determined by both visual inspection of the wavelet power spectrum Wn(s) which is a contour plot

as well as by automating the algorithm in order to identify all features which are above a desired

amplitude threshold. The times during which this feature is present in the data can be determined.

Further, the time duration of the existence of this feature and hence, the number of cycles the

feature is present for can also be determined.



Chapter 3

Implementation of statistical

techniques

3.1 Introduction

In this chapter, we first develop a statistical procedure to estimate the true underlying power

spectral density (PSD) from the periodogram technique by using parametric models in §3.2. This
procedure can be used to determine the PSD and constrain the model parameters. The procedure

and its application are briefly discussed in [112].

Noise present in the data is generally coloured. i.e. the periodogram indicates a white noise

region (flat portion) at high frequencies which evolves into a red noise region (power law portion)

and their properties and statistical inferences are well studied in the context of the periodogram.

We make use of the parametric model procedure to develop an analytic significance test, applicable

to the periodogram in order to rule out spurious detections and study realistic cases in more detail

in §3.3.1.
The statistical interpretation from other techniques have generally addressed only Gaussian

distributed white noise. Thus, there is a necessity for the development of an alternate strategy for

the statistical significance test while using the other techniques. The strategy here involves the use

of Monte-Carlo (MC) simulated synthetic periodograms to find the best fit PSD model and are

described in §3.4.
A comparison of the applicability and usage of the time series techniques by means of numerical

experiments is then presented is §3.5. This demonstrates the applicability of each technique, their

complementary properties and the use of the significance tests developed. The procedure and its

development are briefly discussed in [101].

An overall strategy for the usage of the time series techniques tool box along with the signif-

icance testing is then presented. Here, we formulate a search-data characterization strategy for

the extraction and to quantify information from any given light curve. In case the light curve

indicates an interesting quasi-periodic feature of high significance, its properties and evolution can

be studied.

45
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3.2 Parametric models of the periodogram

Broadband flux variability in AGN light curves can be attributed to the orbital signatures from

disk and jet based phenomena and the measured periodogram from the X-ray or optical/ultra-

violet flux will be implicitly dependent on their physics. Parametric models of the periodogram

can be used to estimate the underlying PSD shape that broadly mimics the effects of these physical

phenomena. The maximum likelihood estimator (MLE) based fit procedure of the periodogram

proves to be better suited in determining model parameters as compared with the traditionally

used least squares fit where the uncertainties are large and the parameter estimates are biased

[113]. Model selection using the Akaike information criteria [114] then yields the best fit model

following which the analytic significance test can be carried out to determine the presence of any

substantive quasi-period. Also, the choice of a statistically appropriate PSD model is useful in the

development of theoretical models of variability and constrain the model parameters.

We first summarize the definition and important properties which will be used in the further

discussion of the parametric models. The normalized periodogram, described in detail in Chapter

2 is given by,

P (fj) =
2∆t

µ2N
|F (fj)|2 (3.1)

Where ∆t is the time step size, µ is the mean of an evenly sampled, mean subtracted light curve

x(tk) of length N points and |F (fj)| is its discrete Fourier transform evaluated at frequencies

fj = j/(N∆t) with j = 1, 2, .., (N/2 − 1). With this normalization, the integrated periodogram

gives the fractional variance of the time series [99] and P (f) is in units of (rms/mean)2 Hz−1. The

periodogram is binned in the log-log space to enable its probability density function to tend to

Gaussian and to render its variance a constant [102].

The power law model of the periodogram is given by

I(fj) = Af−αj , (3.2)

where α is the red-noise slope, often found in the range of -1 and -2.5 in the periodograms of AGN.

This model fits optical/ultra-violet and X-ray data reasonably well and could represent broadband

variability across a wide range of Fourier frequencies due to collective and random processes on the

disk or jet.

The broken power law model is given by

I(fj) = A(fj/fBrk)
−αhi , fj > fBrk (3.3)

= A(fj/fBrk)
−αlow , fj < fBrk

where fBrk is the break frequency, αhi is the slope of the high frequency region and αlow is the slope

of the low frequency region. This model is motivated from its application to the low state hard

X-ray emission based power spectrum from the black hole X-ray binary Cyg X-1 which indicates a

flattening of the power spectrum at low frequencies [115]. In this state, the emission is dominated
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by physical processes in a jet as there is a correlation between the radio and X-ray intensities [116].

The bending power law or knee model is given by

I(fj) = A(1 + (fj/fKnee)
2)−α/2, (3.4)

where fKnee is the knee frequency and α is the slope in the high frequency region above the knee

frequency. This model is used when a sharp break in the power spectrum is not expected and is

applied to similar data as the broken power law model.

The power law with Lorentzian quasi-periodic oscillation (QPO) model is given by

I(fj) = Af−αj +
R2Qf20 /π

f20 +Q2(fj − f0)2
(3.5)

where α in the first term is the red-noise slope and the second term is a Lorentzian function with

amplitude R, central frequency f0 and quality factor Q defined as f0/∆f where ∆f is the frequency

spread in the bin hosting the central frequency. This model is motivated from the QPOs observed

in galactic black holes [117, 118]. The fit parameters can be used as inputs to disk and jet based

theoretical models of quasi-periodicity from orbital signatures or from plasma processes.

3.2.1 Fit procedure, model selection and significance testing

The periodogram of the evenly sampled light curve is first evaluated. Binning is carried out in

the log-log space in order to reduce the scatter of the ordinates. The region dominated by white

noise (flat portion at higher frequencies) and that dominated by red noise (approximate power law

at lower frequencies) are identified. Then, parametric fit models are applied to only the red noise

portion. For the power law model, the normalization is first fixed using a linear fit to the red noise

portion. Then, slopes α of the power law portion in the red noise region ranging between -1.00 and

-2.50 in steps of 0.01 are used to generate a set of test models. For the bending power law model, the

normalization used is the mean of the red noise portion. A range of bend frequencies are generated

in an evenly sampled grid varying between the lowest frequency and highest frequency in the red

noise portion. Half the difference between the first set of consecutive frequencies representing the

central frequency in the periodogram bins is used as the step size to generate the test bending

frequencies. One can use smaller step sizes if required to get a more finely refined grid. The slopes

α representing the power law portion in the red noise region ranging between -1.00 and -3.00 in

steps of 0.01 are used along with the bending frequencies to generate a two dimensional grid of

test models. For the broken power law model, the normalization used is the mean of the red noise

portion. A range of break frequencies are generated in an evenly sampled grid varying between the

lowest frequency and highest frequency in the red noise portion. One sixth the difference between

the first set of consecutive frequencies representing the central frequency in the periodogram bins

is used as the step size to generate the test break frequencies to get a finely sampled grid. Slopes

αLow representing the power law portion in the frequencies lower than (to the right of) the break

frequency ranging between -0.50 and -1.00 in steps of 0.01 and αHi representing the power law
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portion in the frequencies higher than (to the left of) the break frequency ranging between -1.00

and -2.50 in steps of 0.01 are then generated. The slopes along with the break frequencies are used

to generate a three dimensional grid of test models.

The likelihood and log-likelihood functions are defined to be

L(θk) =

(n−1)
∏

j=1

1

I(fj, θk)
e−P (fj)/I(fj ,θk), (3.6)

S(θk) = 2

n−1
∑

j=1

(ln(I(fj , θk)) + P (fj)/I(fj , θk)), (3.7)

where L(θk) is the likelihood function, I(fj, θk) are parametric models, θk are the parameters of

I(fj, θk) to be estimated and P (fj) is the periodogram of data. Determining θk which minimize

S yields the maximum likelihood values. Confidence limits are determined in a similar manner as

that described in [119] for the ∆χ2 method.

The log-likelihood S is determined for a large number of combinations spanning the test pa-

rameter space θk for a given model. The minimum log-likelihood value Smin is determined. The

parameter combination yielding this minimum is unique and can be easily identified. These param-

eters can be used to construct the best fit model. Now, a space of ∆S values is constructed using

∆S = Si − Smin where the Si corresponds to each unique combination of the parameters θk. The

differences, ∆S are approximately χ2
k distributed with the degrees of freedom k corresponding to

the number of parameters in the model. For example, a power law model with a fixed normalization

has only the slope α as a parameter. Hence, in this case, k = 1. Confidence intervals can then be

set based on the cumulative distribution function of the χ2
k distribution. One can determine the

1 σ or 2 σ confidence intervals. These would correspond to a given value of ∆S. Thus, the ∆S

determined from the parameter combinations within a set confidence interval are grouped. The

parameter ranges that they span can thus be determined using which one can specify the confidence

intervals of all parameters θk used in a given model. This procedure is repeated for all parametric

models. In each case, the best fit model, best fit parameter values and the confidence interval of

each of those parameters is determined.

Model selection is carried out using the Akaike information criteria (AIC) and the relative

likelihood (RL). The AIC is a measure of the information lost when a model is fit to the data. The

model with least information loss (least AIC) is assumed to be the null model and the tentative

best fit. The likelihood of other models describing the data as well as the null is determined using

the likelihood ratio and the relative likelihood e.g. [114]. The AIC, likelihood ratio and the relative
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likelihood are defined by

AIC = S(θk) + 2pk, (3.8)

∆i = AICmin(model i) −AICmin(null),

L(model i|data) = e−∆i/2, and

RL = 1/L(model i|data),

where pk is a penalty term and is the number of parameters θk used in the model,

L(model i|data) is the likelihood of model i given the data, RL is the likelihood ratio of model

i relative to that of the null model. L and RL are determined for each competing model. Models

with ∆i ≤ 2 can be considered close to the best fit, those with 4 ≤ ∆i ≤ 7 are considerably less

supported and those with ∆i > 10 and RL > 150 cannot be supported [114]. For large RL, the

null thus remains the best fit model. When the PSD is subtracted from the periodogram, it would

consist ideally of only χ2
2 distributed noise whose light curve ordinates are normally distributed

e.g. [16]. The residue from the best fit to the data is tested against the χ2
2 distribution using a

goodness of fit test such as the Kolmogorov-Smirnov test. Significance levels such as 99% based

on the cumulative distribution function of the χ2
2 distribution can be used to reveal a statistically

significant QPO.

3.2.2 Application, results and inferences

The procedure of constructing the periodogram, applying fit models, model selection and analytic

significance testing is applied to the XMM X-ray light curve (0.3 keV - 10 keV) of REJ 1034+396,

the periodogram of which revealed a QPO of ∼ 3733 s [55]. We wish to illustrate the usefulness

of our method in the identification of the QPO component. The periodogram with 296 data bins

is constructed and fit models are applied to it (Fig. 3.1). The power law with QPO model serves

as the best fit model with an AIC = 149.8 and a significance of the QPO > 99.94 %. The other

results are presented in Table 3.1.

Parameter estimation with MLE and model selection with AIC is computationally efficient,

minimizing the dependence on more intensive procedures based on Monte-Carlo simulations [115].

Any other parametric model can be easily incorporated into this procedure. If a statistically

significant QPO is detected, a lower limit to the black hole mass and constraints on its spin can be

placed assuming that the QPO is from an orbital signature. Phenomenological models considering

the imprints of general relativistic effects and structure of the emitting region on the outward bound

emission can be used to simulate PSDs with varying physical parameters and are carried out in

Chapters 6 & 7.
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Fit model Properties Results

Power law (AIC, RL) (170.1, 25.3 × 103)
Fit parameters Power law slope (α) (-1.33 ± 0.013)

Significance (%) >99.99

Broken power law (AIC, RL) (172.1, 68.1 × 103)
Fit parameters Break frequency fBrk (Hz) 0.00032 ± 0.000074

High frequency region slope αhi -1.6 ± 0.42
Low frequency region slope αlow -1 ± 0.33
Significance (%) >99.99

Bending power law (AIC, RL) (198.4, 3.5 × 1010)
Fit parameters Knee frequency fKnee (Hz) 0.00084 ± 0.00018

High frequency region slope α -3.9 ± 0.74
Significance (%) >99.99

Power law & QPO (AIC, RL) (149.8, 1)
Fit parameters Central frequency f0 (Hz) 0.000269

Amplitude R 0.05 ± 0.014
Quality factor Q 32 ± 6.5
Significance (%) >99.94

Table 3.1: Periodogram analysis with fit models: results

-4.5 -4.0 -3.5 -3.0 -2.5

-2

-1

0

1

2

3

4

L
o

g
@P

o
w

er
Hr

m
s�

m
ea

n
L2
D

99% sig.

White n oise

-4.5 -4.0 -3.5 -3.0 -2.5

-2
-1

0
1
2

Log@Frequency HHzLD

D
Χ

-4.5 -4.0 -3.5 -3.0 -2.5

-2

-1

0

1

2

3

4

L
o

g
@P

o
w

er
Hr

m
s�

m
ea

n
L2
D

99% sig.

White n oise

-4.5 -4.0 -3.5 -3.0 -2.5

-2
-1

0
1
2

Log@Frequency HHzLD

D
Χ

-4.5 -4.0 -3.5 -3.0 -2.5

-2

-1

0

1

2

3

4

L
o

g
@P

o
w

er
Hr

m
s�

m
ea

n
L2
D

99% sig.

White n oise

-4.5 -4.0 -3.5 -3.0 -2.5
-3
-2
-1

0
1
2

Log@Frequency HHzLD

D
Χ

-4.5 -4.0 -3.5 -3.0 -2.5

-2

-1

0

1

2

3

4

L
o

g
@P

o
w

er
Hr

m
s�

m
ea

n
L2
D

White n oise

-4.5 -4.0 -3.5 -3.0 -2.5

-2

-1

0

1

Log@Frequency HHzLD

D
Χ

Figure 3.1: The binned periodogram with the white noise level is shown in all the plots. Fit portion
is in blue and white noise region is in red. The fit residue ∆χ =(data-model)/σ is shown below all
plots with error bars. Top left plot: fit with power law model. Top right plot: fit with bending
power law or knee model. Bottom left plot: fit with broken power law model. Bottom right plot:
fit with power law and Lorentzian QPO model. The fit model in all cases is plotted with error
bars. A 99% significance contour is also plotted to distinguish the QPO component.



3.3. SIGNIFICANCE TESTING 51

3.3 Significance testing

Once information is extracted from a light curve by the application of the analysis suite developed

in the Chapter 2, it is essential to make use of statistical significance testing in order to test the

relevance of the information in aiding physical models. Significance testing includes the comparison

of the computed data with the expected probability distribution using which one can rule out

spurious features which may appear in these techniques due to the previously described source

or measurement based effects. It can also be used to set confidence limits once the statistical

distribution of noise is known and constrained. In the analysis of time series relevant to AGN

light curves, we are interested in the search for quasi-periodic signals which may be present and

buried in systematic and instrumental noise. Outside of the distribution of the computed data, we

are interested in any possible statistically significant outliers. Significance testing identifies these

outliers which can then be analysed further to extract important inputs to theoretical models.

In the following portion, we use the PSD shape which was determined through a parametric fit

to the smoothed periodogram to develop analytic significance tests using the periodogram. This is

then extended to the development of significance tests for all the techniques in the analysis suite

using a Monte-Carlo simulation procedure.

3.3.1 Analytic significance test

The goodness of fit is quantified by the use of the Kolmogorov-Smirnov test [119] which compares

the cumulative distribution function of the scatter γ(fj) in the linear space which is the data/model

ratio (γ(fj) = 2P (fj)/I(fj)) to the cumulative distribution function of the χ2
2 distribution. A large

p-value from this test indicates a good fit. Now, confidence limits can be set in the log-periodogram

space in order to determine outliers in the periodogram which are the periodic variations that we

are interested in. The area under the tail of the probability density function of the χ2
2 distribution

(which is equivalent to a gamma density Γ(1, 1/2) = exp (−x/2)/2) gives the probability ǫ that the
power deviates from the mean at a given frequency and is measured in units of standard deviation

given by γǫ. For K number of trial frequencies used to construct the best fit model, we can specify

a (1− ǫ) 100 percent confidence limit on γ(fj) [103] by means of

γǫ = −2 ln[1− (1− ǫ)
1

K ]. (3.9)

After the specification of an ǫ such as 95 % or 99.99 %, γǫ is calculated, and the quantity, log(γǫ/2)

is added to the expression for log(I(fj)). This new log(I(fj)) ensures that only peaks in the data

periodogram above a certain specified level of confidence, 1− ǫ are really present corresponding to

the periodicities in the data.

As an example of the above developed analytic significance test, we now illustrate an appli-

cation to a periodogram which indicates a red noise power law portion. In AGN light curves,

the background power fluctuations or noise is coloured, i.e. the periodogram is not flat as in the

case of Gaussian distributed noise but has a finite slope α which suggests that the periodogram
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P (fj) ∝ f−αj . If we now assume that the underlying I(fj) can be described by a power law model,

I(fj) = Cf−αj (3.10)

expressed in the logarithm space as

log(I(fj)) = log(C)− α log(fj) (3.11)

The logarithm of the periodogram estimate P (fj) is then given by

log(P (fj)) = log(I(fj)) + log(χ2
2/2) = log(C)− α log(fj) + log(χ2

2/2) (3.12)

Then, the expectation value of the periodogram is given by,

< log(P (fj)) >= log(C)− α log(fj)− 0.25068 (3.13)

Thus, the data log-periodogram is fit with a power law model in the log space and the parameters

of the fit, log(C) and α are determined for the best fitting region.

3.4 Monte-Carlo (MC) simulations based significance testing

The procedure adopted in the previous section can be summarized as follows: fit the red noise

dominated region of the periodogram, P (fj) with the parametric models (power law, power law

with Lorentzian QPO, knee, break). Use the Akaike information criteria and relative likelihood to

determine the best fit model and hence the best fit parameters and their error bars.

The PSD shape obtained using the above procedure does not account for the biases introduced

by the light curve properties which include effects due to aliasing, red noise leakage and that

due to the re-binning and interpolation (for un-evenly sampled light curves). We make use of a

modified version of the MC simulations based procedure, the power spectrum response (PSRESP)

technique described in [115]. The PSRESP technique allows us to to account for the above biases

in the simulated PSD shape as well as offers a goodness of fit test which measures the rejection

probability of the simulations based distorted model PSD.

If the rejection probability of the simulated model PSD (mean of all the simulated PSDs) is

less (< 5 %), it is accepted as the PSD describing the data. The error at each frequency bin is the

root mean square value of the simulated PSDs about the mean. The errors on the fit parameters

obtained previously for the best fit model are corrected taking into account the simulated model

PSD. The analytic significance test described in the previous section can then be carried out with

the corrected simulations based model PSD.

In our procedure, the MC simulations are carried out based on the algorithm prescribed in [120]

as applied to the best fit PSD model obtained from the AIC and RL procedure described in §3.2.1.
A large number (typically N >1000) of synthetic periodograms are generated. It must be ensured

that the sampling frequencies are sufficiently large so as to produce long duration light curves (at
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least 10 times the duration of the original light curve) to account for red noise leakage, also taking

into account aliasing effects and those introduced due to re-binning and interpolation [115]. These

periodograms are re-binned and truncated to the frequency region relevant to the study of red noise

in the original data based periodogram. The mean of the simulated periodograms P̄sim(fn) and

the root mean squared deviation from the mean ∆Psim(fn) are determined at each frequency fn.

Then, the particular value of the normalization A which minimizes χ2
dist. defined by [115]:

χ2
dist. =

fmax
∑

fn=fmin

(AP̄sim(fn)− P (fn))
2

(∆Psim(fn))2
(3.14)

is determined where fmax and fmin correspond to the bounding frequency bins representing the red

noise region. The normalized model then corresponds to the best fit model accounting for effects

due to the described biases.

The goodness of fit of the determined best fit model is similar to that described in [115]. From

the simulated periodograms, a random sample of 500 is chosen at a time. These periodograms are

subjected to the same re-binning and truncation as followed previously. For this sample, the mean

periodogram and the root mean squared deviation from the mean are determined at each frequency

fn. The χ
2
dist.,i is determined for a given realization i. This procedure is repeated for i upto 1000,

each time with a randomly sampled set of 500 simulated periodograms. The 1000 values of χ2
dist.,i

can thus be used as an empirical distribution function for the statistical characterization of χ2
dist..

The generated χ2
dist.,i values are sorted in order and the rejection probability of a given model is

given by the number of χ2
dist.,i < χ2

dist..

The MC simulations were used above to determine an accurate PSD model. These simulations

can also be used for significance testing. From the N simulated periodograms, one can sample

a specific portion of each periodogram and extract N light curves which have the same mean,

standard deviation, time bin size, flux binning and length as the original observed AGN light

curve. An important consequence of using the above procedure is that we are now able to describe

the statistical distribution of the periodogram at any given frequency f provided this point is in the

red noise region, generally at lower frequencies. At each frequency f , there are thus N synthetic

periodogram based estimates for the ordinate.

The periodogram is constructed from each of the N simulated light curves and the number

of instances, p in which the original data based power exceeds that obtained from the random

simulations divided by N is reported as a significance value. This serves as a strong statistical

criterion for confirming or ruling out nominal quasi-periods. A typical N of 1000 simulations can

yield significance values of up to 0.999 and if a stronger claim of significance level seems possible,

N can be increased. The procedure of identifying the number p as described above is then the

manner in which the empirical cumulative distribution function at each point is estimated.

The above procedure is also applicable to test the significance of detection of QPOs in other

techniques such as the MHAoV, wavelet analysis and the LSP. In some of these, an analytic

significance test is not available when the data indicates the presence of red noise. The significance
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of a detection can be obtained by feeding the simulated LCs into each of the above techniques.

For each technique one determines the number of instances in which the power in the original

LSP, MHAoV or global wavelet power spectrum exceeds the power at the same position from the

simulated LCs to provide direct significance values. This serves the following purposes:

1. To confirm independently in each technique the presence of a QPO.

2. To obtain a stronger significance as compared to the analytic significance test which is appli-

cable only to the Fourier periodogram.

3. In case the light curve is unevenly sampled, the Fourier periodogram is constructed from a

light curve which is re-binned into evenly spaced bins. In case a quasi-periodic feature exists

in the light curve, the periodogram amplitude of this feature may be under-estimated. In

this case, the light curve in the un-evenly sampled form can be directly analysed using the

LSP and MHAoV techniques which offer a better estimate. Thus, the periodogram can be

used to determine the correct PSD shape and its properties which can then be used in the

MC simulations based significance testing procedure for the LSP and MHAoV techniques to

give a stronger estimate of p.

In the next section, we perform a set of numerical experiments which can provide a handle on

a statistically desirable quantitative estimate of the significance.

3.5 Numerical experiments

A series of exercises are carried out to compare the efficacy of various time series analysis techniques

and to test their robustness in detection and characterization of the properties of data sets regardless

of their sampling and the nature of the signal. This is done by a comparison of their power spectrum

obtained by the analysis of synthetic test light curves. The toolbox consists of four time series

analysis techniques: periodogram, Lomb-Scargle periodogram (LSP), multi-harmonic analysis of

variance (MHAoV) and wavelet analysis. This procedure is used to highlight the areas in which

they can provide useful information when analysing a light curve.

The types of possible light curves is first described. These have differing properties such as

the sampling and the signal properties both including and without noise. Then, the development

of the synthetic light curves which will be used for the experiments is described in §3.5.1. The

methodology followed in the extraction of the properties from each of these light curves is then

presented in §3.5.2. The results are presented in §3.5.3 and are summarized in Tables 3.1 and 3.3.

Inferences are then drawn on the effectiveness of each analysis technique and on the Monte-Carlo

simulations based significance test.

We take periodic signals with the following differing properties:

• Nature of the signal: sinusoidal, S or non-sinusoidal, S̄.

• Sampling of the signal: evenly, E or unevenly sampled, U .
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• Life-time of a signal is taken as a fraction f of the observation duration. If tP is the duration

of existence of the periodicity P , the quantity nP = (tP/P ) indicates the number of cycles

that a signal lasts during the observation.

• Number of signals in the light curve, nS .

• Effects of noise in the test light curves which we denote by r.

3.5.1 Data preparation

A combination of all the above factors will impact the results. Here we aim to study the utility

of a particular technique in detecting a periodic signal in the presence of a given combination of

the above properties. Hence, we aim to demonstrate the relative importance of each technique for

a given signal. The detection of periodicities in all techniques is carried out by determining the

power spectrum. The following synthetic light curves are used in the experiments:

Experiments without noise

The following combinations are used to illustrate the utility of each technique:

S E, S U , S̄ E, S̄ U for the combination nS = 1 and f = 1.

S E for nS = 1 and f < 1.

S E for ns = 2 and f = 1.

S E is an evenly sampled (∆t = 1 s) light curve containing a sinusoidal waveform of period 20

s. The periodicity lasts for a duration of 200 s (nP = tP /P = 10, f = 1).

S U is an un-evenly sampled light curve containing a sinusoidal waveform of period 20 s. The

periodicity lasts for a duration of 200 s (nP = tP/P = 10, f = 1).

S̄ E is an evenly sampled (∆t = 1 s) light curve containing a non-sinusoidal (saw-tooth) wave-

form of period 20 s. The periodicity lasts for a duration of 200 s (nP = tP /P = 10, f = 1).

S̄ U is an un-evenly sampled light curve containing a non-sinusoidal (saw-tooth) waveform of

period 20 s. The periodicity lasts for a duration of 200 s (nP = tP/P = 10, f = 1).

S E ns = 1 is an evenly sampled (∆t =1 s) light curve consisting of three sections. The first

lasts for a duration of 50 s is populated with standard Gaussian white noise (mean = 0, standard

deviation = 1). A sinusoidal waveform of period 20 s which lasts for the next 100 s (nP = 5)

follows this section. Another section of standard Gaussian white noise then lasts for the remaining

duration of 50 s. The total duration sums up to 200 s (f = 0.5).

S, E, nS = 2 is an evenly sampled (∆t =1 s) light curve consisting of two sections. A sinusoidal

waveform of 50 s periodicity which lasts for a duration of 200 s (nP1 = 4) is followed by another

sinusoidal waveform of 100 s periodicity which lasts for the next 300 s (nP2 = 3), the total duration

summing up to 500 s (f = 0.4 for the 50 s periodicity and f = 0.6 for the 100 s periodicity).
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Experiments with noise

The following combinations are generated to compare the detection efficacy of each technique, to

demonstrate the utility of the Monte-Carlo simulations in significance testing and in order to place

a statistically sound significance limit which can be used to identify a strong signal. They include:

S E r, S U r, S̄ E r, S̄ U r for the combination nS = 1 and f = 1.

In the above light curves, a red noise power spectrum (slope = -2) is generated using the

algorithm prescribed in [120]. This is then inverse Fourier transformed to obtain a light curve with

length equal to the original light curve containing the signal. This is added to the light curve

containing the signal.

S E r is an evenly sampled (∆t = 1 s) light curve containing a sinusoidal waveform of period

20 s with red noise. The periodicity lasts for a duration of 200 s (nP = tP /P = 10, f = 1).

S U r is an un-evenly sampled light curve containing a sinusoidal waveform of period 20 s with

red noise. The periodicity lasts for a duration of 200 s (nP = tP/P = 10, f = 1).

S̄ E r is an evenly sampled (∆t = 1 s) light curve containing a non-sinusoidal (saw-tooth)

waveform of period 20 s with red noise. The periodicity lasts for a duration of 200 s (nP = tP/P =

10, f = 1).

S̄ U r is an un-evenly sampled light curve containing a non-sinusoidal (saw-tooth) waveform of

period 20 s with red noise. The periodicity lasts for a duration of 200 s (nP = tP /P = 10, f = 1).

3.5.2 Methodology

The methodology of the experiments without noise is as follows:

1. The synthetic light curve with the desired combination of the properties described earlier is

generated.

2. If the light curve is evenly sampled, the periodogram, LSP, MHAoV and the wavelet analysis

based power spectra are determined.

3. For uneven sampling, a certain number of points are removed from the light curve before its

analysis. The evenly sampled light curve is first constructed (200 points). 80 randomly chosen

points are then removed such that the final unevenly sampled light curve has 120 points.

4. For this unevenly sampled light curve, the LSP and MHAoV based power spectra are first

determined. The light curve is then made evenly sampled by re-binning the points in evenly

spaced bins and determining the mean of each bin. For empty bins, a linear interpolation

considering the nearest neighbours is used to determine an estimate. The periodogram and

wavelet analysis are applied to this re-binned, evenly sampled light curve to obtain their

corresponding power spectra.

5. The power spectrum of each technique is normalized by the total power under it. This aids

in the comparison between the power amplitudes indicated by each technique.
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The methodology of the experiments including noise is as follows:

1. Noise with a χ2
2 distribution is added to each frequency bin of a synthetic periodogram with

a slope α = −2 (red noise). This is then inverse Fourier transformed to obtain a light curve

which contains both the signal and red noise. This particular noise model is adopted for this

exercise as it is often observed in the optical/UV and X-ray light curves from AGN. It hence

mimics an actual signal.

2. For uneven sampling, a certain number of points are removed from the light curve before

its analysis. The evenly sampled light curve is first constructed (200 points). 100 randomly

chosen points are then removed such that the final unevenly sampled light curve has 100

points.

3. For this unevenly sampled light curve, the LSP and MHAoV based power spectra are first

determined. The light curve is then made evenly sampled by re-binning the points in evenly

spaced bins and determining the mean of each bin. For empty bins, a linear interpolation

considering the nearest neighbours is used to determine an estimate. The periodogram and

wavelet analysis are applied to this re-binned, evenly sampled light curve to obtain their

corresponding power spectra.

4. The power spectrum of each technique is normalized by the total power under it. This aids

in the comparison between the power amplitudes indicated by each technique.

5. Monte-Carlo (MC) simulations are carried out by generating a set of 1000 random light curves

using the algorithm prescribed by [120] accounting for red noise leakage by generating first

red-noise light curves which are 20 times the length of the original light curve and then re-

sampling them to match the bin sizes and times of the original light curve. The bias at each

frequency is also estimated for each synthetic periodogram and is added to it before a final

synthetic light curve is generated.

6. These simulated light curves are analysed using all techniques to determine the significance

p.

7. A criterion for identifying a true detection is p > 0.99 from the MC simulations for the peri-

odogram, LSP and MHAoV which are the main detection techniques. If P1 is the amplitude

of the power at the indicated periodicity, µ and σ are the mean and standard deviation of

the noise obtained from Monte-Carlo simulations, we define Nσ = (P1 − µ)/σ.

3.5.3 Results

Here, we discuss the results of the experiments carried out with the various combinations of syn-

thetic light curves. Brief inferences are drawn from the test results. All results are summarized in

Tables 3.3 and 3.4.

For the experiments without noise, the following are the results:
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Experiment 1 (S E nS = 1): The peak at a frequency of 0.05 Hz (20 s) is well detected by all

techniques. The normalized periodogram, LSP and MHAoV yield the same amplitude of 1.00. The

GWPS power amplitude is lower at 0.33. The LSP and periodogram amplitudes are equal as the

LSP reduces to the periodogram when the light curve is evenly sampled. The GWPS is lower than

the others as sampling with wavelets can be thought of as smoothing the raw periodogram with

a window function. The light curve and the power spectra are plotted in Fig. 3.2. The wavelet

power spectrum (bottom row of Fig. 3.2) is used to infer that the periodicity of 20 s lasts for the

entire observation duration.

Experiment 2 (S̄ E nS = 1): The peak at a frequency of 0.10 Hz (10 s) is well detected by all

techniques. The normalized periodogram and LSP yield the same amplitude of 0.65. The MHAoV

yields the highest amplitude of 0.71 which is ∼ 8 % better than the periodogram and LSP estimates

indicating that it is well suited for the analysis of non-sinusoidal light curves. The GWPS yields

the lowest amplitude of 0.11. The light curve and the power spectra are plotted in Fig. 3.3. The

wavelet power spectrum (left plot of the bottom row of Fig. 3.3) is used to infer that the periodicity

of 20 s lasts for the entire observation duration.

Experiment 3 (S U nS = 1): The LSP and MHAoV analysis of the unevenly sampled light

curve detect the signal frequency of 0.05 Hz (20 s) and yield normalized power amplitudes of 0.63

and 0.29 respectively, shown in the right plot of the top row of Fig. 3.4. The periodogram and

wavelet analysis of the evenly sampled binned light curve yields normalized power amplitudes of

0.91 and 0.50 respectively, shown in the right plot of the bottom row of Fig. 3.4. The wavelet

power spectrum (left plot of the bottom row of Fig. 3.4) is used to infer that the periodicity of 20

s lasts for the entire observation duration.

Experiment 4 (S̄ U nS = 1): The LSP and MHAoV analysis of the unevenly sampled light

curve detect the signal frequency of 0.10 Hz (10 s) and yield normalized power amplitudes of 0.45

and 0.51 respectively, shown in the right plot of the top row of Fig. 3.5. The periodogram and

wavelet analysis of the evenly sampled binned light curve yields normalized power amplitudes of

0.21 and 0.13 respectively, shown in the right plot of the bottom row of Fig. 3.5. The MHAoV

amplitude is once again the highest, ∼ 12 % higher than the LSP and ∼ 59% higher than the

periodogram, once again indicating that it is a good estimator of the periodic component when the

signal is unevenly sampled. The wavelet power spectrum (left plot of the bottom row of Fig. 3.5)

is used to infer that the periodicity of 20 s lasts for the entire observation duration.

