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a b s t r a c t

We examine the existing metrics of habitability and classification schemes of extrasolar planets and
provide an exposition of the use of computational intelligence techniques to estimate habitability
and to automate the process of classification of exoplanets. Exoplanetary habitability is a challenging
problem in Astroinformatics, an emerging area in computational astronomy. The paper introduces a
new constant elasticity habitability metric, the ‘Constant Elasticity Earth Similarity Approach (CEESA)’,
to address the shortcoming of previous metrics. The proposed metric incorporates eccentricity as one
of the component features to estimate the potential habitability of extrasolar planets. CEESA is a novel
optimization model and computes habitability scores within the framework of a constrained opti-
mization problem solved by metaheuristic method, mitigating the complexity and curvature violation
issues in the process. The metaheuristic method, developed in the paper to solve the constrained
optimization problem, is a ‘derivative-free’ optimization method, scope of which is promising beyond
the current work. Habitabilty scores, such as CDHS (Bora et al., 2016), are recomputed with the imputed
eccentricity values by the method developed in the paper and cross-matched with CEESA scores for
validation. The paper also proposes fuzzy neural network-based approach to accomplish classification
of exoplanets. Predicted class labels here are independent of CEESA, and are further validated by cross-
matching them with the habitability scores computed by CEESA. We conclude by demonstrating the
convergence between two proposed approaches, Earth-similarity approach (CEESA) and prediction of
habitability labels (classification approach). The convergence between the two approaches establish
the efficacy of CEESA in finding potentially habitable planets.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The rate of discovery of extrasolar planets (exoplanets) is
rapidly increasing. The idea that planets other than Earth can
possibly harbor life has intrigued and captured human imagina-
tion for centuries. Recently, thousands of planets were discovered
in our Galaxy alone with the inference that stars with planets
are a usual occurrence, and the estimates are that there are at
least as many planets in the Milky Way as stars, or even many
more (including the free-floating planets; e.g. Strigari et al., 2012;
Cassan et al., 2012; van Elteren et al., 2019). Led by the NASA
Kepler Mission (Batalha, 2014), planetary searches yielded nearly
7000 confirmed and yet to be confirmed exoplanets (at time of
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writing). The discovery and characterization of exoplanets require
both extremely accurate instrumentation and sophisticated sta-
tistical methods in order to extract the weak planetary signals.
Their detailed modeling for obtaining the orbital or atmospheric
properties is even more challenging. Inferring the properties of
underlying planet populations from biased or incomplete samples
is another challenge. But characterization of exoplanets is impor-
tant to judge their habitability — the measure of how probable
is the potential of life on a planet. This question is of extreme
interest and importance to the humanity because the discovery
of even the primitive life on another world will have a profound
impact on our civilization. The theoretical work in this regard
expanded from the concept of a stellar habitable zone (HZ) to
the idea of a Galactic HZ (Gonzalez et al., 2001) and, recently,
to the Universe HZ in the context of evaluating which galaxies
may be more habitable (Dayal et al., 2015). But the original
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question of which of thousands detected planets are habitable,
or potentially habitable, is not yet answered. To answer that,
we need to understand how different planetary parameters, such
as planet’s orbital and physical properties, or even host star’s
physical properties, combine to provide habitable conditions.

Given the increasing rate of discovery of exoplanets (especially
with the scheduled launch of the James Webb Space Telescope
in 2019), it can be expected that the amount of data samples of
exoplanets will reach the scale of a big-data problem (much like
the volume of samples collected by the SDSS,1 which is terabytes
in size). In this context, it is important to explore the current
classification schemes and to devise methods which can auto-
matically discover meaningful patterns in data and classify them.
Since not one single parameter can suffice as the sole criteria for
habitability, we explore methods which take into consideration
multiple observable characteristics of exoplanets. For example,
presence of water may increase the likelihood of an exoplanet
to be potentially habitable (Irwin et al., 2014). If a planet resides
in the HZ, it is considered to be potentially habitable since the
atmospheric conditions in these zones are more likely to support
life (Kaltenegger et al., 2011; Méndez, 2011). However, in either
case, the habitability cannot be affirmed until other parameters
such as planet’s orbital and physical properties are collectively
considered.

We developed a method which does not require target class
labels but finds an optimal convex combination of the observables
— Earth similarity score. With currently 3875 confirmed and about
3000 unconfirmed discoveries,2 the amount of accumulated data
is rich, and the challenge in determining the potentially habitable
candidates lies in the selection of parameters of higher priority.
This issue was first addressed in Schulze-Makuch et al. (2011)
who formulated two indices, the Planetary Habitability Index
(PHI) and the Earth Similarity Index (ESI). To account for the
biology related features, another parameter was introduced — the
Biological Complexity Index (BCI) (Irwin et al., 2014). Here, we
briefly describe the mathematical forms of these parameters.

Earth similarity index (ESI). ESI was designed to determine the
exoplanet similarity to Earth (Schulze-Makuch et al., 2011), since
we know that life flourishes in Earth-like conditions. ESI range is
0 (no similarity) to 1 (ESI value of the Earth). A planetary body
with an ESI over 0.8 is considered to be Earth-like. It was defined
in the form

ESIx =
(
1−

⏐⏐⏐⏐x− x0
x+ x0

⏐⏐⏐⏐)w

, (1)

with ESIx being the ESI value of a planet for x property, x0 the
Earth’s value for that property, and w the weighting component
for adjusting the sensitivity of the scale. Four parameters: surface
temperature Ts, density D, escape velocity Ve and radius R, are
used to determine the total ESI, through calculating separately
the interior ESIi (from radius and density), and surface ESIs (from
escape velocity and surface temperature). Finally, the total ESI of
a planet is calculated by taking the geometric mean of ESIi and
ESIs. However, ESI in this form (1) only describes the similarity
of a planet to the Earth. It does not define the habitability. For
example, it is relatively high for the Moon — about 0.5.

Planetary habitability index (PHI). For a quantitative measure
of the ability of a planet to develop and sustain life, Schulze-
Makuch et al. (2011) defined the PHI index,

PHI = (S · E · C · L)1/4 , (2)

1 Sloan Digital Sky Survey.
2 Feb. 2019, NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.

edu.

where S is a substrate, E — available energy, C — appropriate
chemistry and L — liquid medium. The PHI value of each pa-
rameter is divided by the maximum PHI to normalize the scale
to between 0 to 1. However, the PHI parameters are difficult
to measure, and it may have missed some other properties that
are necessary for determining planet’s present habitability. For
example, Safonova et al. (2016) proposed to complement the PHI
with the age of the planet (see their Eq. 6).

Biological complexity index (BCI). Yet another habitability in-
dex was introduced by the same group (Irwin et al., 2014) as an
extension of the PHI, with inclusion of geophysical complexity G,
temperature T and planetary age A,

BCI = (S · E · T · G · A)1/5 . (3)

which is then normalized to the maximum BCI value in the set
to produce the scale from 0 to 1. Yet, Venus has BCI of zero
and Enceladus the BCI of 0.17, while Gliese 581c has the highest
BCI of any exoplanet, even higher than the Earth. However, this
planet has more of a Venus-like environment being very close to
its star. In addition, this index was mainly oriented at assessing
the probability of finding a complex (evolved) life on a planetary
body.

The standard conservative definition of a habitable planet is
applied for planets residing in the classical HZ: a region where
liquid water can exist on the surface (Huang, 1959; Kasting,
1993). However, it is possible for a planet to be a good candidate
for habitability even outside the classical HZ, or even without a
host (Stevenson, 1999; Irwin and Schulze-Makuch, 2011; Heller
and Armstrong, 2014). Also, our Moon is within the HZ but
clearly is not potentially habitable for our kind of life. Though
observational efforts are concentrating on the search for Earth’s
twin (i.e. the planet with ESI = 1), it is quite possible that
even with ESI close to 1, a planet is not potentially habitable.
Recent ‘best bet’ for a life-supporting planet, Gliese 832c with
ESI = 0.81 (Wittenmyer et al., 2014), was found more likely to
be a super-Venus and is, probably, tidally locked with its star.

Cobb–douglas habitability production function (CD-HPF). We
believe in the probabilistic measure of habitability, in contrast
to the classical binary definition of being or not in the HZ. This
requires ranking exoplanets in a range of habitability potential
by optimizing the habitability production function. Thus, we have
introduced a Cobb–Douglas Habitability Score (an offspring of
a constrained optimization problem), by using measured and
estimated planetary parameters (Bora et al., 2016). The goal was
to determine the likelihood of an exoplanet to be (potentially)
habitable by comparing its habitability score (CDHS) with the
Earth’s. The general form of the Cobb–Douglas production func-
tion CD-HPF is

Y = k
∏

i=1...n

xαi
i , (4)

where k is a constant assumed to be 1, Y is the habitability
score, i.e. output, xi are the planetary parameters (or factors), and
αi the elasticity coefficients, determined by the solution to the
optimization problem. The sum of αi (which can be ≤ 1, = 1, or
≥ 1) determines returns to scale conditions in the CD-HPF (Saha
et al., 2016). We have shown that PHI in its original form is a
special case of CDHS (Bora et al., 2016).

Cobb–Douglas production function (Cobb and Douglas, 1928)
is a ‘gold-standard’ in production optimization practices (Wu,
1975; Hossain et al., 2012; Hassani, 2012; Saha et al., 2016).
Our formulation of CDHS adjusts elasticities via metaheuristic
optimization while maintaining global maxima for concavity. The
functional form tackles changes in input values (i.e. change in the
values of the physical parameters), where maximum CDHS for all
exoplanets in the catalog change accordingly, consistent with the
database.

https://exoplanetarchive.ipac.caltech.edu
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Constant elasticity earth similarity approach (CEESA). The
complexity of the problem involves cross-matching the calculated
habitability scores with prediction of class labels. The classifica-
tion approach does not require explicit computation of the hab-
itability score and, therefore, the efficacy of the overall approach
depends on correctness of both approaches; the former being a
computational optimization one, and the latter a machine clas-
sification one. For example, existing habitability scores/indices
do not consider eccentricity as the input variable. To impute
the missing values in CDHS requires the introduction of a novel
method, since many eccentricity values in the catalog are marked
as zero. The approach proposed in this paper – a constant elas-
ticity Earth similarity approach (CEESA) – does that. The imputed
values need to be cross-validated with the ones obtained from
CEESA, which automatically handles missing values due to the
additive form of the model. CEESA is embellished by a novel
optimization model, which returns optimal habitability scores
for exoplanets, in the process translating the score computa-
tion problem to a constrained optimization problem. This is
solved by a metaheuristic method, mitigating the complexity
and curvature violation issues of gradients and, consequently,
producing a method which computes optima. We call this the
derivative-free optimization, particularly useful when gradient
computation becomes messy (for multi-variate functions such
as ours) due to frequent changes in the sign of the function
(curvature violation). A cornerstone of the paper is the demon-
stration of convergence between two approaches, classification
approach (prediction of habitability labels) and Earth-similarity
approach (CEESA). We applied fuzzy neural networks to solve
the habitability class problem. This method is particularly useful
when the class membership of objects (exoplanets) is not clear.

The remainder of the paper is organized as follows. We be-
gin by detailing the problem statement and describing several
challenges we need to solve in order to arrive at an acceptable
solution. In Section 3, we briefly describe the structure of the data
present in the PHL-EC catalog and the method used to impute
the eccentricity values that are marked ‘0’ in the catalog. We
introduce our novel work that estimates the habitability score
of exoplanets using CEESA, based on a production function, in
Section 4. The section also elaborates on different machine learn-
ing (ML) techniques used to implement this model. Section 5
describes a metaheuristic method used to group the planets into
different classes. Section 6.4 elaborates a classification technique
that has been implemented using fuzzy neural network. The
outcome of all methods is shown and justified in Sections 6 and
7 along with their comparison. Related proofs and derivations are
included in subsequent sections and appendices.

