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Occurrence of thermal instability in molecular clouds
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Abstract. Linear perturbation is used on the complete MHD equations of
the magnetic molecular clouds. We carry out a comparison of characteristic
time-scales, and find conditions which linear thermal instability causes to form
the small-scale condensations in the local expanding/contracting medium of a
molecular cloud. We consider the ambipolar diffusion, or ion-neutral friction on
the perturbed states. In this way, we obtain a non-dimensional characteristic
equation that reduces to the prior characteristic equation in the non-gravitating
stationary background. By manipulation of this characteristic equation, we
conclude that there are, not only oblate formation regions, but also prolate
condensation forming solutions, according to expansion or contraction of the
background. Some typical data that correspond to the real observed magnetic
molecular clouds is presented.

Keywords : ISM: clouds, ISM: molecules, ISM: structure, instabilities,
magnetohydrodynamics: MHD, star: formation

1. Introduction

Evidence of small-scale condensations (clumps) in the magnetic molecular clouds has been
accumulating over the past decades through radio and optical/ultraviolet observations.
Direct imaging of 12CO in nearby clouds reveals substructures on all scales down to
lengths of ∼ 0.01pc and masses of ∼ 0.01M¯ (Peng et al. 1998, Sakamoto & Sunada
2003). Studies of the time variability of absorption lines indicates the presence of small-
scale condensations in the dense gas on scales down to lengths of ∼ 5×10−5pc (∼ 10AU)
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and masses of ∼ 5× 10−9M¯ (Moore & Marscher 1995, Liszt & Lucas 2000, Rollinde et
al. 2003).

As a general rule, neither sub-parsec clumps nor AU-scale condensations are spherical
(Ryden 1996). Jones & Basu (2002) have recently deciphered intrinsic three-dimensional
shape distributions of molecular clouds, cloud cores, Bok globules, and small-scale conden-
sations. They use recently compiled catalogues of observed axis ratios for these objects
mapped in carbon monoxide, in ammonia, through optical selection, or in continuum
dust emission. They find out that molecular clouds mapped in 12CO are intrinsically
triaxial but more nearly prolate than oblate, while the smaller cloud cores, Bok globules,
and small-scale condensations are also intrinsically triaxial but more nearly oblate than
prolate.

Small-scale condensations appear to be immediate precursors of large-scale clumps
(dense cores with significant Jeans mass) via merging and collisions; they constitute the
initial conditions for star formation. Therefore, understanding of the origin and merging
of these small-scale condensations is of fundamental importance for a consistent theory
of star formation and galactic evolution.

The origin and shape of these small-scale condensations is a disputable issue. Non-
isotropic heating and fragmentation via gravitational collapse is an important reason
for oblate/prolate large-scale clumps with significant Jeans mass (e.g. Nelson & Langer
1997, Indebetouw & Zweibel 2000, Hartmann 2002). The above scenario is not correct
for small-scale condensations, because they have low gas density and small sizes, thus,
their masses are significantly smaller than their corresponding Jeans mass. According
to this feature, the only remaining responsible agents may be turbulence and/or thermal

instability.

Gammie et al. (2003) have recently studied the effect of turbulence in three dimen-
sional analogs of clumps using a set of self consistent, time-dependent, numerical models
of molecular clouds. The models follow the decay of initially supersonic turbulence in an
isothermal, self-gravitating, magnetized fluid. They have concluded that nearly 90% of
the clumps are formed in prolate and 10% of them are oblate.

In molecular clouds, the dispersion velocity inferred from molecular line width is
often larger than the gas sound speed inferred from transition temperatures (Solomon
et al 1987). Magnetohydrodynamic turbulence may be responsible for the stirring of
these clouds (Arons & Max 1975). Because of these turbulent motions, molecular clouds
must have transient structure, and are probably dispersed after not much more than
∼ 107yr (Larson 1981). Since cooling time-scale of molecular clouds is approximately
∼ 103−104yr (Gilden 1984), thermal instability must be a coordinated trigger mechanism
to form condensations. Turbulence, in the second stage, can deform these small-scale
condensations in shape, and orient them relative to the background magnetic field.
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Observations and theoretical studies establish that magnetic fields play an important
role in shaping the structure and dynamics of molecular clouds and their substructures
(e.g. Basu 2000, Fiege & Pudritz 2000, Hennebelle 2003). The relative alignment of
the projected magnetic field with the projected minor axis of the condensations is an
important diagnostic.