Experiment 5 (S E nS = 1 f = 0.5): The peak at a frequency of 0.05 Hz (20 s) is detected

by all techniques. The normalized periodogram and LSP yield the same amplitude of 0.17. The

MHAoV yields the highest amplitude of 0.21 while the GWPS yields the lowest amplitude of 0.10.

The light curve and the power spectra are plotted in Fig. 3.6. From the wavelet power spectrum

(left plot of the bottom row of Fig. 3.6), one can infer that the periodicity of 20 s lasts only for

the duration between 50 s and 150 s during the observation.

Experiment 6 (S E nS = 2): The peaks at the frequencies 0.05 Hz (20 s1) and 0.02 Hz (50 s2)

are detected by all techniques. The normalized periodogram and LSP yield the same amplitudes

of 0.251 and 0.252 respectively. The MHAoV yields amplitudes of 0.261 and 0.262 while the GWPS
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yields amplitudes of 0.131 and 0.212 respectively. The light curve and the power spectra are plotted

in Fig. 3.7. From the wavelet power spectrum (left plot of the bottom row of Fig. 3.7), one can

infer that the 20 s periodicity lasts for the duration between the start and 100 s while the 50 s

periodicity lasts between 101 s and 200 s during the observation.

For the experiments with red noise added to the light curve (slope of red noise power spectrum

= -2), the following are the results:

Experiment 7 (S E r nS = 1): The peak at a frequency of 0.05 Hz (20 s) is well detected by all

techniques. The normalized periodogram and LSP yield the same amplitude of 0.52. The MHAoV

power amplitude is the highest at 0.81 while the GWPS power amplitude is lower at 0.16. The

MHAoV power is ∼ 36 % higher than the periodogram and LSP estimates indicating that it is well

suited for detection of signals buried in noise. The light curve and the power spectra are plotted in

Fig. 3.8. The wavelet power spectrum (bottom row of Fig. 3.8) is used to infer that the periodicity

of 20 s lasts for the entire observation duration which is stronger after 80 s during the observation.

Experiment 8 (S̄ E r nS = 1): The peak at a frequency of 0.10 Hz (10 s) is detected by all

techniques. The normalized periodogram and LSP yield the same amplitude of 0.30. The MHAoV

yields a higher amplitude of 0.43 and the GWPS yields the lowest amplitude of 0.05. The light

curve and the power spectra are plotted in Fig. 3.9. The 10 s periodic feature is weakly detected

near the beginning and towards the end of the observation duration by the wavelet power spectrum

(left plot of the bottom row of Fig. 3.9) is used to infer that the periodicity of 10 s lasts for the

entire observation duration.

Experiment 9 (S U r nS = 1): The LSP and MHAoV analysis of the unevenly sampled light

curve detect the frequency of 0.05 Hz (20 s) yielding normalized power amplitudes of 0.38 and 0.96

respectively, shown in the right plot of the top row of Fig. 3.10. The periodogram and wavelet

analysis of the evenly sampled binned light curve yields normalized power amplitudes of 0.52 and

0.09 respectively, shown in the right plot of the bottom row of Fig. 3.10. The MHAoV power is ∼ 46

% greater than the periodogram estimate and is ∼ 60 % greater than the LSP estimate indicating

that it is well suited for the analysis of un-evenly sampled light curves with noise. The wavelet

power spectrum (left plot of the bottom row of Fig. 3.10) is used to infer that the periodicity of

20 s lasts for the entire observation duration.

Experiment 10 (S̄ U r nS = 1): The LSP and MHAoV analysis of the unevenly sampled light

curve detect the frequency of 0.10 Hz (10 s) yielding normalized power amplitudes of 0.23 and 0.22

respectively, shown in the right plot of the top row of Fig. 3.11. The periodogram and wavelet

analysis of the evenly sampled binned light curve (∆t = 5 s) yields normalized power amplitudes

of 0.26 and 0.03 respectively, shown in the right plot of the bottom row of Fig. 3.11. The signal is

weak and is not detected with wavelet power spectrum (left plot of the bottom row of Fig. 3.11).

Though, the GWPS in the right plot of the top row of Fig. 3.11 indicates that there is a detection

with a small bump at the 0.10 Hz frequency.
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3.5.4 Inferences and discussion

All techniques are able to detect the signal in the synthesized light curves fairly accurately in a

majority of cases with and without noise added to the light curve.

The periodogram and LSP are well suited in the detection of the periodic signal in evenly

sampled sinusoidal light curves as inferred from the experiments S E (experiment 1), S E nS =

1 f = 0.5 (experiment 5) and S E r nS = 1 (experiment 7) where the detection amplitude is

reasonably high in order to clearly identify the periodicity.

The LSP is also well suited in the detection of the periodic signal in un-evenly sampled sinusoidal

light curves as inferred from the experiment S U (experiment 3) where it yields an amplitude of

0.63, higher than the MHAoV.

The MHAoV power spectrum amplitude is fairly high as inferred from the experiments S̄ E

(experiment 2), S̄ U (experiment 4), S E r nS = 1 (experiment 7), S̄ E r nS = 1 (experiment

8) and S U r nS = 1 (experiment 9) where it consistently yields the highest corresponding power

amplitudes of 0.71, 0.51, 0.81 and 0.96 respectively. It can thus be inferred that it is well suited

for the detection of both sinusoidal as well as non-sinusoidal signals in both even and un-evenly

sampled light curves.

The wavelet analysis can be used for reasonable detection amplitudes. The power amplitude

estimates of the GWPS are consistently lower than the rest of the techniques as sampling with

wavelets is equivalent to the convolution in the Fourier space of the analyzing spectrum with a

wavelet window function. This tends to have the effect of reducing noise, though, at the cost of

diminishing the estimated true power amplitudes. This is not a serious drawback though as the

MC simulations carried out can be used to identify strong features as measured by the significance

p of a given frequency. Also, the main utility of this technique comes from the wavelet power

spectrum. This can be used for the identification of a periodicity and its duration of existence and

hence the number of cycles it lasts for. In case a QPO is present in a real AGN light curve, the

power spectrum can also yield information on its evolution.

There is a power loss to other frequencies in all techniques including harmonics of the primary

frequency due to spectral leakage effects which can arise due to:

1. the light curve being considered to be truncated as it is of finite length.

2. the light curve being considered to be convolved with a rectangular window of duration equal

to that of the light curve.

3. the sampling being carried out at periods different from P .

The power loss is the least in the MHAoV technique in a majority of the experiments.

We demonstrated that the proposed methodology is used to make strong and reliable statisti-

cally sound conclusions on detected periodicities, number of cycles and its phase of existence.

These experiments show that the techniques that have been developed as part of the analysis

toolbox work in a complementary manner contributing in different ways to the finally available
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information which cannot be obtained using any single technique. This is the main objective

behind the use of multiple techniques.

The underlying noise is treated in the same manner across all techniques in the MC significance

testing. Hence, if multiple techniques indicate a strong p-value, we can conclude that the periodic

signal definitely exists. In the experiments, the significance p of certain spurious detections are

much smaller compared to 0.99 which is the criteria used to detect the periodicity P .

3.6 Data characterization and search strategy

The following procedures are used in the formulation of a data characterization and search strategy

which can be used to extract light curve properties and aid in the detection of a quasi-periodic

feature in it through a rigourous statistical procedure:

The identification of a statistically appropriate PSD model from §3.2 followed by MC simulations

based constraints on the chosen model through a goodness of fit test as well as significance testing

of detected signals as described in §3.4.
The results from the numerical experiments which can be used to gauge the collective strengths

of each time series technique in the analysis suite and their mode of application to analyze a variety

of light curves with differing properties.

The data characterization and search strategy is as follows:

1. If the light curve is un-evenly sampled, re-bin it into equally spaced bins and perform a linear

interpolation over empty bins in order to obtain an evenly sampled light curve with a fixed

∆t.

2. Construct the periodogram and fit with an appropriate model (power law, power law with

Lorentzian QPO, knee, break) using the Akaike information criteria and relative likelihood

to determine the best fit model. If a QPO is detected, determine its analytic significance.

3. Use the MC simulations with the above best fit model parameters to construct the PSD

accounting for biases and red noise leakage.

4. MC simulations based significance testing: Use the algorithm prescribed by [120] with the

periodogram best fit model parameters and generate a large number (N > 1000) of LCs.

These are analyzed using all techniques. The number of instances in which the original power

exceeds that obtained from random simulations divided by N is reported as a significance

value p.

5. Use wavelet analysis to determine the phases during which the QPO exists, its evolution if

any and the number of cycles of existence.

6. Construct the LSP (if applicable: e.g. to unevenly sampled light curves) and MHAoV to

confirm the detected QPO.
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Technique Advantages Significance
Testing

Fourier periodogram Primary detection technique Analytic & MC sims.
Lomb-Scargle periodogram (LSP) Applicable to unevenly sampled LCs MC sims.
Multi-harmonic analysis of variance Applicable to unevenly sampled LCs, MC sims.
(MHAoV) non-sinusoidal signals
Wavelet analysis phase of existence of the QPO, MC sims.

duty cycle

Table 3.2: Summary of the applicability of each time series technique. In LSP, MHAoV and wavelet
analysis, we are currently working on analytic significance testing.

7. Based on numerical experiments results, we suggest the criteria for detection of a strong

feature (quasi-period) to be a significance > 0.99.

A summary of the abilities and drawbacks of each time series analysis technique is given in

Table 3.2.
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Expt. No. Technique Periodicity Peak
& P power
factors (s) amplitude

1. S E nS = 1 Periodogram 20 1.00
Total duration tP = 200 s LSP 20 1.00
nP = 10, f = 1 MHAoV 20 1.00

Wavelet 20 0.33

2. S̄ E nS = 1 Periodogram 10 0.65
Total duration tP = 200 s LSP 10 0.65
nP = 20, f = 1 MHAoV 10 0.71

Wavelet 10 0.11

3. S U nS = 1 Periodogram 20 0.91
total duration tP = 200 s, 100 points removed LSP 20 0.63
nP = 10, f = 1 MHAoV 20 0.29
∆t = 5 s (for periodogram and wavelet) Wavelet 20 0.50

4. S̄ U nS = 1 Periodogram 10 0.21
Total duration tP = 200 s, 100 points removed LSP 10 0.45
nP = 20, f = 1 MHAoV 10 0.51
∆t = 5 s (for periodogram and wavelet) Wavelet 10 0.13

5. S E nS = 1 with f = 0.5 in segment 2 Periodogram 20 0.17
segment 1 (1 - 50 s) & segment 3 (150 s - 200 s) LSP 20 0.17
populated with N(0,1) random noise MHAoV 20 0.21
total duration of 200 s (nP = 5) Wavelet 20 0.10

6. S E nS = 2 Periodogram 201, 502 0.251, 0.252

total duration of 200 s LSP 201, 502 0.251, 0.252

f = 0.5, nP = 5 for 20 s periodicity MHAoV 201, 502 0.261, 0.262

f = 0.5, nP = 2 for 50 s periodicity Wavelet 201, 502 0.131, 0.212

Table 3.3: Summary of the results from the first six experiments which do not include noise addition
to the light curve. 1results for P1;

2results for P2.
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Expt. No. Technique Periodicity Peak MC
& P power sims.
factors (s) amplitude sig.

7. S E r nS = 1 Periodogram 20 0.52 > 0.99
Total duration tP = 200 s LSP 20 0.52 > 0.99
nP = 10, f = 1 MHAoV 20 0.81 > 0.99

Wavelet 20 0.16 > 0.99

8. S̄ E r nS = 1 Periodogram 10 0.30 > 0.99
Total duration tP = 200 s LSP 10 0.30 > 0.99
nP = 20, f = 1 MHAoV 10 0.43 > 0.99

Wavelet 10 0.05 > 0.99

9. S U r nS = 1 Periodogram 20 0.52 > 0.99
total duration tP = 200 s, 100 points removed LSP 20 0.38 > 0.99
nP = 10, f = 1 MHAoV 20 0.96 > 0.99
∆t = 2 s (for periodogram and wavelet) Wavelet 20 0.09 > 0.99

10. S̄ U r nS = 1 Periodogram 10 0.26 > 0.99
Total duration tP = 200 s, 100 points removed LSP 10 0.23 > 0.99
nP = 20, f = 1 MHAoV 10 0.22 > 0.99
∆t = 2 s (for periodogram and wavelet) Wavelet 10 0.03 > 0.99

Table 3.4: Summary of the results from the next four experiments which include red noise which
is added to the light curve.
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Figure 3.2: Experiment 1: Top row: left panel: evenly sampled sinusoidal light curve; right panel: combined plot showing the normalized
power spectra of all techniques. The peak amplitude at a frequency of 0.05 Hz (20 s) is equal for the periodogram, LSP and MHAoV.
Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 20 s lasts throughout the observation
duration.
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Figure 3.3: Experiment 2: Top row: left panel: evenly sampled saw-tooth light curve; right panel: combined plot showing the normalized
power spectra of all techniques. The normalized peak amplitude at a frequency of 0.10 Hz (10 s) is 0.65 for the periodogram and LSP
(both are the same for an evenly sampled light curve). The MHAoV shows a higher amplitude at 0.71. Bottom row: left panel: contour
plot showing the wavelet power spectrum. The periodicity of 20 s lasts throughout the observation duration.
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Figure 3.4: Experiment 3: Top row: left panel: un-evenly sampled sinusoidal light curve; right panel: combined plot showing the
normalized power spectra of the LSP and MHAoV. The corresponding peak amplitudes at the frequency of 0.05 Hz (20 s) are at 0.63 and
0.29 respectively. Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 20 s lasts throughout the
observation duration; right panel: combined plot showing the normalized periodogram and GWPS. These have been plotted seperately
as they are constructed from an evenly sampled light curve.
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Figure 3.5: Experiment 4: Top row: left panel: un-evenly sampled saw-tooth light curve; right panel: combined plot showing the
normalized power spectra of the LSP and MHAoV. The corresponding peak amplitudes at the frequency of 0.10 Hz (10 s) are at 0.45
and 0.51 respectively. Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 10 s is well detected
only between ∼ 40 s and ∼ 70 s; right panel: combined plot showing the normalized periodogram and GWPS. These have been plotted
seperately as they are constructed from an evenly sampled light curve.
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Figure 3.6: Experiment 5: Top row: left panel: evenly sampled sinusoidal light curve sandwiched between two sections of standard
Gaussian noise; right panel: combined plot showing the normalized power spectra of all techniques. The frequency of 0.05 Hz (20 s) is
well detected by all techniques. Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 20 s is seen
to last within the cone of influence between the periodicities of 50 s and 150 s, exactly following the duration of existence of the sinusoid
in the light curve.
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Figure 3.7: Experiment 6: Top row: left panel: evenly sampled sinusoidal light curve composed of two sinusoidal components. The first
has a period of 20 s and lasts for 100 s. The second has a period of 50 s and lasts for 100 s; right panel: combined plot showing the
normalized power spectra of all techniques. The frequencies of 0.05 Hz (20 s) and 0.02 (50 s) are well detected by all techniques. Bottom
row: left panel: contour plot showing the wavelet power spectrum. The 20 s periodicity lasts between the start and 100 s. The 50 s
periodicity lasts between 100 s and 200 s. They exactly follow the duration of existence of the corresponding sinusoids in the light curve.
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Figure 3.8: Experiment 7: Top row: left panel: evenly sampled sinusoidal light curve with red noise; right panel: combined plot showing
the normalized power spectra of all techniques. The peak amplitude at a frequency of 0.05 Hz (20 s) is equal for the periodogram and
LSP. The MHAoV has the highest amplitude of 0.81. Bottom row: left panel: contour plot showing the wavelet power spectrum. The
periodicity of 20 s is detected reasonably well only after the first 60 s.
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Figure 3.9: Experiment 8: Top row: left panel: evenly sampled saw-tooth light curve with red noise; right panel: combined plot showing
the normalized power spectra of all techniques. The normalized peak amplitude at a frequency of 0.10 Hz (10 s) is 0.30 for the periodogram
and LSP. The MHAoV shows a higher amplitude at 0.43. Bottom row: left panel: contour plot showing the wavelet power spectrum.
The periodicity of 10 s is weakly detected near the end of the observation duration.



3.6.
D
A
T
A

C
H
A
R
A
C
T
E
R
IZ
A
T
IO

N
A
N
D

S
E
A
R
C
H

S
T
R
A
T
E
G
Y

73

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

0 50 100 150 200

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Time HsL

N
or

m
al

iz
ed

fl
ux

S U r Hns = 1L

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

Frequency HHzL

Po
w

er

MHAoV

LSP

0 50 100 150 200
0

50

100

150

200

Observation time HsL

Pe
ri

od
ic

ity
Hs
L

0

1

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency HHzL

Po
w

er

GWPS

Periodogram

Figure 3.10: Experiment 9: Top row: left panel: un-evenly sampled sinusoidal light curve with red noise; right panel: combined plot
showing the normalized power spectra of the LSP and MHAoV. The corresponding peak amplitudes at the frequency of 0.05 Hz (20 s)
are at 0.38 and 0.96 respectively. Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 20 s is
weakely detected throughout the observation duration; right panel: combined plot showing the normalized periodogram and GWPS.
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Figure 3.11: Experiment 10: Top row: left panel: un-evenly sampled saw-tooth light curve with red noise; right panel: combined plot
showing the normalized power spectra of the LSP and MHAoV. The corresponding peak amplitudes at the frequency of 0.10 Hz (10 s)
are at 0.23 and 0.22 respectively. Bottom row: left panel: contour plot showing the wavelet power spectrum. The periodicity of 10 s does
not show up prominently; right panel: combined plot showing the normalized periodogram and GWPS. The periodicity at 0.1 Hz (10 s)
shows up as a small bump in the GWPS plot.



Chapter 4

Analysis of variability in blazars

4.1 Introduction

Variability is often observed in emission from AGN with strong jet components such as blazars,

inferred from the domination of synchrotron processes in radio to optical light curves and spectra

from regions at parsec scales as well as close to the base of the jet e.g. [121, 98]. Theoretical models

are often applicable to emission from regions which are some distance away from the central region

where structures are resolvable. Some of these include Doppler beaming of a stream or blobs of

plasma accelerated to relativistic velocities along helical paths, the entire structure being oriented

in a direction very close to the observer line of sight [93, 94, 95] observed recently in the blazar BL

Lacertae [122], shocks propagating along the relativistic jet [91] which explains the variability in

some blazars e.g. [123, 124] and relativistic aberration effects due to small deviations from linearity

in the propagating shock front could also lead to variability in overall flux and polarization [92].

Rapid variability has been observed in TeV emission from blazars [4], the time-scales of which are

a few times or much shorter than the light crossing time. Explanations have invoked instabilities

in the jet e.g. [125, 126] as well as the presence of layering in the jet with randomly oriented

substructures contributing to the overall observation [127, 128].

4.2 Data selection

In this section, we detail the selection criteria employed in the extraction of the optical light curves

obtained from ground based observational facilities and X-ray (0.3 keV to 10 keV) light curves

obtained from archival data available from the XMM Newton Science Archive. The identification

of the region of emission from the above light curves can help in advancing theoretical models of

variability.

4.2.1 Optical light curves of the blazar S5 0716+714

Our criteria include a combination of long duration observations with good time resolution and

nearly uniform sampling. This is satisfied by the data published by [129] on S5 0716+714. These

75
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observations were made on 102 nights between 1999 and 2003 and are presented in the SIMBAD

astronomical database1. First, 37 light curves with observational gaps during a night are rejected.

Then, 5 light curves with median errors more than 0.015 mag. are rejected. For the remaining 60

light curves the intra-day variability amplitude, A [23] is determined as:

A = 100 ×
√

(Amax −Amin)2 − 2 σ2 %, (4.1)

where Amax and Amin are the maximum and minimum magnitudes in the calibrated light curve of

the blazar and σ is the averaged measurement error of that light curve. From this reduced sample,

we accept a set of 30 light curves with A >10%. Finally, we reject 9 light curves with time duration

less than 7.5 hours. This is done so that if a QPO with a typical duration of ∼ 1 hour exists in the

light curve which lasts for the entire observation duration, a minimum of 6 cycles can be inferred.

If we use the analysis suite to analyse these light curves, the developed statistical description can

confirm the presence of a real signal as opposed to one caused due to random noise.

A set of 21 light curves in the V and R magnitudes (optical bands) are thus obtained for the

analysis.

The criteria used here for extraction and a wavelet analysis of additional light curves with the

results are discussed in [130].

4.2.2 X-ray light curves of blazars

We chose a set of eight blazars: MS 0205.7+3509, AO 0235+164, S5 0716+714, S5 0836+710, OJ

287, 1ES 1028+511, 3C 273 and 3C 454.3 which indicated mild to strong variability. Then their

light curves were extracted based on the following criteria:

Their time duration must be 7 hours or greater to ensure that if a QPO with a typical duration

of ∼ 1 hour is present in the light curve, it can last for a minimum of 6 cycles. We next ensured

that these light curves had not earlier been probed for the presence of QPOs or intra-day variability

time-scales. We had to reject some of these light curves when EPIC-PN detector based observations

were not available because the remaining MOS1 and MOS2 detector observations are likely to suffer

from event pile-up. Additional light curves were dropped when there were multiple proton flaring

events in the middle of the observation duration that contributed to data with gaps rendering the

final time duration less than 7 hours. These cannot be analysed effectively as an interpolation

across large patches would introduce false features in the frequency domain analyses. Also, light

curves having poor S/N (source counts/s being low compared to the error bars) were rejected as

the estimates from them of various parameters would be highly uncertain. Using all the above

criteria, a set of 15 X-ray LCs for 8 blazars were obtained using SAS v 10.0.0 tools.

A set of 20 blazar light curves in the soft X-ray band (0.3 keV to 10 keV) are thus obtained for

the analysis.

1http://simbad.u-strasbf.fr/simbad/
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4.2.3 Other data sets

A possible QPO was reported by [131] for 3C 273 based on XMM Newton data taken in the 0.75

keV - 10 keV, with time bin of 5s (ObsID 126700301). The light curve was analysed using our

analysis suite with the result that the statistical significance of the reported feature being very low

across all techniques. We ruled out the presence of a 3300 s periodicity in this data set with strong

statistical significance in [100]. In §4.4, we present a more extended analysis of this light curve.

A one week multi-wavelength campaign to study the variability and the spectral properties

of the blazar S5 0716+714 was conducted during December 9-16, 2009 [98]. Nine ground-based

telescopes at widely separated longitudes and one space-based telescope aboard the Swift satellite

collected optical data.

Ground based observations:

Optical data was obtained using the U, B, V, R and I filters. Observations during 9, 10, 11

and 12 December 2009 were carried out with the 1.3 m McGrawHill telescope (Kitt Peak, Arizona,

U.S.A.). Observations during the period of 9, 11, 12, 14, 15 and 16 December 2009 were also carried

out at the Abastumani Observatory using the 70 cm f/3 meniscus telescope. Observations on 11,

13 and 15 December 2009 were carried out on the 1.04 m f/13 Sampuranand telescope at Nainital

(India). Observations on 12 December 2009 were carried out with the 23.5 cm f/10 Schmidt-

Cassegrain telescope at LaSapienza University (Roma, Italy) with simultaneous observations being

made with the 31 cm f/4.5 Newtonian telescope at Crever in Chianti (near Florence, Italy). It

was also observed during 12 December 2009 at the 0.9 m optical SARA telescope at the Kitt Peak

National Observatory (USA). Observations on 13 December 2009 were carried out with the 50/70

cm Schmidt telescope at the Rozhen National Astronomical Observatory (Bulgaria). Observations

were also carried out on 13 December 2009 using the 61 cm Boller and Chivens reflector at Sobaeksan

Optical Astronomy (Korea). On 2009 December 12, 13 and 14, the source was observed with the

1.2 m Cassegrain telescope at the Michael Adrian Observatorium of Astronomie Stiftung Trebur

(Germany). Observations were also carried out on 10 and 16 December 2009 at the 2.56 m Nordic

Optical Telescope (NOT), Canary Islands (Spain) using ALOFSC (December 10) and MOSCA

(December 16).

Space based observations: The S5 0716+714 also was observed by the Ultraviolet Optical

Telescope (UVOT) aboard the Swift satellite in the V band during 54 pointings between 11 - 15

December 2009.

In §4.4.3, we present an analysis and discussion of the optical light curve of this blazar.

4.3 Data reduction and preparation

4.3.1 Optical light curves of the blazar S5 0716+714

The obtained optical V and R band light curves are un-evenly sampled. These can be analyzed

directly after mean subtraction using the LSP and MHAoV techniques which are well suited for this

purpose. These light curves are also converted to an evenly sampling for their analysis using the
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periodogram and wavelet analysis. Another important reason for this conversion is the use of the

periodogram in determining the PSD shape. This must be constrained in order that MC simulations

based significance testing can be made available for use across all techniques of the analysis suite.

The un-evenly sampled light curves are re-binned into bins of equal temporal spacing and the mean

flux in each bin is estimated. For empty bins, a linear interpolation is used to obtain the flux

estimate. The light curve is now evenly sampled.

4.3.2 X-ray light curves of blazars

The light curve for the energy range > 10 keV was first observed and manually truncated to a good

time interval (GTI) by eliminating regions of the light curve dominated by proton flaring events.

Then, we placed a circular aperture of size ranging from 35
′′

to 45
′′

around the object depending

on the specific data set. The light curve of the object was then extracted with a time bin size of

100 s in the GTI for the energy range 0.3 keV to 10 keV. By placing a circular aperture of the same

size as the object slightly away (about 200
′′

) from the source to prevent contamination by source

photons, we extracted the light curve of the background in the same energy range with the same

bin size in the GTI. The size of the apertures around the object and the background are tailored for

each data set in order to avoid dark regions or patches with no counts. The object light curve with

time bin size of 100 s was then obtained by subtracting the background from the source. Where

small data gaps (< 10 points) were present in an object light curve, caused due to the removal

of flaring portions, we performed a linear interpolation in this region and used these estimates to

obtain the final analysable light curve with time bin size of 100 s, similar to the procedure followed

in [132].

4.3.3 Other data sets

The optical data from the campaign observations of S5 0716+714 were reduced using IRAF re-

duction software. This included bias correction, flat fielding and cosmic ray subtraction and was

carried out for each of the observations carried out. Aperture photometry was then carried out

using aperture sizes ranging between 3
′′

- 7
′′

depending on the instrument. For a more detailed

description of the entire set of observations made during the campaign, including the observational

facilities used (optical, radio and X-ray observations) and individual reduction procedures see [98].

4.4 Results and discussion

The analysis of the light curves follows the procedure detailed in §3.2.1 of Chapter 3.

4.4.1 Optical light curves of the blazar S5 0716+714

Table 4.1 summarizes the properties of the optical light curves of S5 0716+714 and the main results

of the periodogram analysis. A sample of the analysis conducted is presented in Fig. 4.1. Here,

light curves, their periodogram with the best fit PSD model and the results of the LSP, MHAoV
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and wavelet analysis are presented. The PSD shape in all 21 data sets analysed are estimated to

be of a power law form. Once the PSD shape is constrained, MC simulations are carried for each

of the data sets to determine the goodness of fit of the model. The rejection probability ranges

between < 0.1 % and 99.70 %. Of these, for 16 data sets (76 %), the rejection probability ranges

between < 0.1 % and 29.50 % while the slope varies between -1.68 and -2.00. An average slope of

-1.86 ± 0.11 indicates that the power law model is a good approximation of the PSD shape, not

changing considerably over a large span of the observation period, which lasted during the years

1996 - 2003. The MC simulations based significance test of detected peaks in the LSP, MHAoV

and wavelet analysis periodograms do not indicate any statistically significant QPO. Table 4.2

summarizes the results of the bending power law PSD model fit to the periodograms. The bending

power law model is not a good candidate for the description of the underlying PSD as inferred from

the relative likelihoods (RL) in Table 4.2 which vary between 1.19 × 10−8 and 1.90 × 10−2. Bend

timescales vary between 3349+540
−408 s and 11731+7396

−3272 s, often with large errors, the errors quoted

being the 68% confidence intervals. The slope α in the frequencies higher than the bend frequency

varies between -1.90 and -3.00. Table 4.3 summarizes the results of the broken power law PSD

model fit to the periodograms. It is not a good estimate of the PSD shape as inferred from the

relative likelihoods (RL) in Table 4.3 which vary between 6.77 × 10−2 and 1.54 × 10−1. Break

timescales vary between 4638+881
−639 s and 13652+10458

−4130 s with large errors, the errors quoted being

the 68% confidence intervals. The slope αHi in the frequencies higher than the break frequency

ranges between -1.90 and -2.50, the slope -2.50 likely arising in multiple data sets due to the limit

in sampling slopes set in our numerical procedure. These slopes are likely to be steeper if the test

range for αHi is decreased beyond -2.50. The slope αLow of the power law region in the frequencies

lower than the break frequency is -1.00 for all data sets. This is once again a consequence of the

limit in sampling slopes set in our numerical procedure. These slopes are likely to be steeper if the

test range for αLow is increased above -1.00.

A search for IDV timescales in the above set of light curves indicated quasi-periodicities with

timescales between 25 minutes and 73 minutes which were then used to draw conclusions on the

black hole mass [130]. The wavelet analysis procedure which we have used does indicate the

presence of some of these features. Though, our more rigourous statistical analysis using Monte-

Carlo simulations for significance testing of the data does not support these conclusions of the

timescales obtained. For blazars, the optical emission is mostly dominated by the jet component.