2. Problem statement

Considering the complexity of assessing the habitability of
exoplanets, there is no way to definitively conclude on exoplanets
habitability classes, types etc. at this point of time. Hence, it is
imperative to explore different methods that can be proved math-
ematically and whose physical interpretations can be strongly
justified. We explore machine learning based classifiers and math-
ematical models (as metrics) for classification and habitability
assessment of newly discovered exoplanets. Our proposed meth-
ods try to integrate computational methods, algorithmic learning,
and mathematical modeling for determining the degree of habit-
ability of an exoplanet. The outcome of the all the models may
be used as indicators while looking for new habitable worlds.
Our principal contribution is to propose an integrated approach
to habitability classification. The salient features of our work are
listed below:

• A new habitability metric is introduced that is capable of
accommodating new input parameters with zero or missing
values, which was not possible in a product-form formula-
tion, such as CDHS.
• A method was devised capable of handling missing data

imputation for eccentricity (restricted to rocky planets).
• The theoretical foundations of the proposed model to com-

pute the Earth Similarity Score are validated.
• The complexity and curvature violation are mitigated by

applying a metaheuristic approach.
• Two approaches, CEESA and CDHS, are compared and con-

trasted.
• We defined neural network and fuzzy neural network-based

classification approach, and cross-validated habitability clas-
sification outcome with CEESA and CDHS to obtain a more
reliable set of potentially habitable exoplanets.

2.1. Justification of the methodology and motivation

In PHL-EC dataset, one of the proposed classification method is
sorting all exoplanets into five categories based on their
thermal surface characteristics: non-habitable, and potentially
habitable: psychroplanet, mesoplanet, thermoplanet and hypopsy-
chroplanet.3 While it is reasonable in itself to say that many
factors of life are dependent on temperature, we believe that
while trying to assess the habitability of an exoplanet by means
of a metric, more than just the temperature should be taken
into consideration. Factors such as radius of a planet, density,
escape velocity, eccentricity, and others, are important while
determining whether a planet can be potentially habitable or not.
For example, there might be cases where the temperature of a
planet is in the habitable range, but the planet is too massive
to harbor life as we know it, such as e.g. the case of a brown
dwarf WD 0806-661B with estimated effective temperature of
∼27 ◦C (Luhman et al., 2011) (compare to Earth average temper-
ature of ∼15 ◦C). Hence, developing classification schemes based
on only one parameter alone is not sufficient. This has been a
prime motivation for the development of metrics such as BCI, PHI,
and ESI; this, in turn, inspired us to explore new models that can
be used to assess the habitability of exoplanets, which led to the
development of CD-HPF. The most significant difference between
CD-HPF and the aforementioned habitability metrics is that CD-
HPF is inherently adaptive, with the constituent observables
in the model having different levels of importance in different
planets. Moreover, the overall habitability, as indicated by the
CD-HPF, is a score that is maximized on the constituent variables.

The CD-HPF (Bora et al., 2016) is a novel indicator of habit-
ability of an exoplanet. However, the disadvantage of the model
is that it is in a multiplicative form. Hence, if the value of an
observable is reported as zero, the Cobb–Douglas habitability
score (CDHS) of that planet becomes zero, but that is an invalid
CDHS for the exoplanet by definition. In this light, it should be
noted that none of the observables currently used in the CD-HPF
model can have a zero physical value (the values of radius, surface
temperature, density, and escape velocity, which are used in the
CD-HPF model, cannot be zero for any planet!). To overcome the
shortcomings of the CD-HPF, we introduce a new model in this
work: the metric in an additive form which can handle naturally
occurring, or spurious, zero values of observables. Any number
of input parameters can be added to this model. The properties
of Constant Elasticity of Substitution (CES) production function
motivated us to check the applicability of it in our problem do-
main. This led to the development of a newmetric for habitability,

3 http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationf
orexoplanets.
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which we call CEESA: Constant Elasticity of Substitution Earth
Similarity Approach. CEESA overcomes the shortcoming of CDHS
in handling zero and inconsistent values. While trying to scale up
the CD-HPF production function, we faced a bottleneck when we
tried to use orbital eccentricity as a feature, because eccentricity
of a planet is reported as zero if it is naturally zero or if the data is
missing from the database. Eccentricity may play a significant role
in determining the habitability of planets. It was proposed earlier
that low eccentricity favors multiple planetary systems which, in
turn, favors habitability (Limbach and Turner, 2015) as it may
control the climate on a planet (Wang et al., 2017). However,
most known exoplanets have high eccentricities: two potentially
habitable planets, TRAPPIST-1 (Wolf, 2017) and Proxima b, have
highly elliptical orbits. It was estimated that, though eccentricity
shrinks the HZ, high eccentricity orbit is in certain spin–orbit
resonances that can have low effect on planetary climate (Wang
et al., 2017). For example, for eccentricity e = 0.4 and p = 0.1
(where p is the ratio of orbital period to spin period), the HZ is
the widest and the climate is most stable. It is obvious that the
question is not settled yet, as e.g. our Solar System has a unique
feature of very low ellipticities (Earth’s orbit is nearly circular at
e = 0.017), making eccentricity an important parameter.

2.2. List of acronyms and definitions used in the paper

Various acronyms used in the paper are listed below with
their full form. For details on each of these terms, please refer
to Appendix A. Appendix C contains implementation details on
kNN imputation.

• ML: Machine Learning
• PI membership function: (π ) membership function.
• Linguistic variable
• Returns to Scale: CRS, DRS and IRS
• CRS: Constant Returns to Scale
• DRS: Decreasing Returns to Scale
• IRS: Increasing Returns to Scale
• CO: Constrained Optimization
• MO: Mathematical Optimization
• kNN: k Nearest Neighbor
• Concavity

3. Data and the catalog

3.1. Classes and features in the dataset

PHL-EC has been created from the Hipparcos catalog which
contains 118,219 stars, by examining the information on dis-
tances, stellar variability, multiplicity, kinematics, and spectral
classification of the listed stars. The reason we use this catalog
is because it combines measured and modeled parameters from
various sources; it even provides an expanded target list for use
by Project Phoenix of the SETI Institute. The PHL-EC dataset con-
stitutes 68 features of about 3875 confirmed exoplanets (at time
of writing this paper): 13 categorical features and 55 continuous
features. It was discovered that there were 6 features, such as
names of the exoplanets, discovery methods and discovery year,
which did not play any important role in determining habitability
of a planet, and we did not use these.

3.2. Eccentricity data

Further analysis of the dataset revealed that over 60% of the
eccentricity values were missing in the catalog (being marked as
zero). The eccentricity of a planet is a parameter that determines
the amount by which its orbit around another body deviates from

a perfect circle. A circular orbit has a value of 0, an elliptical orbit
has values between 0 and 1, e = 1 is a parabolic orbit, and e > 1
defines a hyperbola.

CD-HPF model (Ginde et al., 2016; Saha et al., 2018a), being
in a multiplicative form, restricts the values of an observable to
be zero as this results in the Cobb–Douglas habitability score
(CDHS) of that planet becoming zero, which is invalid by the
definition. Hence, the model imposes a constraint that none of
the observables currently used in the CD-HPF model can have
a zero value (radius, surface temperature, density, escape veloc-
ity, or eccentricity). In PHL-EC, missing eccentricity values are
assumed as exact 0. Such samples were ignored during previ-
ous score calculations by this model to avoid erroneous results.
This elimination resulted in disregarding numerous rocky planets
possessing Earth-like properties just due to the absence of eccen-
tricity values. Discarding such samples introduces a bias or affects
the extent of representation of the results. Ignoring eccentricity
as an attribute completely would not work as it may potentially
contribute to planet’s habitability. In fact, Méndez and Rivera-
Valentin (2017) used a mean thermal approximation to show
effects of eccentricity on equilibrium temperature and, hence,
habitability.

Results, obtained on kNN imputation on few training samples,
are tabulated in Table C.15. Some exoplanets which were initially
discarded, or found not potentially habitable due to missing or
wrong values of eccentricity, were found to be potentially habit-
able after imputation. Exactly 280 samples with initially missing
eccentricity values4 were found to be potentially habitable on
imputation. Thus, imputation of missing eccentricities helped us
explore avenues by which the CDH scores can be calculated for
a larger number of exoplanets, consequently providing us a with
greater number of potentially habitable candidates.

4. CEESA: a new metric for evaluating the habitability of an
exoplanet

Having discussed briefly how CDHS could handle missing ec-
centricity values (an imputation method to be used in CDHS is
described in Appendix C), we present our model which handles
missing data (eccentricity) inherently. CEESA simply assumes the
missing values to be 0. Note that CEESA, being an additive model,
does not need to use imputed values while CDHS does!5

4.1. CES production function

Arrow, Chenery, Minhas and Solow in their now famous pa-
per (Arrow et al., 1961) developed the Constant Elasticity of
Substitution (CES) function. This production function with con-
stant elasticity of substitution between the inputs has two major
characteristics:

• It is homogeneous of degree one. If we increase the inputs
in the CES function by n-fold, output will also increase by
n-fold.
• It has a constant elasticity of substitution.

The general form of the Constant Elasticity of Substitution (CES)
production function for two inputs is

Q (L, K ) = (αLρ
+ (1− α)Kρ)η/ρ , (5)

4 A table containing original and imputed eccentricity values, named ’Original
and Imputed values of eccentricity’, may be downloaded from http://astrirg.org/
projects.html.
5 For the sake of a fair comparison between CDHS and CEESA, we need to

impute missing eccentricity values for use in CDHS and then cross-match CDHS
with CEESA values.

http://astrirg.org/projects.html
http://astrirg.org/projects.html
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where Q = quantity of output, and L, K represent labor and
capital, respectively. We define ρ = s−1

s ; s = 1
1−ρ

, Elasticity of
substitution; η = a measure of the economies of scale or elasticity
of scale and α = Share parameter.

The Constant Elasticity Earth Similarity Approach (CEESA) is
based on the Constant Elasticity of Substitution (CES) production
function. Here we considered five parameters to estimate the
habitability score of planets, which are: radius, density, surface
temperature, escape velocity, and eccentricity. In this production
function, the elasticity, ρ, is assumed to be a constant. The CEESA
model is shown in Eq. (9). This function is concave if the value
of ρ falls in the range: ρ < 0, 0 < ρ ≤ 1, and 1 ≤ ρ and thus
a maxima is assured to exist in the range of 0 < ρ ≤ 1. As the
values of the constituent parameters across a large sample change
over time, the model can adapt to find a value of ρ which will lead
the model to find the most potentially habitable planets from a
large population.

The motivation for modeling habitability using CES production
function is attributed to the following facts: CEESA is additive
and, therefore, is resistant to producing zero output if one of
the input parameters has zero value. CDHS model by Bora et al.
(2016) is limited by this handicap as it produces zero habitability
score if any of the input parameters is zero. Additionally, we
show that CES production function has CD-HPF, the basis for
the CDHS model proposed by Bora et al. (2016), as its limits.
Thus, the choice of CES to model habitability score is natural
as it is related to the CDHS formulation, with the additional
incentive of being endowed with additive form to handle zero
eccentricity values. We present the proof of the mathematical
relation between CEESA and CDHS in the next subsection.

4.1.1. CEESA yields CDHS in the limiting case
The general form of the Constant Elasticity of Substitution

(CES) production function (Hardy et al., 1952; Arrow et al., 1961)
for two inputs is

Q (L, K ) = γ (αKρ
+ (1− α)Lρ)

η/ρ
,

where Q = quantity of output/CEESA score, and L, K represent
input parameters. Define ρ = s−1

s ; s = 1
1−ρ

, ρ > 0. CEESA has as
its limits the Cobb–Douglas production function (CDHS), i.e.

lim
ρ→∞

Q = γK−αLα−1 .