In conformity with the above explanation, Nejad-Asghar & Ghanbari (2003 hereafter
NG) investigated the effect of ambipolar diffusion on the thermal instability and for-
mation of small-scale condensations in a homogeneous magnetic molecular cloud. They
concluded that there are solutions where the thermal instability allows compression along
the magnetic field but not perpendicular to it. NG inferred that this aspect might be evi-
dence in formation of the observed oblate small-scale condensations in magnetic molecular
clouds.

In this paper we want to test and develop the work of NG, by including self-gravity and
local contracting/expanding background. We present the basic equations, background
evolution, and the linearized equations in section 2. Section 3 compares the relative time-
scales and some numerical data of the molecular clouds which, culminates in different
shapes of condensation. A summary of the results and some future prospects are discussed
in section 4.

2. The equations of the problem

The basic equations, including self-gravity and ambipolar diffusion, are given first in
general (§2.1). They are specialized for the local homogeneous contracting/expanding
molecular cloud (§2.2), and for small perturbations to that medium (§2.3).

2.1 Equations

A molecular cloud gas includes neutral atoms and molecules, atomic and molecular ions,
and electrons, which are the primary current carriers. Since significant charge separation
cannot be sustained on the astrophysical time-scales, we find that the electrons and ions
move together.

In principle, the ion velocity, v i, and the neutral velocity, vn, should be determined
by solving separate fluid equations for these species, including their coupling by collision
processes (Draine 1986). But, in the time-scale of cooling considered here, (103 − 104yr,
Gilden 1984), the ion and neutral fluids are well coupled together, and we can use the
basic equations as follows (Shu 1992)

dρ

dt
+ ρ∇ · v = 0 (1)
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ρ
dv

dt
+∇p+∇(

B2

8π
)− (B · ∇)

B

4π
+ ρ∇ψ = 0 (2)

1

γ − 1

dp

dt
− γ

γ − 1

p

ρ

dρ

dt
+ ρΩ−∇ · (K∇T ) = 0 (3)

dB

dt
+ B(∇ · v)− (B · ∇)v = ∇× (vd ×B) (4)

∇2ψ = 4πGρ (5)

p− R

µ
ρT = 0 (6)

where all symbols have their usual meaning and

vd ≡
1

4πηερ1+ν
[(∇×B)×B] (7)

is the drift velocity of ions. η = <vinσin>
mi+mn

is the collision drag where vin is the ion-neutral
relative velocity with impinging cross section σin. The averaged collision rate < vinσin >
is calculated by using Langevin’s approximation for the polarization potential, Vp =
−αne

2/2r4, where αn is the mean dipole polarizability of neutrals, and e is the electronic
charge. One finds that < vinσin >= 2.21π(αne

2/mi)
1/2 where αn = 8.08 × 10−5cm3

for hydrogen molecules (see McDaniel & Mason 1973). Thus, the collision drag is η =
2.46 × 1014cm3.gr−1.s−1. We use the relation ρi = ερνn (ε = 1.83 × 10−17cm−3/2.gr1/2,
ν = 1/2) between ion and neutral densities in molecular clouds (Umebayasi & Nakano
1980), and we approximate ρ = ρn + ρi ≈ ρn.

The net cooling function (erg.gr−1.sec−1) is

Ω(ρ, T ) = Λ(ρ, T )− Γtot (8)

where Γtot is the total heating rate and Λ(ρ, T ) is the cooling rate which can be written
as (Goldsmith & Langer 1978, Neufeld et al. 1995)

Λ(ρ, T ) = Λ0ρ
δT β (9)

where Λ0, δ, and β are constants. The range of β is 1.4 to 2.9. The constant δ is greater
than zero for the optically thin case and less than zero for the optically thick case (see
Fig. 1). Models of the molecular clouds identify several different heating mechanisms. In
this paper, we consider the heating rates of cosmic rays, H2 formation, H2 dissociation,
grain photoelectrons, and collisions with warm dust as a constant Γ0 (Glassgold & Langer
1974, Goldsmith & Langer 1978). The heating of the gas by magnetic ion-neutral slip is