Hence, it is unlikely that these time-scales are caused by disk based orbital signatures. Variability

in the jet could occur due to the propagation of multiple shocks due to disk based processes in

the inner region e.g. [133], selective beaming of flow material along the observer line of sight for

short durations, irregular propagation of the shock front [92]. The rapid changes in the slope of

the power law and the extent of variation could be explained by multiple processes causing the

variability in the light curve at the same time with some dominating over the others during a

particular observation duration. If the dominating processes are those that cause variability over

longer time durations, they would tend to cause the slope to steepen while if they cause variability

over shorter time scales, they would tend to flatten the slope.
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Figure 4.1: A subset of the analysis results is plotted in these figures to illustrate the power law
PSD shape in these light curves. Detailed results are presented in Tables 4.1, 4.2 and 4.3. Left
plot: Optical V and R band plot of the blazar S5 0716+714. Middle plot: binned periodogram: fit
portion is in blue and white noise region is in red. The best fit model is plotted over the fit portion
and the residue ∆χ =(data-model)/σ is shown below it. Right plot: LSP, MHAoV periodogram
and global wavelet power spectrum results.
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Observation Time Variability Best fit MC sims. Fit
Date Duration Amplitude PSD Rejection parameters

(s) % shape Prob. (%)

26 November 1999 40807 36.15 Power law 2.40 α = -1.85 ± 0.09
2 January 2000 33134 39.10 Power law < 0.1 α = -1.85 ± 0.10
12 January 2000 41057 32.29 Power law < 0.1 α = -1.91 ± 0.10
25 January 2000 38681 31.89 Power law 53.40 α = -2.12 ± 0.09
27 October 2000 27795 19.37 Power law 4.00 α = -1.98 ± 0.10
14 February 2001 37982 10.76 Power law 94.20 α = -1.70 ± 0.07
26 February 2001 35994 28.58 Power law 0.25 α = -1.84 ± 0.08
3 November 2001 36158 15.37 Power law 1.20 α = -1.83 ± 0.10
1 February 2002 29473 12.24 Power law < 0.1 α = -1.79 ± 0.09
13 March 2002 31579 10.31 Power law 73.75 α = -2.02 ± 0.08
15 March 2002 33213 13.84 Power law < 0.1 α = -1.82 ± 0.10
20 March 2002 33540 10.22 Power law 29.50 α = -2.03 ± 0.10
25 March 2002 33703 18.36 Power law 16.70 α = -2.00 ± 0.10
1 April 2002 31994 12.86 Power law 0.05 α = -1.98 ± 0.11
22 April 2002 27665 22.47 Power law 0.05 α = -1.76 ± 0.12
28 October 2002 30145 10.47 Power law 73.60 α = -1.79 ± 0.10
29 December 2002 44098 53.26 Power law 99.70 α = -1.80 ± 0.07
18 February 2003 39295 20.63 Power law 6.25 α = -1.84 ± 0.10
25 February 2003 39589 19.96 Power law < 0.1 α = -1.68 ± 0.13
4 March 2003 33843 39.39 Power law < 0.1 α = -1.81 ± 0.10
18 March 2003 31070 14.71 Power law 20.45 α = -2.00 ± 0.10

Table 4.1: Results from the PSD fit with the best fit model to the optical V and R band light curves
of S5 0716+714. Columns 1 – 6 give the source observation date, its observation duration during
that night, variability amplitude as defined in eqn. (4.1), the best fit PSD shape obtained from the
Akaike Information Criteria, MC simulations based goodness of fit quantified as a model rejection
probability and the best fit model parameters with their errors based on the 68 % confidence
intervals obtained from the contours of the differences of the log-likelihood function ∆S.
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Observation Bending power law AIC ∆i Relative
Date model parameters Likelihood (RL)

TBen (s) α = AICi-AICNull

26 November 1999 5441+1256
−860 -3.00 ± 0.12 -243.51 18.60 9.16 × 10−5

2 January 2000 5098+1411
−909 -2.90 ± 0.11 -240.07 21.60 2.04 × 10−5

12 January 2000 11731+7396
−3272 -2.40 ± 0.12 -244.78 24.38 5.10 × 10−6

25 January 2000 9670+5300
−2528 -3.00 ± 0.11 -311.17 27.83 9.07 × 10−7

27 October 2000 6177+2294
−1317 -2.20 ± 0.13 -193.35 17.34 1.72 × 10−4

14 February 2001 4468+1368
−848 -2.00 ± 0.09 -607.20 36.49 1.19 × 10−8

26 February 2001 7199+3167
−1685 -2.50 ± 0.10 -336.12 29.18 4.60 × 10−8

3 November 2001 6574+2203
−1319 -2.60 ± 0.12 -284.74 21.59 2.05 × 10−5

1 February 2002 5895+2580
−1376 -2.10 ± 0.11 -364.77 26.30 1.95 × 10−6

13 March 2002 5263+1841
−1083 -2.80 ± 0.10 -428.39 29.85 3.30 × 10−7

15 March 2002 5536+1411
−935 -3.00 ± 0.13 -222.13 14.35 7.65 × 10−4

20 March 2002 9583+6018
−2668 -1.90 ± 0.12 -296.74 22.35 1.40 × 10−5

25 March 2002 4815+1179
−792 -3.00 ± 0.12 -269.36 19.10 7.12 × 10−5

1 April 2002 9141+4291
−2213 -2.70 ± 0.14 -210.25 17.64 1.48 × 10−4

22 April 2002 7904+2971
−1696 -2.90 ± 0.16 -131.36 10.92 4.25 × 10−3

28 October 2002 3349+540
−408 -3.00 ± 0.13 -233.17 11.07 3.94 × 10−3

29 December 2002 5880+1825
−1127 -2.60 ± 0.09 -377.37 34.54 3.15 × 10−8

18 February 2003 6045+1626
−1057 -2.70 ± 0.12 -257.05 20.21 4.09 × 10−5

25 February 2003 7180+3419
−1751 -3.00 ± 0.17 -132.79 7.93 1.90 × 10−2

4 March 2003 5641+1633
−1035 -2.80 ± 0.12 -200.78 19.32 6.38 × 10−5

18 March 2003 4780+1324
−852 -2.90 ± 0.11 -304.41 22.89 1.07 × 10−5

Table 4.2: Results from the PSD fit with the bending power law model for the optical V and R
band light curves of S5 0716+714. Columns 1 – 6 give the observation date, the bend timescale in
s (converted to temporal domain from a bend frequency in the binned periodogram), the slope α of
the power law region at frequencies lower than the bend frequency, the AIC value, the difference ∆i

which is used to calculate the likelihood and the relative likelihood which quantifies the probability
of the bending power law model being chosen over the null model as a best fit PSD model.
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Object Broken power law AIC ∆i Relative
model parameters Likelihood (RL)

TBrk (s) αHi αLow = AICi-AICNull

26 November 1999 7419+1996
−1297 -2.50 ± 0.09 -1.00 ± 0.06 -257.76 4.35 1.14 × 10−2

2 January 2000 7100+2407
−1434 -2.40 ± 0.09 -1.00 ± 0.06 -256.30 5.38 6.77 × 10−2

12 January 2000 12965+7465
−3469 -2.30 ± 0.09 -1.00 ± 0.06 -261.50 7.66 2.18 × 10−2

25 January 2000 13652+10458
−4130 -2.50 ± 0.08 -1.00 ± 0.06 -330.61 8.38 1.51 × 10−2

27 October 2000 7580+2875
−1634 -2.00 ± 0.10 -1.00 ± 0.07 -204.34 6.34 4.19 × 10−2

14 February 2001 5558+1838
−1106 -2.00 ± 0.09 -1.00 ± 0.05 -636.89 6.81 3.33 × 10−2

26 February 2001 8639+4001
−2078 -2.30 ± 0.08 -1.00 ± 0.06 -357.56 7.74 2.09 × 10−2

3 November 2001 8344+3040
−1758 -2.30 ± 0.09 -1.00 ± 0.06 -300.25 6.09 4.77 × 10−2

1 February 2002 6801+2861
−1553 -2.00 ± 0.08 -1.00 ± 0.06 -383.71 7.35 2.53 × 10−2

13 March 2002 7018+2953
−1604 -2.40 ± 0.08 -1.00 ± 0.05 -450.74 7.50 2.35 × 10−2

15 March 2002 7665+2293
−1435 -2.50 ± 0.10 -1.00 ± 0.07 -232.86 3.62 1.63 × 10−1

20 March 2002 10062+5237
−2566 -1.90 ± 0.09 -1.00 ± 0.06 -311.74 7.35 2.54 × 10−2

25 March 2002 6523+1993
−1172 -2.50 ± 0.09 -1.00 ± 0.06 -283.033 5.42 6.65 × 10−2

1 April 2002 11292+5697
−2836 -2.50 ± 0.11 -1.00 ± 0.07 -221.39 6.50 3.88 × 10−2

22 April 2002 10374+4350
−2366 -2.50 ± 0.12 -1.00 ± 0.08 -138.67 3.62 1.64 × 10−1

28 October 2002 4638+881
−639 -2.50 ± 0.10 -1.00 ± 0.07 -240.50 3.74 1.54 × 10−1

29 December 2002 7782+2875
−1653 -2.20 ± 0.07 -1.00 ± 0.05 -405.043 6.87 3.22 × 10−2

18 February 2003 8732+2967
−1766 -2.20 ± 0.09 -1.00 ± 0.06 -270.68 6.57 3.74 × 10−2

25 February 2003 10402+6307
−2850 -2.50 ± 0.13 -1.00 ± 0.09 -139.47 1.25 5.36 × 10−1

4 March 2003 7810+2678
−1589 -2.30 ± 0.09 -1.00 ± 0.06 -214.36 5.74 5.67 × 10−2

18 March 2003 6904+2483
−1444 -2.30 ± 0.09 -1.00 ± 0.06 -320.28 7.02 2.98 × 10−2

Table 4.3: Results from the PSD fit with the broken power law model for the optical V and R
band light curves of S5 0716+714. Columns 1–7 give the observation date, the break timescale in s
(converted to temporal domain from a break frequency in the binned periodogram), the slope αHi

of the power law region at frequencies higher than the break frequency, the slope αHi of the power
law region at frequencies lower than the break frequency, the AIC value, the difference ∆i which is
used to calculate the likelihood and the relative likelihood which quantifies the probability of the
broken power law model being chosen over the null model as a best fit PSD model.
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4.4.2 X-ray light curves of blazars

Table 4.4 summarizes the properties of the soft X-ray (0.3 - 10 keV) light curves of blazars and

the main results of the periodogram analysis. A sample of the analysis conducted is presented

in Fig. 4.2. Here, light curves, their periodogram with the best fit PSD model and the results

of the LSP, MHAoV and wavelet analysis are presented. The excess fractional variability of the

data sets ranges between 1.75 % and 16.79 % indicating that there is moderate to strong intrinsic

variability. The PSD shape in 12 of 15 (80 %) data sets analyzed are a broken power law form

with rejection probability ranging between 13.40 % and 95.60 %. The break frequency is in the

frequencies dominated by white noise making the estimate unreliable. Only in three cases, for the

same object 3C 273, the break frequency is sufficiently removed from the white noise region. The

estimated TB = 1502+78
−72 is reliable due to the low rejection probability of the model fit to the data.

It is interesting to note that the other two break timescales, even though not statistically significant

are similar to the one discussed above within their corresponding error bars.

The MC simulations do not indicate any statistically significant feature. Table 4.5 summarizes

the results of the power law PSD model fit to the periodogram of the blazar X-ray light curves.

The power law model is a statistically valid candidate for only two data sets, 3C 454.3 and S5

0716+714. The rejection probability of the former is 44.05 % indicating that the goodness of fit

is moderate and that of the later is 0.05 % indicating that the goodness of fit is very good and

the model has a strong probability of describing the data. Their slopes are -1.13 and -1.79 and

repectively (Table 4.5). For the rest of the data sets (12 out of 15), the power law model does

not describe the PSD shape well as inferred from the relative likelihoods (RL) in Table 4.6 which

vary between 5.25 × 10−13 and 6.54 × 10−2. The power law slope α ranges between -0.50 and

-1.79. The slope of the PSD shape for S5 0716+714 (obs. I.D.: 0502271401) of -1.79 in the X-

rays is similar to the -1.86 obtained from the optical light curves. This could indicate that both

optical and X-ray variability processes for this object are arising from similar regions. Table 4.6

summarizes the results of the bending power law PSD model fit to the periodograms. The bending

power law model is a statistically valid candidate for only one data set (3C 273) where the bend

timescale is TBen = 426+13
−13 s and the slope α in the frequencies lower that the bend frequency is

-1.50. Though, as the timescale is very close to the white noise dominated region, it is unreliable.

For the rest of the data sets (14 out of 15) the relative likelihoods (RL) vary between 1.04 × 10−12

and 9.57 × 10−1. Bend timescales vary between 324+8
−8 s and 3623+605

−909 s, the errors quoted being

the 68% confidence intervals. The slope α in the frequencies higher than the bend frequency varies

between -1.00 and -2.80. The limit of -1.00 likely arises in multiple data sets due to the limit in

sampling slopes set in our numerical procedure. These slopes are likely to be less steeper if the

test range for α is increased above -1.00. Table 4.7 summarizes the results of the broken power

law PSD model fit to the periodograms. The broken power law describes the PSD well in 80 % of

the data sets. The relative likelihoods (RL) for the remaining 3 of 15 data sets are 8.04 × 10−1

(3C 273), 2.78 × 10−1 (3C 454.3) and 9.24 × 10−2 (S5 0716+714). Break timescales vary between

488+18
−16 s and 4486+1262

−808 s, the errors quoted being the 68% confidence intervals. The slope αHi in
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Figure 4.2: Left plot: X-ray light curve (0.3 keV to 10 keV) of the blazar. Middle plot: binned
periodogram: fit portion is in blue and white noise region is in red. The best fit model is plotted
over the fit portion and the residue ∆χ =(data-model)/σ is shown below it. Right plot: LSP,
MHAoV periodogram and global wavelet power spectrum results.

the frequencies higher than the break frequency ranges between -1.00 and -2.50 and the slope αLow

in the frequencies lower than the break frequency ranges between -0.10 and -1.00. A value of -1.00

in αHi likely arises in multiple data sets due to the limit in sampling slopes set in our numerical

procedure. These slopes are likely to be less steeper if the test range for α is increased above -1.00.

The timescale indicated is typically low < 1000 s which would lie in the white noise portion

of the periodogram and cannot be relied upon; for the data sets which indicate larger timescales

(1502 s, 1640 s and 1810 s for 3C 273), the slopes below and above the break timescale are either

similar or are at the higher or lower limit of the sampling parameter space and are thus likely to

change if we use a larger sampling grid of slopes. Further, the emission is likely to be dominated by

jet based processes due to the objects being blazars. Hence, the variability based results obtained

may not be directly applicable to infer the black hole spin or set constraints in this manner on the

black hole mass.
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Object RA Dec. Redshift Observation Time Fractional Best fit MC sims. Fit
(J2000) (J2000) z ID Duration Variability PSD Rejection parameters

Fvar shape Prob. (%)

MS 0205.7+3509 02h08m38.2s +35d23m12.7s 0.32 0084140101 33700 11.57 Broken power law 20.00 TBrk. = 488+18
−16 s

αHi = -2.1 ± 0.05
αLow = -0.2 ± 0.03

AO 0235+16 02h38m38.9s +16d36m59s 0.94 0206740101 27100 16.79 Broken power law 82.50 TBrk. = 940+47
−43 s

αHi = -2.5 ± 0.08
αLow = -0.0 ± 0.05

S5 0716+714 07h21m53.4s +71d20m36s 0.31 0502271401 47100 15.46 Power law 0.05 α = -1.79 ± 0.05

S5 0836+710 08h41m24s +70d53m42s 2.17 0112620101 23000 5.15 Broken power law 86.95 TBrk. = 590+30
−28 s

αHi = -2.0 ± 0.06
αLow = -0.2 ± 0.04

OJ 287 08h54m48.9s +20d06m31s 0.31 0300480301 23700 16.67 Broken power law 14.25 TBrk. = 519+23
−21 s

αHi = -2.4 ± 0.06
αLow = -0.1 ± 0.04

OJ 287 0401060201 44900 14.89 Broken power law 79.25 TBrk. = 792+37
−33 s

αHi = -1.8 ± 0.04
αLow = -0.3 ± 0.03

1ES 1028+511 10h31m18.5s +50d53m35.8s 0.36 0303720301 79900 4.57 Broken power law 39.85 TBrk. = 722+24
−23 s

αHi = -1.0 ± 0.03
αLow = -0.3 ± 0.02

1ES 1028+511 0303720601 83100 6.08 Broken power law 27.50 TBrk. = 919+39
−35 s

αHi = -1.0 ± 0.03
αLow = -0.4 ± 0.02

3C 273 12h29m06.7s +02d03m09s 0.16 0126700601 28100 1.83 Bending power law 95.60 TBen. = 426+13
−13 s

α = -1.5 ± 0.08

3C 273 0126700701 21400 1.75 Broken power law 39.55 TBrk. = 690+37
−33 s

αHi = -2.2 ± 0.07
αLow = -0.2 ± 0.05

3C 273 0126700801 47300 3.86 Broken power law 13.40 TBrk. = 1502+78
−72 s

αHi = -2.5 ± 0.07
αLow = -0.2 ± 0.05

3C 273 0136551001 27500 3.57 Broken power law 68.90 TBrk. = 954+61
−55 s

αHi = -1.4 ± 0.06
αLow = -0.3 ± 0.04

3C 273 0414190101 59300 2.35 Broken power law 64.75 TBrk. = 1640+142
−122 s

αHi = -1.0 ± 0.04
αLow = -0.6 ± 0.03

3C 273 0414190501 36200 1.83 Broken power law 73.45 TBrk. = 1810+209
−170 s

αHi = -1.0 ± 0.06
αLow = -0.7 ± 0.04

3C 454.3 22h53m57.7s +16d08m54s 0.86 0401700601 28800 3.71 Power law 44.05 α = -1.13 ± 0.12

Table 4.4: Results from the PSD fit with the best fit model for the X-ray light curves of blazars.
Columns 1 – 10 give the object name, its right ascension (RA), declination (Dec.), cosmological
redshift z, a unique observation I.D. assigned to each observation in the XMM Newton archives, its
observation duration, fractional variability amplitude Fvar, the best fit PSD shape obtained from the
Akaike Information Criteria, MC simulations based goodness of fit quantified as a model rejection
probability and the best fit model parameters with their errors based on the 68 % confidence
intervals obtained from the contours of the differences of the log-likelihood function ∆S as described
in Chapter 3.
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Object Observation Power law AIC ∆i Relative
ID model parameters Likelihood (RL)

α = AICi-AICNull

MS 0205.7+3509 0084140101 -1.17 ± 0.05 -418.19 20.86 2.95 × 10−5

AO 0235+16 0206740101 -1.01 ± 0.08 -104.65 5.45 6.54 × 10−2

S5 0716+714 0502271401 -1.79 ± 0.05 -391.19 0.00 1.00
S5 0836+710 0112620101 -1.36 ± 0.06 -377.90 12.18 2.26 × 10−3

OJ 287 0300480301 -1.32 ± 0.06 -207.76 17.90 1.30 × 10−4

OJ 287 0401060201 -1.51 ± 0.05 -391.18 22.59 1.24 × 10−5

1ES 1028+511 0303720301 -1.32 ± 0.03 -1506.92 56.55 5.25 × 10−13

1ES 1028+511 0303720601 -1.26 ± 0.04 -1199.48 37.07 8.93 × 10−9

3C 273 0126700601 -1.44 ± 0.06 -480.56 15.27 4.84 × 10−4

3C 273 0126700701 -1.49 ± 0.07 -349.99 10.10 6.42 × 10−3

3C 273 0126700801 -0.50 ± 0.08 -253.25 38.25 4.95 × 10−9

3C 273 0136551001 -1.60 ± 0.07 -333.12 11.89 2.61 × 10−3

3C 273 0414190101 -1.42 ± 0.04 -997.12 20.35 3.81 × 10−5

3C 273 0414190501 -1.32 ± 0.06 -528.59 4.72 9.45 × 10−2

3C 454.3 0401700601 -1.13 ± 0.12 -104.97 0.00 1.00

Table 4.5: Results from the PSD fit with the power law model for the X-ray light curves of blazars.
Columns 1 – 6 give the object name, its observation I.D., the slope α which is the only parameter
used in this model, the AIC value corresponding to the particular parameter value for which the
log likelihood S is a minimum, the difference ∆i which is used to calculate the likelihood and the
relative likelihood which quantifies the probability of the power law model being chosen over the
null model as a best fit PSD model.

Object Observation Bending power law AIC ∆i Relative
ID model parameters Likelihood (RL)

TBen (s) α = AICi-AICNull

MS 0205.7+3509 0084140101 324+8
−8 -1.30 ± 0.06 -436.91 2.14 3.43 × 10−1

AO 0235+16 0206740101 713+30
−27 -1.00 ± 0.10 -110.02 0.09 9.57 × 10−1

S5 0716+714 0502271401 3623+605
−909 -1.80 ± 0.07 -336.00 55.19 1.04 × 10−12

S5 0836+710 0112620101 329+9
−10 -2.30 ± 0.07 -387.16 2.93 2.31 × 10−1

OJ 287 0300480301 325+8
−9 -1.60 ± 0.07 -223.50 2.16 3.40 × 10−1

OJ 287 0401060201 401+9
−9 -2.80 ± 0.06 -405.97 7.81 2.02 × 10−2

1ES 1028+511 0303720301 354+6
−6 -1.70 ± 0.04 -1539.91 23.57 7.62 × 10−6

1ES 1028+511 0303720601 630+18
−16 -1.00 ± 0.04 -1220.06 16.49 2.62 × 10−4

3C 273 0126700601 426+13
−13 -1.50 ± 0.08 -495.83 0.00 1.00

3C 273 0126700701 446+16
−15 -1.70 ± 0.09 -359.71 0.37 8.29 × 10−1

3C 273 0126700801 1391+69
−62 -1.00 ± 0.10 -291.00 0.50 7.81 × 10−1

3C 273 0136551001 492+17
−15 -2.30 ± 0.08 -343.85 1.16 5.60 × 10−1

3C 273 0414190101 1318+89
−79 -1.00 ± 0.05 -983.26 34.21 3.73 × 10−8

3C 273 0414190501 1420+124
−106 -1.00 ± 0.07 -518.76 14.55 6.93 × 10−4

3C 454.3 0401700601 1694+103
−91 -2.70 ± 0.15 -102.38 2.59 2.73 × 10−1

Table 4.6: Results from the PSD fit with the bending power law model for the X-ray light curves
of blazars. Columns 1 – 7 give the object name, its observation I.D., the bend timescale in s
(converted to temporal domain from a bend frequency in the binned periodogram), the slope α of
the power law region at frequencies lower than the bend frequency, the AIC value, the difference ∆i

which is used to calculate the likelihood and the relative likelihood which quantifies the probability
of the bending power law model being chosen over the null model as a best fit PSD model.
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Object Observation Broken power law AIC ∆i Relative
ID model parameters Likelihood (RL)

TBrk (s) αHi αLow = AICi-AICNull

MS 0205.7+3509 0084140101 488+18
−16 -2.1 ± 0.05 -0.2 ± 0.03 -439.05 0.00 1.00

AO 0235+16 0206740101 940+47
−43 -2.50 ± 0.08 -0.00 ± 0.05 -110.11 0.00 1.00

S5 0716+714 0502271401 4486+1262
−808 -1.60 ± 0.05 -1.00 ± 0.04 -386.42 4.76 9.24 × 10−2

S5 0836+710 0112620101 590+30
−28 -2.0 ± 0.06 -0.2 ± 0.04 -390.09 0.00 1.00

OJ 287 0300480301 519+23
−21 -2.40 ± 0.06 -0.10 ± 0.04 -225.66 0.00 1.00

OJ 287 0401060201 792+37
−33 -1.80 ± 0.04 -0.30 ± 0.03 -413.77 0.00 1.00

1ES 1028+511 0303720301 722+24
−23 -1.00 ± 0.03 -0.30 ± 0.02 -1563.47 0.00 1.00

1ES 1028+511 0303720601 919+39
−35 -1.00 ± 0.03 -0.40 ± 0.02 -1236.55 0.00 1.00

3C 273 0126700601 843+50
−45 -1.00 ± 0.06 -0.2 ± 0.04 -495.39 0.43 8.04 × 10−1

3C 273 0126700701 690+37
−33 -2.20 ± 0.07 -0.2 ± 0.05 -360.09 0.00 1.00

3C 273 0126700801 1502+78
−72 -2.50 ± 0.07 -0.20 ± 0.05 -291.49 0.00 1.00

3C 273 0136551001 954+61
−55 -1.40 ± 0.06 -0.30 ± 0.04 -345.01 0.00 1.00

3C 273 0414190101 1640+142
−122 -1.00 ± 0.04 -0.60 ± 0.03 -1017.47 0.00 1.00

3C 273 0414190501 1810+209
−170 -1.00 ± 0.06 -0.70 ± 0.04 -533.31 0.00 1.00

3C 454.3 0401700601 2880+289
−241 -2.50 ± 0.11 -0.40 ± 0.08 -102.41 2.56 2.78 × 10−1

Table 4.7: Results from the PSD fit with the broken power law model for the X-ray light curves
of blazars. Columns 1 – 8 give the object name, its observation I.D., the break timescale in s
(converted to temporal domain from a break frequency in the binned periodogram), the slope αHi

of the power law region at frequencies higher than the break frequency, the slope αHi of the power
law region at frequencies lower than the break frequency, the AIC value, the difference ∆i which is
used to calculate the likelihood and the relative likelihood which quantifies the probability of the
broken power law model being chosen over the null model as a best fit PSD model.

4.4.3 Other data sets

In [98], we had analyzed the unevenly sampled optical R band light curve from the campaign

observations of S5 0716+714 using the periodogram, LSP, MHAoV and wavelet analysis techniques.

The red noise portion of the periodogram was well fit with a power law with a slope α -2.00 ±
0.16. The fit was carried out using an earlier procedure which relied on the method of least squares

to determine the fit parameters and the errors on the fit. An analytic goodness of fit test (the

Kolmogorov-Smirnov test) yielded a p value of 0.99 indicating a good fit to the data.

In [100], we had analyzed an evenly sampled soft X-ray (0.75 - 10 keV) light curve of 3C 273

(obs I.D. 126700301) which was claimed previously to indicate a possible QPO [131]. We had

shown using our analysis suite consisting of the structure function, periodogram, LSP, MHAoV

and wavelet analysis that the statistical significance of this feature was very low and it did not

appear consistently across all the power spectra.

Here, we analyze these light curves in more detail using our recently developed procedure which

incorporates the fitting of data with multiple PSD model shapes and model selection using the

Akaike information criteria. The goodness of fit of the best fit PSD model shape is then tested

using of Monte-Carlo simulations. We also analyze these light curves using the LSP and MHAoV.

Finally, the wavelet analysis is used to scan and identify regions where any possible QPO could be

present along the observation duration.
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Campaign data

The light curve, its periodogram with the best fit model representing the underlying PSD and the

results of the LSP, MHAoV and wavelet analysis are plotted in Fig. 4.3. The light curve shows

strong variability during the observation duration, confirmed by a strong variability amplitude of

77.11 %.

For the periodogram and wavelet analysis, the light curve of duration = 564032 s (∼ 6.53 days)

is first made evenly sampled with a time step size ∆t of 420 s. The power law PSD model fit to

the periodogram yields a slope α of -2.21 ± 0.04. It does not indicate any quasi-periodic feature

above a 99 % analytic significance level. The AIC value is -1433.91. The slope α and AIC value

above are based on the minimum log likelihood S obtained for the power law model applied to this

data set. The bending power law PSD model fit to the periodogram yields a bend timescale TBen

= 38269+24850
−10810 s. The slope α in the frequencies higher than the bend frequency is -2.40 ± 0.06

and the AIC value is -1324.63. The broken power law PSD model fit to the periodogram yields

a break timescale TBrk = 42180+27735
−11980 s. The slope αHi in the frequencies higher than the break

frequency is -2.30 ± 0.04 and the slope αLow in the frequencies lower than the break frequency is

-1.00 ± 0.03. The AIC value is -1421.12. The AIC is least for the power law PSD model. It is then

taken as the null model and the relative likelihoods for the bending power law and broken power

law PSD models are determined to be 1.78 × 10−24 and 1.67 × 10−3 respectively indicating that

the power law model is the best fit model.

A set of 5000 periodograms are simulated with the power law slope α = -2.21 using the procedure

described in Chapter 3. These are then used to determine a rejection probability of 2.4 % indicating

that the power law model is a good approximation to the underlying PSD shape. We thus see that

the power law model is the best approximation of the underlying PSD. The slope α = -2.21 ± 0.04

is now well constrained.

The LSP and MHAoV are used to analyze the unevenly sampled light curve. They do not

yield any statistically significant feature as inferred from the MC simulations based significance

test. A possible quasi-periodicity of 141008 s ∼ 1.63 days with a MC simulation significance

of 96.62 % is identified in the MHAoV. Though, since our detection criteria is at 99.9 % (see

numerical experiments from Chapter 3), we cannot claim this to be a true feature. The wavelet

analysis indicates a quasi-period centered at 112722 s ∼ 1.30 days with an MC simulations based

significance of 90.15 %. Though, this feature is not observed stongly in the wavelet power spectrum.

A broad, weak feature with a periodicity ranging between 50000 s ∼ 0.58 days and 100000 s ∼ 1.16

days is seen between 120000 s ∼ 1.39 days from the start of the observation and 220000 s ∼ 2.55

days from the start of the observation. The mean timescale is 0.87+0.29
−0.29 days and it lasts for ∼ 1.16

days.

The light curve thus does not indicate any strong quasi-periodic feature. Any features that

are indicated are not detected consistently across all techniques and their MC simulations based

statistical significance is too low to claim a detection. The slope of -2.21 ± 0.04 of the power

law shaped PSD measured from this set of campaign observations is in rough agreement with the
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Figure 4.3: Left plot: Composite optical light curve of the blazar S5 0716+714 obtained from the
campaign study. Middle plot: binned periodogram: fit portion is in blue and white noise region is
in red. The best fit model is plotted over the fit portion and the residue ∆χ =(data-model)/σ is
shown below it. Right plot: LSP, MHAoV periodogram and global wavelet power spectrum results.

average slope of -1.86 ± 0.11 measured in §4.4.1 using the set of sixteen S5 0716+714 optical

light curves which have moderate to high goodness of fit. We could also interpret this result

as a steepening of the slope between the observation period of 1999 - 2003 and the campaign

observations during 2011. In a period of ∼ 8 years, the slope has steepened by -0.35. This could

indicate that physical processes occuring with lower frequency are gradually gaining prominence. If

short timescale variability processes (few 1000 s) arise from jet based phenomena such as travelling

shock fronts or orbital features in the jet, these longer timescales (few 100000 s) could arise from

disk based viscous processes or the slow precession of the jet. In the context of the theoretical

funnel model, the slopes are still similar.

X-ray light curve of 3C 273

The light curve, its periodogram with the best fit model representing the underlying PSD and the

results of the LSP, MHAoV and wavelet analysis are plotted in Fig. 4.4. The light curve shows

moderate variability during the observation duration with a excess fractional variability of 3.05 %.

The light curve analyzed is of duration 57600 s and is evenly sampled with a time step size ∆t of

100 s.

The power law PSD model fit to the periodogram yields a slope α of -0.73 ± 0.13. It does

not indicate any quasi-periodic feature above a 99 % analytic significance level. The AIC value is

-101.23. The bending power law PSD model fit to the periodogram yields a bend timescale TBen

= 2305+160
−130 s. The slope α in the frequencies higher than the bend frequency is determined to be

-1.50 ± 0.17. The AIC value is -98.93. The broken power law PSD model fit to the periodogram

yields a break timescale TBrk = 3297+307
−259 s. The slope αHi in the frequencies higher than the break

frequency is determined to be -2.50 ± 0.13 and the slope αLow in the frequencies lower than the

break frequency is determined to be -0.20 ± 0.09. The AIC value is -98.44. The AIC is least for

the power law PSD model. It is taken as the null model and the relative likelihoods for the bending

power law and broken power law PSD models are determined to be 3.17 × 10−1 and 2.48 × 10−1

respectively indicating that the power law model is the best fit model. A set of 5000 periodograms

are simulated with the power law slope α = -0.73 using the procedure described in Chapter 3.

These are then used to determine a rejection probability of < 0.1 % indicating that the power law
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Figure 4.4: Left plot: X-ray light curve (0.3 keV to 10 keV) of the blazar 3C 273. Middle plot:
binned periodogram: fit portion is in blue and white noise region is in red. The best fit model is
plotted over the fit portion and the residue ∆χ =(data-model)/σ is shown below it. Right plot:
LSP, MHAoV periodogram and global wavelet power spectrum results.

model describes the PSD shape well. The LSP is used to analyze the light curve. It does not yield

any statistically significant feature. The feature of ∼ 3300 s which was claimed to be present is

not indicated with any strong significance. The MHAoV is then used to analyze the light curve. It

too does not yield any statistically significant feature as inferred from the MC simulations based

significance test. A quasi-periodic feature at 3032 s is indicated, though, its MC simulations based

significance is very low at 2.19 %. The light curve is then analyzed using wavelet analysis. It

does not indicate any statistically significant quasi-period. A quasi-periodic feature at 3382 s is

indicated, though, its MC simulations based significance is very low at 7.39 %.

Thus, we rule out the presence of any statistically significant quasi-periodic feature in this data

set. Any features that are indicated are not detected consistently across all techniques and their

MC simulations based statistical significance is too low to claim a detection.

4.5 Conclusions

1. The time series analysis suite presented in Chapter 2 and the data characterization-search

strategy developed in Chapter 3 were applied in the analysis of optical and X-ray light curves

of blazars.

2. In the analysis of X-ray data, 80 % of the blazars show a broken power law. Though, all are

ruled out based on strict statistical considerations.

3. The optical light curves of S5 0716+714 shows a power law PSD with a slope ranging between

-1.86 (1999 - 2003 data) and -2.21 (2012 campaign data). This could be interpreted in terms

of a larger emission region, possible in the context of an expanding jet.

4. A possible QPO reported in [131] for an X-ray LC of 3C 273 was ruled out based on our

statistical analysis.

5. A weak time-scale of ∼ 1 day is seen in the optical light curve of S5 0716+714 from the

campaign study.
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6. The typical aperiodic variability time-scales over ∼ 1 day are consistent with expectations

from orbital signatures in jets.

4.6 Appendix: Object description

4.6.1 Optical data: S5 0716+714

ROSAT observations in the soft X-rays (0.1 to 2.4 keV) indicates a rapid variability with the

variation increasing by a factor of 7 in a duration of 2 days [134].

Variability studies at radio frequencies of 1.4 to 230 GHz, the data spanning over 20 years and

in the optical U, B, V, R & I bands, the data spanning around 8 years indicate possible long term

periodicities of 3.3 years in the optical wavelengths and 5.5 to 6 years in the radio frequencies of 5

GHz, 8 Ghz and 15 Ghz using the discrete Fourier transform, DCF and SF analyses [135]. A cross

correlation between data in the radio wavelengths indicate that flux variations at lower frequencies

lag those at higher frequencies with time delays ranging between a few days to several weeks, the

interpretation of which is not constrained by the data. Possibilities include appealing to types of

relativistic electron distributions: homogeneous or inhomogeneous populations. Cross correlation

of radio with optical data indicates only weak features and no conclusion can be drawn from this.

A study aimed at determining a characteristic X-ray variability timescale from RXTE observa-

tions in soft X-rays (0.2 - 10 keV) makes use of an exponential timescale, defined in terms of the

rising or decaying phase of the source observed during a major flare [136]. A timescale of (0.147 ±
0.052) × 104 is indicated. This cannot be directly connected to accretion disk based processes due

to the source being a blazar and hence, the emission most likely arising from the jet.

A long term study of variability in optical B, V, R & I bands, the data spanning over 50 years

between 1953 and 2003 indicates a periodic trend of 10 to 15 years, the B magnitudes ranging from

a maximum of 14.2 ± 0.2 to a minimum of 17.99 ± 0.06 during this time [137]. The data suggests

a precessing relativistic jet as it is inferred that the angle of the jet to the observer line of sight has

decreased from 5.0◦ to 0.7◦.

A comprehensive optical photometric campaign study lasting ∼ 7 years between 1996 - 2003

was carried out in the optical V, B, R & I bands with a majority of the ordinates ranging be-

tween 13.0 and 13.75 magnitudes [129]. A statistical study of the magnitute variation rate over

different timescales indicated that its distribution was roughly exponential with a mean of 0.027

magnitude/hour which corresponds to a characteristic flux variation timescale of 37.6 hours. Some

of these light curves (21 of 102) were analysed in §4.4.1 as part of our study on jet based variability

processes.

A multiband optical monitoring indicates strong variability on 2 nights out 11 nights of obser-

vations in the V and R bands with amplitude changes of ≥ 0.2 magnitudes [138]. A possible time

lag of ∼ 10 minutes is inferred between these two bands with the shorter wavelength leading the

longer consistent with shock-in-jet models.