Proof. We can rewrite the above equation as

Q = γ (αLρ
+ (1− α)Kρ)

η/ρ
,

1
γ
Q = (αKρ

+ (1− α)Lρ)
η/ρ (6)

1
γ
Q = exp (η/ρ · ln [αKρ

+ (1− α)Lρ]) (7)

We consider first order Taylor expansion centered at zero of
the term inside the logarithm,

αKρ
+ (1− α)Lρ

= αK 0
+ (1− α)L0 + α

(
K 0)0
· K 0
· ln(K )(ρ − 0)

= (1− α)
(
L0
)0
· L0 · ln(L)(ρ − 0)+

(ρ − 0)2

2!
· f 2(x)

= α + (1− α)+ α · ρ · ln(K )+ (1− α) · ρ · ln(L)+ O(ρ2)

= 1+ α · ρ · ln(K )+ (1− α) · ρ · ln(L)+ O(ρ2) .
αKρ
+ (1− α)Lρ

= 1+ ρ
[
ln
(
Kα
· L(1−α))]

+ O(ρ2) . (8)

Now, combining Eqs. (6) and (8), we obtain
1
γ
Q =

[
1+ ρ

(
ln
(
Kα
· L1−α

))
+ O

(
ρ2)]η/ρ

.

Define τ = 1
ρ
; ρ −→ 0; τ −→∞. Therefore,

lim
ρ→0

Q
γ
= lim

τ→∞

Q
γ

= lim
τ→∞

(
1+

1
τ
·
[
ln(Kα

· L1−α)
]
+ O

(
τ−2

))ητ

= lim
τ→∞

(
1+

1
τ
·
[
ln(Kα

· L1−α)
])ητ

= exp
(
ln(Kα

· L1−α)
)η

.

Consequently we can write:

lim
ρ→0

Q = γ (Kα
· L1−α)η

Assuming elasticity of scale η = 1, and constant of elasticity
γ = 1, we get

lim
ρ→0

Q = Kα
· L1−α .

This is the CDHS formulation as mentioned in Bora et al. (2016)
and is used in this paper with kNN imputation.

4.2. Analytical model

The habitability score, Y is the output of a production function,
expressed as a difference between two terms. The first term is
nonlinear and if used without any other constraints will yield
unbounded habitability scores for all planets. This is the reason
we introduced a penalty function which is a linear combination of
the same input variables used for the non-linear functional form.
The penalty term may be interpreted as a regularizing term to
control the growth of the first term, in a constrained optimization
framework. The combination of the two terms can be explained in
light of Econometric production function and could be interpreted
as revenue (non-linear) and cost (linear) respectively. Therefore,
the production, Y used to represent habitability score of exoplan-
ets can be thought of as profit. Instead of linearized penalty (cost),
we could have non-linear penalty as well. Strictly speaking, this
is an analogy with the economic terminologies since the model
is derived from Constant Elasticity of Substitution. Without the
cost (penalty) term, it would be almost impossible to distinguish
exoplanets based on the habitability score since all of them would
have unbounded or large values.

CEESA production function for more than two inputs can be
written as

Y = f (R,D, Ts, Ve, E) =
(
r.Rρ
+ d.Dρ

+ t.T ρ
s + v.V ρ

e + e.Eρ
) η

ρ ,

(9)

where R is radius, D density, Ts surface temperature, Ve escape
velocity and E the eccentricity of an exoplanet, which are given
(in the dataset); r , d, t , v, and e are the coefficients of radius,
density, surface temperature, escape velocity and eccentricity,
respectively. The coefficients lie in (0, 1) range, and Y is the target
output. The sum of the coefficients r , d, t , v, and e should be 1.
The value of η is constrained by the scale of production used:
0 < η < 1 under DRS, and η = 1 under CRS. Y is the habitability
score of exoplanets, where the aim is to maximize Y subject to
the constraint that the range of ρ value is 0 < ρ ≤ 1.

Optimization can be conceptualized as a cost against the rev-
enue, which is Y . Here, we consider cost to be a linear combina-
tion of the values of the features. Hence, the goal is to minimize
cost and to maximize profit. The cost function may be written as
the cost for producing Y units i.e.

c = w1R+ w2D+ w3Ts + w4Ve + w5E , (10)
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where w1, w2, w3, w4 and w5 are the weights of the inputs: radius,
density, surface temperature, escape velocity and eccentricity,
respectively. Thus, the optimization problem becomes

min {w1R+ w2D+ w3Ts + w4Ve + w5E} subject to Y . (11)

The sum of the weights should be 1. The profit function for five
parameters is thus

π = p · Y − w1 · x1 − w2 · x2 − w3 · x3 − w4 · x4 − w5 · x5 ,

where p is the price. We can write the profit function as

π = pf (R,D, Ts, Ve, E)−w1R−w2D−w3Ts −w4Ve −w5E . (12)

Profit can be maximized when

p
∂ f
∂R
= w1 , p

∂ f
∂D
= w2 , p

∂ f
∂Ts
= w3 ,

p
∂ f
∂Ve
= w4 , p

∂ f
∂E
= w5 .

The habitability score here is conceptualized as a profit func-
tion (Bora et al., 2016).

4.3. Implementation of the model

We applied CES production function to calculate the hab-
itability score of exoplanets. A total of 1644 confirmed rocky
exoplanets were taken from the PHL-EC, containing the data for
3689 exoplanets (as of September 2017). Surface temperatures Ts
of exoplanets were normalized to the EU (Earth Units) by dividing
each of them with Earth’s mean surface temperature, 288 K, to
avoid zero values in the dataset.

With all input parameters represented in EU, we are look-
ing for the exoplanets whose CEESA score is close to Earth’s
CEESA score. For each exoplanet, we obtain the optimal elastic-
ity value and the maximum habitability score using gradient-
based and metaheuristic methods, noting the limitations of the
gradient-based method along the way (see Section 5 for details).

4.3.1. Computation of CES score in DRS and CRS
We have computed elasticity values for CES in the DRS and

CRS phases using function fmincon, (explained in Appendix E.1).
The CES function is applied on varying elasticities to find the
CEESA score close to Earth’s value (equal to 1). For each exoplanet,
we obtain the optimal elasticity and the maximum CEESA value.
Table 4 shows a sample of computed values along with the
comparison of CEESA score with CDHS. The optimal score for most
of the exoplanets for DRS is obtained at ρ = 0.99 and for CRS at
ν = 1.0 and for CRS at ρ = ν = 1.0.

4.3.2. Meta-heuristic–based optimization
Estimating CEESA scores involves maximizing a production

function while observing a set of constraints on the input vari-
ables. Under most paradigms, maximizing a continuous function
requires calculating a gradient. This may not always be feasible
for non-polynomial functions in high-dimensional search spaces.
Further, subjecting the input variables to constraints, as needed
by CDHS and CEESA, are not always straightforward to represent
within the model. Therefore, we implement a novel optimization
method to compute the habitability scores of exoplanets (see
Section 5 for details).

4.3.3. Classification of exoplanet data using artificial neural network
(ANN) and fuzzy logic

Artificial neural network (ANN) is an interconnection of neu-
rons, which are arranged in hierarchical fashion and can be used
to solve problems on pattern classification. The architecture of
ANN allows weighted interconnections of neurons of input, hid-
den and output layer, the input pattern is propagated to neurons
of hidden layer. Each neuron processes the weighted-input and
squashes it to a value between 0 and 1 with the help of the
sigmoid activation function. Hidden layer propagates its value to
output layer where the neurons again squeeze its value between
0 and 1. The largest value at the output neurons decides the
class to which an input pattern belongs. The observed value is
compared with the desired value and difference of the two is
propagated back to the network, known as learning by Back
Propagation. At every iteration, the gradients are computed and
weights are updated with the aim of decreasing error. This way,
a network is trained for specific outputs and later, the network
is used to generalize outputs of test sample. In supervised clas-
sification, labels for every element in the universe are known
a-priori. A fully-connected 3-layered Perceptron architecture is
used to classify exoplanets into mesoplanet, psychroplanet and
non-habitable classes by considering entries from PHL-EC. Classes
with too few samples such as hypopsychroplanet or thermoplanet
are excluded since the number of samples is not enough to train
accurately for classification purposes.

Classical Sets and Fuzzy sets — A classical set is a collection of
distinct elements in which every element posses similar proper-
ties. These are sets defined with crisp boundaries. It is defined
in such a way that an element is either a member or not a
member of the set. For example, a set of days-of-week includes
Tuesday, Saturday and, unquestionably, excludes February or De-
cember. Accordingly, membership value for an element is 0 or
1 (0 for non-member and 1 for member). Ironically, this is not
analogous to the real-world samples where data is uncertain
and imprecise. To capture the inexactness of data under study,
a concept of fuzzy sets becomes necessary and their usage be-
comes inevitable. Fuzzy sets, introduced by Zadeh (1965) are
an extension of classical sets. By introducing fuzzy logic, we
eliminate sharp boundaries, add more details to the data values,
thereby facilitating the neural network to learn precisely from
the data. Fuzzy sets are sets that evolve around the concept of
partial-membership. This implies that an element of fuzzy set
may attain a partial membership value between 0 and 1. With
the aid of membership function, the crisp feature is converted
into multiple fuzzy sets represented in the form of linguistic
variables (variables whose values are words in a natural language)
as low, medium, high. Essentially, a membership function is a
mathematical tool to transform crisp set into fuzzy, and we have
used PI (π ) membership function to map the crisp features of
exoplanets into fuzzy.

The reason behind using fuzzy inputs for classifying exoplan-
ets can be understood by taking a look at a few crucial features,
such as radius, eccentricity and density. These features do not
give sufficient insight about classes while classifying exoplanets.
During the process of classification, they may not be able to help
the model to converge quickly with accurate results. Fuzzy rep-
resentation helps improve classification because of the ability to
represent feature values realistically. For exoplanet classification,
features are converted into three overlapping fuzzy sets named
low, medium and high with the help of PI membership function.
The exoplanet dataset comprises 45 features, thus every pattern
in the dataset is represented into 45 × 3 vector before being
fed into the neural network. Consider an n-dimensional feature
vector, F = [F1, F2, F3....Fn] consisting of numerical values. Let r
be any element in the sample space, λ be the radius of a feature
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space Fi and c is the central value. Appendix A contains the
mathematical definition of the PI (π ) function. Every feature Fj
of a sample point r can be represented in terms of membership
values corresponding to the 3 linguistic variables (low, medium
and high). Apparently, the dynamic range of feature space is
divided into three overlapping fuzzy sets, each one represented
by π functions. λ and c is computed for each of three fuzzy
sets, and later membership values are derived for each element
r . Assuming FjMax and FjMin are maximum and minimum values of
the feature Fj in the sample space, λ and c for the three linguistic
spaces can be defined as follows (parameter fdenom controls the
level of overlap),

λmedium(Fj) =
1
2

(
FjMax − FjMin

)
cmedium(Fj) = FjMin + λmedium(Fj)

λlow(Fj) =
1

fdenom

(
cmedium(Fj) − FjMin

)
clow(Fj) = cmedium(Fj) − 0.5 λlow(Fj)

λhigh(Fj) =
1

fdenom

(
FjMax − cmedium(Fj)

)
chigh(Fj) = cmedium(Fj) + 0.5 λhigh(Fj) .

λ and c are computed for each feature and later substituted in
π membership function to derive fuzzy values for the PHL-EC
dataset. The fuzzy values are then fed into ANN for classification.

The results of classification are cross-matched with CEESA
scores of exoplanets. We discussed the convergence of these
approaches later in the results section (Section 6). Next section
discusses the metaheuristic optimization adopted to compute
habitability scores of exoplanets in detail vis-á-vis Particle Swarm
Optimization (PSO).

5. Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) (Eberhart and Kennedy,
1995) is a biologically inspired metaheuristic for finding the
global minima of a function. Traditionally designed for uncon-
strained inputs, it works by iteratively converging a population of
randomly initialized solutions, called particles, toward a globally
optimal solution. Each particle in the population keeps track of
its current position and the best solution it has encountered,
called pbest . Each particle also has an associated velocity used
to traverse the search space. The swarm keeps track of the
overall best solution, called gbest . Each iteration of the swarm
updates the velocity of the particle toward its pbest and the gbest
values. Let f (x) be the function to be minimized, where x is a d-
dimensional vector. f (x) is also called the fitness function. Our
focus in this work is restricted to adapting PSO for unconstrained
optimization problems to constrained ones as well as mitigating
the curvature violation and the complexity of handling multi-
variate optimization problems. PSO handles this by eliminating
the need to compute gradients explicitly.