ΓAD =
f d · vd

ρn
(10)
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Figure 1. Logarithm of the cooling rate, Λ(n0, T0) = Λ0n
δ
0T

β
0 , versus number density in molec-

ular clouds, n0(cm
−3), according to Goldsmith & Langer (1978). The best fit results for the

values of δ and β are shown in this figure.

where f d = ηερ1+ν is the drag force (per unit volume). If κB0 changes on a typical scale
of λ, the ambipolar diffusion heating rate, is given by

ΓAD = Γ′0ρ
−(2+ν); Γ′0 ≡

(κB0)
4

16π2ηελ2
. (11)

The gravitational heating rate is found by setting the rate of contraction/expansion work
per particle, pd(n−1)/dt, equal to the rate of change of gravitational energy per parti-
cle, [d(PEtot)/dt]/(nV ), where PEtot is the total gravitational potential energy of the
volume V . For a uniform sphere of radius λ we find, approximately,

Γgrav = Γ′′0ρ
3/2, Γ′′0 ≡

(4πG)3/2

5
√
3

[−ȧ(τ)]λ2 (12)

where ȧ(τ) is the contraction/expansion parameter rate (see §2.2).
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2.2 Background Evolution

As a basis for the small-perturbation analysis, we assume a local homogeneous back-
ground which is expanding/contracting uniformly, so that the unperturbed quantities
only depend on time. The background quantities will be denoted with the subscript 0.
The contraction/expansion is given by

r = a(t)x (13)

where r is the Eulerian coordinate, x is the Lagrangian coordinate and a(t) is the expan-
sion/contraction parameter. Using equation (13), the unperturbed velocity field is given
by

v0 =
da/dt

a
r . (14)

For background evolution, the basic equations (1)-(6) reduce to

ρ0(t) = ρ0(t=0)a
−3
(t) , p0(t) = p0(t=0)a

−3γ
(t) (15)

T0(t) = T0(t=0)a
−3(γ−1)
(t) , B0(t) = B0(t=0)a

−2
(t) (16)

where a(t) follow the differential equation

a(τ)ȧ(τ) = −1 (17)

where the ȧ indicates its derivative with respect to a defined non-dimensional variable
τ ≡ [ 43πGρ0(t = 0)]1/2t. The initial conditions for a(τ), appropriate for molecular clouds,
are

a(τ=0) = 1, ȧ(τ=0) = ±0.01−±1.0 (18)

where the plus sign corresponds to initial expansion, and the minus corresponds to initial
contraction. A suitable function in the range of 0 ≤ τ ≤ 0.1, is

a(τ) = 1 + ȧ(τ=0)τ − 0.5τ2. (19)

2.3 Linearized Equations

Density fluctuation ratios in the molecular substructures is in the order of ∼ 10 (Falgarone
et al. 1992, Pan et al. 2001). Therefore, the linear regime of the thermal instability might
lead to some significant results for small-scale condensation formation.

To obtain a linearized system of equations, we split each variable into unperturbed
and perturbed components, indicating the latter with a subscript 1. Eulerian divergence
operator is applied to the equations (1)-(6), then all equations are rewritten in terms of
the Lagrangian coordinate x . The resulting linear system has coefficients which depend
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on t but not on x . We then carry out a spatial Fourier analysis, with Fourier components
proportional to exp(ik · x ), so that k is the Lagrangian wave vector.

Simplifying the resulting linear system by repeated use of the background equation
(15) and (16), we obtain

d

dt
(
ρ1

ρ0
) + ik̃ · v1 = 0 (20)

dv1

dt
+
da/at

a
v1 + i

cs
γτs

k̃

k̃
(
p1

p0
) + i

B0 ·B1

4πρ0
k̃ − i k̃ ·B0

4πρ0
B1 − i

k̃

k̃
2
τ2
g

(
ρ1

ρ0
) = 0 (21)

d

dt
(
p1

p0
) + iγk̃ · v1 + (

1

τcρ
+

1

τK
)(
p1

p0
) + (

1

τcT
− 1

τcρ
− 1

τK
)(
ρ1

ρ0
) = 0 (22)

dB1

dt
+iB0(k̃ ·v1)−i(k̃ ·B0)v1+

2da/dt

a
B1+ k̃×{ B0

4πηερ1+ν
0

× [B0×(k̃×B1)]} = 0 (23)

where cs =
√

γp0/ρ0 and k̃ = k/a are, respectively, the adiabatic background sound
speed and the Eulerian wave vector. The other symbols have the following definitions:

τs ≡
1

k̃cs
, τg ≡

1√
4πGρ0

, τK ≡
Rρ0

µ(γ − 1)K k̃
2 , (24)

τcT ≡
RT0

µ(γ − 1)ρ0(∂Ω/∂ρ)T
, τcρ ≡

R

µ(γ − 1)(∂Ω/∂T )ρ
; (25)

that are the characteristic time-scale of sound waves, self-gravity perturbation waves,
thermal conduction, isothermal differential cooling, and isobaric differential cooling, re-
spectively.

We use the coordinate system ux,uy,uz as specified by NG. Equations (21) and (23)
may be used to uncouple v1y- the perturbed velocity in the plane perpendicular to both
B0 and k - from the rest of the problem. With the choice of exponential perturbation (eht),
disturbances perpendicular to the (B0−k)-plane, have a solution which displays existence
or non-existence of the Alfvén waves. Amplitude of the Alfvén waves are damped via
expansion of the medium and/or with ion-neutral friction, while, it must grow with
injection of energy in contracting medium.

The motion in the other modes are constrained to the x− z-plane, and are governed
by the matrix equation,

Y (1) = AY (26)

where Y is a 5× 1 matrix as follows:

Y =













ρ1/ρ0

p1/p0

av1x

av1z

sin θ(B1z

B0
)− cos θ(B1x

B0
)













,
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and Y (1) is its first time derivative. The 5× 5 matrix of the coefficients, A, is defined as

A =

















0 0 − i sin θ
csτsa

− i cos θ
csτsa

0
1
τcρ

+ 1
τK
− 1

τcT
− 1

τcρ
− 1

τK
− iγ sin θ

csτsa
− iγ cos θ

csτsa
0

icsτsa sin θ
τ2
g

icsa sin θ
γτs

0 0 − icsτsa
τ2
AL

icsτsa cos θ
τ2
g

icsa cos θ
γτs

0 0 0

0 0 − i
csτsa

0 − 1
κ2τAD

















,

where θ is the angle between k and B0, and

τAL ≡
1

k̃vA
=

√
4πρ0

k̃B0

, τAD ≡
1

k̃vd
=

4πηερ1+ν
0

k̃
2
(κB0)2

(27)

are the characteristic time-scales of the Alfvén waves and ambipolar diffusion, respectively.

3. Numerical Solutions

In this section we consider exponential growth rate and its characteristic equation (§3.1),
the relative importance of the corresponding time-scales (§3.2), and some typical nu-
merical data in the molecular clouds which lead to form oblate, prolate, and spherical
condensations (§3.3).

3.1 Exponential Growth Rate

The standard exponential growth rate provides the following formal solution for all the
perturbations:

yi(t) = yi(t=0)exp(ht), (28)

where real(h) represents their growth/decay rate. According to the background evolution,
equations (15) and (16), we have

Y (1) = hY + CY (29)

where C is a diagonal matrix as

C ≡ 1

τe
diag[3, 3γ, 1, 1, 2]. (30)

where | τe |= a
|da/dt| represent contraction/expansion time-scale. Existence of solution

for equation (26), needs the following condition:

Det[hI + C −A] = 0 (31)

where I is the unitary matrix. According to this condition, we find a five-degree linear
characteristic equation that without self-gravity and expansion/contraction of the back-
ground (τg, τe → ∞), reduces to equation (22) of NG. We use the Laguerre method to
find the roots of this characteristic equation.
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3.2 Characteristic Time-Scales

A fundamental time-scale is the period of a sound wave, τs = 1/k̃cs, which can be
rewritten as