IDV studies in the optical R band were carried out for 5 nights during January - March, 2007

[139]. The observation durations range from 1.00 hour to 4.24 hours and indicate a variability
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amplitude of 6.3 % and 5.2 % for 2 of the 5 observations. The source was caught in an outburst

phase during this observation period with a maximum of R = 12.58 magnitude during 12 January

2007, close to earlier reported maxima of 12.75 magnitude in early 1995, 12.6 magnitude in late

1997, 12.55 magnitude in mid 2001 and another event in 2004. This event is thus consistent with

the ∼ 3.3 year periodicity reported in [135].

Radio data from long term monitoring at 22 GHz (15.9 years), 37 GHz (16.74 years) and 90

GHz (8.82 years) indicates long term variability timescales of 5.5 years which lasts for 2.2 cycles

and 4.3 years which lasts for 1.8 cycles in the 22 GHz and 37 GHz frequencies respectively [140].

A search for IDV timescales in archival data from [129] reveal quasi-periodicities ranging between

25 minutes and 73 minutes which suggest a black hole mass ranging between 2.47 and 7.35 x 106

M⊙ for the case of a Schwarzschild black hole and 1.57 and 4.67 x 107 M⊙ for a Kerr black hole

[130]. These estimates could be taken as tentative lower limits on the mass.

Intra-night polarization variability studies indicate a polarization of 5.87 ± 0.1 % and a position

angle of 116◦ with variability in both normalized Stokes parameters [141].

Structure function analysis applied to RXTE ASM based soft X-ray data (1.5 - 12 keV) of

duration exceeding 12 years indicates possible quasi-periodic variability on a timescale of 347 ± 18

days [10].

Recent R band observations with a high cadence of 10 s reveal data with a 15 minute periodicity

significant above the 3 σ level when analysed using the periodogram, SF and LSP time series

analyses techniques [142].

Our multi-wavelength observation of this source in radio frequencies (2.7 GHz, 4.8 GHz, 4.85

GHz and 10.5 GHz) using 2 ground based facilities, optical wavelengths (U, B, V, R and I bands)

using 9 ground based facilities and soft X-rays (0.2 to 10 keV) using the Swift space mission was

carried out for a duration of 1 week in December 2011 [98]. The study was aimed at determining

any possible correlation between the observed wavelength fluxes in order to identify the origin of

the radio and optical emission in this source. A possible characteristic IDV on a timescale of ∼
1 day was inferred from the optical data. Cross correlation between the 2.8 cm radio data with

optical V band data indicates a moderate but not statistically significant feature, thus not allowing

us to infer strongly the origin of the radio and optical emission.

A multi-wavelength study in radio frequencies (2.7 GHz to 345 GHz) using 9 ground based

facilities, optical V band from 1 ground based facility and archival data from 2 other ground based

facilities during the observation period, soft X-rays (0.3 to 10 keV) using the Swift space mission

and γ-rays (100 MeV to 300 GeV) using the Fermi/LAT space mission in a survey mode was carried

out between April 2007 to January 2011 to study flux variability, spectral properties of the source

and to identify the origin of flaring activity [143]. During this period, the source was inferred to

be highly active at optical and higher frequencies. A long-term variability trend (∼ 350 days) is

visible in the optical light curves. There are smaller variations on shorter time scales of ∼ 60 days

within this.
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4.6.2 X-ray data

Blazars

MS 0205.7+3509

Optical observations of a group of 33 X-ray selected samples includes MS 0205.7+3509 [144].

This study, aimed at determining IDV in these objects and to determine differentiating proper-

ties between radio selected BL Lac objects and X-ray selected BL Lac objects does not indicate

variability (confidence = 4.5 %). A low variability amplitude of (4.8 ± 1.5) % is quoted.

Pointing observations of this source with XMM Newton on two occasions during 2001 and 2002

were used to study its spectrum in the soft X-rays (0.2 - 10 keV), determined to be synchrotron

dominated and it is inferred that this object is likely to possess a low metallicity. The light curves

of these two pointings (of durations ∼ 40000 s and ∼ 20000 s repsectively) do not show any strong

variability with average flux being (2.80 ± 0.01) and (3.34 ± 0.02) × 1012 erg cm2 s1 respectively

[145].

S5 0836+710

IDV studies in the 0.9 GHz, 2.8 GHz, 6.0 GHz and 11 GHz radio frequencies indicate weak

variability during September 1995 and September 1998 with a maximum variability amplitude of

2 % measured over all the observation epochs between 1989 and 1999 [146].

BATSE/OSSE observations of this source in the 20 keV to 2 MeV energy range during December

1994 to October 1997 [147] indicate multiple flares and a maximum 20 keV to 100 keV flux of 3 ×
10−10 erg cm2 s1 during January 1996 with a lag of ∼ 55 days compared to the maximum in the

optical R band. The flux dies down to a mean of (1.32 ± 0.11) × 10−10 erg cm2 s1 in the next

three months.

An optical photometric monitoring of γ-ray loud blazars in the B, V and R bands indicate

a strong variability in the R band magnitude between 16.09 and 16.77 in the period between

November 1995 and April 1996 [148].

A study of IDV and the description of the source properties including its compactness and

strength of jet components in the 6 cm and 11 cm radio wavelengths characterizes variability in

terms of a fluctuation index which depends on the root mean square deviation of the observed

flux from the mean [149]. For this source, an index ranging between 0.68 % and 0.75 % in three

observations during 1988 and 1989 in the 6 cm were measured with low significance and an index

ranging between 0.44 % and 0.75 % in three observations during 1988 and 1989 in the 11 cm were

measured, once again with low significance. These observations indicate that the source is in a low

variability state.

Polarization measurements indicate a strong polarization of 6.59 ±0.23 % and 6.81 ±0.37 %

based on two observations in the 3 cm wavelength [150], the corresponding flux being 1.771 ±0.029

Jy and 1.649 ± 0.06 Jy respectively.

Another study on the polarization with VLA observations in the 6 cm radio wavelength reveals

a strong polarization of 9 % [151].

3C 273
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A proposal to study strongly variable sources using the HST space based facility summarizes

key results from historical monitoring of this source [152]. The B-magnitude ranges between 13.00

and 13.36 with an average of 13.20 and a variation of 0.36 in observations conducted during 1963

and 1980 [153] and between 12.59 and 13.46 with an average of 13.02 and a variation of 0.87 in

observations conducted during 1974 and 1987 [154].

Multiwavelength archival data (few decades starting from ∼ late 1960s) and then recent data

compiled upto 2006 are used to study the variability properties of the source in the radio frequencies

(2.5 GHz to 37 GHz), infra-red wavelengths (0.35 mm to 3.3 mm), optical and UV (U, B, V, G,

J, H, K, L, M, N and Q) bands, X-rays (0.5 keV to 430 keV) and γ-rays (3 MeV to 10 GeV),

the data obtained from multiple ground based and space based facilities. The structure function

technique is employed in the time series analysis to give periodic variability estimates [155] over

these long timescales and the fractional variability amplitude FVar which is the excess variance

over and above the measurement noise is used to characterize the variability. Some periodicities

include 4.4 ± 0.3 yr in the 8 GHz band observed by the University of Michigan Radio Astronomy

Observatory (UMRAO) during 1963 to 2006 which also gives an average flux intensity of 0.29 x

10−11 erg cm−2 s−1 with FVar = 0.157 ± 0.002, a 1.23 +0.19
−0.03yr in the 37 GHz band observed by

the Metsähovi Radio Observatory during 1970 to 2006 which also gives an average flux intensity of

0.92 x 10−11 erg cm−2 s−1 with a FVar = 0.373 ± 0.007 , 3.9 yr in optical U, V and B bands, 0.5 yr

in the UV wavelengths of 1300 Å , 1525 Å , 1700 Å and 1950 Å , 0.216 yr in the 4 to 9 keV X-ray

energy range, 0.221 yr in the 9 to 20 keV X-ray energy range, 1.3 yr in the 20 to 70 keV energy

range and 1.4 yr in the 70 to 430 keV energy range, the largest FVar and the largest flux intensity

being observed in the X-ray studies.

Archival radio data in the 4.8 GHz, 8 GHz and 14.5 GHz frequencies are studied for variability

and possible correlation between variability and source brightness over long timescales [156]. The

study uses the date-compensated discrete Fourier transform to analyze the time series and indicates

periodicities of 8.8 ± 0.3 yr in 4.8 GHz with a false alarm probability of 0.001, 8.3 ± 0.2 yr in 8

GHz with false alarm probability of 0.006 and 8.2 ± 0.2 yr in 14.5 GHz with false alarm probability

of 0.001.

GINGA archival data in the soft X-rays (2 keV to 10 keV) on five occasions between July 1987

and December 1988 (duration ranging between 5408 s and 31232 s) were studied for variability

and to put constraints on the black hole mass [157]. Using the normalized power spectral density

(NPSD), an estimate of a characteristic frequency of 9.61+2.65
−3.68 × 10−6 Hz at which the product

NPSD × frequency = 10−3 is determined. Assuming then that the AGN is a scaled version of the

stellar mass black hole in Cyg. X1 (M = 10 M⊙) whose characteristic frequency is 45 Hz, a black

hole mass of 4.74+2.94
−1.02 × 107 is determined. This estimate is not very reliable though owing to the

moderate goodness of fit of χ2 = 43.6 with 11 degrees of freedom obtained for the power law model

fit to the normalized power spectral density.

Archival X-ray data (2 keV to 20 keV) from RXTE observations of this source are used to study

its time variability and spectral properties [158]. The study analyses data from 230 observations

made between 1996 and 2000 which amounts a duration of 845 ks. The normalized power spectral
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density (NPSD) and the structure function are used in the time series analysis. The NPSD was

found to be well fit with a broken power law PSD model, the goodness of fit measured through a

chi-square fit with χ2 = 7.3 with 6 degrees of freedom. A break frequency at (4.7 ± 1.5) × 10−6

Hz corresponding to a timescale of ∼ 3 days, high frequency region slope αHigh = -2.6 ± 0.1 and

low frequency region slope αLow = -1.4 ± 0.2 were determined. The spectral analysis indicates that

the emission is well fit with a power law, consistent with other blazar spectra indicating that the

obtained timing properties described previously are likely to arise from jet based processes which

could include changes in acceleration of the electron population giving rise to the emission, in the

magnetic field strength or in the beaming factor.

EGRET observations in the γ-rays (30 MeV to 50 GeV energy range) during 18 viewing periods

lasting upto the end of the fourth cycle measure a flux ranging between 9.6 ± 4.2 x 10−8 photons

cm−2 s−1 and 55.7 ± 11.9 x 10−8 photons cm−2 s−1 and a variability index of 3.48 which indicates

that the object is strongly variable [159].

The Swift/BAT all sky survey in the hard X-rays (14 to 195 keV) to study variability in this

energy band indicates a X-ray luminosity of logLX = 46.26, an average photon count rate for a 20

day binned light curve of 5.05 × 10−4 counts s−1 and a corrected intrinsic variability which is the

excess variance over and above the measurement noise for a 20 day binned light curve of 15± 5 %

[160].

AO 0235+16

Two photometric observations of this object give high polarizations of the order of 10 % [161].

Compiled data along with polarimetric studies indicate a flux of 2.24 Jy in 5 Ghz band, an apparent

V magnitude of 19 and a degree of polarization of 0.3 ± 0.1 % [162].

A WEBT based optical monitoring program [163] indicates large-amplitude outbursts in the

B band, the minimum magnitude being 15.09 ± 0.18 and the maximum magnitude being 20.5 ±
0.05. R band magnitudes ranging between 14.03 ± 0.08 and 19.47 ± 0.06 are seen. The spectral

index is seen to be almost a constant at ∼−2.8.

Characteristic timescales of 11.2 to 11.5 yr are revealed from the DCF of the optical data.

Observations for micro-variability indicate a maximum change of 0.43 on a V magnitude of 17.02

± 0.01 [164].

A periodicity search in 16 years of optical data using the discrete correlation function (DCF)

and the Jurkevich method yields a possible periodicity of 2.95 ± 0.15 yr [25].

A compilation of optical data with a study on intra-night variability presents a absolute B

magnitude of −27.6, a radio spectral index of 0.67 based on non linear fits to non-simultaneous

data, a polarization of 14.9 %, periodicity timescales (using structure function) of ∼ 3.6 hrs and

3.4 hrs with the corresponding amplitudes being 12.8 % and 10.4 % [165].

Studies on IDV variability in the R band indicate variability amplitudes of 13.7 % and 9.5 % on

2 occasions. A search for IDV reveals amplitudes of 13.7 % and 9.5 % on two out of three occasions

with confidence limits of > 99 % [139].

Radio observations at a large number of frequencies (318 MHz, 430 MHz, 606 MHz, 880 MHz,

1.4 GHz, 4.8 GHz, 8 GHz and 14.5 GHz) over a period of 6 years indicate correlations between the
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flux density variability in the different bands indicating an intrinsic variability in the source [166].

Another study involving a long term monitoring (14 years) in the 318 MHz and 430 MHz reveals

variability in both frequencies but which are uncorrelated. Variability is characterized by means of

visual inspection, usage of a modulation index and the structure function [167].

Variability studies at 5 Ghz indicate a flux density variation of 7.02 % with a timescale of 32

hours, the average flux being 0.47 Jy [168].

A long term study of variability and spectral characterization in the wavelengths of 21 cm, 18

cm, 11 cm, 6 cm, 3.6 cm, 2.8 cm, 2 cm, 1.3 cm 9 mm and 7 mm indicates modulation indices of 45.7

% with an associated average flux of 1.31 ± 0.56 Jy at 11 cm, 72.3 % with an associated average

flux of 1.19 ± 0.84 Jy at 6 cm, an average flux of 2.48 ± 1.67 Jy at 3.6 cm, 73 % with an associated

average flux of 1.83 ± 1.29 Jy at 2.8 cm and average flux of 2.04 ± 1.78 Jy at 1.3 cm [169].

OJ 287

Optical polarization studies (Visvanathan & Wills 1998) indicate an intrinsic source based

polarization of 12.2 ± 0.1 % with radio (2.7 to 5 GHz) spectral index of 0.42. Intra-night polarization

variability studies indicate a high polarization of 16 % and a position angle of 126o with variability

in both normalized Stokes parameters (Villforth et al. 2009). R band observations using the Vainu

Bappu observatory (VBO) indicate a variability from a minimum of 14.763 ± 0.039 to a maximum

of 15.725 ± 0.04 during 6 observations (Ghosh et al. 2002). A periodicity search in 104 years of

optical data using the discrete correlation function (DCF) and the Jurkevich method yields possible

periodicities of 5.53 ± 0.15 yr and 11.75 ± 0.5 yr (Fan et al. 2002). A large amplitude variation

in the R band magnitude of 0.35 over a short timescale of 31 minutes is indicated in an optical

photometric study in the V, R and I bands with the 1 m telescope at the Yunnan astronomical

observatory (Zhang et al. 2007).

Variability studies on ASM data of > 12 years from RXTE observations indicates periodicities

of 148 ± 19 days and 337 ± 26 days from sturcture function analysis (Rani, Wiita & Gupta 2009).

3C 454.3

This object has been studied closely over the years for optical variability. A set of observations

in the B band compiled over a period of 9 years indicates a steady fluctuation ranging from a

minimum of 17.4 to a maximum of 16.35 [170]. Variability studies in the IR wavelengths of 2.7 mm

and 1.5 cm indicate fluxes of 7687 ± 12 mJy and 10387 ± 57 mJy at 1.5 cm from 2 observations

and 8086 ± 107 mJy at 2.7 mm with a 2.7 mm to 2.5 cm spectral index of −0.15 [171]. A study

of the optical polarization properties indicates an approximate apparent V magnitude of 16.1, a

polarization of 1.37 ± 0.46 and a polarization position angle of 166o [172]. Radio observations that

include polarization studies indicate a maximum polarization of 5.78 % at 8 GHz with an average

polarization of 3.173 % and a spectral index of 0.129 encompassing the 4.8 GHz, 8 GHz and 14.5

GHz frequencies observed from UMRAO, the data being collected over a period of 33 years [173].

A long term variability study using data from the Einstein X-ray observatory in the energy

range 0.2 to 3.5 keV indicates an average count rate of 0.117 counts s−1 but does not indicate

variability durig the observation [174].
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Chapter 5

X-ray variability and the break

frequency in AGN

5.1 Introduction

X-ray emission and variability in Seyfert type 1s and the narrow line Seyfert 1s (radio quiet AGN)

are believed to be dominated by the accretion disk in the context of unification models for AGN

[32, 33] as the observer line of sight intersects the disk as discussed in Chapter 1. Short time-scale

variability in the X-rays can be studied with the availability of almost contiguous light curves for

some objects with small sampling intervals from multiple space based instruments such as XMM

Newton, Chandra, Suzaku and others in the energy range of 0.1 keV - 100 keV. For variability over

a time-scale ∆t, the size of the emitting region can be at the most c∆t. Typical short time-scales

from observed light curves range from ∼ 1000 s to a few hours. For a typical black hole mass of 5

× 106 M⊙, this corresponds to an emitting region of size ∼ 41 M to a few 100 M . The inferred

location of the emission region is between a few to a few tens of M from spectral modelling of the

broad X-ray emission lines e.g. [175]. As this location corresponds roughly to the ISCO radius

which depends on the black hole spin, it may lie closer to the black hole for high spins.

Observed UV to X-ray spectra from these AGN indicate the presence of a colder population

of gas (T ≤ 105 K) constituting the accretion disk sandwiched by another population at a much

higher temperature, interpreted in terms of a layer of optically thin, thermally agitated relativistic

electrons e.g. [176, 177]. As argued in the Chapter 1 (Introduction), soft X-rays can be produced

either through direct accretion disk based black body emission or through the inverse-Compton

scattering of low energy photons by the corona.

Spectral and timing studies in the X-rays can be used in a complementary manner to constrain

the black hole mass, spin and the emission region properties. The results can be used as a qualitative

indicator of these properties in radio loud AGN if one were to account for effects due to the

relativistic jet during a quiescent phase.

In [178], an X-ray (0.5 keV to 10 keV) variability study is conducted with archival Advanced

Satellite for Cosmology and Astrophysics (ASCA) data for 36 Seyfert 1 galaxies. A maximum root

99
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mean square variance of (78.4 ± 8.80) × 10−3 is inferred for MRK 766. The variance is found

to be related to the Hβ FWHM as σrms ∝ (FWHM Hβ)−2.8, consistent with rapid variability

and narrow lines leading to a small black hole mass. In RXTE (2 keV to 12 keV) based long

term X-ray variability studies spanning 3 years ([179]) and 7 years ([180]), an anti-correlation

between source luminosity and variability amplitude is measured on short time-scales and is found

to be in agreement with previous studies e.g. [181, 182] and it is suggested that this could be

due to either a positive correlation between the luminosity and a break time-scale or an inverse

correlation between luminosity and overall amplitude. In [183], a one day study of simultaneous

X-ray and optical variability is conducted for 8 nearby Seyfert 1 galaxies using XMM Newton. The

X-ray variability amplitude is observed to be greater than that of the optical. In the optical, a

maximum rms amplitude of 2.9 % is measured for NGC 3783. The rms amplitude for the X-ray

light curves ranges between 2.0 % for Ark 120 and 47.6 % for NGC 4051. A cross correlation

analysis between the optical and X-ray light curves does not indicate any significant correlation

for three of the four objects showing a detectable optical variability, implying that re-processing

of optical radiation may not be a dominant mechanism of production of the X-rays. In [184], a

comparative study of the spectrum of 14 hard X-ray selected (> 20 keV) NLS1 galaxies from the

fourth INTEGRAL/IBIS catalogue is conducted in the 0.3 keV to 100 keV energy range using data

from XMM Newton, Swift/XRT and INTEGRAL/IBIS. Black hole masses are calculated using

the line width-luminosity-mass relation MBH ∝ RBLRv
2 where RBLR is the size of the broad line

region (BLR) obtained from RBLR ∝ LBol relating it to the bolometric luminosity, v2 is the velocity

of the virialized BLR clouds, measured as the full width at half maximum of the Hβ emission line

for nearby sources. The study shows that NLS1 galaxies generally host low mass black holes,

the calculated mass distribution of the objects peaking at ∼ 107 M⊙. It must however be noted

that NLS1 black hole mass estimates consistently fall below the MBH - σ relation as indicated

by previous studies e.g. [185]. Hence, mass obtained from this method may be systematically

underestimated by a small factor.

In [186], a compilation of Seyfert galaxies indicating evidence for relativistically broadened X-

ray emission lines is made. The study includes an analysis of X-ray data (0.2 keV to 700 keV) from

Chandra X-ray Observatory, XMM-Newton and Suzaku. Black hole spin for many of these objects,

constrained through spectral fit procedure discussed in Chapter 1 is presented. Evidence suggested

to support spectral studies include the observation that the disk extends to the ISCO for a given

spin a above a threshold in the mass accretion rate and arguments which imply that free falling

material inside of the ISCO is fully ionized thus emitting only weakly e.g. [187, 188]. In [189], an

XMM Newton (2 keV to 10 keV) based statistical study of 149 Seyfert type 1 galaxies is conducted

to collect evidence for a relativistically broadened Fe Kα line. The main interpretations are drawn

from a flux limited sub-sample of 31 Seyfert type 1 galaxies. Strong evidence for a relativistically

broadened Fe Kα line is inferred for 36 % of the flux limited sources (11 of 31), interpreted as a

lower limit to the fraction of all possible sources which could provide such an evidence. Inferences

include an average line equivalent width of ∼ 100 eV, an average disc inclination of 28◦± 5◦ and

black hole spins of 0.86+0.01
−0.02 for MCG-6-30-15 and 0.74+0.03

−0.04 for MRK 509. [190] conduct a survey
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of the Fe K emission lines from archival Suzaku and Swift-BAT (0.6 keV - 100 keV) spectra of

nearby (z ≤ 2) Seyfert 1 galaxies. After accounting for probable sources of its emission such as

obscuring warm absorption clouds or as a part of an outflow, the residual of the broad component

is studied with a spectral fit. For a sample of 46 objects studied, 23 objects (50 %) are found to

require relativistic effects to account for the observed emission with a statistical significance > 99.5

%. An average disk inclination towards the observer line of sight of 33◦ ± 2◦ is inferred from 20

objects. A maximally spinning BH (a = 0.998) is ruled out for all objects with a confidence of 90

% with a ranging between 0 and 0.80.

In this chapter, we present theoretical models of observational signatures from dynamic pro-

cesses, likely to be present in the inner accretion disk in §5.2. These include a discussion of

dynamical processes, the QPO phenomenon and properties which can be extracted from a detected

QPO followed by a discussion on the break frequency, its possible origin and related physics which

can be inferred from observational results. We then apply the search-characterization strategy

developed in Chapter 3 to X-ray light curves of Seyfert galaxies (Sy1s and NLSy1s). The details

of the data reduction and light curve extraction are presented in §4.3. We then present the results

of the analyses with a discussion on the possible theoretical implications alongside a comparison of

results from literature in §5.3.1.

5.2 Theoretical models: dynamical processes

5.2.1 Dynamical time-scale and related physics

Dynamic processes yield the shortest characteristic time-scale over which orbital features and in-

homogeneities in disk and jet such as flares could occur or cause perturbations and is given by

tφ ∼ r/vφ. Black hole mass and spin can be determined if observed light curves or spectra indicate

the presence of these processes.

The Keplerian angular frequency of a test particle in circular motion around a Kerr black hole

is given by (e.g. Frank, King & Raine)

Ω =
2π

T
=

M

r3/2 + a
. (5.1)

T is the orbital periodicity associated with the angular frequency and r is the radial distance from

the black hole with a spin a. Using the above expression in C.G.S. units, T can be written as

T = 2π(r3/2 + a) (1 + z) GMBH/c
3 s = 30.93(r3/2 + a) M6 (1 + z) s (5.2)

where T has been corrected to include the cosmological redshift factor z and the black hole mass is

scaled in terms of the solar mass, M6 = MBH/(10
6M⊙). T , MBH and a are thus related through

the above set of expressions. If there is evidence for a quasi-periodicity from light curves of AGN,

depending on the relation to the dynamic time-scale, this could be caused by the orbital motion

and radial drift of the flow in the disk.
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A measure of the evolution of the periodicity or the orbital frequency is the quality factor of

a QPO, Q = Ω/∆Ω where ∆Ω is the change in the angular frequency caused by the radial drift

of the orbiting material during each orbit. The quantity,
∆T

T
=

∆Ω

Ω
= Q−1. If a QPO is detected

from the PSD analysis of the observed light curve of an AGN, its characteristics such as ∆f ,

amplitude and peak frequency can be determined using a Lorentzian with a power law fit model

[112] explained in detail in Chapter 3.

The quality factor can be expressed in terms of the physics in the inner accretion disk [191]

Q−1 =
∆T

T
=

∆Ω

Ω
=

1

Ω

dΩ

dr

dr

dt
(5.3)

As we consider ∆t to be the change in angular frequency due to radial drift over one orbit, ∆t =

dφ/Ω = 2π/Ω. We can extend this idea to relativistic flows by

Q−1 =
2π

Ω2

dΩ

dr

ur

ut
(5.4)

where ur and ut are the four-velocity components of the orbiting flow. For a bulk flow of material

in Kerr geometry, ur = γrβr

√

∆

r2
and ut =

√

A

∆r2
γφγr, obtained for a bulk flow in radial motion

with a Lorentz factor γr and a velocity βr as well as orbital motion with a Lorentz factor γφ on

the disk as viewed by an observer in the local non-rotating frame (see Chapter 6 for its derivation);

A = (r2 + a2)2 − a2∆sin2 θ and ∆ = r2 + a2 − 2Mr are quantities used in the expression for the

Kerr metric. Thus,
ur

ut
=

βr∆√
Aγφ

(5.5)

Using which Q can then be written as

Q−1 =
2π

Ω2

dΩ

dr

βr∆√
Aγφ

(5.6)

Q thus depends of the radial distance r, the polar angle defining the plane of motion of the emitting

source θ and the black hole spin a. The azimuthal Lorentz factor γφ =
√

1− (vφ)2 where vφ is the

azimuthal orbital velocity of the bulk flow. It is given by the expression vφ =
A sin θ

Σ

Ω− ω√
∆

where

Σ = r2 + a2 cos2 θ and ω = 2ar/A is the rotational angular frequency due to the frame dragging

effect of the spinning black hole. If we assume that the flow is along the equatorial plane (θ = π/2)

and for Keplerian angular velocity, Ω =
M

r3/2 + a
as in eqn. (5.1), the quantity Q then depends on

the radial distance r, the spin of the black hole and the radial velocity of the bulk flow βr:

Q =
1

3πr1/2

√
A

βr∆

(

1− (A− 2ar(r3/2 + a))2

Σ2∆

)−1/2

(5.7)

A simple estimate of βr can be made. The local sound speed in the medium is cs ∼
√
kTme

for a gas composed of electrons of mass me obeying the ideal gas equation. For a typical disk
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Figure 5.1: Contours of the quality factor Q = Q(r, a) assuming a radial bulk flow velocity βr =
0.0001. For a given spin a, Q decreases from 90 to 40 for the emission radius r increasing between
6M and 10M . For a given radius, Q increases gradually when the spin increases from 0 to 0.998.

temperature T ∼ 105 K as in the inner disk, cs ∼ 1.23 × 106 m/s. From the discussion in Chapter

1, vr ≪ cs. Thus, βr = vr/c ≪ 0.004. In the current analysis, we use a βr = 0.0001 to illustrate

contours of Q = Q(r, a) as plotted in Fig. 5.1. The quality factor evaluated increases with a

decrease in βr. When a bulk flow is radially drifting inward towards the central BH, if its radial

velocity βr is very low (∼ 0.0001), any orbital feature present on the disk is likely to exist for a

large number of cycles, a lower limit to which can be determined using the wavelet analysis in the

analysis suite. Also, the change in orbital frequency ∆Ω is very small for this βr, thus in turn

giving rise to a high Q and hence, a sharp QPO feature. If βr is large (e.g. 0.1), then, there is

insufficient time for the QPO to develop as the radial bulk motion is very fast leading to a broad

QPO. In many cases, this would merge with the continuum of the PSD shape, rendering it difficult

to statistically identify it. This could be a possible explanation for the absence of a QPO detection

in the light curves of radio quiet AGN.

5.2.2 Break frequency and the region of emission

A break frequency in analyzed light curves is characterized by a clear demarcation in the power

law slope of the periodogram in the frequencies lower than the break (flatter with slope ranging

between 0 and -1) and that in the frequencies higher than the break (steeper with slope ranging

between -1 and -2). The broken power law model is applied to the red-noise dominated portion of

the periodogram in the log-log space. The fit procedure, identification of the best fit PSD models
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among multiple competing models and the extraction of model parameters can be found in [112]

and Chapter 3. The broken power law model is given by

I(fj) = A(fj/fBrk)
−αhi , fj > fBrk (5.8)

= A(fj/fBrk)
−αlow , fj < fBrk

If the power law break model is the best fit PSD model, the parameters from the fit include the

break frequency fBrk, the slope of the high frequency region, αhi and the slope of the low frequency

region αlow. Broken power law models can be used in the detection of large break time-scales (at

low Fourier frequencies) such as 106 s or a few days from data spanning over a few years from

satellite observations in the soft to hard X-rays. Such a break frequency could be associated with

a typical size of the accretion disk and could arise due to a characteristic outer radius of the disk.

In [192], RXTE (0.2 keV to 10 keV) light curves are obtained from continuously monitoring six

Seyfert 1 galaxies (Fairall 9, NGC 5548, Ark 564, NGC 3783, NGC 3516 and NGC 4151) for a

period of a few years. A variability study is then done for time-scales ranging between days and

years. The excess fractional variance for these light curves ranges between (5.3 ± 0.4) % for the

short time-scale light curve of NGC 5548 to (39 ± 1.8) % for the long time-scale light curve of

Fairall 9. A broken power law model for the PSD shape is accepted as a good fit in one of the six

sources (Ark 564) with an acceptance probability of 97.3 %. A break frequency at 1.59+4.73
−0.95× 10−6

Hz, a low frequency power law slope of 0.050.55−2.05 and a high frequency power law slope of 1.20+0.25
−0.35

are inferred. A study of the long term soft X-ray (2 keV to 10 keV) light curves of AGN from

RXTE, XMM-Newton and ASCA is aimed at addressing the relation between the excess variance

and the black hole mass [193]. A significant anti-correlation between the excess variance σNXS

and black hole mass MBH is determined in this study. A single value of the excess variance could

correspond to a variety of PSD shapes. It is thus suggested that the assumption of a specific PSD

shape can be used to infer the possible effects on the relation between σNXS andMBH and compare

it with the observation based relationship to make a claim on the validity of the PSD shape.

A sharp cut-off in the PSD shape at high frequencies (≥ 10−4 Hz) above which is a power law

portion could occur due to emitting bulk flow on the disk making a transition from tightly bound

orbits on the disk to a free falling inward spiral towards the central black hole upon crossing the

inner edge of the accretion disk. For Keplerian angular velocity, Ω =
M

r3/2 + a
as in eqn. (5.1), the

break time-scale TB is related to the location of rISCO and is given by

TB = 30.93 M6(1 + z)f(a) s (5.9)

where

f(a) = (r
3

2

ISCO(a) + a) (5.10)

and

rISCO = 3 + Z2(a)− [(3− Z1(a))(3 + Z1(a) + 2Z2(a)]
1

2 (5.11)
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Figure 5.2: Contours of the break time-scale TB = TB(r, a). The timescales indicated in the plot
range between ∼ 500 s and 3500 s for the black hole mass in units of M6 ranging between 1 and 10
and the spin a ranging between 0 and 0.998. The time-scales indicated in the plot are chosen such
that they can be used in the direct comparison for TB inferred from short time-scale X-ray light
curves where it is expected to range between a few 100 s and a few 1000 s.

Z1(a) = 1 + (1− a2)
1

3 [(1 + a)
1

3 + (1− a)
1

3 ];Z2(a) = (3a2 + Z2
1 (a))

1

2 (5.12)

Thus, the break time-scale TB , corrected to include the cosmological redshift factor is dependent

on the black hole mass scaled in terms of the solar mass, M6 =MBH/(10
6M⊙) and the black hole

spin a. Contours of TB(MBH , a) are plotted in fig. 5.2.

Emission could at the most arise from sources near the innermost stable circular orbit (ISCO)

for a Keplerian disk around the SMBH. We can place constraints on the minimum size of the

emitting region, spin of the SMBH and its mass using certain conditions. The constant spin Ω in

a rotating metric must obey Ωmin < Ω < Ωmax where

Ωmax,min =
−gtφ ± (g2tφ − gttgφφ)

1

2

gφφ
. (5.13)

For the Kerr case this leads to the condition that,

4a4r + 8a4 + 2a3r
7

2 + 8a3r
5

2 + 8a3r
3

2 + a2r5

−a2r4 − 2a2r3 + 2ar
11

2 + 4ar
9

2 + r7 − 3r6 > 0, (5.14)

where r and a are in units ofM . In addition, the emitting region must lie outside the event horizon
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r+ of the hole given by,

r > r+ = 1 +
√

(1− a2). (5.15)

The constraints above on the emission region and spin of the black hole along with information

on the redshift z of the AGN can be used in
M•
M⊙

=
3.23 × 104P

[r
3

2 + a](1 + z)
to place upper limits on the

SMBH mass M• and a plot representing the above condition are presented in Fig. 5.3.
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Figure 5.3: The equality in the inequalities from eqns. (5.14) and (5.15) are plotted as functions
of r and a. The region to the right of both the contours is the allowed region for emission.