Curvature violation implies the change of sign in a functional
form, i.e. the function changes its shape (from increasing to
decreasing, and vice-versa) prematurely even before the optima
is reached. Therefore, for the functional forms considered in the
habitability model proposed here, the complexity of computing
the maximum habitability score involves dealing with ’curvature
violations’. The model relies on theoretical guarantees of global
optima, and uses the optima to report the maximum habitability
score. However, from a practical and computational perspective,
we may not obtain the desired optima due to the curvature viola-
tion of the functional form. Curvature violation is a major issue in
cases of flexible functional form. We expect the global curvature
conditions to be consistent with theory when estimations of input

parameters and profit function (Y , in this case) are required from
a functional form. Along with that, the task of maintaining the
flexibility of functional form is also necessary. The phenomenon
sometimes arises due to the added local (meaning model-specific,
application specific, as opposed to global meaning universalized)
restrictions, or constraints, in the optimization problem. Since
our habitability score is the solution to a constrained optimiza-
tion problem, we expect curvature violation due to the general
practice of assuming and computing smooth gradients along the
functional form. So, if the curve changes sign abruptly, the gradi-
ent ascent, which is usually applied to find optima, would fail to
detect the violation and report whichever is the highest point of
ascent in the curve represented by the function. This complexity
is handled by computing global maxima theoretically and algo-
rithmically for each exoplanet, exploiting intrinsic concavity of
the functional form, and ensuring ’no curvature violation’. This is
explicitly done by the iterative, metaheuristic method (replacing
gradient ascent/descent method) described in the next section.

5.1. PSO for constrained optimization

Although PSO (Ricardo, 2008) eliminates the need to estimate
the gradient of a function, it still is not suitable for constrained
optimization. The standard PSO algorithm does not ensure that
the initial solutions are feasible, and neither does it guarantee
that the individual solutions will converge to a feasible global
solution. Solving the initialization problem is straightforward. We
re-sample each random solution from the uniform distribution
until every initial solution is feasible. To solve the convergence
problem each particle uses another particle’s pbest value, called
lbest , instead of its own pbest to update its velocity. This is a
major deviation from the standard PSO method. Algorithm 1
describes this process.

On each iteration, for each particle, the algorithm first picks
two random numbers ug , up. It then selects a pbest value from
all particles in the swarm that is closest to the position of the
particle being updated as its lbest . The lbest value substitutes
pbest i in the velocity update equation. While updating pbest for
the particle, the algorithm checks if the current fit is better than
pbest , and performs the update if the current position satisfies all
constraints. The algorithm updates gbest as before.

5.2. Representing the problem

In our attempt to discern the habitability scores of discovered
exoplanets, we used the PSO algorithm to maximize the objective
function. There are several aspects of this approach we look
into while considering whether PSO is the right alternative to
optimizing a CES production function. To begin with, PSO was
not designed to handle constraints in its classical definition. The
algorithm needed to be modified to operate in a constrained
search space such that the global optima lies within the set of
feasible solutions. We also note that, since PSO does not use the
gradient of the objective function, it must be able to simulate the
gradient in order to gauge whether or not it is generating better
solutions at the end of each iteration. Another merit to utilizing
PSO for estimating habitability is that we can observe the value
of the input variables as it pilots the objective to converge to a
globally optimal solution.

A constrained optimization problem can be represented as

minimize
x

f (x); subject to gk(x) ≤ 0, k = 1 . . . q , hl(x) = 0,

l = 1 . . . r .
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Algorithm 1: Algorithm for CO by PSO.
Require: f (x), the function to minimize.
Ensure: global minimum of f (x).
1: for each particle i← 1, n do
2: repeat
3: pi ∼ U(l, u)d

4: until pi satisfies all constraints
5: vi ∼ U(−|u− l|, |u− l|)d

6: pbest i ← pi
7: end for
8: gbest ← argmin

pbest i, i=1...n
f (pbest i)

9: repeat
10: oldbest ← gbest
11: for each particle i← 1 . . . n do
12: up, ug ∼ U(0, 1)
13: lbest ← argmin

pbest j, j=1...n
∥pbest j − pi∥2

14: vi ← ω.vi + λg .ug .(gbest − pi)+ λp.up.(lbest − pi)
15: pi ← pi + vi
16: if f (pi) < f (pbest i) and pi satisfies all constraints then
17: pbest i ← pi
18: end if
19: end for
20: gbest ← argmin

pbest i, i=1...n
f (pbest i)

21: until |oldbest − gbest|< threshold
22: return f (gbest)

Ray and Liew (2001) describe a way to represent non-strict
inequality constraints when optimizing using a particle swarm.
Strict inequalities and equality constraints need to be converted
to non-strict inequalities before being represented in the prob-
lem. Introducing an error threshold ϵ converts strict inequalities
of the form gk′(x) < 0 to non-strict inequalities of the form
gk(x) = gk′(x)+ ϵ ≤ 0. A tolerance τ is used to transform equality
constraints to a pair of inequalities,

g(q+l)(x) = hl(x)− τ ≤ 0, l = 1 . . . r ,

g(q+r+l)(x) = −hl(x)− τ ≤ 0, l = 1 . . . r .

Thus, r equality constraints become 2r inequality constraints,
raising the total number of constraints to s = q + 2r . For
each solution pi, ci denotes the constraint vector where, cik =
max{gk(pi), 0}, k = 1 . . . s. When cik = 0, ∀k = 1 . . . s, the
solution pi lies within the feasible region. When cik > 0, the
solution pi violates the kth constraint.

Under these guidelines, the representation of CDHS estimation
under CRS as a CO problem is given below

minimize:
α,β,γ ,δ

Yi = −Rα.Dβ ,

Ys = −Ve
γ .Tsδ

subject to:−φ + ϵ ≤ 0, φ − 1+ ϵ ≤ 0 ,

∀φ ∈ {α, β, γ , δ}

(α + β − 1)− τ ≤ 0, (γ + δ − 1)− τ ≤ 0 ,

(1− α − β)− τ ≤ 0, (1− γ − δ)− τ ≤ 0 .

(13)

Under DRS the last two constraints for Yi and Ys are replaced with,

α + β + ϵ − 1 ≤ 0 ,

γ + δ + ϵ − 1 ≤ 0 .
(14)

The representation of CEESA score estimation under DRS as a CO
problem is given by

minimize
r,d,t,v,e,ρ,η

Y = −(r.Rρ
+ d.Dρ

+ t.Tsρ + v.Ve
ρ
+ e.Eρ)

η
ρ

subject to −φ + ϵ ≤ 0, φ − 1+ ϵ ≤ 0
∀φ ∈ {r, d, t, v, e, η}

ρ − 1 ≤ 0, ρ − 1+ ϵ ≤ 0 ,

(r + d+ t + v + e− 1)− τ ≤ 0 ,

(1− r − d− t − v − e)− τ ≤ 0 .

(15)

Under CRS, there is no need for the parameter η (since η = 1).
Thus, the objective function for the problem reduces to,

minimize
r,d,t,v,e,ρ

Y = −(r.Rρ
+ d.Dρ

+ t.Tsρ + v.Ve
ρ
+ e.Eρ)

1
ρ .

The CEESA score is thus given by maximizing the objective func-
tion,

Y = (r.Rρ
+ d.Dρ

+ t.Tsρ + v.Ve
ρ
+ e.Eρ)

η
ρ , (16)

where 0 < ρ ≤ 1, coefficients r , d, t , v, e lie in (0, 1) and sum
up to 1, and η is constrained by the scale of production used:
0 < η < 1 under DRS, and η = 1 under CRS.

5.3. Handling constraints

As mentioned earlier, the standard PSO algorithm does not
guarantee feasible solutions. This is because when particles are
initialized or updated, the algorithm does not ensure the resulting
solutions are feasible. The solution is twofold, resample each
random solution from the uniform distribution until every initial
solution is feasible; and while updating velocities always update
toward a feasible solution, gathered so far by the algorithm, clos-
est to the particle under update. This ensures that every particle
eventually converges toward feasible solutions even if they do not
necessarily traverse the feasible solution space.

Incorporating this variation requires the algorithm to store the
most optimal feasible solution encountered by each particle in a
set, say L = {l1, l2, . . . , ln}, as it traverses the search space. At the
start of an iteration, for each particle p the algorithm determines
the closest position among all solutions in L, called lbest , and uses
it to update the particle’s velocity for the next iteration. Once the
iteration is complete, if the particle is within the feasible region, lp
is updated if the new position is a more optimal solution than lp.
Finally, after every particle is updated, the globally best solution
is then updated with the best solution in L.

5.4. Simulating the gradient

PSO functions by initializing a set of particles, each with a
random position and velocity. The position of a particle describes
its solution, which is feasible on initialization. However, the po-
sition of the particle is updated on every iteration of the process
which might put the particle on an unfeasible solution. At any
given time, the algorithm stores a set of locally optimal feasible
solutions L and the current globally optimal solution gbest . At
the start of the process, the algorithm initializes L to the initial
positions of the particles and gbest to the best solution in L.
At each iteration, PSO calculates the distances from the current
position of a particle (p) to the current global minima (gbest) and
to the closest local minima (lbest). The algorithm then simulates
a gradient based on the sum of these distances and updates the
position of the particle. Each iteration can be summed up as

vi = ω.vi + kg (gbest − pi)+ kp(lbest i − pi) (17)

pi = pi + vi , (18)

where ω is a constant in (0, 1), and kg , kp are uniformly gener-
ated random numbers. These values function as inertial weights.
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Table 1
CEESA Score Interval under CRS: number of iterations to converge to global
optima is reasonably low, implying the function is not stuck in local optima.
Moreover, we observe CEESA score in a range. Habitability score should not be
a hard number, rather it should lie within a range however small the span may
be.
Planet CEESA score Score interval

Min. Max. Delta

Kepler-59 b 178.1611 178.1595 178.1611 0.0016
Kepler-57 c 135.9951 135.9938 135.9951 0.0013
Kepler-61 b 10.0075 10.0065 10.0075 0.0010
Kepler-1393 b 2.24 2.2391 2.2400 0.0009
Kepler-1229 b 1.2604 1.2595 1.2604 0.0009
Kepler-1349 b 1.8369 1.8361 1.8369 0.0009
Kepler-292 d 2.4107 2.4098 2.4107 0.0008
Kepler-901 b 1.555 1.5542 1.5550 0.0008
K2-72 c 1.1933 1.1925 1.1933 0.0008
Kepler-876 b 1.7541 1.7533 1.7541 0.0008

Shi and Eberhart (1998) discussed the use of such weights to
regulate velocity, balancing the global and local sections of the
simulated gradient. Upper and lower bounds limit the velocity
to within ±vmax. Once the positions are updated, the algorithm
updates L and gbest as discussed earlier.

After each iteration, each particle moves a little closer toward
gbest . This, in turn, leads to L and gbest being updated in case
any of the particles come across better solutions. Eventually, after
several iterations, particles, and their corresponding lbest values,
converge toward gbest . This causes the direction of the simulated
gradient to converge toward the actual gradient around the global
minima. The corresponding gbest is the optimal solution to the
problem, in tune with the general principle of PSO exploiting
change in position and velocity to converge toward the global
optima w.r.t. the parameter ρ of the proposed model. Note that
the condition of global minima has been derived theoretically in
terms of ρ.

5.5. CEESA score ranges

We noticed that, on average, it requires 89 iterations to obtain
global optima under both CRS and DRS constraints. Consider the
manner under which the particle swarm converges to the global
maxima. After every iteration, gbest may be updated toward a
more optimal value. However, since the CES production function
constructed under CRS or DRS is convex for a given exoplanet
the value gbest converges toward is always the globally optimal
value. Now consider a window into the iterations of the algo-
rithm. Since the objective function is both continuous and convex,
the path covered by the best particle of the swarm lies within
a continuous interval that, although initially erratic, diminishes
as the window moves toward the point of convergence. We ob-
served an average of 89.33 iterations for convergence under CRS,
and 89.09 under DRS. We then define a window of 50 iterations,
ending at the point of convergence to generate an Earth Similarity
Score interval. We list ten planets with the largest intervals in
Tables 1 and 2 for CRS and DRS, respectively.6 Tables illustrate the
final converged CEESA scores, and the minimum and maximum
values of the defined interval with Delta being the length of the
interval.