τs = 1.14× 107λ(pc)√
T0

a2
(τ) year (32)

where λ(pc) is the wavelength of perturbation in parsec. In the above equation and the
subsequent equations, we choose the value of the polytropic index of the ideal gas as
γ = 5/3. Other important time-scales are as follows:

3.2.1 Self-gravity and Background Evolution

(a)The characteristic time of background evolution is

τe =
a

|da/dt| =
3.35× 107

√
n0

a5/2

ȧ(τ)
year (33)

where n0 is in the unit of cm−3. This time is also the time-scale for the adiabatic
temperature decrease/increase which follows from the expansion/contraction.
(b)The characteristic growth time of a perturbation by self-gravity is

τg =
1.9× 107

√
n0

a3/2 year (34)

which coincides with the time-scale of the background deceleration (see equ.[17]).

3.2.2 Thermal Conduction and Cooling

(a)Thermal conduction coefficient of a molecular cloud, K, is given by (Lang 1986)

K ≈ 2.16× 103
√

T0 erg.s
−1.oK−1.cm−1. (35)

The characteristic time-scale of thermal conduction can be rewritten as

τK = 2.80× 1010
n0λ

2
(pc)√
T0

year. (36)

(b)Inserting the net cooling function into definitions of the differential cooling time-scales;
we obtain

| τcT |=
1.98T0

Λ(n0, T0)a2 | δ + 2.5(ξ − 0.6χ) | year (37)
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| τcρ |=
1.98T0

Λ(n0, T0)a2 | β | year. (38)

where ξ and χ are defined as

ξ ≡ ΓAD

Λ(n0, T0)
, χ ≡ Γgrav

Λ(n0, T0)
. (39)

3.2.3 Magnetic Field

(a)The Characteristic time of the Alfvén wave is

τAL = 6.20× 105√n0

λ(pc)

B0(µG)
a3/2 year (40)

where B0(µG) is the background magnetic field in the unit of microgauss.
(b)Time-scale of the ambipolar diffusion is

τAD = 9.85× 104n
3/2
0 [

λ(pc)

κB0(µG)
]2a3/2 year (41)

that displays the drift time (in the wavelength of perturbation) of the frozen ions relative
to the neutrals.

The different characteristic times have different dependence on λ(pc), so the corre-
sponding processes will be important in different wavelength domains. For instance,
the conduction growth-rate and ambipolar diffusion time-scale, depend on wavelength as
λ2

(pc). Hence, conduction and ambipolar diffusion dominate at short wavelengths. The
differential cooling, background expansion and self-gravity time-scales have no spatial
dependence. Hence, these processes are dominant at long wavelengths. The frequency
of sound and Alfvén waves, finally, depends on the first power of λ(pc). Hence sound
and Alfvén propagation could be the dominant effect at intermediate wavelengths. The
boundaries between the different regions can be easily estimated using the definitions of
the characteristic times just given.

3.3 Typical data for the molecular clouds

We present some typical data which correspond to the real observed magnetic molecular
clouds. We consider the magnetic molecular clouds with density between 102cm−3 to
105cm−3, temperatures in the range of T0 ≈ 10−100K, and magnetic field strength B0 ≈
10µG (Myers & Goodman 1988, Crutcher 1999). It would be interesting to investigate
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Figure 2. The Field length in the molecular clouds versus number density, n0(cm
−3).

the perturbations with wavelengths around Field length (equation [26] of NG)

λ0(pc) ≡ 8.4× 10−6 T
3/4
0

n
1/2
0 a

√

Λ(n0, T0)β
. (42)

The values of the λ0(pc) for typical data in the molecular clouds is given in Fig. 2. Ac-
cording to this figure, we choose wavelengths in the range of λ(pc) ≈ 10−4 − 10−1pc, that
are interesting in formation of the small-scale condensations.

Firstly, we consider the sound domain where time-scale of the sound wave is much
smaller than other time-scales. The characteristic equation reduces to a three-degree
linear equation that has three solutions: two sound waves and one condensation mode.
Stable and unstable regions in the log(n0)− log[λ(pc)] plane, for typical values of ξ−0.6χ
equal to 1.0 and −1.0, are shown in Fig. 3.