5.3 Data selection and reduction

To study models of variability through disk based processes, we first identified AGN which could

be potential candidates to study the accretion disk. Then, those candidates indicating strong X-

ray variability as gauged by their light curves using the excess fractional variability index Fvar

were identified. The time series analysis suite developed in Chapter 2 was then applied to extract

information on the variability and its properties from their light curves.

We chose a set of 16 Seyfert galaxies: MRK 335, Q 0056-363, Fairall 9, 3C 120, ARK 120,

MRK 79, NGC 3516, NGC 3783, NGC 4051, NGC 4151, MRK 766, MCG-6-30-15, IC 4329A,

MRK 509 and NGC 7469 which indicated mild to strong variability. All the above objects have

been studied for and indicate the presence of a relativistically broadend Fe K α 6.4 keV emission

line measured by multiple instruments such as Chandra, XMM Newton and Suzaku in multiple

observation epochs.

A set of 58 light curves from the 16 Seyfert galaxies in the soft X-ray band (0.3 keV to 10 keV)
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are extracted and reduced for the analysis using SAS 12.0. Reduction, light curve extraction and

pre-processing of the light curves are carried out as follows:

The light curve for the energy range > 10 keV was first observed and manually truncated to

a good time interval (GTI) by eliminating regions of the light curve dominated by proton flaring

events. Then, we placed a circular aperture of size ranging from 35
′′

to 45
′′

around the object

depending on the specific data set. The light curve of the object was then extracted with a time

bin size of 100 s in the GTI for the energy range 0.3 keV to 10 keV. By placing a circular aperture

of the same size as the object slightly away (about 200
′′

) from the source to prevent contamination

by source photons, we extracted the light curve of the background in the same energy range with

the same bin size in the GTI. The size of the apertures around the object and the background are

tailored for each data set in order to avoid dark regions or patches with no counts.

The object light curve with time bin size of 100 s was then obtained by subtracting the back-

ground from the source. Where small data gaps (< 10 points) were present in an object light curve,

caused due to the removal of flaring portions, we performed a linear interpolation in this region and

used these estimates to obtain the final analysable light curve with time bin size of 100 s, similar

to the procedure followed in [132]. The data characterization and search strategy developed in the

previous chapter is used to analyse the above optical and X-ray light curves.

5.3.1 Results and discussion

Information on basic properties of the studied Syefert galaxies is presented in Table 5.2. We perform

a linear fit to Fvar vs. MBH data in the log-log space with and without the results of the NLSy1

population (MRK 335, NGC 4051 and MRK 766) due to suggestions from literature e.g. [194]

which expect Fvar ∝ M−0.5
BH only when Seyfert type 1 galaxies are considered. The average Fvar

ranges between 3.12 (ARK 120) and 26.60 (MCG-6-30-15) for a reduced sample of 13 objects. We

removed another point for Q 0056-363 as its black hole mass estimate is uncertain and the quoted

value has not been confirmed using the multiple mass measurement procedures. The fit to the

average Fvar vs MBH data in the log-log space for 12 objects yields a slope of -0.31, plotted in fig.

5.4, flatter compared to the expected -0.5. With the inclusion of the data from the NLSy1 galaxies,

the fit for 15 objects yields a steeper slope of -0.39 plotted in fig. 5.5, within the error bars of

previous studies.

MC simulations based significance testing of detected peaks in the LSP, MHAoV and wavelet

analysis periodograms do not indicate any statistically significant QPO in any of the analyzed data

sets.

For the X-ray light curve of REJ 1034+396, analyzed in Chapter 3, the power law with a

Lorentzian QPO was determined to be the best fit PSD shape (QPO significance > 99.94 %) with

an amplitude R of 0.05 ± 0.01 and a quality factor Q of 32.0 ± 6.5. If the QPO,peaked at 3733 s

is due to orbital features in the inner disk, constraints can be placed on the black hole mass MBH

and spin a using eqn. (5.2) from §5.2.1. The region of variability and the emergence of the QPO

feature in the light curve are likely to be close to rISCO. For a non-rotating black hole, if we assume

an emission ring of radius r = 10M , slightly outside the ISCO though still within the inner region,
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Figure 5.4: Linear fit in the log-log space to the Fvar vs MBH data for the Sy1 galaxies.
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Figure 5.5: Linear fit in the log-log space to the Fvar vs MBH data for Sy1 and NLSy1 galaxies.
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we obtain a BH mass of 3.7 M6. The choice of r = 10M could allow the orbital feature to exist

for a few cycles before getting disrupted due to the physical processes in the disk such as radiation

and convection. For a maximally rotating black, if we assume an emission ring of radius r = 4M ,

slightly outside the ISCO though still within the inner region, we obtain a BH mass of 13.0 M6.

If the emission arose from the ISCO r = 1.236M for the maximally spinning black hole, the BH

mass is 49.2 M6. Hence, we can place a lower BH mass limit of ≥ 106 M⊙ and an upper limit

of ≤ 5 × 107 M⊙ from the current analysis. The inferred mass here is consistent within errors of

an estimate of (4+3
−2) × 106 M⊙ inferred from the relation between the excess variability amplitude

and the black hole mass [195]. The determined mass in our study when compared to the above

mentioned estimate implies that the black hole spin is likely to be low. From the inferred quality

factor Q of 32.0 ± 6.5, eqn. (5.7) indicates a well constrained emission radius r ∼ 11 M for a black

hole with spin ranging between a = 0 and a = 0.998 assuming that the radial velocity of the bulk

flow is 0.0001.

Table 5.4 summarizes the results from the periodogram analysis of each light curve. Fvar for

these light curves ranges between 2.30 % and 50.61 % indicating a moderate to strong variability.

The PSD shape in 47 of 58 (81 %) data sets analyzed is estimated to be a power law with the

rejection probability ranging between < 0.1 % and 76.15 %. The power law model of the PSD is

a reasonable to good fit in 37 of 58 (64 %) of the data sets. It is not a good fit in 10 data sets

where the MC simulations based rejection significance is high. The PSD shape in 10 of the 11

remaining data sets is estimated to be of a broken power law form. The rejection probability of

these ranges between < 0.10 % and 90.45 %. For 5 of these 7 data sets indicating a good to strong

goodness of fit, the break timescale varies between 2960+516
−382 s (MRK 766) and 9891+8726

−3157 s (3C 120),

though, the latter indicates a large error bar and the result are unreliable. The slope αHi in the

frequencies higher than the break frequency ranges between -1.00 and -2.50 while the slopes αLow

in the frequencies lower than the break frequency are all -1.00. This arises in multiple data sets

due to the limit in sampling slopes set in our numerical procedure. These slopes are likely to be

less steeper if the test range for α is increased above -1.00. The remaining data set for Q 0056-363

indicates a bending power law PSD model, though, with a large rejection probability of 83.5 %.

Also, the bending timescale of 517+20
−19 is very close to the white noise dominated portion and hence,

the result is unreliable. In the application of the theoretical break frequency model from §5.2.2, we
reject data sets where the MC simulations based model rejection probability is high and where the

break frequency is not clearly present. A group of 5 of 58 data sets (9 %) displaying a prominent

break frequency and where the fit is good are now used in further analysis.

Table 5.4 summarizes the results of the power law PSD model fit to the periodograms. For 11

data sets, the relative likelihood compared to other best fit models ranges between 7.36 × 10−9 and

5.9 × 10−1. The power law slope α for these data sets with lower relative likelihood (< 1) ranges

between -1.25 and -2.53. In general, considering all data sets, α ranges between -1.25 and -2.57.

Table 5.4 summarizes the results of the bending power law PSD model fit to the periodogram of

the periodogram of the X-ray light curves. The bending power law model is a statistically valid

candidate for only one data set (Q 0056-363) where the bend timescale is TBen = 517+20
−19 s and the
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slope α describing the PSD shape in the frequencies lower that the bend frequency is -1.30. One

other data set (NGC 4151 with obs. I.D. 0402660101) indicates the presence of a bend timescale

of 430+16
−15 s due to its high relative likelihood of 9.91 × 10−1. As these timescales are very close

to the white noise dominated region, they are not reliable estimates. For the rest of the data sets

(57 out of 58) the bending power law PSD model is not a good candidate for the description of the

underlying PSD as inferred from the relative likelihoods (RL) in Table 5.4 which vary between 2.20

× 10−32 and 3.48 × 10−2. Table 5.4 summarizes the results of the broken power law PSD model fit

to the periodogram of the X-ray light curves. The relative likelihoods (RL) vary between 1.04 ×
10−3 and 9.61 × 10−1. Break timescales vary between 588+28

−26 s and 11353+9886
−3606 s with large errors,

the errors quoted being the 68% confidence intervals. The slope αHi in the frequencies higher than

the break frequency ranges between -1.00 and -2.50. The slope αLow in the frequencies lower than

the break frequency is -1.00 for 45 of 58 data sets (78 %). This is in a consequence of the limit

in sampling slopes set in our numerical procedure. These slopes are likely to be steeper if the test

range for αLow is increased beyond -1.00. For the remaining 13 data sets, the slope is -0.20 for two

data sets, ranging between -0.20 and -0.90.

We make use of the BH mass MBH and spin a ranges as quoted in literature and presented in

Table 5.2 for the analysis. Since TB = TB(MBH , a) from eqn. (5.9), with these three constraints,

we calculate the region of overlap of these quantities on the MBH -a plane.

NGC 3516 with an inferred break timescale of 3830+676
−500 (from the current analysis) hosts a BH

of mass (42.7+14.6
−14.6) M6 and a lower limit on the spin of ≥ 0.30. Contours of TB = TB(r, a) are

plotted in Fig. 5.6. The region of overlap of the constraints is marked in red colour. The current

analysis helps in constraining the spin of the BH further. It results in an improved lower limit on

the spin of ≥ 0.84.

NGC 4051 with an inferred break timescale of 3403+805
−547 (from the current analysis) hosts a BH

of mass (1.9+0.78
−0.78) M6 and a lower limit on the spin of ≥ 0.30. Contours of TB = TB(r, a) are

plotted in Fig. 5.7. The overlap in this case is only between the contours of TB and the spin a.

Thus, an upper limit to the black hole mass of 57.6 M6 (for a maximally spinning black hole with

a = 0.998) can be inferred.

MRK 766 with two inferred break timescales of 3939+882
−609 and 2960+516

−382 (from the current anal-

ysis) hosts a BH of mass (1.26+1.19
−0.61) M6 and a lower limit on the spin of ≥ 0.30. Contours of

TB = TB(r, a) are plotted in fig. 5.8 and 5.9. The overlap in this case is only between the contours

of TB and the spin a. Thus, an upper limit to the black hole mass of 57.2 M6 (for a maximally

spinning black hole with a = 0.998) can be inferred.

MCG-6-30-15 with an inferred break timescale of 3181+806
−535 (from the current analysis) hosts a

BH of mass (1.9+0.78
−0.78) M6 and a lower limit on the spin of ≥ 0.80. Contours of TB = TB(r, a) are

plotted in fig. 5.10. The overlap in this case is only between the contours of TB and the spin a.

Thus, an upper limit to the black hole mass of 53.9 M6 (for a maximally spinning black hole with

a = 0.998) can be inferred.

The results from the above discussion are presented in Table 5.1. The results of the time series

analysis of the above light curves where a TB is inferred are plotted in Fig. 5.11.
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Figure 5.6: Contours of the break timescale TB = TB(r, a) plotted for the Sy1.5 galaxy NGC 3516
(obs. I.D. 0107460601). Three constraint bands are plotted in the figure. The first is from the black
hole mass of 42.7+14.6

−14.6 M6, plotted as a grey coloured vertical band. The second is from the black
hole spin ≥ 0.30, plotted as a cyan coloured horizontal band. The third is from the contours of
TB which is inferred from the current analysis to be 3830 s lying within a 68 % confidence interval
from 3330 s and 4506 s, plotted as the green coloured contour bands. The three constraint bands
intersect to provide a tighter constraint on the lower limit ot the black hole spin of ≥ 0.80, within
the red coloured region.

Object Break Mass Spin
Timescale limits limits
TB (s) M6 a

NGC 3516 3830+676
−500 42.7+14.6

−14.6 ≥ 0.84

NGC 4051 3403+805
−547 ≤ 57.6 0 - 0.998

MRK 766 3939+882
−609 ≤ 57.2 ≥ 0.30

2960+516
−382

MCG-6-30-15 3181+806
−535 53.9 ≥ 0.80

Table 5.1: Summary of the application of the theoretical break frequency model applied to the
X-ray light curves of Seyfert galaxies. Properties extracted include upper limits on BH mass and
spin using statistically inferred TB .
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Figure 5.7: Contours of the break timescale TB = TB(r, a) plotted for the NLSy1 galaxy NGC 4051
(obs. I.D. 0606321601). Three constraint bands are plotted in the figure. The first is from the black
hole mass of 1.90+0.78

−0.78 M6, plotted as a grey coloured vertical band. The second is from the black
hole spin ≥ 0.30, plotted as a cyan coloured horizontal band. The third is from the contours of
TB which is inferred from the current analysis to be 3403 s lying within a 68 % confidence interval
from 2856 s and 4208 s, plotted as the green coloured contour bands. Only two of the constraint
bands intersect (spin and TB) represented by the red coloured region. An upper limit on the black
hole mass of 57.6 M6 can be inferred from the current analysis.



5.3. DATA SELECTION AND REDUCTION 113

39393939

33303330

48214821

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

M6

Sp
in
Ha
L

TB

H1 + zL
HsL MRK 766

Figure 5.8: Contours of the break timescale TB = TB(r, a) plotted for the NLSy1 galaxy MRK 766
(obs. I.D. 0304030401). Three constraint bands are plotted in the figure. The first is from the black
hole mass of 1.26+1.19

−0.61 M6, plotted as a grey coloured vertical band. The second is from the black
hole spin ≥ 0.30, plotted as a cyan coloured horizontal band. The third is from the contours of
TB which is inferred from the current analysis to be 3939 s lying within a 68 % confidence interval
from 3330 s and 4821 s, plotted as the green coloured contour bands. Only two of the constraint
bands intersect (spin and TB) represented by the red coloured region. An upper limit on the black
hole mass of 57.2 M6 can be inferred from the current analysis.
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Figure 5.9: Contours of the break timescale TB = TB(r, a) plotted for the NLSy1 galaxy MRK 766
(obs. I.D. 0304030501). Three constraint bands are plotted in the figure. The first is from the black
hole mass of 1.26+1.19

−0.61 M6, plotted as a grey coloured vertical band. The second is from the black
hole spin ≥ 0.30, plotted as a cyan coloured horizontal band. The third is from the contours of
TB which is inferred from the current analysis to be 2960 s lying within a 68 % confidence interval
from 2578 s and 3476 s, plotted as the green coloured contour bands. Only two of the constraint
bands intersect (spin and TB) represented by the red coloured region. An upper limit on the black
hole mass of 57.2 M6 can be inferred from the current analysis.
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Figure 5.10: Contours of the break timescale TB = TB(r, a) plotted for the Sy1 galaxy MCG-6-30-15
(obs. I.D. 0111570201). Three constraint bands are plotted in the figure. The first is from the black
hole mass of 4.5+1.5

−1.0 M6, plotted as a grey coloured vertical band. The second is from the black

hole spin 0.49+0.20
−0.12, plotted as a cyan coloured horizontal band. The third is from the contours of

TB which is inferred from the current analysis to be 3181 s lying within a 68 % confidence interval
from 2646 s and 3987 s, plotted as the green coloured contour bands. Only two of the constraint
bands intersect (spin and TB) represented by the red coloured region. An upper limit on the black
hole mass of 18.2 M6 can be inferred from the current analysis.
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Object AGN RA Dec. Redshift Black hole Black Average
Type z mass hole Fractional

MBH spin Variability
(106 M⊙); ref. a; ref. Fvar

MRK 335 NLSy1 00h06m19.5s +20d12m10s 0.258 (14.2+3.7
−3.7); 1 (0.83+0.09

−0.13); 7 18.52
Q 0056-363 Sy1 00h58m37.3s -36d06m05s 0.164 610; 2 N 7.69

Fairall 9 Sy1.2 01h23m45.8s -58d48m21s 0.047 (255+56
−56); 1 (0.82+0.09

−0.19); 7 6.35

3C 120 Sy1.5 04h33m11.1s +05d21m16s 0.033 (55.5+31.4
−22.5); 1 N 5.90

ARK 120 Sy1 05h16m11.4s -00d08m59s 0.033 (150+19
−19); 1 (0.64+0.19

−0.11); 7 3.12

MRK 79 Sy1.2 07h42m32.8s +49d48m35s 0.022 (52.4+14.4
−14.4); 1 (0.7+0.1

−0.1); 8 8.87

MCG-5-23-16 Sy1 09h47m40.1s -30d56m55s 0.008 (83.2+125.7
−50.1 ); 3 N 8.33

NGC 3516 Sy1.5 11h06m47.5s +72d34m07s 0.009 (42.7+14.6
−14.6); 1 ≥ 0.30; 9 13.94

NGC 3783 Sy1.5 11h39m01.7s -37d44m19s 0.010 (29.8+5.4
−5.4); 1 ≥ 0.20; 9 9.08

NGC 4051 NLSy1 12h03m09.6s +44d31m53s 0.002 (1.9+0.78
−0.78); 1 ≥ 0.30; 9 37.99

NGC 4151 Sy1.5 12h10m32.6s +39d24m21s 0.003 (13.3+4.6
−4.6); 1 N 6.17

MRK 766 NLSy1 12h18m26.5s +29d48m46s 0.013 (1.26+1.19
−0.61); 4 ≥ 0.30; 9 25.54

MCG-6-30-15 Sy1.2 13h35m53.7s -34d17m44s 0.008 (4.5+1.5
−1.0); 5 0.49+0.20

−0.12; 10 26.60

IC 4329A Sy1.2 13h49m19.2s -30d18m34s 0.016 (218.88+217.64
−109.65); 6 ≥ 0.00; 9 4.43

MRK 509 Sy1.5 20h44m09.7s -10d43m25s 0.034 (143+12
−12); 1 (0.78+0.03

−0.04); 7 3.34

NGC 7469 Sy1.5 23h03m15.6s +08d52m26s 0.016 (12.2+1.4
−1.4); 1 (0.64+0.13

−0.20); 7 5.42

Table 5.2: BH Mass: 1: [54] (virial mass using reverberation mapping with mass calibrated using
the MBH -σ relation); 2: [196] ;3: [197] (M-σ relation); 4: [198]; 5: [199] (use of the scaling of the
PSD break timescale with black hole mass and confirmation with reverberation mapping); 6: [200]
(M-σ relation); BH spin: 7: [201]; 8: [202]; 9: [189]; 10: [175]; N: not identified. Columns 1 - 8 give
the object name, its right ascension (RA), declination (Dec.), cosmological redshift z, the mass of
the SMBH it hosts MBH in terms of 106 M⊙, the spin of the black hole and the average excess
fractional variability index Fvar determined in the current study.

5.4 Summary and conclusions

1. A break frequency model and a model for the quality factor Q were developed in §5.2, both
being cast in Kerr geometry.

2. An analysis of X-ray light curves (0.3 keV - 10 keV) from a group of Seyfert galaxies was

conducted to infer any statistically significant break time-scale.

3. Break time-scales ranging between 2960 s and 3939 s were inferred from this analysis in 5

light curves from 4 Seyferts.

4. The break frequency model was applied to these light curves. In NGC 3516, a revised lower

limit on the BH spin of ≥ 0.84 is inferred. In NGC 4051, MRK 766 and MCG-6-30-15, revised

upper limits on BH masses of 57.6 M6, 57.2 M6 and 53.9 M6 are inferred.

5. The Q-factor model is applied to the X-ray light curve of REJ 1034+396 where a statistically

significant QPO at 3733 s was inferred. With the measured Q of 32.0 ± 6.5, an emission

radius of ∼ 11 M is inferred. An upper limit on the BH mass of ≤ 50 M6 is also inferred,

consistent with estimates in literature [195].
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Object Observation Time Fractional Best fit MC sims. Fit
ID Duration Variability PSD Rejection parameters

(s) Fvar shape Prob. (%)

MRK 335 0101040101 31500 11.07 Power law < 0.10 α = -1.98 ± 0.09
0306870101 13200 12.22 Power law < 0.10 α = -2.05 ± 0.06
0600540501 80600 24.05 Power law < 0.10 α = -1.86 ± 0.06
0600540601 111700 26.75 Power law 0.40 α = -1.74 ± 0.04

Q 0056-363 0205680101 101100 7.58 Broken power law 90.45 TBrk = 740+31
−29

αHi = -1.0 ± 0.04
αLow = -0.3 ± 0.03

0401930101 44600 7.79 Bending power law 83.5 TBen = 517+20
−19

α = -1.3 ± 0.09
Fairall 9 0101040201 28900 3.96 Power law 42.30 α = -0.94 ± 0.09

0605800401 129500 8.73 Broken power law < 0.10 TBrk = 8587+5524
−2415

αHi = -1.1 ± 0.04
αLow = -1.0 ± 0.02

3C 120 0152840101 125500 5.90 Broken power law < 0.10 TBrk = 9891+8726
−3157

αHi = -1.00 ± 0.04
αLow = -1.00 ± 0.03

ARK 120 0147190101 111500 3.12 Power law 0.20 α = -0.95 ± 0.05
MRK 79 0502091001 78200 8.87 Power law 44.8 α = -0.74 ± 0.06
MCG-5-23-16 0302850201 116900 8.33 Power law < 0.10 α = -1.75 ± 0.05

NGC 3516 0107460601 126000 23.89 Broken power law < 0.10 TBrk = 3830+676
−500

αHi = -1.8 ± 0.05
αLow = -1.0 ± 0.03

0107460701 127900 8.84 Power law 3.70 α = -0.76 ± 0.04
0401210401 51600 14.95 Power law 0.25 α = -1.97 ± 0.09
0401210501 68500 8.37 Power law < 0.10 α = -1.69 ± 0.07
0401210601 68000 28.22 Power law 0.05 α = -2.27 ± 0.06
0401211001 59400 9.31 Power law < 0.10 α = -1.95 ± 0.08

NGC 3783 0112210101 36900 6.46 Power law < 0.10 α = -1.58 ± 0.09
0112210201 57100 8.14 Power law < 0.10 α = -1.46 ± 0.07
0112210501 136300 12.63 Power law < 0.10 α = -1.61 ± 0.04

NGC 4051 0157560101 33600 21.47 Power law 76.15 α = -2.48 ± 0.09
0606320101 45200 34.15 Power law 0.60 α = -2.57 ± 0.08
0606320201 43500 45.73 Power law < 0.10 α = -2.37 ± 0.07

0606321601 41400 50.61 Broken power law 0.95 TBrk = 3403+805
−547

αHi = -2.2 ± 0.05
αLow = -1.0 ± 0.03

NGC 4151 0402660101 39800 5.42 Broken power law 52.9 TBrk = 588+28
−26

αHi = -2.5 ± 0.07
αLow = -0.2 ± 0.05

0402660201 47400 6.92 Power law < 0.10 α = -1.65 ± 0.07
MRK 766 0096020101 38900 19.05 Power law < 0.10 α = -1.82 ± 0.09

0109141301 128400 25.97 Power law < 0.10 α = -1.97 ± 0.04
0304030301 98400 37.63 Power law < 0.10 α = -2.09 ± 0.05

0304030401 94400 22.21 Broken power law < 0.10 TBrk = 3939+882
−609

αHi = -2.4 ± 0.05
αLow = -1.0 ± 0.04

0304030501 94200 19.39 Broken power law < 0.10 TBrk = 2960+516
−382

αHi = -2.5 ± 0.05
αLow = -1.0 ± 0.03

0304030601 98400 28.60 Power law < 0.10 α = -2.08 ± 0.05
0304030701 29100 25.93 Power law 1.05 α = -2.09 ± 0.09

MCG-6-30-15 0029740101 80500 28.82 Power law 0.40 α = -2.15 ± 0.06
0029740701 12300 19.94 Power law < 0.1 α = -2.01 ± 0.05
0029740801 124100 35.57 Power law < 0.1 α = -2.20 ± 0.06
0111570101 43100 29.93 Power law < 0.1 α = -2.20 ± 0.07

0111570201 53400 18.74 Broken power law < 0.10 TBrk = 3181+806
−535

αHi = -2.4 ± 0.07
αLow = -1.0 ± 0.05

IC 4329A 0147440101 132500 4.43 Power law < 0.10 α = -1.15 ± 0.05
MRK 509 0130720101 29300 3.08 Power law 60.30 α = -0.85 ± 0.11

0130720201 41500 2.59 Power law 27.70 α = -0.91 ± 0.08
0306090201 85300 2.77 Power law 0.70 α = -0.87 ± 0.06
0306090301 46300 2.41 Power law 20.40 α = -0.85 ± 0.07
0306090401 69300 4.33 Power law < 0.10 α = -0.85 ± 0.07
0601390201 57000 2.81 Power law 0.65 α = -0.91 ± 0.07
0601390301 63200 3.00 Power law 10.30 α = -0.76 ± 0.06
0601390401 60300 2.30 Power law 0.40 α = -0.96 ± 0.06
0601390501 60300 5.64 Power law < 0.10 α = -1.04 ± 0.06
0601390601 62200 3.41 Power law < 0.10 α = -1.05 ± 0.06
0601390701 62400 3.56 Power law < 0.10 α = -1.13 ± 0.07
0601390801 60200 4.46 Power law < 0.10 α = -1.06 ± 0.07
0601390901 60300 2.55 Power law 0.40 α = -0.97 ± 0.06

0601391001 64800 4.08 Broken power law < 0.10 TBrk = 4508+1966
−1050

αHi = -1.1 ± 0.06
αLow = -1.0 ± 0.04

0601391101 62200 3.09 Power law < 0.10 α = -0.96 ± 0.07
NGC 7469 0112170301 23000 5.15 Power law 3.6 α = -1.04 ± 0.12

0207090101 84400 5.36 Power law < 0.10 α = -1.16 ± 0.06
0207090101 78500 5.76 Power law < 0.10 α = -1.22 ± 0.07

Table 5.3: Results from the PSD fit with the best fit model. Columns 1 – 8 give the object
name, a unique observation I.D. assigned to each observation in the XMM Newton archives, its
observation duration, excess fractional variability index Fvar of the individual light curves, the best
fit PSD shape obtained from the Akaike Information Criteria, MC simulations based goodness of fit
quantified as a model rejection probability and the best fit model parameters with their errors based
on the 68 % confidence intervals obtained from the contours of the differences of the log-likelihood
function ∆S as described in chapter 3.
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Object Observation Power law AIC ∆i Relative
ID model parameters Likelihood (RL)

α = AICi-AICNull

MRK 335 0101040101 -1.98 ± 0.09 -178.07 0.00 1.00
0306870101 -2.05 ± 0.05 -702.77 0.00 1.00
0600540501 -1.86 ± 0.06 -348.02 0.00 1.00
0600540601 -1.74 ± 0.04 -962.82 0.00 1.00

Q 0056-363 0205680101 -1.39 ± 0.04 -835.21 37.45 7.36 × 10−9

0401930101 -1.25 ± 0.07 -226.63 6.81 3.33 × 10−2

Fairall 9 0101040201 -0.94 ± 0.09 -193.30 0.00 1.00
0605800401 -1.7 ± 0.04 -860.00 14.19 8.28 × 10−4

3C 120 0152840101 -1.49 ± 0.04 -954.16 4.62 9.95 × 10−2

ARK 120 0147190101 -0.95 ± 0.05 -849.72 0.00 1.00
MRK 79 0502091001 -0.74 ± 0.06 -390.04 0.00 1.00
MCG-5-23-16 0302850201 -1.75 ± 0.05 -734.05 0.00 1.00
NGC 3516 0107460601 -1.87 ± 0.05 -348.89 0.00 1.00

0107460701 -0.76 ± 0.04 -971.61 0.00 1.00
0401210401 -1.97 ± 0.09 -180.69 0.00 1.00
0401210501 -1.69 ± 0.07 -305.98 0.00 1.00
0401210601 -2.27 ± 0.06 -334.43 0.00 1.00
0401211001 -1.95 ± 0.08 -241.55 0.00 1.00

NGC 3783 0112210101 -1.58 ± 0.09 -165.54 0.00 1.00
0112210201 -1.46 ± 0.07 -270.42 0.00 1.00
0112210501 -1.61 ± 0.04 -920.01 0.00 1.00

NGC 4051 0157560101 -2.48 ± 0.09 -91.36 0.00 1.00
0606320101 -2.57 ± 0.08 -130.00 0.00 1.00
0606320201 -2.37 ± 0.07 -111.59 0.00 1.00
0606321601 -2.51 ± 0.05 -233.05 3.41 1.82 × 10−1

NGC 4151 0402660101 -1.35 ± 0.07 -270.18 10.21 6.08 × 10−3

0402660201 -1.65 ± 0.07 -319.04 0.00 1.00
MRK 766 0096020101 -1.82 ± 0.09 -124.85 0.00 1.00

0109141301 -1.97 ± 0.04 -661.32 0.00 1.00
0304030301 -2.09 ± 0.05 -418.58 0.00 1.00
0304030401 -2.33 ± 0.05 -414.00 2.17 3.38 × 10−1

0304030501 -2.42 ± 0.05 -482.02 6.14 4.63 × 10−2

0304030601 -2.08 ± 0.05 -478.46 0.00 1.00
0304030701 -2.09 ± 0.09 -104.99 0.00 1.00

MCG-6-30-15 0029740101 -2.15 ± 0.06 -328.18 0.00 1.00
0029740701 -2.01 ± 0.05 -633.82 0.00 1.00
0029740801 -2.20 ± 0.06 -569.05 0.00 1.00
0111570101 -2.20 ± 0.07 -190.34 0.00 1.00
0111570201 -2.53 ± 0.07 -251.18 1.04 5.9 × 10−1

IC 4329A 0147440101 -1.15 ± 0.05 -954.57 0.00 1.00
MRK 509 0130720101 -0.85 ± 0.11 -130.142 0.00 1.00

0130720201 -0.91 ± 0.08 -249.775 0.00 1.00
0306090201 -0.87 ± 0.06 -630.80 0.00 1.00
0306090301 -0.85 ± 0.07 -440.28 0.00 1.00
0306090401 -0.85 ± 0.07 -432.47 0.00 1.00
0601390201 -0.91 ± 0.07 -407.42 0.00 1.00
0601390301 -0.76 ± 0.06 -581.46 0.00 1.00
0601390401 -0.96 ± 0.06 -651.77 0.00 1.00
0601390501 -1.04 ± 0.06 -503.24 0.00 1.00
0601390601 -1.05 ± 0.06 -466.01 0.00 1.00
0601390701 -1.13 ± 0.07 -388.38 0.00 1.00
0601390801 -1.06 ± 0.07 -368.39 0.00 1.00
0601390901 -0.97 ± 0.06 -514.00 0.00 1.00
0601391001 -1.63 ± 0.06 -529.11 2.07 3.56 × 10−1

0601391101 -0.96 ± 0.07 -350.44 0.00 1.00
NGC 7469 0112170301 -1.04 ± 0.12 -98.10 0.00 1.00

0207090101 -1.16 ± 0.06 -538.46 0.00 1.00
0207090201 -1.22 ± 0.07 -322.59 0.00 1.00

Table 5.4: Results from the PSD fit with a power law model. Columns 1 – 6 give the object name,
its observation I.D., the slope α which is the only parameter used in this model, the AIC value
corresponding to the particular parameter value for which the log likelihood S is a minimum, the
difference ∆i which is used to calculate the likelihood and the relative likelihood which quantifies
the probability of the power law model being chosen over the null model as a best fit PSD model.
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Object Observation Bending power law AIC ∆i Relative
ID model parameters Likelihood (RL)