6 The CDHS catalog using imputed values of eccentricity, CEESA Catalogs:
CEESA DRS catalog and CEESA CRS Catalog and Original, and imputed values of
eccentricity of 1683 rocky exoplanets are available at http://astrirg.org/projects.
html.

Table 2
CEESA Score Interval under DRS: number of iterations to converge to global
optima is reasonably low implying the function is not stuck in local optima.
Moreover, we observe CEESA score in a range. Habitability score should not be
a hard number, rather it should lie within a range, however small the span may
be.
Planet CEESA score Score interval

Min. Max. Delta

Kepler-163 b 1.8224 1.8198 1.8224 0.0027
Kepler-57 c 191.4616 191.4601 191.4616 0.0015
Kepler-131 c 3.8181 3.8167 3.8181 0.0014
Kepler-409 b 5.6149 5.6137 5.6149 0.0013
Kepler-1263 b 1.5884 1.5874 1.5884 0.00101
Kepler-198 d 2.6528 2.6518 2.6528 0.00101
Kepler-20 c 3.3274 3.3264 3.3274 0.0009
Kepler-171 b 2.0625 2.0616244 2.0625431 0.0009
K2-53 b 2.2593 2.2584 2.2593 0.0008
Kepler-290 b 1.9381 1.9373 1.9381 0.0008

Table 3
Potentially habitable exoplanets considering Earth as reference for CRS (ν = 1,
ρ ≤ 1) and DRS (ν < 1, ρ ≤ 1):the outcome of CEESA using fmincon function.
Exoplanet Habitability score(CRS) Habitability score(DRS)

Earth 0.99 0.99
Kepler-186 f 1.15 0.99
Proxima Cen b 1.10 0.99
TRAPPIST-1 e 0.91 0.98
TRAPPIST-1 f 1.02 0.98
Ross 128 b 1.14 1.01

6. Experiment and results

6.1. Result of fmincon function

CEESA scores of a few potentially habitable exoplanets are
shown in Table 3 (the full form of the table (4000+ planets) is
available as an electronic attachment at http://astrirg.org). The
habitability scores are determined for CRS (ν = 1) and DRS
(ν < 1) constraints, where the corresponding values of elasticities
were found by fmincon: ρ = 1.0 and ρ = 0.99 for CRS and
DRS, respectively. We have cross-checked these planets with the
database of the potentially habitable worlds — Habitable Exo-
planet Catalog (HEC)7 – and found that these are indeed listed
as potentially habitable.

Habitability scores, estimated with CDHS model (without ec-
centricities) (Bora et al., 2016), are also compared with habit-
ability scores estimated by CEESA model. We have observed that
CEESA and CDHS scores are close to each other for exoplanets
considered in our experiment. Planets which are considered to be
potentially habitable, as per PHL-EC, have habitability score closer
to Earth’s habitability score computed by these models. Table 4
represents CDHS and CEESA score of some potentially habitable
planets calculated using fmincon function (without considering
the eccentricities).

6.2. Result of PSO

The PSO algorithm is used to estimate CEESA scores for rocky
planets. We estimated CEESA scores for both CRS and DRS con-
straints using the following parameters from the PHL catalog:
P. Radius (planet radius), P. Density (planet density), P. Esc Vel
(planet escape velocity), P. Ts Mean (planet mean surface tem-
perature) and P. Eccentricity (planet eccentricity). Since surface
temperature and eccentricity are not recorded in Earth’s units,

7 A derived product from the PHL-EC, also maintained by the PHL; phl.upr.
edu/projects/habitable-exoplanets-catalog.

http://astrirg.org/projects.html
http://astrirg.org/projects.html
http://astrirg.org
http://www.phl.upr.edu/projects/habitable-exoplanets-catalog
http://www.phl.upr.edu/projects/habitable-exoplanets-catalog
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Table 4
Sample simulation Outcome of CDHS and CEESA score for CRS & DRS without
considering eccentricity values of planets. Full table is available at http://astrirg.
org/projects.html.
Exoplanet CEESACRS CDHSCRS CEESADRS CDHSDRS
Earth 0.99 1.00 0.99 1.00
Kepler-20 c 2.40 2.58 2.20 2.31
Kepler-57 c 310.50 314.83 164.00 166.87
Kepler-59 b 263.25 265.21 140.50 142.70
Kepler-61 b 2.01 2.06 1.99 1.91
Kepler-163 b 1.01 1.05 1.00 1.04
Kepler-171 b 2.02 2.26 1.98 2.07
Kepler-186 f 1.15 1.00 0.99 1.00
Kepler-290 b 2.00 2.16 1.90 1.99
Kepler-292 d 2.24 2.14 1.95 1.98
Kepler-1393 b 2.98 3.15 2.95 2.90
Proxima Cen b 1.10 1.09 0.99 1.08
TRAPPIST-1 e 0.91 0.91 0.98 0.97
TRAPPIST-1 f 1.02 0.98 0.98 0.98
Ross 128 b 1.14 1.12 1.01 1.11

Table 5
Sample simulation outcome of CEESA score (CRS & DRS) and CDHS score for
(CRS & DRS) with imputed eccentricities. Similarity between imputed CDHS and
non-imputed CEESA scores validate the missing value imputation process.

Exoplanet CRS DRS

CEESACRS Imputed CDHSCRS CEESADRS Imputed CDHSDRS
Kepler-20 c 2.40 2.55 2.20 2.55
Kepler-59 b 263.25 264.21 140.50 141.70
Kepler-61 b 2.01 2.31 1.99 2.31
Kepler-163 b 1.01 1.89 1.00 1.89
Kepler-171 b 2.02 2.89 1.98 2.89
Kepler-186 f 1.15 1.15 0.99 1.15
Kepler-290 b 2.00 2.44 1.90 2.44
Kepler-292 d 2.24 2.54 1.95 2.54
Kepler-1393 b 2.98 2.32 2.95 2.43
Proxima Cen b 1.10 1.09 0.99 1.09
TRAPPIST-1 e 0.91 0.91 0.98 0.99
TRAPPIST-1 f 1.02 0.92 0.98 1.02

we normalized these values by dividing them with Earth’s surface
temperature (288 K) and eccentricity (0.017), respectively. PHL-
EC records empty values for planets whose surface temperature is
not known. We chose to drop such records from our experiment.
Catalog also assumes zero eccentricity for those planets where the
data is not available. For such planets we employ data imputation
(see next subsection).

Our experiment used n = 25 particles to traverse the search
space, with learning rates λg = 0.8 and λp = 0.2. It used
an integral weight of ω = 0.6 and upper and lower bounds
±1.0. We used an error threshold of ϵ = 1 × 10−6 to convert
strict inequalities to non-strict inequalities, and a tolerance of
τ = 1 × 10−7 to transform an equality constraint to a pair of
inequalities. Tables C.17a and C.17b in Appendix C show CEESA
scores for a sample of exoplanets obtained under CRS and DRS
constraints, respectively.

6.3. Comparison of CEESA score with imputed CDHS

Eccentricity values are not available in the PHL-EC for all
exoplanets. Unknown eccentricity values are set to 0. We did not
have to impute eccentricity values to compute CEESA scores. As
explained earlier, only CDHS needs imputed eccentricity values
(see Appendix C for details on eccentricity imputation). Table 5
shows calculated CEESA and CDHS scores for several exoplanets.
Since CES model is an additive model, we have used catalog’s
eccentricity values of planets to estimate the CEESA score. How-
ever, the validity of the imputation method is easily verified from
Table 5, as we observe small difference between CEESA (no ec-
centricity imputation) and CDHS (with imputed eccentricity). This

is also evident from the Root-Mean-Square Error (RMSE) plot in
Fig. C.3 (App. C). Table 6 shows the correspondence between hab-
itability scores computed using CDHS and CEESA models along
with their predicted class labels (using neural nets and fuzzy
neural nets).

6.4. Experiments with fuzzy and non-fuzzy ANN

On various combinations of feature sets, the network was
trained and tested for two main settings. In the first setting the
crisp inputs are applied, and in the second, fuzzy inputs are fed
to the network. To fuzzify the sample space, the values of λlow ,
λmedium, λhigh, Clow , Cmedium and Chigh are calculated for every feature
in the feature set. Feature values of each sample are then con-
verted into fuzzy component by using PI membership mentioned
in Section 4.3.3 (see Appendix A for details), classification of
exoplanet data using Artificial Neural Network (ANN), and Fuzzy
Logic. Non-habitable planets, mesoplanets and psychroplanets are
labeled as Class 1, Class 2 and Class 3, respectively.8 A case-
by-case explanation (cases 1–8) of every feature set is explored
(Tables 7–14 show class-wise performance measure). The dif-
ferent measures used are Accuracy, Precision, Recall, Sensitivity,
Specificity and F-score (Powers, 2011). The classification problem
had several challenges including imbalanced data. Each of these
measures has its follies. This is the reason we reported all possible
performance measures to establish the efficacy of our method.
For example, Fscore of 1 implies perfect classification despite the
presence of class imbalance. All of these measures range from 0
to 1 depending on the performance from bad to excellent.

Case 1 (3-class dataset): The dataset comprises 45 features to
classify exoplanets into 3 classes, namely non-habitable planets
(Class 1), mesoplanets (Class 2), and psychroplanets (Class 3). The
network consists of fully connected layers of neurons compris-
ing 45 input, 20 hidden and 3 output neurons. Weights of the
interconnections are randomly initialized and back propagation
algorithm trains the network to update the weights thus min-
imizing the mean square error. Learning rate is tuned to 0.015
and number of epochs is set to 500. The classification results are
shown in Table 7.

Case 2 (3-class dataset): The dataset is same as above. The
only difference is the inclusion of preprocessing step that con-
verts the n-dimensional feature into 3n-dimensional linguistic
pattern by using PI membership value. After conversion of data
into fuzzy feature space, the network is fed with 135 inputs,
which gets propagated to 20 neurons in hidden and 3 neurons
in output layer. The weights are initialized with small random
values, and the other parameters are kept same. The class-wise
classification results are shown below. Apparently, the results are
better than the one without fuzzy inputs (Case 1). Table 8 shows
the result for Case 2, and Fig. 1 shows the ROC curves for Class 3
and Class 2 samples.

Case 3 (2-class dataset): This particular case contains ’Two-
class dataset’ (mesoplanets and psychroplanets combined into
class 2 and non-habitable planets as class 1). Data is without fuzzy
inputs and all parameters and features are same as in Case 1.
Table 9 shows the result of Case 3.

Case 4 (2-class dataset): We consider two classes again (iden-
tical to Case 3) with fuzzy inputs. The parameters are same as
Case 2. The result is shown in Table 10.

Case 5 (3-class dataset): This case considers the same 3 classes
used in Cases 1–2. A new combination of features, consisting of

8 3-class dataset: dataset containing class labels 1, 2 and 3 representing non-
habitable planets, mesoplanes and psychroplanets respectively; 2-class data set:
dataset containing class labels 1 and 2 representing non-habitable planets and
potentially habitable planets (mesoplanets and psychroplanets collapsed in to
class 2) respectively.

http://astrirg.org/projects.html
http://astrirg.org/projects.html
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Fig. 1. ROC plot for class 3 samples (Left), and ROC for class 2 samples (Right) of fuzzy classification. A sample of ROC plots is shown class-wise.

Table 6
Summary of results of both methods: matching of CEESA scores with predicted classes. For example,
TRAPPIST-1 e, labeled as psychroplanet by fuzzy neural net (Method 2) with 100% accuracy, also
has both CDHS and CEESA scores close to Earth (i.e. 1).