We now study the effect of the self-gravity and the expansion/contraction of back-
ground. If the background is expanding, its expansion energy causes the medium to sta-
bilize in the isentropic instability case. On the other hand, in the isobaric instability case,
ion-neutral friction increases pressure, thus, it only causes stabilization of the medium
in the direction perpendicular to the magnetic field. Therefore, the oblate condensations
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Figure 3. The stable(×) and unstable(•) regions for typical values of (a)ξ − 0.6χ = 1.0 with

temperature T0 = 10K, and (b)ξ − 0.6χ = −1.0 with temperature T0 = 100K, in the sound

domain of the molecular clouds.

can be produced. This case is shown in Fig. 4, for a typical value of ξ − 0.6χ = 1.0 and
ȧ(τ=0) = 0.5.

For a contracting background, contraction energy is injected into the medium. Thus,
its stability is decreased and converted to a prolate instability. Diffusion of neutrals
relative to the frozen ions in the perpendicular direction of the magnetic field is the reason
of this prolate instability. This case is shown in Fig. 5 for typical values of ξ− 0.6χ equal
to 1.0 and −1.0, with temperature T0 = 10 and 100K. Whenever the local parameters of
a magnetic molecular cloud, lie within this log(n0)−log[λ(pc)] plane, prolate condensation
may be produced via thermal instability.

4. Summary and prospects

In this paper we perform linear analysis of thermal instability in locally uniform expand-
ing/contracting magnetic molecular clouds which, in the perturbed state, is undergoing
ambipolar diffusion. Thermal conduction and self-gravity have also been included as
fundamental ingredients. The small-perturbation problem yields a system of ordinary
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Figure 4. The stable(×), spherical instability(•), and oblate instability(−) for typical value of

ξ − 0.6χ = 1.0 in expanding background with ȧ(τ=0) = 0.5 for (a)T0 = 10K, and (b)T0 = 100K.
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Figure 5. The spherical instability(•) and prolate instability(|) in contracting background

with ȧ(τ=0) = −0.1, for typical values of a)ξ − 0.6χ = 1.0 with temperature T0 = 10K, and

(b)ξ − 0.6χ = −1.0 with temperature T0 = 100K.

differential equations with five independent solutions. We choose an exponential growth
rate, which converts the system of ordinary differential equations into a five-degree com-
plete characteristic equation. If we neglect the self-gravity and expansion/contraction of
the background, the characteristic equation reduces to the prior results of NG. We have
used the Laguerre method to find the roots of this complete characteristic equation.
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In sound domain, two of the solutions have the character of oscillatory modes (sound
waves) and the third one is a non-oscillatory (or condensation) solution. We adopt a
parametric net cooling function and find for perturbations with wavelengths greater than
the Field lengths, thermal instability causes the medium to condense. Fig. 3 shows
different stable and unstable regions in the molecular clouds and their cooling rates are
presented in Fig. 1.

We choose a wide range of density and temperature in the molecular clouds with
typical magnetic field strength B0 ≈ 10µG. Interesting wavelengths in the problem
are around the Field length which is shown in Fig. 2. According to this figure, we
consider wavelengths around 10−4−10−1pc for small-scale condensations. Different stable
and unstable regions of the log(n0) − log[λ(pc)] plane for the sound domain are shown
in Fig. 4 and Fig. 5 for expanding and contracting backgrounds, respectively. In the
expanding background, expansion energy in the isentropic instability, causes to stabilizes
the medium in the direction of the magnetic field and perpendicular to it, while, in the
isobaric instability it only stabilizes the medium in the perpendicular direction. In the
contracting background, stability of the medium is decreased and converted to the prolate
instability via injection of contraction energy.

In this paper we conclude that linear thermal instability can produce small-scale con-
densations in spherical, oblate, or prolate shapes. We try to analyze, linearly, a rather
involved problem, because, before nonlinear regime overcomes, turbulence causes interac-
tion and merging of these incompletely formed condensations. Physically, we expect that
merging of these small-scale condensations culminate in the large-scale clumps that are
star bearing regions in our world. We are now preparing a complete simulated turbulent
magnetic molecular cloud with condensations produced by thermal instability. We will
investigate the effect of interaction and merging of these small-scale condensations with
smoothed particle hydrodynamics (SPH) method.
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