TBen (s) α = AICi-AICNull

MRK 335 0101040101 2701+940
−555 -2.30 ± 0.11 -154.43 23.64 7.35 × 10−6

0306870101 3055+470
−360 -2.40 ± 0.06 -639.36 63.40 1.71 × 10−14

0600540501 10656+14187
−3873 -1.60 ± 0.08 -294.19 53.83 2.04 × 10−12

0600540601 7979+3118
−1751 -1.50 ± 0.04 -817.03 145.79 2.20 × 10−32

Q 0056-363 0205680101 370+8
−7 -1.60 ± 0.05 -864.88 7.78 2.05 × 10−2

0401930101 517+20
−19 -1.30 ± 0.09 -233.44 0.00 1.00

Fairall 9 0101040201 871+77
−64 -1.00 ± 0.08 -186.59 6.71 3.48 × 10−2

0605800401 11103+12969
−3888 -1.00 ± 0.06 -789.23 94.95 3.58 × 10−19

3C 120 0152840101 10760 +12568
−3767 -1.00 ± 0.06 -873.04 85.73 2.42 × 10−19

ARK 120 0147190101 3075+154
−390 -1.00 ± 0.05 -798.37 51.34 7.10 × 10−12

MRK 79 0502091001 1429+117
−100 -1.00 ± 0.07 -368.79 21.25 2.43 × 10−5

MCG-5-23-16 0302850201 7106+3681
−1808 -1.40 ± 0.06 -665.06 68.99 1.05 × 10−15

NGC 3516 0107460601 1957+175
−150 -3.00 ± 0.06 -303.85 47.33 5.28 × 10−11

0107460701 1445+107
−94 -1.00 ± 0.05 -909.70 61.91 3.59 × 10−14

0401210401 7891+6098
−2395 -2.30 ± 0.11 -153.13 27.55 1.04 × 10−6

0401210501 5399+2343
−1205 -1.90 ± 0.09 -273.30 32.68 8.00 × 10−8

0401210601 4959+2274
−1187 -2.00 ± 0.08 -289.66 44.77 1.90 × 10−10

0401211001 5583+2451
−1305 -2.20 ± 0.10 -211.91 29.64 3.67 × 10−7

NGC 3783 0112210101 5643+4304
−1704 -1.30 ± 0.12 -146.74 18.80 8.26 × 10−5

0112210201 6648+4879
−1977 -1.40 ± 0.09 -239.19 31.23 1.66 × 10−7

0112210501 14178+25249
−5535 -1.30 ± 0.06 -820.01 100.00 1.93 × 10−22

NGC 4051 0157560101 2460+486
−348 -3.00 ± 0.12 -77.72 13.65 1.09 × 10−3

0606320101 2063+397
−287 -3.00 ± 0.09 -108.40 21.59 2.05 × 10−5

0606320201 1741+301
−224 -3.00 ± 0.09 -88.72 22.87 1.08 × 10−5

0606321601 2179+352
−266 -2.90 ± 0.06 -178.88 57.58 3.14 × 10−13

NGC 4151 0402660101 430+16
−15 -1.20 ± 0.09 -280.37 0.02 9.91 × 10−1

0402660201 3736+1694
−889 -1.50 ± 0.09 -284.348 34.69 2.93 × 10−8

MRK 766 0096020101 3066+904
−569 -2.40 ± 0.11 -104.37 20.47 3.60 × 10−5

0109141301 3541+735
−520 -2.20 ± 0.06 -574.40 86.92 1.34 × 10−19

0304030301 4954+1726
−1017 -2.20 ± 0.07 -349.63 68.94 1.07 × 10−15

0304030401 2679+438
−330 -3.00 ± 0.07 -364.17 52.01 5.09 × 10−12

0304030501 2169+305
−238 -3.00 ± 0.06 -433.83 54.33 1.59 × 10−12

0304030601 3783+1004
−656 -2.20 ± 0.06 -408.18 70.27 5.50 × 10−16

0304030701 2735+936
−555 -2.50 ± 0.12 -84.94 20.04 4.45 × 10−5

MCG-6-30-15 0029740101 2869+537
−391 -3.00 ± 0.08 -284.61 43.57 3.57 × 10−10

0029740701 2766+416
−319 -3.00 ± 0.06 -563.17 70.65 4.55 × 10−16

0029740801 5179+1635
−1002 -2.20 ± 0.06 -482.26 86.79 1.42 × 10−19

0111570101 2924+930
−568 -2.60 ± 0.07 -156.93 33.41 5.56 × 10−8

0111570201 2137+398
−290 -2.60 ± 0.07 -221.77 30.45 2.44 × 10−7

IC 4329A 0147440101 4400+1097
−732 -1.10 ± 0.06 -886.42 68.15 1.59 × 10−15

MRK 509 0130720101 2144+384
−283 -1.00 ± 0.14 -122.35 7.80 2.03 × 10−2

0130720201 831+49
−42 -3.00 ± 0.11 -239.18 10.59 5.01 × 10−3

0306090201 2570+400
−305 -1.00 ± 0.07 -594.80 36.00 1.53 × 10−8

0306090301 748+42
−48 -1.10 ± 0.08 -429.11 11.17 3.76 × 10−3

0306090401 8069+8535
−2639 -1.10 ± 0.08 -393.05 39.42 2.76 × 10−7

0601390201 2601+525
−374 -1.00 ± 0.08 -382.51 24.92 3.89 × 10−6

0601390301 889+55
−49 -1.00 ± 0.07 -565.95 15.50 4.31 × 10−4

0601390401 383+12
−10 -2.70 ± 0.07 -639.68 12.09 2.37 × 10−3

0601390501 7021+7572
−2399 -1.00 ± 0.08 -459.11 44.13 2.61 × 10−10

0601390601 8223+10583
−2961 -1.00 ± 0.08 -426.45 39.55 2.58 × 10−9

0601390701 8263+8659
−2797 -1.10 ± 0.09 -354.16 34.21 3.72 × 10−8

0601390801 9206+12610
−3372 -1.10 ± 0.09 -354.16 34.21 3.72 × 10−8

0601390901 2752+645
−439 -1.00 ± 0.08 -480.44 33.56 5.15 × 10−8

0601391001 4403+1938
−945 -1.10 ± 0.08 -493.99 37.19 8.41 × 10−9

0601391101 4902+1901
−1071 -1.10 ± 0.08 -493.99 37.19 8.41 × 10−9

NGC 7469 0112170301 6640+9566
−2465 -1.40 ± 0.15 -88.50 9.60 8.23 × 10−3

0207090101 8779+8484
−2893 -1.20 ± 0.07 -488.24 50.22 1.25 × 10−11

0207090201 7379+3989
−1917 -1.60 ± 0.07 -292.18 30.42 2.48 × 10−7

Table 5.5: Results from the PSD fit with a bending power law model. Columns 1 – 7 give the object
name, its observation I.D., the bend timescale in s (converted to temporal domain from a bend
frequency in the binned periodogram), the slope α of the power law region at frequencies lower
than the bend frequency, the AIC value, the difference ∆i which is used to calculate the likelihood
and the relative likelihood which quantifies the probability of the bending power law model being
chosen over the null model as a best fit PSD model.
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Object Observation Broken power law AIC ∆i Relative
ID model parameters Likelihood (RL)

TBrk (s) αHi αLow = AICi-AICNull

MRK 335 0101040101 3527+1423
−787 -2.00 ± 0.08 -1.00 ± 0.06 -173.28 4.78 9.15 × 10−2

0306870101 4262+833
−599 -2.00 ± 0.05 -1.00 ± 0.03 -698.85 3.92 1.41 × 10−1

0600540501 9025+6914
−2730 -1.70 ± 0.06 -1.00 ± 0.04 -340.83 7.19 2.75 × 10−2

0600540601 7285+2181
−1365 -1.60 ± 0.03 -1.00 ± 0.02 -953.12 9.70 7.84 × 10−3

Q 0056-363 0205680101 740+31
−29 -1.00 ± 0.04 -0.30 ± 0.03 -872.66 0.00 1.00

0401930101 866+53
−48 -1.20 ± 0.07 -0.20 ± 0.05 -232.49 0.95 6.22 × 10−1

Fairall 9 0101040201 1173+139
−113 -1.00 ± 0.08 -0.50 ± 0.06 -190.02 3.28 1.94 × 10−1

0605800401 8587+5524
−2415 -1.1 ± 0.04 -1.00 ± 0.03 -874.18 0.00 1.00

3C 120 0152840101 9891+8726
−3157 -1.00 ± 0.05 -1.00 ± 0.03 -958.77 0.00 1.00

ARK 120 0147190101 3075+545
−403 -1.00 ± 0.05 -0.90 ± 0.03 -844.42 5.29 7.09 × 10−2

MRK 79 0502091001 1843+200
−163 -1.00 ± 0.06 -0.60 ± 0.04 -383.91 6.13 4.66 × 10−2

MCG-5-23-16 0302850201 7254+3257
−1716 -1.40 ± 0.05 -1.00 ± 0.03 -732.71 1.34 5.13 × 10−1

NGC 3516 0107460601 3830+676
−500 -1.80 ± 0.05 -1.00 ± 0.03 -350.41 0.00 1.00

0107460701 1834+183
−153 -1.00 ± 0.04 -0.70 ± 0.03 -961.53 10.08 6.47 × 10−2

0401210401 8812+6337
−2599 -2.20 ± 0.08 -1.00 ± 0.06 -172.55 8.13 1.71 × 10−2

0401210501 6238+2508
−1390 -1.80 ± 0.07 -1.00 ± 0.05 -299.72 6.27 4.36 × 10−2

0401210601 5664+2722
−1261 -1.90 ± 0.06 -1.00 ± 0.04 -332.71 1.72 4.22 × 10−1

0401211001 6651+3043
−1589 -2.00 ± 0.08 -1.00 ± 0.05 -235.21 6.34 4.20 × 10−2

NGC 3783 0112210101 4878+2409
−1211 -1.40 ± 0.09 -1.00 ± 0.06 -160.84 4.70 9.53 × 10−3

0112210201 5939+2928
−1474 -1.50 ± 0.07 -1.00 ± 0.05 -264.472 5.95 5.11 × 10−2

0112210501 11353+9886
−3606 -1.40 ± 0.04 -1.00 ± 0.029 -913.03 6.98 3.05 × 10−3

NGC 4051 0157560101 3882+1083
−695 -2.20 ± 0.09 -1.00 ± 0.06 -90.10 1.26 5.33 × 10−1

0606320101 3067+784
−519 -2.30 ± 0.07 -1.00 ± 0.05 -129.60 0.39 8.21 × 10−1

0606320201 2396+506
−355 -2.50 ± 0.07 -1.00 ± 0.05 -111.51 0.08 9.61 × 10−1

0606321601 3403+805
−547 -2.20 ± 0.05 -1.00 ± 0.03 -236.46 0.00 1.00

NGC 4151 0402660101 588+28
−26 -2.50 ± 0.07 -0.20 ± 0.05 -280.38 0.00 1.00

0402660201 4317+2038
−1049 -1.40 ± 0.07 -1.00 ± 0.05 -314.96 4.08 1.30 × 10−1

MRK 766 0096020101 4195+1499
−874 -2.00 ± 0.09 -1.00 ± 0.06 -119.85 4.99 8.23 × 10−2

0109141301 5069+1441
−918 -1.80 ± 0.04 -1.00 ± 0.03 -660.15 1.17 5.56 × 10−1

0304030301 5632+1992
−1167 -2.10 ± 0.05 -1.00 ± 0.04 -411.175 7.40 2.47 × 10−1

0304030401 3939+882
−609 -2.40 ± 0.05 -1.00 ± 0.04 -416.17 0.00 1.00

0304030501 2960+516
−382 -2.50 ± 0.05 -1.00 ± 0.03 -488.16 0.00 1.00

0304030601 5041+1678
−1008 -1.90 ± 0.05 -1.00 ± 0.03 -477.54 0.92 6.3 × 10−1

0304030701 3388+1227
−711 -2.20 ± 0.09 -1.00 ± 0.06 -99.91 5.08 7.9 × 10−2

MCG-6-30-15 0111570101 3695+1341
−777 -2.30 ± 0.07 -1.00 ± 0.05 -185.82 4.52 1.04 × 10−3

0111570201 3181+806
−535 -2.40 ± 0.07 -1.00 ± 0.05 -252.21 0.00 1.00

0029740101 3918+912
−623 -2.50 ± 0.06 -1.00 ± 0.04 -324.67 3.50 1.73 × 10−1

0029740701 3865+742
−535 -2.50 ± 0.05 -1.00 ± 0.03 -632.34 1.48 4.78 × 10−1

0029740801 5941+1958
−1180 -2.10 ± 0.04 -1.00 ± 0.03 -564.11 4.94 8.45 × 10−2

IC 4329A 0147440101 4665+1263
−820 -1.10 ± 0.04 -1.00 ± 0.03 -949.53 5.04 8.05 × 10−2

MRK 509 0130720101 2855+744
−489 -1.00 ± 0.11 -0.90 ± 0.07 -125.79 4.35 1.13 × 10−1

0130720201 2504+504
−359 -1.00 ± 0.08 -0.80 ± 0.06 -245.79 3.99 1.36 × 10−1

0306090201 3040+601
−431 -1.00 ± 0.05 -0.90 ± 0.04 -625.50 5.30 7.10 × 10−2

0306090301 1074+99
−83 -1.00 ± 0.06 -0.50 ± 0.04 -437.29 2.99 2.24 × 10−1

0306090401 6961+4288
−1921 -1.20 ± 0.06 -1.00 ± 0.04 -427.16 5.31 7.05 × 10−2

0601390201 3082+800
−527 -1.00 ± 0.07 -1.00 ± 0.05 -403.09 4.33 1.15 × 10−1

0601390301 1200+100
−86 -1.00 ± 0.06 -0.50 ± 0.04 -576.85 4.60 1.00 × 10−1

0601390401 1044+84
−73 -1.00 ± 0.05 -0.50 ± 0.04 -650.54 1.23 5.40 × 10−1

0601390501 6752+5890
−2146 -1.00 ± 0.06 -1.00 ± 0.04 -498.77 4.47 1.07 × 10−1

0601390601 6248+4151
−1783 -1.10 ± 0.06 -1.00 ± 0.04 -461.38 4.63 9.87 × 10−2

0601390701 6998+4557
−1979 -1.20 ± 0.07 -1.00 ± 0.05 -383.37 5.01 8.18 × 10−2

0601390801 7615+5990
−2328 -1.10 ± 0.07 -1.00 ± 0.05 -363.79 4.60 1.00 × 10−1

0601390901 2964+784
−430 -1.00 ± 0.06 -1.00 ± 0.04 -509.73 4.27 1.18 × 10−1

0601391001 4508+1966
−1050 -1.1 ± 0.06 -1.00 ± 0.04 -531.18 0.00 1.00

0601391101 5847+2923
−1462 -1.00 ± 0.07 -1.00 ± 0.05 -346.718 3.72 1.55 × 10−1

NGC 7469 0112170301 5546+3799
−1603 -1.50 ± 0.12 -1.00 ± 0.08 -95.84 2.26 3.24 × 10−1

0207090101 7455+4437
−2026 -1.30 ± 0.06 -1.00 ± 0.04 -533.01 5.45 6.56 × 10−2

0207090201 7885+3786
−1931 -1.60 ± 0.07 -1.00 ± 0.05 -319.29 3.30 1.92 × 10−1

Table 5.6: Results from the PSD fit with a broken power law model. Columns 1 – 8 give the object
name, its observation I.D., the break timescale in s (converted to temporal domain from a break
frequency in the binned periodogram), the slope αHi of the power law region at frequencies higher
than the break frequency, the slope αHi of the power law region at frequencies lower than the break
frequency, the AIC value, the difference ∆i which is used to calculate the likelihood and the relative
likelihood which quantifies the probability of the broken power law model being chosen over the
null model as a best fit PSD model.
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Figure 5.11: Left plot: X-ray light curve (0.3 keV to 10 keV) of the AGN. Middle plot: binned
periodogram: fit portion is in blue and white noise region is in red. The best fit is the power law
with Lorentzian QPO model and the residue ∆χ =(data-model)/σ is shown below it. Right plot:
LSP, MHAoV periodogram and global wavelet power spectrum results.
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Chapter 6

Theoretical models of disk variability

6.1 Introduction

Rapid short timescale variability with small to large amplitude fluctuations which are generally

aperiodic e.g. [3] are observed in light curves from active galactic nuclei (AGN) spanning a wide

range of wavelengths from optical to ultra-violet (UV) and X-rays as discussed in Chapter 1.

Phenomenological models of timing properties of variability in optical/UV and X-ray emission

from AGN are based on disk based orbital signatures from regions in the near vicinity of the

central black hole [75, 74, 76, 77]. Gravitational and Doppler redshift, time delay and light bending

introduce their collective signature on outward bound emission. Observables which include light

curves and their power spectral density are simulated considering all these effects and intrinsic disk

based emission and then compared with observational data in these bands. The development of

a power law shape of the measured power spectral density and theoretical constraints on it slope

between -1.4 and -2.1 [77] are well supported by observational studies in these wavelengths e.g.

[203]. The main general relativistic components used in these models include the geometry or disk

structure, Doppler shift due to material on the disk moving away and towards the observer line of

sight, gravitational redshift due to the curved spacetime surrounding the black hole and time delay

also due to the curved spacetime as well as due to the disk being inclined towards the observer

line of sight. Light bending effects have been considered recently in phenomenological models

of variable emission from orbital features in Keplerian orbits around Schwarzschild black holes

[78, 204], Kerr black holes [205] and from the inner region hosting the disk and the developing jet

around Schwarzschild black holes [101] in the context of simulating light curves and power spectra.

A summary of the developments in the phenomenological modelling of variability in optical/UV

and X-ray emission from AGN is presented in Table 6.1.

In the following sections of this chapter, we present a complete description of the formalism

used in constructing the phenomenological models in Kerr geometry for various observers, showing

the reduction or simplification to one of the above cases summarized in Table 6.1. We first describe

briefly the Kerr metric, its properties and use it to place lower limits on the emission region and

upper limits on the black hole mass assuming that the emission signature is from an orbital feature

123
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Reference Effects considered Application and results

Wiita (1991) Hotspot in Keplerian motion Intrinsic variability: evolution of hotspots
Schwarzschild Co-rotating observer g-factor
(disk model) Gravitational and Doppler shifts Light curves and power spectra
X-rays Time delay Power law slope for power spectrum

Zhang & Bao (1991) Hotspot in Keplerian motion Intrinsic variability: evolution of hotspots
Schwarzschild Co-rotating observer g-factor
(disk model) Gravitational and Doppler shifts Light curves and power spectra
X-rays Time delay Power law slope for power spectrum

Abramowicz et al. (1991) Hotspot in Keplerian motion Intrinsic variability: evolution of hotspots
Schwarzschild Co-rotating observer Rotation of spots, angle to observer los
(disk model) Gravitational and Doppler shifts g-factor
X-rays Time delay Light curves and power spectra

Power law slope dependent on spot evolution

Bao (1992) Hotspot in Keplerian motion Intrinsic variability: evolution of hotspots
Schwarzschild Co-rotating observer Overall variability: rotation of spots, angle to observer los
(disk model) Gravitational and Doppler shifts Analytic expression for impact factor
X-rays Time delay Analytic expression for solid angle and flux at observer

Light curves and power spectra

Mangalam & Wiita (1993) Orbital features in Keplerian motion Intrinsic variability: evolution of hotspots
Schwarzschild Co-rotating observer Orbital features and their evolution
(disk model) Gravitational and Doppler shifts g-factor
Optical/UV Time delay Light curves and power spectra

α and β disks Statistical study of simulated power spectra and light curves
Simulated power law slope between -1.4 and -2.0

Zycki & Niedzwiecki (2005) Flares in Keplerian motion Intrinsic variability: evolution of hotspots
Kerr Co-rotating observer Overall variability: rotation of spots, angle to observer los
(disk model) Gravitational and Doppler shifts g-factor
X-rays Light curves and power spectra

Pechacek et al. (2005) Hotspot in Keplerian motion g-factor
Schwarzschild Local static observer g with aberration effects
(disk model) Gravitational and Doppler shifts
X-rays Light bending using approximation in [79]

Pechacek et al. (2006) Hotspot in Keplerian motion in a narrow ring Variability due to orbiting features
Schwarzschild Local static observer frame g-factor
(disk model) Gravitational and Doppler shifts g with aberration effects
X-rays Light bending using approximation in [79] Light curves and a QPO profiled power spectrum

Time delay due to disk orientation, spot motion and light bending

Mangalam & Mohan (2013) Orbital features in Keplerian motion Variability due to orbiting features
Kerr (disk) and Schwarzschild (jet) Local static observer frame g-factor
Optical/UV Gravitational and Doppler shifts g with aberration effects
X-rays Light bending using approximation in [79] Light curves

Time delay due to disk orientation, spot motion and light bending Evolution of the QPO
Kinematic motion of orbital features in jet

Table 6.1: Summary of theoretical models of variability in X-ray and optical/UV from disk based orbital processes.
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in §6.2. Then, the derivation of the four-velocity of the bulk-flowing plasma is first calculated in

the local relativistic frames in §6.3. This is followed by the derivation of the four-momentum of

the null geodesics in the Kerr metric in §6.4. The derived four-velocity of the bulk flowing plasma

and the four-momentum of the null geodesics are put to use in §6.5 where the effective redshift

factor g is expressed in terms of these quantities. The description of variability can be simplified

by expressing all physical quantities in the description of variability in terms of the emission angles

θ̂ and φ̂. The procedure to carry this out is described in §6.6 where the emission angles are related

to the initial emission null vectors as observed in the local relativistic observer frames. The impact

parameter, Carter’s constant and hence the effective redshift factor are expressed in terms of the

emission angles as observed in these frames in §6.7. This is shown reduce to known results for the

cases of the co-rotating observer or a local non-rotating observer in Schwarzschild geometry (local

static frame). In our model, we calculate the g factor in the LNRF which directly corresponds to

the observers frame. We derive a relation between the emission angles θ̂ and φ̂ in §6.8, using the

impact parameter and Carter’s constant which are expressed in terms of the null vectors for the

LRF and the LNRF where radial inflow is present and for the CRF and LNRF where only azimuthal

flow is present. Constraints on the region of emission and range of allowed angles such that the

null ray would reach the observer are calculated using the effective potential and the relationship

between the null emission vectors in §6.9. The dependence of the azimuthal emission angle φ̂ on

the time delay is presented in §6.10 such that the effective redshift factor g can be finally expressed

in terms of the proper time. Simulated light curves are then presented in §6.11.

6.2 Kerr geometry and relevant properties

The physics of the flow and the emission are described in the Kerr metric expressed by the general

line element e.g. [61],

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ1dr2 + e2µ2dθ2 (6.1)

All above quantities are expressed in geometrized units where Newton’s constant G = 1 and

the velocity of light in vacuum c = 1. In the Boyer-Lindquist coordinates (t,r,θ,φ), the line element

describes the spacetime around a rotating black hole with a specific angular momentum or spin of

a = J/M and mass M . The covariant and contravariant components of the metric, expressed in

these coordinates are given by

gtt = (−e2ν + ω2e2ψ), gtt = −e−2ν (6.2)

gφφ = e2ψ, gφφ = −e−2ψ + ω2e−2ψ

grr = e2µ1 , grr = e−2µ1

gθθ = e2µ2 , gθθ = e−2µ2

gφt = gtφ = −ωe2ψ, gφt = gtφ = −ωe−2ν
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where the coefficients used in the metric components and in the line element are given by

e2ν =
Σ∆

A
(6.3)

e2ψ =
A sin2 θ

Σ

e2µ1 =
Σ

∆
e2µ2 = Σ

and

ω = 2Mar/A (6.4)

∆ = r2 + a2 − 2Mr

A = (r2 + a2)2 −∆a2 sin2 θ

Σ = r2 + a2 cos2 θ.

Using the above expressions, the line element can be expressed as

ds2 = −
(

1− 2Mr

Σ

)

dt2 +
r2 + a2 + 2Ma2r sin2 θ

Σ
sin2 θdφ2 (6.5)

+
4Mar sin2 θ

Σ
dtdφ− Σ

∆
dr2 − Σdθ2

The line element reduces to the Schwarzschild metric when we set a = 0 as the cross term dtdφ = 0

due to ω = 0. Further, for r ≫ M and r ≫ a, i.e. at large distances from the black hole, the line

element reduces to

ds2 = −
(

1− 2M

r

)

dt2 +

(

1 +
2M

r

)

dr2 + r2(dθ + sin2 θdφ2) (6.6)

which is the static weak field line element. Thus the Kerr metric is asympotically flat. From

the form of the line element, the Kerr metric is independent of changes in φ and t coordinates.

Hence, there exist two Killing vectors corresponding to these symmetries, ζα = (1, 0, 0, 0) and

ηα = (0, 0, 0, 1). These can be used to describe a stationary, axisymmetric observer. Unlike the

Schwarzschild metric, the Kerr metric is not spherically symmetric due to the dependence of the

metric coefficients on θ.

6.3 Reference frames and the bulk flow velocity

We make use of a set of orthonormal frames in order to describe the geometry of the flow and the

null trajectories. These help in simplifying the description and the inferences one may draw from the

results. The orthonormal nature of each frame allows one to treat these as local relativistic frames

and hence perform a Lorentz transformation to describe the relationship of physical quantitites
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measured in these frames. These frames include the local non-rotating frame (LNRF) or the zero

angular momentum frame (ZAMO) which is the frame of a local stationery observer, the co-rotating

frame (CRF) which is the frame co-rotating with the fluid on the disk and the local rest frame

(LRF) which is co-rotating and radially infalling along with the fluid on the disk. The following

quantites are calculated: the contravariant and covariant four-velocities, the tetrads used by an

observer in that frame for measurements, the orthogonal three-velocity obtained by projecting the

four-velocity into the local orthogonal tetrad frame. The LNRF reduces to the frame of the distant

observer at large r, which is the correct frame for practical purposes. Using the multiple reference

frames, once can derive the four-velocity of the bulk flow in the Boyer-Lindquist coordinates.

The contravariant four-velocity of the emitting source (on time-like trajectories) is given by

uα = (ut, ur, uθ, uφ) (6.7)

Since u.u = −1 for time-like trajectories, this identity can be used to evaluate the components of

the four-velocity

u.u = uαuα = uαuβgαβ = −1 (6.8)

For the case of the emitting source being confined to a disk, uθ = 0. Further, if the source is on

Keplerian orbits around the black hole, its angular velocity Ω =
uφ

ut
. Using these simplifications,

the four-velocity reduces to

uα = (ut, ur, 0,Ωut). (6.9)

Using the identity in eqn. (6.8),

(ut)2gtt + 2Ω(ut)2gφt + (ur)2grr +Ω2(ut)2gφφ = −1 (6.10)

From the above equation, it can be inferred that ur and ut are related. The covariant four-velocity

can be evaluated from the contravariant four velocity using the metric coefficients

uβ = uαgαβ . (6.11)

The orthogonal three-velocity in a specific local relativistic frame such as the LNRF, CRF or LRF

can be evaluated once the observed four-velocity and tetrads in that frame are specificed using

v(a) =
uαe

(a)
α

uαe
(t)
α

=
uαe

α
(a)

uαeα(t)
= v(a) (6.12)

where the tetrads eα and eα are the orthogonal unit vectors used by an observer in the desired

frame and a = 1, 2, 3 is used to represent the space coordinates.

The physics of the flow is evaluated in the Boyer-Linquist frame where the four-velocity is given

by eqn. 6.9. In each of the local relativistic frames, the tetrads which include the unit direction

vectors and the one-forms in that frame are first developed. The tetrads are useful when the

description of the flow or the emission and the null geodesics must be projected into the frame
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of the local relativistic observer. Then, the four-velocity of the flow is assembled in stages in the

Boyer-Lindquist frame using the LNRF, CRF and finally the LRF frame. In each of the frames,

the orthogonal three-velocity of the flow as measured by each corresponding observer is derived

and used in some cases to obtain the components of the flow four-velocity. The transformation of

tetrads between the LNRF, CRF and LRF are presented in [206].

6.3.1 Local non-rotating frame (LNRF)

An observer in this frame posseses zero angular momentum l = 0 and thus the azimuthal component

of the four-velocity, uφ = 0. Thus, uφ = (−gφt/gφφ)ut = ωut. Thus, the observer orbits the black

hole at an angular velocity ω, being dragged by the rotating black hole. This observer is similar to

the stationary observer in Schwarzschild spacetime as when the black hole spin a = 0, ω = 0. Also,

at large distances r, for a given black hole mass and spin, ω ∝ r−3, thus tending to 0 reducing the

frame to the stationary Schwarzschild observer.

The tetrads in terms of the matrix notation are

e(a)α =













eν 0 0 0

0 eµ1 0 0

0 0 eµ2 0

−ωeψ 0 0 eψ













eα(a) =













e−ν 0 0 ωe−ν

0 e−µ1 0 0

0 0 e−µ2 0

0 0 0 e−ψ













which are obtained by writing the metric in a tetrad notation. It is first necessary to describe

the four-velocity of the LNRF observer for the four-velocity of the flow in the Boyer-Lindquist

frame to be constructed in stages. The four velocity of a time-like observer in the LNRF is given

by

uα = ut(1, 0, 0, ω) (6.13)

Using eqn. (6.8),

(ut)2gtt + 2utuφgφt + (uφ)2gφφ = −1 (6.14)

Solving this, we obtain ut = e−ν and hence the four-velocity of the LNRF observer is given by:

uα = e−ν(1, 0, 0, ω) (6.15)

We can now calculate the three-velocity of the LNRF observer using the orthogonal tetrads

obtained above. The radial component, the polar or co-latitudinal component and the azimuthal
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component of the three-velocity are given by

v(r) =
ure

(r)
r

ute
(t)
t + uφe

(t)
φ

= 0 = v(r). (6.16)

v(θ) =
uθe

(θ)
θ

ute
(t)
t + uφe

(t)
φ

= 0 = v(θ) (6.17)

v(φ) =
ute

(φ)
t + uφe

(φ)
φ

ute
(t)
t + uφe

(t)
φ

= 0 = v(φ). (6.18)

Thus, the three-velocity, measured using the projection of the four-velocity into the orthogonal

tetrad frame for an LNRF observer is 0.

v(a) = (v(r), v(θ), v(φ)) = (0, 0, 0) (6.19)

6.3.2 Co-rotating frame (CRF)

The observer in this frame co-rotates with the fluid which is in a Keplerian orbit with angular

velocity Ω. If bulk radial inflow of the orbiting plasma is absent, the co-rotating frame can be used

to describe the four-velocity of the flow. The tetrads in this frame can be obtained by an azimuthal

Lorentz boost to the LNRF tetrads. The tetrads in terms of the matrix notation are

e(a)α (CRF ) = Λa b(φ) e
(b)
α (LNRF ) (6.20)

e(a)α =













γφ 0 0 −γφβφ
0 1 0 0

0 0 1 0

−γφβφ 0 0 γφ

























eν 0 0 0

0 eµ1 0 0

0 0 eµ2 0

−ωeψ 0 0 eψ













e(a)α =













γφ(e
ν + βφωe

ψ) 0 0 −γφβφeψ
0 eµ1 0 0

0 0 eµ2 0

−γφ(βφeν + ωeψ) 0 0 γφe
ψ













eα(a)(CRF ) = Λa
b(φ) eα(b)(LNRF ) (6.21)

eα(a) =













γφ 0 0 γφβφ

0 1 0 0

0 0 1 0

γφβφ 0 0 γφ

























e−ν 0 0 ωe−ν

0 e−µ1 0 0

0 0 e−µ2 0

0 0 0 e−ψ
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eα(a) =













γφe
−ν 0 0 γφ(ωe

−ν + βφe
−ψ)

0 eµ1 0 0

0 0 eµ2 0

γφβφe
−ν 0 0 γφ(βφωe

−ν + e−ψ)













The four velocity of a time-like trajectory in of a CRF observer expressed in the Boyer-Lindquist

frame is then given by

uα = ut(1, 0, 0,Ω). (6.22)

Using eqn. (6.8),

(ut)2gtt + 2utuφgφt + (uφ)2gφφ = −1. (6.23)

Solving this, we obtain ut =
(

e2ν − (Ω− ω)2e2ψ
)−1/2

due to which the four-velocity of the bulk

flow is given by

uα =
(

e2ν − (Ω− ω)2e2ψ
)−1/2

(1, 0, 0,Ω). (6.24)

The orthogonal three-velocity of the CRF with respect to the LNRF observer is obtained by

projecting the four-velocity calculated into the LNRF tetrad frame. The radial component, the

polar or co-latitudinal component and the azimuthal component of the three-velocity are given by

v(r) =
ure

(r)
r

ute
(t)
t + uφe

(t)
φ

= 0 = v(r). (6.25)

v(θ) =
uθe

(θ)
θ

ute
(t)
t + uφe

(t)
φ

= 0 = v(θ) (6.26)

v(φ) =
ute

(φ)
t + uφe

(φ)
φ

ute
(t)
t + uφe

(t)
φ

= (Ω− ω)eψ−ν = v(φ). (6.27)

Thus, the LNRF observer sees the CRF frame with an azimuthal motion

v(a) = (v(r), v(θ), v(φ)) = (0, 0, (Ω − ω)eψ−ν) (6.28)

The azimuthal orthogonal velocity vφ = βφ = (Ω − ω)eψ−ν with an associated Lorentz factor

γφ = (1− β2φ)
−1/2. The time component of the fluid four-velocity is then given by ut = γφe

−ν and

hence, the four-velocity is given by

uα = γφe
−ν(1, 0, 0,Ω) (6.29)

6.3.3 Local rest frame (LRF)

The flow could possess radial motion in addition to azimuthal motion. An observer in the LNRF

observes the LRF moving with a Kelperian orbit of the fluid with an angular velocity Ω and a
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radial velocity ur. The tetrads in this frame can be obtained by a radial Lorentz boost to the CRF

tetrads. The tetrads in terms of the matrix notation are

e(a)α (LRF ) = Λa b(r) e
(b)
α (CRF ) (6.30)

e(a)α =













γr −γrβr 0 0

−γrβr γr 0 0

0 0 1 0

0 0 0 1

























γφ(e
ν + βφωe

ψ) 0 0 −γφβφeψ
0 eµ1 0 0

0 0 eµ2 0

−γφ(βφeν + ωeψ) 0 0 γφe
ψ













e(a)α =













γrγφ(e
ν + βφωe

ψ) γrβre
−mu1 0 −γrγφβφeψ

−γrγφβr(eν + βφωe
ψ) γre

µ1 0 γrγφβrβφe
ψ

0 0 eµ2 0

−γφ(βφeν + ωeψ) 0 0 γφe
ψ













eα(a)(CRF ) = Λa
b(r) eα(b)(LNRF ) (6.31)

eα(a) =













γr γrβr 0 0

γrβr γr 0 0

0 0 1 0

0 0 0 1

























γφe
−ν 0 0 γφ(ωe

−ν + βφe
−ψ)

0 eµ1 0 0

0 0 eµ2 0

γφβφe
−ν 0 0 γφ(βφωe

−ν + e−ψ)













eα(a) =













γrγφe
−ν γrβre

−µ1 0 γrγφ(ωe
−ν + βφe

−ψ)

γrγφβre
−ν γre

µ1 0 γrγφβr(ωe
−ν + βφe

−ψ)

0 0 eµ2 0

γφβφe
−ν 0 0 γφ(βφωe

−ν + e−ψ)













The four-velocity of a time-like observer in the LRF is given by

uα = (ut, ur, 0,Ωut). (6.32)

Using eqn. (6.8),

(ut)2gtt + 2utuφgφt + (uφ)2gφφ + (ur)2grr = −1. (6.33)

Solving this, we obtain

ut =

(

1 + (ur)2e2µ1

e2ν − (Ω− ω)2e2ψ

)1/2

(6.34)

using which the four-velocity of the bulk flow is given by

uα =

(

(

1 + (ur)2e2µ1

e2ν − (Ω− ω)2e2ψ

)1/2

, ur, 0,Ω

(

1 + (ur)2e2µ1

e2ν − (Ω− ω)2e2ψ

)1/2
)

. (6.35)
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The radial component of the orthgonal three-velocity vr evaluated by an observer in the LRF

would be 0. Imposing this condition, we obtain the relation

v(r) =
ure

(r)
r + ute

(r)
t + uφe

(r)
φ +

ute
(t)
t + ure

(t)
r + uφe

(t)
φ

= 0 = v(r). (6.36)

The polar or co-latitudinal component and the azimuthal component of the three-velocity are given

by

v(θ) =
uθe

(θ)
θ

ute
(t)
t + uφe

(t)
φ

= 0 = v(θ), (6.37)

v(φ) =
ute

(φ)
t + uφe

(φ)
φ

ute
(t)
t + uφe

(t)
φ

= (Ω− ω)eψ−ν = v(φ). (6.38)

The azimuthal orthogonal velocity is vφ = βφ = (Ω− ω)eψ−ν and the associated Lorentz factor

is γφ = (1 − β2φ)
−1/2. The radial orthogonal velocity is vr = βr and the associated Lorentz factor

γr = (1− β2r )
−1/2.