Exoplanet Method 1: explicit score calculation Method 2: NN/fuzzy-NN
classification

CDHSDRS CDHSCRS CEESADRS CEESACRS Accuracy (%) Predicted class

Proxima Cen b 1.08 1.09 0.99 1.10 100.00 psychroplanet
TRAPPIST-1 c 1.14 1.16 1.06 1.19 96.40 non-habitable
TRAPPIST-1 d 0.96 0.89 0.98 0.99 100.00 mesoplanet
TRAPPIST-1 e 0.97 0.91 0.98 0.91 100.00 psychroplanet
TRAPPIST-1 f 0.98 0.98 0.98 1.02 99.70 psychroplanet
TRAPPIST-1 g 1.09 1.11 0.99 1.11 92.30 psychroplanet

Table 7
Case 1: Result of fuzzy classification for 3-class dataset without fuzzy inputs.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 1.000 1.000 1.000 1.000 1.000 1.000
2 0.976 0.943 0.895 0.895 0.989 0.917
3 0.976 0.933 0.966 0.966 0.981 0.948

Table 8
Case 2: Result of fuzzy classification of 3-class dataset with fuzzy inputs.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 1.000 1.000 1.000 1.000 1.000 1.000
2 0.995 1.000 0.967 0.967 1.000 0.982
3 0.995 0.980 1.000 1.000 0.993 0.989

Table 9
Case 3: Result of fuzzy classification for 2-class dataset without fuzzy inputs.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 1 1 1 1 1 1
2 1 1 1 1 1 1

Table 10
Case 4: Result of fuzzy classification for 2-class dataset with fuzzy inputs.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 1 1 1 1 1 1
2 1 1 1 1 1 1

mass, radius, minimum mass and composition class values, is
supplied to neural network of 4 input, 4 hidden and 3 output
neurons. Though the network was able to perform classification
at a decent level, the accuracy, precision and recall values were
not as good as what was obtained with all-feature dataset (Case
1). Looking at the accuracy, one can infer that, even if the rest of
the features are not used, planet’s mass and radius are adequately
good features that can separate the three classes. Learning rate

was tuned to 0.2, and obtained classification accuracy is shown
in Table 11.

Case 6 (3-class dataset): The same dataset (as Case 5) with 12
fuzzy inputs is run on network of 6 hidden neurons and the learn-
ing rate is tuned to 0.19. With these set of parameters, class-wise
results shows that the network is unable to classify exoplanets at
a satisfactory level. Case 5 suggests that mass and radius are good
enough features to classify exoplanets, but their fuzzy values
could not add enough information for the network to behave as
an exemplary classifier. Table 12 shows the classification accuracy
of this case.

Case 7 (3-class dataset): A different set of features, from
which planet’s surface temperature is removed, is applied to the
network. The network now consists of 42 input, 11 hidden and
3 output neurons. The classification results are very encourag-
ing. The insight with regard to habitability is, although feature
like surface temperature can clearly demarcate exoplanets, but
parameters like mass, radius, eccentricities, when blended to-
gether, can also bring impeccable accuracy during classification.
The accuracy after 400 epochs is shown in Table 13.

Case 8 (3-class dataset): A fuzzy set built from the dataset
of Case 7 is used for classification for a network with 19 hidden
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Table 11
Case 5: Result of fuzzy classification for 3-class dataset with reduced set of parameters.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 0.888 0.975 0.808 0.808 0.978 0.978
2 0.825 0.534 0.398 0.398 0.925 0.439
3 0.751 0.814 0.814 0.814 0.724 0.653

Table 12
Case 6: Result of fuzzy classification for 3-class dataset with reduced parameters and fuzzified inputs.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 0.480 0.488 0.887 0.887 0.092 0.625
2 0.816 nan 0.058 0.058 0.998 nan
3 0.659 nan 0.109 0.109 0.917 nan

Table 13
Case 7: Result of fuzzy classification for 3-class dataset. Surface temperature is not considered as
input parameter.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 0.999 0.994 1.000 1.000 0.998 0.997
2 0.999 0.995 1.000 1.000 0.998 0.998
3 0.997 1.000 0.994 0.994 1.000 0.997

Table 14
Case 8: Result of fuzzy classification for 3-class dataset.
Class Accuracy Precision Recall Sensitivity Specificity Fscore

1 0.997 1.000 0.993 0.993 1.000 0.997
2 0.999 0.995 1.000 1.000 0.998 0.998
3 0.999 0.996 1.000 1.000 0.998 0.998

neurons (other parameters are kept same). The model has shown
decent accuracy (reflected in Table 14).

7. Discussion and conclusion

The concept of developing a classifier based on our growing
knowledge of exoplanets is fascinating as it draws inferences
from two different approaches, Earth similarity and habitability.
We provide a manuscript that develops a tool for planetary hab-
itability using known functions to score habitability combined
with planetary features to generate a predictor. The predictor is
developed as a computational intelligence (CI) and classification
approach. Both approaches produce a similar outcome.

PSO is used to track dynamic functions of the type that allow
for the oscillation that we also mitigate. Additionally, we use
different set of features (full and restricted) to test the efficacy of
our classifiers (Cases 1–8, Tables 7–14). The results suggest that
the use of Proxima b and TRAPPIST-1 for training, and remaining
samples in the catalog for testing, performed well.

We introduce CEESA, a novel model based metric that defines
the habitability score of exoplanets. The strength of this kind of
modeling is that it can naturally handle missing data or data
points with zero values. The motivation behind attempting to
develop metrics for habitability in this manner is to be able to
observe trends from incomplete or unavailable data to the best of
technological ability, and CEESA model can naturally accomplish
that. The model is scalable and can be extended to accommodate
more planetary observables (the proof is included in Appendix B).
Additionally, if ρ in Eq. (5) approaches zero in the limit, we obtain
the Cobb–Douglas production function. However, computing the
optima of such a multi-variate model posed significant com-
putational challenges (curvature violation and oscillating local
minima). The practical consequence of ’curvature violation and
oscillating local minima’ is the premature convergence of the
habitability scores of exoplanets. Since most approaches to opti-
mization are gradient-based, oscillating local minima sometimes
give the false impression that we have reached an optima when,

in fact, we have not. This can be thought of as ’local optima
groove’, where the gradient of the functional form is stuck and,
therefore, is forced to converge prematurely even when the global
optima exists otherwise. The direct impact of this on the habit-
ability computation is the production of sub-optimal habitability
score.

The habitability score problem is therefore interpreted as a
constrained optimization problem, solved by Particle Swarm Op-
timization. Especially noticeable about Particle Swarm Optimiza-
tion is the lack of the need for a gradient, allowing PSO to
work in high-dimensional search spaces with a large number of
constraints to estimate precise habitable score. Further, particles
of the swarm in most implementations operate independently
during each iteration, their updates can occur simultaneously
and even asynchronously, yielding much faster execution times
than descent/ascent type methods. Using PSO to calculate the
habitability scores is beneficial when the number of input param-
eters is large, which further increases the number of constraints,
resulting in a model too unfeasible for traditional optimization
methods.

We have used ML methods (Saha et al., 2018a,b,c) and math-
ematical modeling to develop richer inference from the data
of exoplanets, which can bolster our understanding of factors
that affect habitability in the long run. The classification method
used here draws the advantages of both neural network and
fuzzy logic. We considered mesoplanets, psychroplanets and non-
habitable planets as the class labels in the dataset. PI membership
function helps the algorithm to assign membership to each data
point. It was observed that the classifier worked well when all the
parameters are used for the classification, rather than using a few.
The accuracy of the classifier is above 95% both with and without
fuzzy inputs. Additionally, the fuzzy approach on this problem
is an insightful attempt, as planets may have membership in
all class labels but just to differing degrees. Given the sparsity
of our knowledge about planets, their features, and habitability,
a fuzzy approach seemed more suitable than more traditional
classification approaches.
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Our proposed model CEESA used eccentricity as the fifth
parameter to compute habitability scores of planets. Use of ec-
centricity is not in practice in any of the previous indices, includ-
ing ESI and PHI estimation of planets. Even a previous model,
CDHS (Bora et al., 2016), used the same parameters as in ESI
and PHI to compute habitability scores. However, even though
CDHS model is scalable and can, in principle, handle any number
of parameters, handling zero eccentricity values rendered the
metric unfeasible to use because of the product nature of the
model. This is not the case in CEESA. We have cross-checked
CEESA scores with imputed CDHS model (where kNN imputation
was used to fill in for zero eccentricity values in the product
formulation of CDHS). Tables 3–6 show the outcome of both
models. Imputation of missing values in CDHS and natural mitiga-
tion of those values in CEESA are two major contributions of the
current work. This computational approach is further bolstered by
computing optimal habitability scores without having to compute
the gradient explicitly, an important step towards derivative-free
optimization.
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Appendix A. Definition of key terms used in CEESA model

This section defines few key terms used in the paper.

• Mathematical Optimization Optimization is one of the pro-
cedures to select the best element from a set of available
alternatives in the field of mathematics, computer science,
economics, or management science (Hájková and Hurnik,
2007). An optimization problem can be represented in var-
ious ways. Below is the representation of an optimization
problem. Given a function f : A→ R from a set A to the real
numbers R. If an element x0 in A is such that f (x0) ≤ f (x)
for all x in A, this ensures minimization. The case f (x0) ≥
f (x) for all x in A is the specific case of maximization. The
optimization technique is particularly useful for modeling
the habitability score in our case. In the above formulation,
the domain A is called a search space of the function f , CD-
HPF in our case, and elements of A are called the candidate
solutions, or feasible solutions. The function as defined by
us is a utility function, yielding the habitability score CDHS.
It is a feasible solution that maximizes the objective func-
tion, and is called an optimal solution under the constraints
known as Returns to scale.
• Returns to scale measure the extent of an additional output

obtained when all input factors change proportionally. There
are three types of returns to scale:

1. Increasing returns to scale (IRS). In this case, the
output increases by a larger proportion than the in-
crease in inputs during the production process. For
example, when we multiply the amount of every in-
put by the number N , the factor by which output
increases is more than N . This change occurs as

(i) Greater application of the variable factor en-
sures better utilization of the fixed factor.

(ii) Better division of the variable factor.
(iii) It improves coordination between the factors.

2. Decreasing returns to scale (DRS). Here, the propor-
tion of increase in input increases the output, but in
lower ratio, during the production process. For exam-
ple, when we multiply the amount of every input by
the number N , the factor by which output increases
is less than N . This happens because:

(i) As more and more units of a variable factor are
combined with the fixed factor, the latter gets
over-utilized. Hence, the rate of corresponding
growth of output goes on diminishing.

(ii) Factors of production are imperfect substitutes
of each other. The divisibility of their units is
not comparable.

(iii) The coordination between factors get distorted
so that marginal product of the variable factor
declines.

3. Constant returns to scale (CRS). Here, the proportion
of increase in input increases output in the same ratio,
during the production process. For example, when we
multiply the amount of every input by a number N ,
the resulting output is multiplied by N . This phase
happens for a negligible period of time and can be
considered as a passing phase between IRS and DRS.

• Computational Techniques in Optimization (CO). These
are a broad family of approximation techniques used to
compute values of functions, optima of functions, root find-
ing problems, fixed point iterations etc. The computational
optimization (CO) technique described in the paper is PSO
where the focus was to replace gradient computations with
gradient emulation. There exist several well-known tech-
niques including Simplex, Newton-like and Interior point-
based techniques (Nemirovski and Todd, 2008). One such
technique is implemented via MATLAB’s optimization tool-
box using the function fmincon. This function helps find
the global optima of a constrained optimization problem
which is relevant to the model proposed and implemented
by the authors. Illustration of the function and its syntax
are provided in Appendix E.1. It is important to note that
MATLAB deploys a suite of optimization techniques in its
library such as active set, interior point, metaheuristics and
evolutionary techniques to handle a variety of functions
namely convex/concave, non-concave non-convex, smooth
and non-smooth etc.
• Concavity. Concavity ensures global maxima, theoretically.