The imposed condition in eqn. (6.36) simplifies to

ur

ut
=
βr
γφ
eµ1−ν . (6.39)

Using ut derived in eqn. (6.34), we can then express the radial component of the flow four-

velocity as

ur = γrβr
√

∆/r2. (6.40)

Now, using eqn. (6.39), ut can be written as

ut =
√

A/(∆r2)γφγr, (6.41)

and the azimuthal component of the flow four-velocity can be written as

uφ = Ω
√

A/(∆r2)γφγr (6.42)

Thus, the general four-velocity of the bulk flow is given by

uα = (
√

A/(∆r2)γφγr, γrβr
√

∆/r2, 0,Ω
√

A/(∆r2)γφγr) (6.43)

6.4 Null geodesics and the four-momentum in Boyer-Lindquist

coordinates

The conserved quantities for the Kerr metric include the total energy ε = −pt, the azimuthal

angular momentum l = pφ and Carter’s constant Q = p2θ + cos2 θ(−a2ε2 + l2/ sin2 θ). The null
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geodesics and the associated covariant components of the four-momentum are derivable from these

general conditions [207]. The contravariant components of the four-momentum are obtained using

pα = pβg
βα (6.44)

The time component is given by

pt = ptg
tt + pφg

φt =⇒ Σpt − a(aε sin2 θ − l) +
r2 + a2

∆
T. (6.45)

The radial component is given by

pr = prg
rr = e−µ1pr. (6.46)

The polar component, using the Carter’s constant Q can be written as

pθ = pθg
θθ = e−µ2(Q− cos2 θ(−a2ε2 + l2/ sin2 θ))1/2 (6.47)

and the azimuthal component, using the angular momentum l = pφ can be written as

pφ = ptg
φt + pφg

φφ =⇒ Σpφ =
aT

∆
− (aε− l/ sin2 θ) (6.48)

where T = (r2 + a2)ε− al.

For null geodesics, the following condition

p.p = pαpα = ptpt + prpr + pθpθ + pφpφ = 0 (6.49)

is used to solved for the contravariant radial component of the null four-momentum, pr, in terms

of the above contravariant time, polar and azimuthal components:

Σpr = (T 2 −∆((l − aε)2 +Q))1/2 (6.50)

If we introduce the impact factor λ = l/ε and rescale the Carter’s constant q2 = Q/ε2, the terms

used to express the radial and polar components of the four momentum can be written as

T 2 −∆((l − aε)2 +Q) = ε((r2 + a2 − λ)2 −∆((λ− a)2 + q2)) = εR (6.51)

and

Q+ cos2 θ(a2ε2 − l2/ sin2 θ) = ε(q2 + cos2 θ(a2ε2 − λ2/ sin2 θ) = εΘ (6.52)

Thus, the covariant components of the four-momentum can be calculated to be,

pα = (pt, pr, pθ, pφ) = ε(−1, R1/2/∆,Θ1/2, λ) (6.53)
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6.5 Effective redshift factor

The effective redshift factor g is the ratio of observed to emitted energy of the photon and is given

by,

g =
Eobserved

Eemitted
=
pα(∞)uα(∞)(t+ τ)

pαuα(t)
(6.54)

where τ is the travel time of the emitted photon. The four-momentum of the null geodesics is given

by eqn. (6.53) and the four-velocity of the flow is given by eqn. (6.43). Using these in the above

equation, the general expression for the effective redshift factor includes effects due to Doppler

shift, gravitational redshift, azimuthal and radial bulk inflow

g =

√

r2∆

A

1

γφγr

(

1− βr
γφ

√

R

A
− λΩ

)−1

(6.55)

The effective redshift factor g = g(βr, λ, q, r, a).

6.6 Emission vectors and emission angles

The parameters λ and q can be expressed in terms of the initial emission angles of the photon (θ̃, φ̃)

where θ̃ is the polar or co-latitudinal angle between the local normal and the emission direction and

φ̃ is the azimuthal angle which describes the position of emission of the radiation. The emission

four-vector of the emerging radiation from a source orbiting on the disk is given by,

nα = sin θ̃ cos φ̃ eα(r) + cos φ̃ eα(θ) − sin θ̃ sin φ̃ eα(φ) (6.56)

The tetrads eα(a) describe the frame in which the emission is viewed by the corresponding ob-

server. The orthogonal three-velocity vectors for the null rays can be obtained by projecting the

emission four-vector nα into the desired frame by the corresponding observer. These components

can be evaluated using

n(a) = nαeα(a) (6.57)

and

n(a) = n(a) =
pαe

(a)
α

pαe
(t)
α

=
pαe

α
(a)

pαeα(t)
(6.58)

The orthogonal three-velocities of the null geodesics as measured by an observer in the LNRF

are

n(φ) =
pαe

α
(φ)

pαeα(t)
=
pte

t
(φ) + pφe

φ
(φ)

ptet(t) + pφe
φ
(t)

= − λeν−ψ

1− λω
= n(φ) (6.59)

and
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n(θ) =
pαe

α
(θ)

pαe
α
(t)

=
pθe

θ
(θ)

pte
t
(t) + pφe

φ
(t)

= −Θ1/2eν−µ2

1− λω
= n(θ) (6.60)

where n(φ) and n(θ) in eqns. (6.59) & (6.60) are the azimuthal and polar components of the

null orthogonal three-velocities as observed in the LNRF. The orthogonal three-velocities of the

null geodesics as measured by an observer in the LRF are

n(φ) =
pαe

α
(φ)

pαeα(t)
=
pte

t
(φ) + pφe

φ
(φ)

ptet(t) + pφe
φ
(t)

=
βφ(1− λω)− λeν−ψ

γr(1− λΩ− R1/2

∆
βr
γr
eν−µ1)

= n(φ) (6.61)

n(θ) =
pαe

α
(θ)

pαe
α
(t)

=
pθe

θ
(θ)

pte
t
(t) + pφe

φ
(t)

= − Θ1/2eν−µ2

γrγφ(1− λΩ− R1/2

∆
βr
γr
eν−µ1)

= n(θ) (6.62)

where n(φ) and n(θ) in eqns. (6.61) & (6.62) are the azimuthal and polar components of the

null orthogonal three-velocities as observed in the LRF. If we make the assumption, βr = 0, i.e.,

there is no radial component of the flow, then the LRF reduces to the CRF and the three-velocities

calculated above reduce to

n(φ) =
βφ(1− λω)− λeν−ψ

1− λΩ
(6.63)

n(θ) =
Θ1/2eν−µ2

γφ(1− λΩ)
(6.64)

6.7 g factor in each local relativistic frame

The orthogonal emission three-velocities of null geodesics, derived in the previous section are first

expressed in terms of the emission angles θ̃ and φ̃ using which one can then write an expression

for the g factor in eqn. (6.55) in each local relativistic frame as a function of these angles. For

an observer in the LRF possessing the LRF tetrads, the radial component of the orthogonal three-

velocity of the null geodesics is given by

n(r) = nαe(r)α (LRF ) = sin θ̃ cos φ̃. (6.65)

The polar component is given by

n(θ) = nαe(θ)α (LRF ) = cos θ̃, (6.66)

and the azimuthal component is given by

n(φ) = nαe(φ)α (LRF ) = − sin θ̃ sin φ̃. (6.67)

The azimuthal component of the three-velocity n(φ) for an observer in the LRF, expressed in
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terms of the impact parameter and Carter’s constant is given by eqn. (6.61). Re-expressing it in

terms of λ and using eqn. (6.67),

λ =
− sin θ̃ sin φ̃γr(1−

√

R
A
βr
γφ
)− βφ

−γrΩ sin θ̃ sin φ̃− βφω − Σ
√
∆

A sin θ

(6.68)

Using the above expression in eqn. (6.55), the g factor can be written as

g = −
√

r2∆

A

1

γrγφ





γrΩ sin θ̃ sin φ̃+ βφω + Σ
√
∆

A sin θ

Ωβφ − (βφω + Σ∆
A sin θ )(1− R

A
βφ
γφ
)



 . (6.69)

The g factor above can be completely expressed in terms of the emission angles when R is

expressed in terms of the angles by solving Eqns. (6.62) & (6.66)

R1/2 =
1−λω
∆

√
Aβrγφγ

2
r

1 + β2
rγ

2
r

∆ cos2 θ̃
(6.70)

±
( (1−λω)

2

∆2 Aβ2rγ
2
φγ

4
r − (1 + β2

rγ
2
r

∆ cos2 θ̃)(−(r2 + a2 − λa)2 +∆(λ− a)2 + A
∆ cos2 θ̃γ2rγ

2
φ(1− λΩ)2))))

1 + β2
rγ

2
r

∆ cos2 θ̃

As R = (r2 + a2 − λ)2 −∆((λ− a)2 + q2), q can then be expressed in terms of λ and θ̃ as:

q2 = (r2 + a2 − λa)2/∆− (λ− a)2 −R(λ, θ̃)/∆ (6.71)

With the above expression, the eqn. (6.68) is solved for λ = λ(θ, φ) as q = q(λ, θ) from eqn.

(6.71) and R = R(λ, θ) from eqn. (6.71). The g factor in eqn. (6.69) can then be expressed in

terms of θ̃ and φ̃.

For an observer in the CRF possessing the CRF tetrads, the radial component, the polar

component and the azimuthal components of the orthogonal three-velocity of the null geodesics are

given by

n(r) = nαe(r)α (CRF ) = sin θ̃ cos φ̃. (6.72)

n(θ) = nαe(θ)α (CRF ) = cos θ̃ (6.73)

n(φ) = nαe(φ)α (CRF ) = − sin θ̃ sin φ̃ (6.74)

The azimuthal component of the three-velocity n(φ) for an observer in the CRF, expressed in

terms of the impact parameter and Carter’s constant is given by eqn. (6.63). Re-expressing it in

terms of λ and using eqn. (6.74),

λ =
sin θ̃ sin φ̃+ βφ

Ω sin θ̃ sin φ̃+ βφω + Σ
√
∆

A sin θ

(6.75)
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The expression for the effective redshift factor (6.69) simplifies to,

g = −
√

r2∆

A

1

γφ

Ω sin θ̃ sin φ̃+ βφω + Σ
√
∆

A sin θ

Ωβφ −
(

βφω + Σ∆
A sin θ

) (6.76)

As the g factor from the above equation depends only on λ, it can be cast in terms of the emission

angles θ̃ and φ̃ using eqn. (6.75). If we assume that the null geodesics are restricted to equatorial

orbits (θ = π/2) and the underlying geometry is Schwarzschild (a = 0), the following simplifications

follow: Ω = M1/2r−3/2, ω = 0, βφ = Ωeψ−ν = M1/2/
√
r − 2M and hence, γφ =

√

r − 2M

r − 3M
. These

can be used to simplify the g factor from eqn. (6.76) to be

g =

√

r − 2M

r(r − 3M)
(M1/2 sin θ̃ sin φ̃+

√
r − 2M ) (6.77)

which is the effective redshift factor obtained for a Schwarzschild CRF observer as calculated in

[76] and subsequent papers. As noted in [78], an observer in the CRF (also applicable to the LRF)

is co-rotating with the flow with the consequence that the physics in this frame not accounting for

aberration effects due to the Keplerian motion of the emitter.

For an observer in the CRF possessing the CRF tetrads, the radial component of the orthogonal

three-velocity of the null geodesics is given by:

n(r) = nαe(r)α (LNRF ) = sin θ̃ cos φ̃. (6.78)

The polar component is given by

n(θ) = nαe(θ)α (LNRF ) = cos θ̃ (6.79)

and the azimuthal component is given by

n(φ) = nαe(φ)α (LNRF ) = − sin θ̃ sin φ̃ (6.80)

The azimuthal component of the three-velocity n(φ) for an observer in the CRF, expressed in

terms of the impact parameter and Carter’s constant is given by eqn. (6.59). Re-expressing it in

terms of λ and using eqn. (6.80)

λ = − sin θ̃ sin φ̃

ω sin θ̃ sin φ̃+ Σ
√
∆

A sin θ

(6.81)

Using this in the expression for the effective redshift factor from eqn. (6.55),

g =

√

r2∆

A

1

γrγφ





ω sin θ̃ sin φ̃+ Σ
√
∆

A sin θ

(1− βr
γφ

√

R
A)(ω sin θ̃ sin φ̃+ Σ

√
∆

A sin θ ) + Ω sin θ̃ sin φ̃



 (6.82)
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Solving eqn. (6.60) for q, we can write it in terms of λ and θ̃ as

q2 =
A

∆
(1− λω)2 cos2 θ̃ − cos2 θ(a2 − λ2/ sin2 θ) (6.83)

The above is used in eqn. (6.82) to describe the g factor in terms of θ̃ and φ̃. For a flow without

radial motion (βr = 0; γr = 1), the g factor in eqn. (6.82) simplifies to

g = −
√

r2∆

A

1

γφ

A sin θ

Σ
√
∆

Σ
√
∆−nφω
A sin θ

nφβφ + 1
(6.84)

Further, if we assume that photon orbits are restricted to equatorial orbits (θ = π/2) and the

underlying geometry is Schwarzschild (a = 0), the following simplifications can be made: Ω =

M1/2r−3/2, ω = 0, βφ = Ωeψ−ν = M1/2/
√
r − 2M and hence, γφ =

√

r − 2M

r − 3M
as obtained earlier.

These can be used to write the g factor in eqn. (6.84) as

g =

√

(r − 2M)(r − 3M)

r

1√
r − 2M −M1/2 sin θ̃ sin φ̃

(6.85)

which is the g factor obtained for a Schwarzschild LNRF observer as calculated in [78]. The above

expression for the redshift factor accounts for aberration of the observed emission due to the rotation

of the disk.

6.8 Relationship between the emission angles θ̃ and φ̃

The emission angles θ̃ and φ̃ can be related using the developed formalism from the reference frames

which relates the emission vectors as viewed by the local relativistic observers. The evaluation of

the g factor which depended on βr, θ̃ and φ̃ can be made to depend only on βr and any one of the

emission angles, simplifying the description of the variability.

For the assumption that the emission occurs with the angles θ̃ and φ̃ as seen by an observer in

the LRF, the orthogonal three-velocity vectors of the null rays in the LRF can be projected using

the LNRF tetrads into the LNRF

n(a)(LNRF ) = nα(LRF )e(a)α (LNRF ) (6.86)

The radial component of the orthogonal three-velocity in the LNRF is evaluated to be

n(r)(LNRF ) = γrn
(r)(LRF ) = γr sin θ̃ cos φ̃. (6.87)

The polar component is given by

n(θ)(LNRF ) = n(θ)(LRF ) = cos θ̃ (6.88)
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and the azimuthal component can be evaluated to be

n(φ)(LNRF ) = γφn
(φ)(LRF ) = −γφ sin θ̃ sin φ̃ (6.89)

The angles θ̃ and φ̃ can be related in two cases, with and without radial motion of the emitting

source. The eqn. (6.81) relates the impact factor λ to the emission three-velocity in the LNRF and

the eqn. (6.75) relates λ to the emission three-velocity in the CRF. Equating these and using the

relation obtained in eqn. (6.89) above, we obtain,

sin θ̃ sin φ̃ =
(1− γφ)± ((1 − γφ)

2 + 4γφβ
2
φ

Σ2∆
A2 sin2 θ

)1/2

2γφβφ
Σ
√
∆

A sin θ

(6.90)

From the above expression, we can obtain θ̃ = θ̃(φ̃). For the source possessing an inflowing

radial velocity, the following procedure is adopted: the eqn. (6.68) relates the impact factor λ to

the emission three-velocity in the LRF. Using eqn.(6.71) in this renders λ = λ(θ̃, φ̃). The eqn.

(6.81) relates the impact factor λ to the emission three-velocity in the LNRF. Equating the λ(θ̃, φ̃)

from the LRF to that from the LNRF, we obtain θ̃ = θ̃(φ̃). This can also used to then evaluate

λ(φ̃) and in eqn. (6.71) to determine q(φ̃).

6.9 Constraints on r, θ̃ and φ̃

It was pointed out in the previous section that the relationship between the emission angles θ̃ and

φ̃ can be used to reduce the number of parameters in the evaluation of the effective redhsift factor

g. In this section, we calculate certain conditions which can be used to constrain the allowed extent

of r, θ̃ and φ̃.

6.9.1 Effective potential and constraints on r

From eqn. (6.53), the radial component of the contravariant four-momentum is given by

Σpr = εR1/2 (6.91)

Expanding R and using the definition of λ = l/ε,

(

pr

l

)2

=
r4

Σ2λ2
− Veff(λ, q, r, a, θ) (6.92)

where Veff(λ, q, r, a, θ) is the effective potential and is given by

Veff =
1

Σ2

(

r2
(

1− a2 − q2

λ2

)

− 2Mr

(

(

1− a

λ

)2
+
q2

λ2

)

+
a2q2

λ2

)

(6.93)

If we make an assumption that null trajectories are restricted to the equatorial plane (θ = π/2),
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then pθ = 0 and q = 0; Σ = r2. Using these in eqn. (6.92), the equation reduces to

(

pr

l

)2

=
1

λ2
− Veff(λ, r, a) (6.94)

and the effective potential is now given by

Veff =
1

r2

(

1− a2

λ2
− 2M

r

(

1− a

λ

)2
)

(6.95)

If we make a further assumption that the geometry is Schwarzschild, the Eqns. (6.94) & (6.95)

further reduce to the familiar expression e.g. [?] for Schwarzschild geometry,

(

pr

l

)2

=
1

λ2
− Veff(r) (6.96)

Veff =
1

r2

(

1− 2M

r

)

(6.97)

The extrema of the effective potential from eqn. (6.93) can be determined by the expression
∂Veff
∂r

= 0. This leads to the cubic equation

r3
(

1− a2 − q2

λ2

)

− 3Mr2
(

(

1− a

λ

)2
+
q2

λ2

)

(6.98)

+a2r

(

q2

λ2
(1 + sin2 θ)−

(

1− a2 − q2

λ2

)

cos2 θ

)

+Ma2 cos2 θ

(

(

1− a

λ

)2
+
q2

λ2

)

= 0

Solving the above cubic equation, one can obtain rTP = rTP(λ, q) where rTP is the radial

distance to the turning point where the effective potential is extremal. Using the obtained rTP,

one can then determine the extrema of the potential by using it in eqn. (6.93).

For the case of only equatorial null orbits, q = 0 and θ = π/2. Hence, the cubic equation above

reduces to

r

(

1− a2

λ2

)

− 3M
(

1− a

λ

)2
= 0 (6.99)

which can be used to solve for rTP

rTP = 3M
1− a/λ

1 + a/λ
(6.100)

If we are searching for a maxima for the effective potential Veff , then, the above solution for

rTP represents the radius at which the maximum occurs. Further, the maximum of the potential

implies the existence of an unstable circular photon orbit at rTP. If we set a = 0 in the expression

for rTP in eqn. (6.100), it reduces to the familiar rTP = 3M for Schwarzschild geometry. Using
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rTP from eqn. (6.100) in the expression for the effective potential in eqn. (6.95), we obtain

Veff =
1

27M2

(1 + a/λ)3

(1− a/λ)
(6.101)

which reduces to the familiar Veff =
1

27M2
for a = 0. Now, using the result from eqn. (6.101) in

the expression for circular orbits

(

pr

l

)2

= 0 =
1

λ2
− Veff = λ3 + 3aλ2 + 3λ(a2 − 9M2) + a(a2 + 27M2) (6.102)

we can solve the above to obtain the impact factor at which this special turning point occurs

λTP = −a+ 3
√
3M (6.103)

The above λTP can be used to determine rTP

rTP = (3M − 2a/
√
3) (6.104)

6.9.2 Constraints on the azimuthal emission angle φ̃

If one expresses θ̃ in terms of the azimuthal angle φ̃ using the relations derived in the previous

section for either a source with or without radial inflow, the allowable extent of φ̃ can be derived

in terms of the radial coordinate r and the BH spin a.

The radial component of the orthogonal three-velocity of the photon as measured in the LNRF

is given by

n(r) = n(r) =
pαe

α
(r)

pαeα(t)
=

pre
r
(r)

ptet(t) + pφe
φ
t

= −R1/2eν−µ1

∆(1− λω)
(6.105)

In eqn. (6.87), n(r) is measured by an observer in the LNRF where the emission angles θ̃ and φ̃ are

native to the LRF. This equation when combined with eqn. (6.105) gives

n(r) = γr sin θ̃ cos φ̃ = −
√

R/A

1− λω
(6.106)

In eqn. (6.89), n(φ) is measured by an observer in the LNRF where the emission angles θ̃ and

φ̃ are native to the LRF. This equation when combined with eqn. (6.59) gives

n(φ) = −γφ sin θ̃ sin φ̃ = − λΣ
√
∆

A sin θ(1− λω)
(6.107)

The expressions for n(r) and n(φ) in eqns. (6.106) & (6.107) as obtained above can be used to
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express the azimuthal emission angle φ̃

tan φ̃ =
γr
γφ

λΣ

sin θ

√

∆

Ar
(6.108)

For equatorial null orbits (θ = π/2), this reduces to

tan φ̃ =
γr
γφ

λr2∆1/2((r2 + a2)2 − a2∆)−1/2((r2 + a2 − λa)2 −∆(λ− a)2)−1/2. (6.109)

One can use the λTP from eqn. (6.103) in the above equation to obtain φ̃ = φ̃(r, a). If we

assume that there is no bulk radial flow and that the geometry is Schwarzschild (γr = 1 and a = 0),

then, the above expression reduces further to

tan φ̃ =
1

γφ

1

r

(

1− 2M

r

)1/2 ( 1

27M2
− 1

r2

(

1− 2M

r

))−1/2

(6.110)

If we assume that the emission angles were native to a LNRF observer as opposed to the LRF

observer described above, the expression above reduces to

tan φ̃ =
1

r

(

1− 2M

r

)1/2( 1

27M2
− 1

r2

(

1− 2M

r

))−1/2

(6.111)

which is the familiar expression for the relation between φ̃ and r, e.g. [?].

6.9.3 Allowed φ̃

For r = rTP = (3M − 2a/
√
3), φ̃ = π/2. i.e. if the emission occurs from a distance r = rTP, it can

be emitted upto an azimuthal angle of π/2 in order that it is on an unstable circular orbit. A small

perturbation from this would either send it into the black hole or it could escape from the vicinity

of the black hole. For r < rTP at a given a, φ̃ decreases until φ̃ = 0◦ at r = M (a = M). As this

limit approaches, only the purely radial emission can escape.

6.10 Time delay and the temporal dependence of physical quan-

tities

It is a geometrical effect which depends on the disk orientation along the observer line of sight,

the azimuthal position of the emitting orbital feature on the disk or jet and light bending due to

the curved spacetime. Consider the distribution of orbital features on a circle of constant radius

in a face-on disk. If all these features emit radiation at a given time, they will arrive at detector

at the same time subject to them not interacting with the medium in between on their journey

to the detector. A perturbed configuration due to spatially and kinematically distributed emitting

sources or a finite orientation of the disk will tend to break this symmetry. In an inclined disk,
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even if all features at the same radial position emit radiation at the same time, the arrival times of

the radiation will differ due to the inclination resulting in the photon having to traverse through

a lesser or an additional amount of distance to reach the observer depending on the azimuthal

position of the source.

If φ̃/Ω is the time of emission of a photon from a position r, the time of emission of the next

photon is,

t = φ̃/Ω+∆t (6.112)

Where t is the coordinate time in the LRF and ∆t is the coordinate time elapsed between the

emission events and is given by:

∆t = (∆t0 −∆t0(λ = 0)) + (∆φ−∆φ(λ = 0))/Ω (6.113)

The constituents ∆τ0 and ∆φ in the above expression are integrals and the entire expression

can be written as

∆t =

∫ i

π/2
Ω

(

a(λ− a sin2 θ)

Θ1/2
+
λ− a sin2 θ

Θ1/2 sin2 θ
(6.114)

+ Ω
a2 sin2 θ

(q2 + a2 cos2 θ)1/2
+

a

(q2 + a2 cos2 θ)1/2

)

dθ

+

∫ ∞

r
Ω

(

(r2 + a2)(r2 + a2 − λa)2

∆R1/2
+
a(r2 + a2 − λa)

∆R1/2

− Ω
(r2 + a2)2

∆(A−∆q2)1/2
− a(r2 + a2)

∆(A−∆q2)1/2

)

dr

In the above equation, the quantities λ and q can be expressed in terms of the azimuthal

emission angle φ̂ as derived in the earlier sections. Then, one must solve the equation iteratively

in order to obtain φ̂ = φ̂(t).

The coordinate time lapse in the LRF is converted to the proper time lapse in the LNRF as

ut =
dt

dτ
where ut is the time component of the four-velocity of the bulk flow. Thus,

τ =

∫

dt

uts
=

γrγφ
√

Σ∆/A
(6.115)

Using the above transformation, one can obtain φ̂ = φ̂(τ) using which the impact factor λ = λ(τ)

and hence the effective redshift factor g = g(τ) can be evaluated.

6.11 Results

To illustrate the shape of the PSD and the QPO properties for a non-rotating as well as maximally

rotating black hole, single component (r = 6 M) simulations are carried out for βr = 0, a = 0 and

r = 6 M . The light curve and the analysis results are plotted in Fig. 6.1. The light curve shows a
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tight, gradual spread in individual features. The periodogram is fit with a power law model with a

slope -2.05 and a QPO peaked at 2764 s clearly stands out with a statistical significance > 99.99%.

The QPO is also observed in the wavelet analysis where a peak at 2438 s is inferred. A second set

of simulations are carried out for with βr = 0, a = 0.998 and r = 6 M . The light curve and the

analysis results are plotted in Fig. 6.2. The periodogram is fit with a power law model with slope

-2.27 and a QPO with a peak at 2108 s is seen. The wavelet analysis also indicates a QPO at 2307

s which lasts throughout the observation duration.
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Figure 6.1: Left plot: light curve for the bulk flow variability model with parameters βr = 0, a = 0 and r = 6 M ; middle plot: power
spectral density of the combined light curve fit with a power law with a slope -2.05. The lower power law is the fit model and the upper
one is the 99% significance contour; A QPO peaked at 2764 s rises above this; right plot: wavelet analysis of the combined light curve
indicating a QPO at 2438 s.
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Figure 6.2: Left plot: light curve for the bulk flow variability model with parameters βr = 0, a = 0.998 and r = 6 M ; middle plot: power
spectral density of the combined light curve fit with a power law with a slope -2.27. The lower power law is the fit model and the upper
one is the 99% significance contour; A QPO peaked at 2108 s rises above this; right plot: wavelet analysis of the combined light curve
indicating a QPO at 2307 s.
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Results for bulk flow parameters of βr = 0, a = 0 and r = 6M to 14M are plotted in Figs. 6.3,

6.4 and 6.5. The parameters βr = 0, a = 0.998 and r = 6M to 14M are then used for a second set

of simulations plotted in Figs. 6.6, 6.7 and 6.8. The overall combined light curve, taken to be the

mean of the individual light curves are plotted in Figs. 6.9 and 6.10. Individual light curves from

the above figures indicate a QPO in the range of ∼ 1000 s and 10000 s. Though, these features

are smoothed out in the combined light curves where they are diluted, broad and short lived as

seen in the wavelet plots. The entire region in individual light curves is dominated by the Doppler

component. The PSD shape is characterized in general by a power law with or without a broad

QPO for the combined light curves. The PSD is fit with a power law shape. For the first set of

simulations, the slope is found to range between -2.51 for that obtained from the combined light

curve of r = 9 M to 11 M and -4.5 for that obtained from the combined light curve of r = 6 M

to 8 M . The combined light curve from r = 6 M to 14 M gives a flatter power law slope of -2.75.

For the second set of simulations, the slope is found to range between -2.5 for that obtained from

the combined light curve of r = 6 M to 8 M and -3.51 for that obtained from the combined light

curve of r = 9 M to 11 M . As the region of interest is small, spanning only ∼ 10 M , it is likely to

flatten with a larger size of the emission region.
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Figure 6.3: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0 and r = 6 M to 8 M .
Second row: left plot: combined mean light curve for r = 6 M to 8 M ; middle plot: power spectral density of the combined light curve
fit with a power law with a slope -4.5. The lower power law is the fit model and the upper one is the 99% significance contour; right plot:
wavelet analysis of the combined light curve indicating a QPO at 2860 s.
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Figure 6.4: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0 and r = 9 M to 11 M .
Second row: left plot: combined mean light curve for r = 9 M to 11 M ; middle plot: power spectral density of the combined light curve
fit with a power law with a slope -2.51. The lower power law is the fit model and the upper one is the 99% significance contour; right
plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 6.5: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0 and r = 12 M to 14 M .
Second row: left plot: combined mean light curve for r = 12 M to 14 M ; middle plot: power spectral density of the combined light curve
fit with a power law with a slope -2.45. The lower power law is the fit model and the upper one is the 99% significance contour; right
plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 6.6: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0.998 and r = 6 M to 8 M .
Second row: left plot: combined mean light curve for r = 6 M to 9 M ; middle plot: power spectral density of the combined light curve
fit with a power law with a slope -2.29. The lower power law is the fit model and the upper one is the 99% significance contour. A QPO
peaked at 2816 s rises above this; right plot: wavelet analysis of the combined light curve indicating a QPO of 3726 s.
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Figure 6.7: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0.998 and r = 9 M to 11
M . Second row: left plot: combined mean light curve for r = 9 M to 11 M ; middle plot: power spectral density of the combined light
curve fit with a power law with a slope -3.51. The lower power law is the fit model and the upper one is the 99% significance contour;
right plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 6.8: First row: simulated light curves for the bulk flow variability model with parameters βr = 0, a = 0.998 and r = 12 M to 14
M . Second row: left plot: combined mean light curve for r = 12 M to 14 M ; middle plot: power spectral density of the combined light
curve fit with a power law with a slope -2.62. The lower power law is the fit model and the upper one is the 99% significance contour;
right plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 6.9: Left plot: combined light curve for the bulk flow variability model with parameters βr = 0, a = 0 and r = 6 M to 14 M ;
middle plot: power spectral density of the combined light curve fit with a power law with a slope -2.75. The lower power law is the fit
model and the upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence
of any QPO.
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Figure 6.10: Left plot: combined light curve for the bulk flow variability model with parameters βr = 0, a = 0.998 and r = 6 M to 14 M ;
middle plot: power spectral density of the combined light curve fit with a power law with a slope -3.65. The lower power law is the fit
model and the upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence
of any QPO.
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6.12 Conclusions

1. A disk variability model based on a bulk flow confined to the accretion disk was presented.

2. The g factor was calculated in Kerr geometry and the following effects were included: gravi-

tational and Doppler shifts, aberration, time delay and radial motion.