The implication of this fact in our problem statement and
solution approach is that if CD-HPF is proved to be concave
under some constraints (elaborated in the paper, Section 5
and Appendix B), we are guaranteed to have maximum
habitability score for each exoplanet in the global search
space. This is particularly useful for the metaheuristic op-
timization (approximation of global optima in Section 5)
approach adopted in the paper as it is easy to verify the
veracity of the proposed approach against known optimal
solutions guaranteed by concavity.
• k-Nearest Neighbor (kNN): kNN is a classification algo-

rithm, that works as follows. Given a parameter k, find
the k nearest neighbors, and take a majority vote from
their classes. kNN performs reasonably well with binary
classification, and typical values of k are around 5. kNN
may be used as regression technique where the weights of
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nearby points are used to predict a neighboring point. This
is the same principle we used to impute missing values.
kNN based imputation (regression) is powerful as it handles
non-linearity quite well and does not need assumptions of
normality in error terms.
• Machine Learning. Classification of patterns based on data

is a prominent and critical component of machine learning
and will be highlighted in subsequent part of our work
where we made use of a standard kNN algorithm. The al-
gorithm is modified to tailor to the complexity and efficacy
of the proposed solution. Optimization, as mentioned above,
is the art of finding maximum and minimum of surfaces that
arise in models utilized in science and engineering. More
often than not, the optimum has to be found in an efficient
manner, i.e. both the speed of convergence and the order of
accuracy should be appreciably good. Machines are trained
to do this job as, most of the times, the learning process
is iterative. Machine learning is a set of methods and tech-
niques that are intertwined with optimization techniques.
The learning rate could be accelerated as well, making op-
timization problems deeply relevant and complementary to
machine learning.
• Pi membership function. A membership function is an

arbitrary curve that maps every value in the input space
between 0 and 1. If X is the universe of discourse, x denotes
an element, µA(x) is the membership function of x in A, then
membership value is represented as A = (µA(x), x). The
PI (π ) function for a sample r (with c and λ as centre and
radius of the dataset), can be defined as:

π (r; c, λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2(1− ∥r−c∥
λ

)2 for λ/2 ≤ ∥r − c∥ ≤ λ

1− 2( ∥r−c∥
λ

)2 for 0 ≤ ∥r − c∥ ≤ λ/2

0 Otherwise

Fig. A.2 illustrates formation of 3 overlapping fuzzy sets
using PI membership function.

Appendix B. The proof of CES model scalability

Here we prove optimality using Hessian matrices. If a Hessian
matrix of a function is symmetric about its primary diagonal, a
global optimum exists for that function. The general form of a
Hessian matrix for a function is given by

Hess (Y ) =

[
∂2Y
∂A2

∂2Y
∂B∂A

∂2Y
∂A∂B

∂2Y
∂B2

]
. (19)

Here, the elements of Hess (Y ) are given as

∂2Y
∂A2 = kaη

[
(ρ − 1)Aρ−2(aAρ

+ bBρ)
η−ρ
ρ

+
η − ρ

ρ
Aρ−1 (aAρ

+ bBρ)
η−2ρ

ρ

]
,

∂2Y
∂B∂A

= kabη (η − ρ) Aρ−1Bρ−1 (aAρ
+ bBρ)

η−2ρ
ρ ,

∂2Y
∂A∂B

= kabη (η − ρ) Aρ−1Bρ−1 (aAρ
+ bBρ)

η−2ρ
ρ ,

∂2Y
∂B2 = kaη

[
(ρ − 1)Bρ−2 (aAρ

+ bBρ)
η−ρ
ρ

+
η − ρ

ρ
Bρ−1 (aAρ

+ bBρ)
η−2ρ

ρ

]
.

(20)

Fig. A.2. PI membership Curve.

From Eqs. (20), we can see that

∂2Y
∂B∂A

=
∂2Y
∂A∂B

.

This implies that Hess (Y ) is symmetric about the primary di-
agonal, and hence, Y has a global optimum. For a CES produc-
tion function with n terms, the general form of the elements of
Hess (Y ) is given as

If i = j,

aij = kηαi

⎡⎣(ρ − 1)Aρ−2
i

(
n∑

m=1

αmAρ
m

) η−ρ
ρ

+
(η − ρ)

ρ
Aρ−1
i

(
n∑

m=1

αmAρ
m

) η−2ρ
ρ

⎤⎦ . (21)

If i ̸= j,

aij = kη(η − ρ)αiαjA
ρ−1
i Aρ−1

j

(
n∑

m=1

αmAρ
m

) η−2ρ
ρ

. (22)

∀ 1 ≤ i ≤ n, 1 ≤ j ≤ n; αi is the ith coefficient and Ai
is the ith parameter. For any n ∈ {1, 2, 3, . . .}, the element in
the (i, j)th position of the Hessian matrix is given by Eqs. (21)
and (22). From Eq. (22), it is evident that all of the non-diagonal
elements are symmetric about (i, j). Hence, the Hessian matrix of
a CES production function with any number of variables is always
symmetric about the primary diagonal.

Thus, we conclude that the CES function has a global optimum,
and is scalable for any n ∈ {1, 2, 3, . . .}.

B.1. Constraint conditions for elasticities: ESI with dynamic input
elasticity fails to be an optimizer

The function, where Re, De, Te and Ve are the radius, density,
surface temperature and escape velocity of Earth and are constant
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terms, is written as

Y = k

(
1−

Re − R
Re + R

)α(
1−

De − D
De + D

)β

×

(
1−

Te − T
Te + T

)γ(
1−

Ve − V
Ve + V

)δ

. (23)

Here, R, D, T and V are radius, density, surface temperature and
escape velocity, respectively, of the planets under study, and k is a
constant parameter. Differentiating Eq. (23) partially with respect
to R,

∂Y
∂R
= α

(
2R

Re + R

)α−1
2Re(

Re + R
)2 , (24)

and finding the second partial derivative of Eq. (24), we obtain

∂2Y
∂R2 = α(α − 1)

(
2R

Re + R

)α−2(
2Re

(Re + R)2

)(
2Re

(Re + R)2

)

− α

(
2R

Re + R

)α−1(
4Re(Re + R)
(Re + R)4

)

= α(α − 1)

(
2R

Re + R

)α−2
4R2

e

(Re + R)4
− α

(
2R

Re + R

)α−1

×

(
4R2

e + 4ReR
(Re + R)4

)

= α(α − 1)

(
2R

Re + R

)α−2
1

(Re + R)4

×

(
(α − 1)4R2

e −
2R

Re + R
(4R2

e + 4RRe)
)

= α(α − 1)

(
2R

Re + R

)α−2
1

(Re + R)4

(
(α − 1)4R2

e − 8RRe

)
.

(25)

For concavity, the second partial derivative must be greater
than zero. Thus, relating this to Eq. (25), we obtain

α (α − 1)
(

2R
Re + R

)α−2 1
(Re + R)4

(
(α − 1)4R2

e − 8RRe
)

> 0 . (26)

Upon simplifying the inequality above, we arrive at

α − 1 > 2
R
Re

. (27)

Generalizing the result in Eq. (27) for all variables in the data and
the corresponding elasticities, we arrive at the following results,

β − 1 > 2
D
De

,

γ − 1 > 2
T
Te

,

δ − 1 > 2
V
Ve

.

(28)

Summing up the results presented in Eqs. (27) and (28), we
finally derive the following relationship,

α + β + γ + δ > 2
(

R
Re
+

D
De
+

T
Te
+

V
Ve

)
+ 4 . (29)

Eq. (29) shows that the sum of the four elasticity constants cannot
be less than or equal to 1 (in fact, cannot be less than 1). This

is the case of IRS (increasing return to scale) in CDHPF function,
which means that function is neither concave nor convex. The
new metric holds for IRS condition only, which does not ensure
a global maxima, implying lack of theoretical foundation for the
ESI input structure.

Appendix C. Imputation of missing values of eccentricity

One of the classification schemes proposed by the PHL was
selection of planets into habitability classes based on their sur-
face temperatures.9 However despite surface temperature being
a crucial parameter to compute habitability metric, factors such
as the radius of a planet, density, escape velocity, eccentricity,
etc. are also important. Developing classification schemes based
on only one parameter alone is not sufficient as this would
involved just comparisons. This has been a prime motivation for
the development of metrics such as BCI, PHI, and ESI; this, in
turn, inspired us to explore models that can be used to assess
the habitability of exoplanets, which led to the development of
CD-HPF.

Orbital eccentricity of an astronomical object is a parameter
that determines the amount by which its orbit around another
body deviates from a perfect circle. In this section, we present
our methods to compute the missing values of eccentricity of
rocky planets in the given exoplanet catalog. We ignored gaseous
planets from our consideration because of the improbability of
them being habitable. The catalog contains 1696 rocky planets
out of which 1537 planet’s eccentricities marked as zero, presum-
ably missing values. However, eccentricity of a planet affects the
climate, atmosphere, and the composition of a planet to a large
degree, and can be an important factor in habitability (e.g. Wang
et al., 2017).

C.1. Preprocessing: Dimensionality reduction

Incremental principal component analysis was used to reduce
the number of features. This algorithm assigns weights to every
feature. Features like luminosity or number of moons do not play
as large a role in computing the eccentricity of a planet as does
the mass and the number of neighboring planets. The primary
features contributing to eccentricity of the planet include:

• Zone Class
• Mass Class
• Atmosphere Class
• Composition Class
• Mass of the planet
• Density

We convert these categorical attributes to numeric, remove tu-
ples which do not contain these determining parameters, and
form a subset to be used for imputing.

C.2. Normalization

Surface temperature and eccentricity are the only two at-
tributes not expressed in Earth Units. kNN computes similarity
scores by giving equal weightage to all attributes, so we scale
these two attributes by dividing each of them by the Earth’s value
to avoid inconsistent results. We also scale down the eccentricity

9 http://phl.upr.edu/library/notes/athermalplanetaryhabitabilityclassificationf
orexoplanets.
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Fig. C.3. RMSE obtained on different iterations for different folds of the dataset.

after imputation. This is essential to keep the habitability metric
close to 1.

C.3. kNN-based imputation

Imputation is a technique to avoid pitfalls involved with tuple
deletion of cases that contain one or more missing values. It re-
tains all cases by replacing missing data with an estimated value
based on other available parameters which influence it. There
are several estimation techniques to select from on the basis of
relationship between the parameters. These include imputation
based on mean, median and mode or by regression.

In kNN-based imputation method, the k nearest neighbors of
the object with missing values are used to impute the missing
values in the object. The neighbors are determined based on a
similarity metric. It chooses neighbors by assigning weights to
samples using the mean squared difference on features for which
two rows both have observed data. The assumption behind using
kNN for missing values is that a point value can be approximated
by the values of the points that are closest to it, based on other
variables. It works well due to the strong relationship between
the known attribute values and missing values in a sample as all
of these values contribute to the distance metric. kNN works best
on a low dimensional dataset. Thus, kNN algorithm for imputing
is applied to the preprocessed dataset, obtained on performing
dimensionality reduction using PCA.

Data with known values of eccentricity was used for cross-
validation, where k-fold cross validation error was around 0.15.
This method gave the minimum error, and the values of estimated
eccentricity were unambiguous. Plot in Fig. C.3 depicts Root-
Mean-Square Error (RMSE) for 20 different iterations obtained on
randomly splitting the dataset into train–test sets:

Table C.15 tabulates few samples with imputed eccentricity
values from the full training set (the complete catalog is available
at astrirg.org/projects.html).

C.4. kNN imputation in detail

kNN imputation uses k Nearest Neighbors approach to im-
pute values that are absent. For every observation to be im-
puted, it identifies k most similar observations based on the
Euclidean distance and computes the weighted average (weight
based on distance) of these k observations. The advantage is,
being a lazy learning model, one could impute any or all the
missing values in all attributes with one call to the function.
We used the most frequent value among the k-nearest neighbors

Table C.15
Comparison between known eccentricity values (P.Eccentricity) and the imputed
ones, computed using kNN imputation. To ensure correctness (since imputation
is an approximation procedure), we compare the imputed values with already
known eccentricity values of the planets and verify that the error is within the
claimed threshold RMSE of 0.15 (Fig. C.3).
Planet name Imputed eccentricity P. Eccentricity

55 Cnc e 0.0375 0.03
61 Vir b 0.15 0.12
CoRoT-7 b 0.15 0.12
EPIC 211822797 b 0.225 0.18
GJ 536 b 0.1 0.08
K2-3 d 0.0625 0.05
Kepler-23 b 0.075 0.06
Kepler-23 d 0.1 0.08
Kepler-296 e 0.125 0.1
WASP-47 e 0.0375 0.03

to estimate discrete attributes. The mean among the k-nearest
neighbors is used to estimate values of continuous attributes (see
Table C.16).