3. The impact parameter and Carter’s constant were expressed in terms of the initial photon

emission angles.

4. A relationship between the emission angles was then used to express g as a function of only

the azimuthal angle and hence, the proper time.

5. Simulations were carried out assuming only azimuthal motion and choices of parameters such

as the BH spin a and the radius of emission r.

6. A strong QPO was inferred in the single component light curve with time-scales are in the

range ∼ 1000 s - 10000 s.

7. A natural power law shaped PSD with a typical slope of -2.5 along with the weak to strong

emerged from the simulations.

8. The model thus offers a natural explanation for the development of a power law PSD shape

with a QPO without any appeal to procedures that force their appearance in the PSD.



Chapter 7

Theoretical models of jet variability

7.1 Introduction

The inner region consisting of the disk and the developing jet is one dominated by effects due to

plasma flow, magnetic field structures, differential rotation of the disk and radiative structuring

and the flow velocity field and magnetic fields are dominated by the azimuthal component. The

poloidal components are non-zero owing to vertical structuring, random motions, radiation pressure

and dynamo action in the disk. If the magnetic field structure is well developed, the rotating field

lines could be rooted with footpoints on the disk. The magnetic field strength generated by dynamo

action in the inner disk is expected to be in equipartition with the gas pressure e.g. [85], allowing

for a reasonably well developed vertically structuring in the field [208]. As jets are believed to

originate in the immediate vicinity of the central black hole, it could be expected that they carry

ejected material from the disk into an ordered flow along the vertically structured rotating field

lines, possibly through advection e.g. [97] which would contribute to the loss of angular momentum

in addition to magnetized winds and structured magnetic field lines e.g. [209] and the disk viscosity

[60] allowing for the in-spiralling of disk material.

In the hydrodynamics approach to jet launching, the flow is described in terms of fluid equations

of motion and possible methods of its expulsion from the disk are through advection and by means

of non-axisymmetric shocks on the disk e.g. [133] possessing a poloidal component. The flow

distribution in velocity and physical extent is expected to be spread e.g. [210] due to a number of

instabilities likely to be present in the inner region and due to the action of the central potential.

It would thus not be accelerated to relativistic velocities and would manifest as winds which can

contribute to the collimation of the developing jet e.g. [211].

In the magneto-hydrodynamic (MHD) approach, multiple issues such as acceleration of the flow

to relativistic velocities, collimation, confinement and the expectation of wide range of observed

total luminosity can be addressed. Early formulations based on a relativistic treatment of ideal

MHD e.g. [212] indicated that at large distances (compared to the light cylinder radius), the total

energy is dominated by the Poynting flux as opposed to being constituted by mass loading. This

has led to full general relativistic treatments of the flow in this region studied by means of numerical

155
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simulations e.g. [213, 214, 215] with a similar conclusion. Further, the Poynting flux in the inner

jet is traced from its inception either along rotating magnetic field lines threading the disk [209]

or magnetic fields threading the ergosphere of a rotating black hole [216] to large distances (r ∼
104 rg) in order to study the evolution of the physical parameters such as bulk Lorentz factor, jet

opening angle, magnetic field strength and overall energetics.

Simplified models treating the flow in terms of test particles (bead on a wire models) assume

their ballistic motion along open magnetic field structures e.g. [208] where there is an initial

centrifugal acceleration of the flow which dies down as its velocity reaches the local Alfven speed.

Confinement at this stage is brought about by the co-rotation enforced by the rotating magnetic

field lines in the expanding region of the jet. For radiation pressure dominated disks, there is a

combination of acceleration from the centrifugal force action and the radiation pressure from the

disk based outward flux [90]. Variability in the emission is expected from the inner jet at this stage,

when the material has not yet attained asymptotic relativistic velocities (such as those close to the

light cylinder and beyond) and the flow is constrained by the expanding vertical magnetic field

component. Emission in AGN such as blazars is observed in a wide variety of wavelengths ranging

from radio to optical to Gamma-rays e.g. [217] and can be inferred in many cases to arise from the

jet.

Variability is often observed in emission from AGN with strong jet components such as blazars,

inferred from the domination of synchrotron processes in radio to optical light curves and spectra

from regions at parsec scales as well as close to the base of the jet e.g. [121, 98]. Theoretical models

are often applicable to emission from regions which are some distance away from the central region

where structures are resolvable. Some of these include Doppler beaming of a stream or blobs of

plasma accelerated to relativistic velocities along helical paths, the entire structure being oriented

in a direction very close to the observer line of sight [93, 94, 95] observed recently in the blazar BL

Lacertae [122], shocks propagating along the relativistic jet [91] which explains the variability in

some blazars e.g. [123, 124]. Relativistic aberration effects due to small deviations from linearity

in the propagating shock front could also lead to variability in overall flux and polarization [92].

Rapid variability has been observed in TeV emission from blazars [4], the time-scales of which are

a few times or much shorter than the light crossing time. Explanations have invoked instabilities

in the jet e.g. [125, 126] as well as the presence of layering in the jet with randomly oriented

substructures contributing to the overall observation [127, 128].

A study aimed at the relation between the disk corona and the inner jet [218] indicates that jet

and thermal Comptonization model fits to the radio to X-ray spectra of X-ray binaries are in close

agreement. The inner jet appears to be intrinsically linked to the corona as spectral characteristics

of its emissions are the same as that from a Comptonized corona. VLBI observations at 1.3 mm are

able to clearly resolve structures and study the emission from the inner jet of M87 [219]. A direct

scaling relation between the angular size and the distance to the object indicates that the region

of emission is very compact, even inside of the ISCO (5.5 ± 0.4 RSch) implying that its source

on the disk are likely to be on prograde orbits around the Kerr black hole. These and similar

studies indicate that there is a strong connection between the inner region very close to the ISCO
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and the emerging jet. It is also likely that perturbations produced in disks can be advected into

these relativistic jets and amplified there via Doppler boosting e.g. [97]. Hence, it is important to

study inner region in the immediate vicinity of the BH composed of the putative disk as well as

the developing jet with footpoints on the disk both from a theoretical as well as an observational

point of view.

Variability due to orbital signatures in the inner region is possible only if the flow is mass dom-

inated at these scales. Poynting flux can still develop in the inner jet (spine) to further accelerate

the mass loaded in the sheath through radiation pressure and magnetic field pressure and tension

based contributions to the developing kinetic energy of the jet. Ejected material may not be able

to travel to large distances (few light cylinders) due to inertial effects, interaction with external

earlier expelled gas and Compton drag from radiation pressure, at which time the flow becomes

Poynting flux dominated, consistent with numerical simulations and the observation of bright radio

cores e.g. [219] possibly due to particle based synchrotron radiation. Quasi-periodic variability can

be caused due to the orbital motion of the flow along helical trajectories which get beamed when

their local angle is close to the angle to the observer line of sight in the inner region where the jet

is just developing. This effect is expected to last for a few cycles.

There is thus a necessity for more advanced models which possess a realistic treatment of the

emission source kinematics and the null geodesics in curved space-time as the inner jet region is

close to the central black hole. In §7.2, we propose a simple kinematical model where a funnel

shaped structure which could approximate a stable magnetic field structure with footpoints on

the disk describes the jet geometry. Results from the analysis of simulated light curves include

addressing the QPO phenomenon, its evolution and the shape of the power spectral density for

multiple emitting regions. The model discussed is used to simulate light curves and power spectral

densities which can be generated for a wide range of parameters and are presented in §7.3.

7.2 Variability models

We propose a model of variability in the emission from this inner region consisting of the disk and

the emerging jet. Novel properties of this model are the inclusion of structure in the direction locally

normal to the disk approximating the emergence of the jet which points towards a unifying view

of emission from the inner region. This structure is treated in a funnel geometry and cylindrical

geometry in order that the results be applicable to physically relevant situations in a variety of

AGN showing jet based variability where the disk inclination angle is small and the emission is

beamed due to the relativistic motion of blobs with an angle very close to the observer line of sight

e.g. [14]. This treatment can be applied to AGN such as Seyferts and NLS1s indicating strong disk

based emission and possible spectral lines as well as blazars where emission is dominated by the jet.

Some of the issues that can be addressed by this model include shapes and broad trends introduced

by micro-variability and conditions for the presence and sustenance of a QPO due to orbital motion

of the emitting source. The model is constructed assuming a background Schwarzschild geometry
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with the line element

ds2 = −(1− 2M/r)dt2 +
dr2

(1− 2M/r)
+ r2(dθ2 + sin2 θdφ2) (7.1)

Where (r, θ, φ) are the spherical polar coordinates and M = GMBH/c
2 is the gravitational mass in

units of length. The covariant components of the metric, expressed in these coordinates are given

by

gtt = −(1− 2M/r) (7.2)

gφφ = r2 sin2 θ

grr =
1

1− 2M/r

gθθ = r2

The metric is spherically symmetric unlike the Kerr metric which only obeys axial symmetry. The

conserved quantities for the Schwarzschild metric include: total energy ε = −pt and the azimuthal

angular momentum l = pφ. If we introduce the impact factor λ = l/ε, the contravariant components

of the four-momentum for null geodesics can be written as

pα = ε

(

1

1− 2M/r
,

(

1− λ

r2 sin2 θ
(1− 2M/r)

)1/2

, 0,
λ

r2 sin2 θ

)

(7.3)

With pα being evaluated using pα = pβg
αβ and pr being evaluated using the relation

p.p = pαpβgαβ = (pt)2gtt + (pr)2grr + (pφ)2gφφ = 0 (7.4)

Assuming that the emitter is located at a radial distance R from the central BH emits a photon

at an angle α with respect to the radial vector. It then undergoes bending due to the curvature

effects to emerge at a final angle ψ with respect to the radial vector. The relationship between ψ

and α can be determined by solving and combining

ψ =

∫ ∞

R

dr

r
(1/λ2 − 1/r2(1− 2M/r))−

1

2 (7.5)

and

sinα =
λ

R
(1− 2M/R)

1

2 . (7.6)

This light bending effect can be approximated fairly accurately by a simple analytic expression [79]

1− cosα = (1− cosψ)(1 − 2M/R) (7.7)

and is illustrated in Fig. 7.1.
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Figure 7.1: Illustration of light bending with the initial angle (α) and final angle (ψ) of the emitted
photon from [79].

The travel time will be different for photons emitted from different R. It is required to account

for these differences in path length which will lead to an array of arrival times. The travel time

can be obtained from the integral

∆t =

∫ ∞

R

dr

1− 2M/r

(

(

1− b2

r2
(1− 2M/r)

)− 1

2

− 1

)

(7.8)

The time delay due to orientation effects and the effect of light bending can be approximated [204]

as

∆t =
R− 1

2
(1− cosψ)− ln

(

1 + cosψ

2

)

(7.9)

Assuming a funnel shaped geometry with the parametrization

x = ρo(1 + k(1− e−αz)) cos φ; y = ρo(1 + k(1− e−αz)) sin φ; z = pφ; Ω = (ρo)
− 3

2 (7.10)

with a footpoint radius (between the normal axis and the source starting position on the disk)

ρo, a normalizing factor k = (ρmax − ρo)/ρo, where ρmax is the cylindrical distance between the

normal axis and the final source position and the pitch distance of the helix p. We first calculate

the velocity components in spherical geometry. From r =
√

x2 + y2 + z2,

vrS =
vφS
r
(p2φ+ αkpe−αpφ(1 + k(1− e−αpφ))) (7.11)
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From θ = cos−1 z

r
,

vθS = − pvφS
r
√

1− p2φ2/r2

(

1− φ

r2
(p2φ+ αkpe−αpφ(1 + k(1− e−αpφ)))

)

(7.12)

. The calculation of vφS involves the time delay as φ = Ω(t+∆t). Using the expression in eqn. 7.9,

vφS =
Ω

A
(7.13)

where

A = 1− Ω

(

1− cosφ sin i

2

)(

1

r

(

p2φ+ αpe−αpφρ2f (1 + k(1− e−αpφ))
)

)

(7.14)

− Ω sinφ sin i

(

r − 1

2
+ (1 + cosφ sin i)−1

)

For the description of the fluid four-velocity, one must account for the Lorentz boosts due to the

radial motion and the θ-motion in order to describe the kinematics in its local rest frame. The

four-velocity is then given by

uαS = uts(1, γrv
r
S , γrγθv

θ
S , v

φ
S), (7.15)

where γr =
1√

1−(vrS)
2
and γθ =

1√
1−(vθS )

2
are the Lorentz factors due to radial and θ motions. Since

u.u = −1 for time-like trajectories, this identity can be used to evaluate the components of the

four-velocity

u.u = uαSu
β
Sgαβ = −1. (7.16)

for which

utS = (1− 2M/r − v2)1/2 (7.17)

where v2 is the total velocity of the flow and is given by

v2 = γ2r (v
r
S)

2/(1 − 2M/r)− γ2rγ
2
θr

2(vθS)
2 + r2 sin2 θ(vφS)

2. (7.18)

The quantity utS is the inverse of γjet which can be evaluated at the Alven point from angular

momentum conservation. For a cylindrical geometry (α = 0, k = 0) which is a special case of the

funnel geometry, the above relations reduce to

x = ρo cosφ; y = ρo sinφ; z = pφ; Ω = (ρo)
− 3

2 (7.19)

A = 1− Ω

(

1− cosψ

2

)

(p2φ/r) (7.20)

− Ω sinφ sin i

(

r − 1

2
+ (1 + cosφ sin i)−1

)
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Figure 7.2: Simple schematics showing broadly, time-like trajectories in the jet geometries. Left
plot: cylindrical model with constant radius ρo. Right plot: expanding funnel model with an initial
footpoint radius ρo and final radius ρmax. The flow would be along the helical shaped field lines.

The cylindrical and funnel geometries are illustrated in Fig. 7.2 and the emission geometry for

the funnel model in Fig. 7.3.

The coordinate time is converted to the proper time as uts =
dt

dτ
. Thus,

τ =

∫

dt

uts
(7.21)

The effective redshift factor g is the ratio of observed to emitted energy of the photon and is

given by,

g =
Eobserved

Eemitted
=
pα(∞)uβS(∞)gαβ

pαuβSgαβ
(7.22)

The four-momentum of the null geodesics is given by eqn. (7.3) and the four-velocity of the

flow is given by eqn. (7.15). Using these in the above equation, the effective redshift factor is given

by,
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Figure 7.3: Helical trajectory of an emitting test particle in Schwarzschild geometry, constrained
along rotating magnetic field lines with footpoints on a Keplerian disk (at cylindrical radius ρo)
and asymptotically bound by a cylinder of radius ρ at large z.
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g =

(

uts

(

1− Ω

A
(B + λ)

))−1

(7.23)

where

B =

(

1− λ2

r2 sin2 θ
(1− 2M/r)

)
1

2 (p2φ+ αpe−αpφρ2f (1 + k(1− e−αpφ))

r(1− 2M/r)
(7.24)

Thus, the effective redshift factor g depends on the parameters of the funnel model which include

(α, k, p) and the azimuthal coordinate φ. As φ = Ωt where t is the coordinate time, once (α, k, p)

are fixed, t is converted to the proper time τ using Eqn. 7.21 in order to obtain g = g(τ). The

quantity Iν/ν
3 where Iν is the intensity of emitted radiation of frequency ν is conserved. Thus, the

intensity observed Iobs can be related to the intensity emitted Iem through the relation,

Iobs
Iem

= g4 (7.25)

The quantity g4(τ) being a function of arrival time of the photon thus represents the expected light

curve.

7.3 Results and discussion

To illustrate the clear visibility of a QPO during the beaming phase, induced due to the flow

velocity and the details of the geometry, a single component (r = 6 M) simulation is carried out

for the funnel shape with α = 0.1, k = 1, p = 0.55 and r = 6 M . The light curve and the analysis

results are plotted in Fig. 7.4. The light curve shows a clear beamed portion with an increased

amplitude lasting for 3 - 4 cycles. The periodogram is fit with a power law model for the PSD

shape and a QPO peaked at 0.39 days clearly stands out with a statistical significance > 99.99%.

Interestingly as expected, the QPO feature lasts strongly only for the first ∼ 1.7 days. At large

distances, γjet ∼ (1− v2S)
−1/2 where the fluid velocity being close to c will lead to γjet ∼ 2 - 4.
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Figure 7.4: Left plot: light curve for the funnel model with parameters α = 0.1, k = 1 and p = 0.55 and r = 6 M ; middle plot: power
spectral density of the combined light curve fit with a power law with a slope -1.85 with a QPO peaked at 0.39 days for which the
statistical significance > 99.99 %; right plot: wavelet analysis of the combined light curve indicating a strong QPO at 0.39 days lasting
for ∼ 1.7 days after which it dies down.
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Simulations are carried out for a given set of funnel shape parameters to illustrate the light

curves, their properties, the presence and evolution of the QPO and a time series analysis of the

combined light curve (determination of the power spectral density with significance testing and

the wavelet analysis). The funnel shape parameters α = 0.1, k = 1 and p = 0.55 are chosen for

the funnel model, illustrated in Figs. 7.6, 7.7 and 7.8. The funnel shape parameters α = 0.1, k

= 1.2 and p = 0.55 are chosen for the funnel model, illustrated in Figs. 7.9, 7.10 and 7.11. The

parameters α = 0, k = 0 and p = 0.55 are chosen to describe the effects in the cylindrical model,

illustrated in Fig. 7.5.

The funnel shape parameters α = 0.1, k = 1 and p = 0.55 are chosen for the funnel model and

the light curves are simulated for r = 6 M to 14 M with the combined light curve and analysis

presented in Fig. 7.12. The parameters α = 0.1, k = 1.2 and p = 0.55 are then also used for a

second set of simulations with the funnel model. These light curves are also simulated for r = 6 M

to 14 M and the combined light curve and results are plotted in Fig. 7.13. Individual light curves

from the simulations indicate a QPO evolving between ∼ 0.5 days and 2 days. Though, these

features are smoothed out in the combined light curves where they are diluted, broad and short

lived as seen in the wavelet plots. Beaming lasts for a short duration of 2 - 4 cycles at the start of

the source motion as expected to occur when the relativistic fluid is emitting in a direction close

to the observer line of sight. It is during this portion that the QPO feature is captured as seen by

the wavelet analysis. The later region is dominated by the Doppler component regime purely due

to the helical motion of the emitter in both models. The beamed emission will occur in the region

beyond the acceleration region for motion is close to the observer line of sight. This depends on

the details of the geometry. Beaming is more pronounced in the funnel model: (maximum flux of

beamed portion)/(maximum of the Doppler component)∼ 2.

The PSD shape is characterized in general by a power law with or without a broad QPO for

the combined light curves. The PSD is fit with a power law shape. For the first set of simulations,

the slope is found to range between -2.12 for that obtained from the combined light curve of r = 12

M to 14 M and -2.80 for that obtained from the combined light curve of r = 9 M to 11 M . The

combined light curve from r = 6M to 14 M gives a steeper power law slope of -3.0. For the second

set of simulations, the slope is found to range between -2.28 for that obtained from the combined

light curve of r = 12 M to 14 M and -2.84 for that obtained from the combined light curve of r

= 9 M to 11 M . A general trend of steeper slopes with increased size of emission region can be

inferred from this. The power law fit is found to be a poor indicator of the PSD for this combined

light curve as it indicates a steep slope of -3.0, due to the complex shape of the PSD. Though, as

the region of interest is small, spanning only ∼ 10 M , it is likely to flatten with a larger size of the

emission region.
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Figure 7.5: First row: simulated light curves for the cylinder model with parameters α = 0, k = 0 and p = 0.55. Second row: left plot:
combined mean light curve for r = 6 M to 8 M indicating an upward trend; middle plot: power spectral density of the combined light
curve fit with a power law with a slope -1.85. The lower power law is the fit model and the upper one is the 99% significance contour. A
QPO peaked at 0.47 days rises above this; right plot: wavelet analysis of the combined light curve not indicating any QPO.
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Figure 7.6: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1 and p = 0.55. Second row: left plot:
combined mean light curve for r = 6 M to 8 M indicating a beamed portion gradually falling into the Doppler regime; middle plot: power
spectral density of the combined light curve fit with a power law with a slope -2.77. The lower power law is the fit model and the upper
one is the 99% significance contour. A QPO peaked at 0.51 days rises above this; right plot: wavelet analysis of the combined light curve
indicating a QPO at 0.47 days which lasts upto ∼ 3 days.
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Figure 7.7: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1 and p = 0.55. Second row: left plot:
combined mean light curve for r = 9 M to 11 M indicating a beamed portion gradually falling into the Doppler regime; middle plot:
power spectral density of the combined light curve fit with a power law with a slope -2.80. The lower power law is the fit model and the
upper one is the 99% significance contour. A QPO peaked at 1.04 days rises above this; right plot: wavelet analysis of the combined light
curve indicating a QPO at 0.85 days near the edge.
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Figure 7.8: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1 and p = 0.55. Second row: left plot:
combined mean light curve for r = 12 M to 14 M indicating a beamed portion gradually falling into the Doppler regime; middle plot:
power spectral density of the combined light curve fit with a power law with a slope -2.12. The lower power law is the fit model and the
upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 7.9: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1.2 and p = 0.55. Second row: left plot:
combined mean light curve for r = 6 M to 8 M indicating a beamed portion gradually falling into the Doppler regime; middle plot: power
spectral density of the combined light curve fit with a power law with a slope -2.74. The lower power law is the fit model and the upper
one is the 99% significance contour. A QPO peaked at 0.44 days rises above this; right plot: wavelet analysis of the combined light curve
indicating the absence of any QPO possibly due to a decreased signal strength.
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Figure 7.10: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1.2 and p = 0.55. Second row: left plot:
combined mean light curve for r = 9 M to 11 M indicating a beamed portion gradually falling into the Doppler regime; middle plot:
power spectral density of the combined light curve fit with a power law with a slope -2.84. The lower power law is the fit model and the
upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 7.11: First row: simulated light curves for the funnel model with parameters α = 0.1, k = 1.2 and p = 0.55. Second row: left plot:
combined mean light curve for r = 12 M to 14 M indicating a beamed portion gradually falling into the Doppler regime; middle plot:
power spectral density of the combined light curve fit with a power law with a slope -2.28. The lower power law is the fit model and the
upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence of any QPO.
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Figure 7.12: Left plot: combined mean light curve for the funnel model with parameters α = 0.1, k = 1 and p = 0.55 and r = 6 M to 14
M ; middle plot: power spectral density of the combined light curve fit with a power law with a slope -3.0. The lower power law is the fit
model and the upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence
of any QPO.
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Figure 7.13: Left plot: combined mean light curve for the funnel model with parameters α = 0.01, k = 1 and p = 0.55 and r = 6 M to 14
M ; middle plot: power spectral density of the combined light curve fit with a power law with a slope -3.0. The lower power law is the fit
model and the upper one is the 99% significance contour; right plot: wavelet analysis of the combined light curve indicating the absence
of any QPO.
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7.4 Conclusions

1. A jet variability model based on a bulk flow along helical trajectories on a funnel surface was

presented.

2. The g factor was calculated in Schwarzschild geometry and the following effects were included:

gravitational and Doppler shifts, aberration, light bending and time delay.

3. Simulations were carried out for suitable choice of geometrical parameters.

4. A beamed portion was observed lasting between 3-4 cycles at the start of the single component

simulations. Inferred time-scales are in the range ∼ 0.5 days - 2 days.

5. Earlier special relativistic results treating jets in a magnetized geometry e.g. [93] are consis-

tent with our general relativistic results.

6. A natural power law shaped PSD with a typical slope of -2.5 along with a weak to strong

QPO emerges from the simulations.

7. The emergent QPO is strong in the beamed portion. An observer inferring this from ob-

servations of blazars or other jet dominated AGN could then attribute the QPO to orbital

signatures in the jet.



Chapter 8

Summary and future work

8.1 Summary of results

In Chapter 2, we developed a suite of time series analysis techniques to extract information from

a wide variety of input light curves. The suite consists of the periodogram, Lomb-Scargle peri-

odogram, multi-harmonic analysis of variance periodogram and the wavelet analysis. Descriptive

properties of the light curve such as its mean, variance and fractional root mean square variance

are discussed. Then, the light curve (which could be mean subtracted or de-trended) is analyzed

using the analysis suite to determine the PSD shape (periodogram); presence of a quasi-periodic

oscillation (periodogram, LSP and MHAoV); times of existence, duration and number of cycles

of the QPO (wavelet analysis); evolution of the QPO during the observation duration (wavelet

analysis). The definitions, evaluation frequencies and properties to compare the techniques both

from a detection as well as statistical points of view were discussed. A description of the statistical

properties of each technique was then presented.

In Chapter 3, we described the methodology followed in the analysis of light curves. This

included a description of parametric models of the periodogram and the statistical fit to it (param-

eter estimation and model selection) using the AIC and relative likelihood. This procedure was

demonstrated for the X-ray light curve of REJ 1034+396. Analytic significance testing and MC

simulations based significance testing were then described followed by a set of numerical experi-

ments which compared and contrasted the best features of each analysis technique and provided

criteria for selection of any interesting QPO feature. Finally, a data characterization and search

strategy was presented which is used in the identification of interesting features and extraction of

a large set of information from observed light curves.

In Chapter 4, analysis suite developed in Chapter 2 and the data characterization-search strat-

egy from Chapter 3 were applied to analyze optical and X-ray light curves of blazars. In the X-ray

data, 80 % of the blazars show a broken power law but are ruled out based on strict statistical

considerations. Optical light curves of S5 0716+714 show a power law PSD with slope ranging

between -1.86 (1999 - 2003 data) and -2.21 (2012 campaign data). This could be interpreted in

terms of a larger emission region, possible in the context of an expanding jet. A possible QPO

175
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reported in [131] for an X-ray LC of 3C 273 was ruled out based on our statistical analysis. A

weak time-scale of ∼ 1 day is seen in the optical light curve of S5 0716+714 from the campaign

study. The typical aperiodic variability time-scales over ∼ 1 day are consistent with expectations

from orbital signatures in jets.

In Chapter 5, we developed a theoretical description of the high frequency break, measured in

short duration light curves followed by a model for the quality factor Q of a QPO for bulk flowing

fluid confined to a disk. We then analyzed short duration (∼ 1 day) X-ray light curves (0.3 keV to

10 keV) from a set of Sy1 and NLSy1 galaxies which have known measurements of black hole mass

and spin as reported in literature. A statistically significant high frequency break is inferred in 4

of 58 data sets (7 %). The high frequency break model is applied to infer additional constraints

on the black hole mass and spin. In NGC 3516, a lower limit to the black hole spin of ≥ 0.30

is revised to a well constrained ≥ 0.80. In the three other data sets, only two of the constraints

intersect (spin and break timescale). An upper limit to the BH mass of 57.2 M6, 57.6 M6 and

18.2 M6 can be inferred for a maximally spinning BH for NGC 4051, MRK 766 and MCG-6-30-15

respectively. The Q-factor model is applied to an X-ray light curve of REJ 1034+396. The power

law with a Lorentzian QPO model was the best fit PSD shape with Q = ± 6.5. The inferred BH

mass assuming that the QPO is from an orbital signature is between 106 M⊙ and 5 × 107 M⊙,

determined for a Schwarzschild BH and a maximally spinning Kerr BH respectively. Using the

value of Q, the QPO is likely to arise from ∼ 11 M .

In Chapter 6, a disk based variability model (in Kerr geometry) of bulk flow confined to an

accretion disk is presented. The g-factor is derived and expressed in the LNRF which is the correct

frame describing a distant observer. The g-factor is calculated as a function of the initial emission

angles of photons. Preliminary simulations are carried out for the single and multiple emitting

components with a power law PSD shape emerging along with a weak to strong QPO. Time-scales

inferred are ∼ few hours, highlighting the correspondence with dynamic processes.

In Chapter 7, a jet based variability model (in Schwarzschild geometry) of bulk flow in a

funnel shaped geometry is presented. The presence and evolution of a QPO, its time-scale and

the PSD shape expected are discussed in the context of optical and X-ray emission from blazar.

Preliminary simulations are carried out for certain values of the funnel shape parameters for the

single and multiple emitting components. Time-scales inferred are ∼ 1 day - few days, highlighting

the correspondence with helical motion of orbital signatures in the jet. In the single component

simulation (r = 6 M), a beamed portion is observed in the light curve. A QPO of 0.39 days is

strong and stands out clearly in the periodogram. In the wavelet analysis, the QPO is strong

only during the first ∼ 2 days which coincides with the beaming portion. A QPO (with 5-6

cycles) of ∼ 1 day could be identified if observations of jet dominated AGN such as blazars are

carried out for campaigns lasting a few days to a month. Our general relativistic results confirm

simulations indicating similar variability in BL Lacs reported for special relativistic plasma motion

in magnetized jets e.g. [93].
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8.2 Novel aspects and their impact

1. The statistical techniques and the analysis methodology developed in Chapters 2 and 3 extract

the maximum possible information from an observed AGN light curve (variability properties,

QPO and its evolution, PSD shapes and characteristic time-scales) through the use of mul-

tiple techniques, each with their unique advantages. We ensure that the strict statistical

significance testing (analytic and MC simulations) criteria are met when quoting a result,

making them highly reliable. This procedure can also be extended to timing analysis in

X-ray binaries.

2. The data search characterization and search strategy formulated in Chapter 3 is applicable

to a variety of light curves (even or unevenly sampled), providing a method of extracting all

information on the light curve and any possible QPO as described above.

3. The periodogram fit procedure we use does not resort to any numerical differentiation scheme

e.g. [113] which may introduce possible artefacts of particular methods used in carrying it

out. The fit procedure and model selection can be extended to any physically motivated PSD

model. Our PSD model selection and significance testing using MC simulations use the AIC,

thus giving smaller fit errors. This helps in reducing computation time drastically compared

to that developed using the χ2 fit [115]. If we must perform PSD model selection for 4

competing models (such as used here), using only the MC simulations, a typical computation

must run through a parameter space consisting of 10 variables, each with added complexity.

If the time taken for a single parameter model is t, the total time ≥ 10 t where t depends on

the number of points in the light curve. In our procedure, this total time is reduced to ∼ 3 -

4 t due to MC simulations only used partially.

4. Our analysis is well suited to study light curves from both ground based as well as space

based instruments in multiple wavelengths as it can be applied regardless of the sampling

type (even or unven). This has not been carried out before as previous studies tend to use

only a single technique such as the periodogram e.g. [115, 132] or the wavelet analysis e.g.

[131] which can only yield limited information.

5. The mass MBH and spin a of super-massive black holes reported in literature are further

constrained with the break frequency model (Chapter 5) using orbital signatures in light

curves. The region from which the QPO emerges is constrained to be ∼ 11 M for REJ

1034+396 using the quality factor Q model (Chapter 5). QPO time-scales inferred from the

disk model (Chapter 6) are ∼ 1000 - 10000 s and that from the jet model (Chapter 7) are

∼ 0.5 days - 2 days. These time-scales, obtained from general relativistic simulations are in

agreement with observed expectations.

6. The g-factor in the disk model (Chapter 6) is calculated for a LNRF observer and includes

the effects of gravitational and Doppler shifts, aberration and time delay on a bulk flow in
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Kerr geometry. A summary of the development of disk based variability models is presented

in Table 6.1 of Chapter 6.

7. The g-factor in the jet model (Chapter 7) is calculated for a local static observer in

Schwarzschild spacetime and includes the effects of gravitational and Doppler shifts, aber-

ration, light bending and time delay on a bulk flow along helical trajectories in a funnel

geometry.

8. In the disk and jet models, there is a natural development of a power law shape with slopes in

the range ∼ -1.5 to -3 in the simulated PSD along with a weak to strong QPO, attributable to

orbital signatures; the strength of which depends on the number of orbital features- a single

feature results in a strong QPO which becomes weaker for multiple emitters. Thus, we need

not appeal to any intrinsic variability process such as the disk based flare-avalanche model

[205], self-organized criticality models e.g. [220], shocks in jet [91] or the disk oscillations based

features [80]. Further, in these models and other models of intrinsic variability, the power law

PSD shape does not emerge naturally. In the case of the disk and jet models presented here,

the PSD shape is accounted for by the combination of the Doppler and relativistic effects

(including light bending) and time delay that modulates the light curve.

8.3 Future work

1. Development of analytic significance formulae for the LSP, MHAoV and wavelet analysis and

a comparison with MC simulations based results.

2. A self consistent detailed physical model involving disk and jet mass and angular momentum

equations for predicting the evolution of BH mass and spin as a function of the accretion

rate, the jet power, the total kinetic luminosity and others factors.

3. Calculation of the quality factor Q from the inclusion of vertical motion of the bulk flow.

4. A more comprehensive statistical study of light curves and PSD shapes simulated from the

developed disk and jet variability models, exploring a larger parameter space as well as a

comparison with observational results to constrain geometrical and physical parameters.

5. Extension of developed disk variability model to include light bending in Kerr geometry, using

elliptical integrals for null trajectories e.g. [221].

6. Extension of developed jet variability model to Kerr geometry including light bending and a

comparison with the Schwarzschild case.

7. Calculation of relativistically broadened emission line profiles and their variations due to time

variability of the g factor. This formulation will address the development of the double horned

asymmetric profile shape.
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8. Realistic models of the jet involving magnetic field geometry as determined by the relativistic

Grad-Shafranov equation.
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