C.5. Algorithms used for imputation of eccentricity using kNN
method

In this section, we have given various algorithms used to fill
missing data of eccentricity of exoplanets. Algorithms 2 and 3
are described below. Algorithm 2 shows the steps used by kNN
imputation method during training phase to estimate eccentricity
values for the planets whose eccentricity value is marked as 0 and
to compute the accuracy of the algorithm. Similarly, Algorithm 3
gives the steps used in testing phase of the algorithm.

Algorithm 2: Algorithm for kNN Imputation during training to
report Accuracy.
Require: Samples with all values present. Split into Training and

Testing sets. Testing set with features i, removed values j stored
in actual[j]. Training set with features x, feature y which is to
be imputed.

Ensure: This algorithm is repeated with different train–test folds
and error is averaged out.
for each pair (i, j) in Testing set do

for each pair (x, y) in Training set do
Calculate Euclidean distance d ← d(i, x) and save set

S(x, y, d).
end for
Make set T of k smallest distances obtained.
predicted[j] ← mean(T [y])

end for
Compute RMSE taking the actual[j] and predicted[j] into
consideration.

Algorithm 3: Algorithm for kNN Imputation during testing to
estimate missing values.
Require: Testing set with features i, missing values j. Training set

with features x, y present.
for each pair (i, j) in Testing set do

for each pair (x, y) in Training set do
Calculate Euclidean distance d ← d(i, x) and save set

S(x, y, d).
end for
Make set T of K smallest distances obtained.
Testing set[j] ← mean(T [y])

end for

http://www.astrirg.org/projects.html
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Table C.16
CDHS scores of a sample of planets with and without imputed eccentricity.
Planet Imputed Imputed Imputed CDHSCRS CDHSDRS
Name Eccentricity CDHSCRS CDHSDRS
EPIC-206011691 b 0.1597 1.72 1.72 2.53 2.47
EPIC 212006344 b 0.2041 1.88 1.88 2.18 2.16
GJ 15 A b 0.1503 1.73 1.73 1.62 1.53
GJ 176 b 0.0986 1.98 1.98 1.82 1.71
Kepler-20 e 0.1281 1.84 1.93 0.89 0.98
Kepler-20 f 0.1460 1.52 1.52 1.01 1.01
Kepler-37 b 0.1717 1.37 1.54 0.68 0.87
Kepler-186 f 0.0400 1.15 1.15 1.09 1.08
Proxima Cen b 0.1944 1.09 1.09 1.09 1.08
TRAPPIST-1 e 0.1533 0.91 0.99 0.91 0.97
TRAPPIST-1 f 0.0780 0.94 1.02 0.98 0.98

Table C.17
CEESA scores as estimated by Particle Swarm Optimization (see Section 5); (a) under DRS constraint, and (b) under CRS constraint.
r , d, t , v, e, ρ and η are the parameters of Eq. (16), where η is assumed 1 under CRS constraint. Column CEESA records the maxima
of the objective function Y , and i specifies the number of iterations taken to converge to the maximum.
Name Class r d t v e ρ η CEESA i

GJ 176 b non 0.304 0.001 0.375 0.271 0.050 0.467 0.808 1.52 85
GJ 667 C b non 0.297 0.010 0.318 0.052 0.322 0.682 0.730 2.36 90
GJ 667 C e psy 0.230 0.286 0.137 0.199 0.148 0.551 0.906 1.14 85
GJ 667 C f psy 0.397 0.035 0.152 0.402 0.014 0.793 0.999 1.31 100
GJ 3634 b non 0.178 0.175 0.005 0.194 0.447 0.894 0.657 2.07 94
HD 20794 c non 0.073 0.142 0.452 0.190 0.144 0.953 0.635 1.20 78
HD 40307 e non 0.156 0.307 0.185 0.033 0.319 0.428 0.939 2.69 88
HD 40307 f non 0.272 0.231 0.064 0.305 0.127 0.676 0.802 1.28 77
HD 40307 g psy 0.113 0.219 0.066 0.454 0.148 0.711 0.991 3.26 92
Kepler-186 f hyp 0.039 0.159 0.116 0.329 0.357 0.253 0.919 1.35 70
Proxima Cen b psy 0.272 0.173 0.284 0.193 0.079 0.615 0.114 0.99 75
TRAPPIST-1 b non 0.488 0.151 0.039 0.193 0.129 0.151 0.014 0.99 87
TRAPPIST-1 c non 0.172 0.236 0.275 0.242 0.075 0.969 0.962 1.06 80
TRAPPIST-1 d mes 0.106 0.308 0.075 0.218 0.293 0.844 0.017 0.99 93
TRAPPIST-1 e psy 0.189 0.266 0.192 0.094 0.260 0.371 0.006 0.99 84
TRAPPIST-1 g hyp 0.326 0.186 0.143 0.278 0.067 0.315 0.021 1.00 76

(a) Estimated habitability scores by CEESA under DRS constraint.

Name Class r d t v e ρ η CEESA i

GJ 176 b non 0.194 0.020 0.315 0.465 0.006 0.398 1.000 1.88 86
GJ 667 C b non 0.162 0.289 0.090 0.087 0.372 0.836 1.000 3.54 107
GJ 667 C e psy 0.373 0.032 0.134 0.304 0.157 0.217 1.000 1.25 71
GJ 667 C f psy 0.394 0.006 0.043 0.360 0.196 0.490 1.000 1.44 81
GJ 3634 b non 0.351 0.122 0.006 0.069 0.453 0.439 1.000 2.89 96
HD 20794 c non 0.101 0.077 0.691 0.071 0.059 0.756 1.000 1.58 94
HD 40307 e non 0.069 0.091 0.097 0.173 0.569 0.768 1.000 5.29 94
HD 40307 f non 0.285 0.161 0.053 0.443 0.058 0.342 1.000 1.42 73
HD 40307 g psy 0.156 0.010 0.081 0.302 0.451 0.612 1.000 7.15 94
Kepler-186 f hyp 0.036 0.017 0.082 0.383 0.483 0.929 1.000 1.68 85
Proxima Cen b psy 0.352 0.383 0.103 0.059 0.103 0.936 1.000 0.89 83
TRAPPIST-1 b non 0.148 0.147 0.344 0.269 0.093 0.767 1.000 0.94 81
TRAPPIST-1 c non 0.038 0.060 0.575 0.321 0.005 0.602 1.000 1.17 86
TRAPPIST-1 d mes 0.023 0.065 0.475 0.391 0.045 0.830 1.000 0.84 79
TRAPPIST-1 e psy 0.176 0.464 0.253 0.103 0.004 0.920 1.000 0.86 81
TRAPPIST-1 g hyp 0.060 0.086 0.310 0.540 0.004 0.848 1.000 0.97 86

(b) Estimated habitability scores by CEESA under CRS constraint.

Tables C.17a and C.17b show the CEESA scores for some of the
exoplanets estimated using Particle Swarm Optimization. Column
CEESA shows CEESA score and column Class shows the habitability
class of each planet.

Appendix D. Parameters used in fuzzy ANN classification
method

There are 68 parameters in the PHL-EC dataset. Not all of them
are important in classification of the planets. 45 relevant features
were found out for classification. Table D.18 shows the list of
parameters used for fuzzy classification in Case 1 to Case 4 in
Section 6.4.

Appendix E. MATLAB codes

Here we present Matlab codes that implement the analytical
model, compute the scores for the entire dataset.

E.1. Function fmincon

The function fmincon finds a constrained minimum of a scalar
function of multivariable starting at an initial point. This is gen-
erally known as constrained nonlinear optimization. Function
fmincon solves problems of the form: min f (x) subject to x, where{
Ax ≤ b
Aeqx = beq
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Fig. F.4. Plots for the Constant Elasticity Earth Similarity Approach.

Table D.18
Parameters used in fuzzy classification for 3-class dataset in Case 1.
Sl.No. Parameter name Sl.No. Parameter name

1 P. Zone Class 27 P. Inclination (deg)
2 P. Mass Class 28 P. Omega (deg)
3 P. Composition Class 29 S. Mass (SU)
4 P. Atmosphere Class 30 S. Radius (SU)
5 P. Min Mass (EU) 31 S. Teff (K)
6 P. Mass (EU) 32 S. Luminosity (SU)
7 P. Radius (EU) 33 S. [Fe/H]
8 P. Density (EU) 34 S. Age (Gyrs)
9 P.Gravity (EU) 35 S. Appar Mag
10 P. Esc Vel (EU) 36 S. Mag from Planet
11 P. SFlux Min (EU) 37 S. Size from Planet (deg)
12 P. SFlux Mean (EU) 38 S. Hab Zone Min (AU)
13 P. SFlux Max (EU) 39 S. Hab Zone Max (AU)
14 P. Teq Min (K) 40 P. HZD
15 P. Teq Mean (K) 41 P. HZC
16 P. Teq Max (K) 42 P. HZA
17 P. Ts Min (K) 43 P. HZI
18 P. Ts Mean (K) 44 P. ESI
19 P. Ts Max (K) 45 P. Habitable
20 P. Surf Press (EU)
21 P. Mag
22 P. Appar Size (deg)
23 P. Period (days)
24 P. Sem Major Axis (AU)
25 P. Eccentricity
26 P. Mean Distance

are the linear constraints, and the following equations are the

non-linear constraints,

{
Cx ≤ 0
Ceqx = 0

with bounding of variables:{
lb ≤ x
x ≤ ub .

This has been applied to CRS and DRS cases for the CEESA and
CES scores computation.

E.2. Constant returns to scale

Apply the constraints{
a+ b+ c + d+ e = 1
ρ ≤ 1, ν = 1

to the function Y = (a.xρ

1 + b.xρ

2 + c.xρ

3 + d.xρ

4 + e.xρ

5 )
ν/ρ , use

fmincon to compute ρ and ν for the optimum Y .

E.3. Decreasing returns to scale

Apply the constraints{
a+ b+ c + d+ e = 1
ρ ≤ 1, ν < 1

to the function Y =
(
a.xρ

1 + b.xρ

2 + c.xρ

3 + d.xρ

4 + e.xρ

5

)ν/ρ , use
fmincon to compute ρ and ν for the optimum Y .

E.4. Implementation of fmincon

[x, f val] = fmincon(fun, x0, A, b) starts at point x0 and finds a
minimum x to the function described in fun subject to the linear
inequalities, A∗x ≤ b, where A is a matrix, x and b are vectors and
x0 can be a scalar, a vector or a matrix. It also returns the value
of the objective function fun at the solution x.
[x, f val] = fmincon(fun, x0, A, b, Aeq, beq) starts at x0 and min-

imizes fun subject to the linear inequalities Aeq ∗ x = beq and
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A ∗ x ≤ b, where Aeq is a matrix and beq is a vector. It also returns
the value of the objective function fun at the solution x.
[x, f val] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub) defines a set

of lower and upper bounds on the design variables in x, so that
the solution is always in the range lb ≤ x ≤ ub. If no equalities
exist, set Aeq = [] and beq = []. If x(i) is unbounded below,
set lb(i) = −Inf, and if x(i) is unbounded above, set ub(i) = Inf
(Documentation, 2017).

Appendix F. Additional information on results

Plots in Figs. F.4(a) and F.4(b) describe the distribution of
CEESA scores across the exoplanets, while plots in Figs. F.4(c)
and F.4(d) show the distribution of iterations to convergence.
These figures aggregate the results of optimizing the habitability
production functions for each exoplanet in the PHL-EC using
method described in Algorithm 1.
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