PAPER • OPEN ACCESS

A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

To cite this article: Masaaki Otsuka et al 2016 J. Phys.: Conf. Ser. 728 072011

View the article online for updates and enhancements.

Related content

- <u>The rapid evolution of the central star of</u> <u>the Stingray Nebula — latest news from</u> <u>the HST</u>
- The peculiar planetary nebula 75+35 1.
- Two new possible planetary nebulae.

IOP ebooks[™]

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

Masaaki Otsuka¹, Mudumba Parthasarathy², Akito Tajitsu³, and Swetlana Hubrig⁴

¹ASIAA, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C.

²Indian Institute of Astrophysics, II Block Koramangala, Bangalore 560034, Karnataka, India ³Subaru Telescope, 650 N Aohoku Place, Hilo, HI 96720, U.S.A.

⁴Leibniz-Institut fuer Astrophysik Potsdam (AIP) An der Sternwarte 12, 14482 Potsdam, Germany

E-mail: otsuka@asiaa.sinica.edu.tw

Abstract. We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μ m By photoionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially $1.5 M_{\odot}$ stars with the Z = 0.008.

1. Nebular elemental abundances

We performed a chemical abundance analysis using the MPG ESO 2.2-m/FEROS $0.36-0.9\,\mu$ m high-dispersion spectrum taken on 2006 April and the Spitzer/IRS spectrum taken on 2005 March. The result is summarized in Table 1. The RL C/O ratio (0.20) indicates that this PN is O-rich. The nebular He/C/N/O/Ne abundances are similar to the predictions of the AGB star model by [2] for the initially $1.5 M_{\odot}$ stars with the metallicity Z = 0.008.

2. Physical properties of the central star and the dusty nebula

Using the photo-ionization code CLOUDY [3], we investigated properties of the central star and the dusty nebula by fitting the near-UV FEROS to the Far-IR AKARI/FIS data.

Effective temperature (T_{eff}) and surface gravity $(\log g)$ When we adopted the model atmosphere for yr 2006 with $T_{\rm eff} = 55\,000\,{\rm K}$ and $\log g = 6.0\,{\rm cm}\,{\rm s}^{-2}$ by [4] and the distance of 1.6 kpc [4], CLOUDY overestimated the fluxes of higher excitation lines such as [Ne III] and [O III]. $T_{\rm eff}$ could be cooler than 55 000 K; we estimated $T_{\rm eff}$ to be 50 500 K using the nebular $[O_{III}]/H\beta$ line ratio. We utilized TLUSTY O-star atmosphere [5] and searched for $T_{\rm eff}$ and log g to match the observations. We set $T_{\text{eff}} = 45\,800\,\text{K}$ and $\log g = 4.55\,\text{cm s}^{-2}$.

Distance We calculated the post-AGB age of $\sim 379 D_{\rm kpc}$ yrs using the expansion velocity $(21 \text{ km s}^{-1}, \text{ from the H}\beta \text{ line})$ and the nebula's outer radius (1.7'') measured from the

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution Ð (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

Figure 1. (upper panel) Comparison between the CLOUDY model and observational data of Hen3-1357. (lower panel) Closed-up plots for mid-IR wavelength. The mid-IR Spitzer/IRS spectrum shows the amorphous silicate broad features at 9 and $18\,\mu\text{m}$. We derived the dust mass of $2.2 \times 10^{-4} \,\mathrm{M_{\odot}}$ and the temperature 50-176 K (grain radius $a = 0.01 \cdot 0.25 \,\mu\mathrm{m}$ and $a^{-3.5}$ size distribution).

Table 1. Elemental abundances $(\log_{10} \epsilon(H) = 12)$. The fourth and eighth columns are the predictions of the AGB star model by [2] for the initially $1.5 M_{\odot}$ stars with the Z = 0.008.

Х	$\epsilon(X)$	[X/H]	Model	Х	$\epsilon(X)$	[X/H]	Model
He	11.04	0.11	10.98	Ne	8.09	0.22	8.18
C(RL)	8.09	-0.30	8.06	\mathbf{S}	6.71	-0.48	7.16
N(CEL)	7.78	-0.05	7.70	Cl	5.12	-0.38	
N(RL)	7.81	-0.02	7.70	Ar	6.16	-0.39	
O(CEL)	8.65	-0.04	8.36	Fe	5.06	-2.41	
O(RL)	8.79	0.10	8.36				

HST/WFPC2 F487N image taken in 1998. Supposing that the central star was initially $1.5 \,\mathrm{M_{\odot}}$ and the current T_{eff} is ~45000-55000 K, the post-AGB age is ~1000-3000 yrs from the predictions of [6]. Thus, we estimated the distance of 2.7-6.7 kpc. Here we set 5 kpc.

Result We compare the observed SED plots and the SED predicted by the model in Figure 1. The calculated gas mass $(0.07 \,\mathrm{M_{\odot}})$ and the core-mass $(0.62 \,\mathrm{M_{\odot}})$ are consistent with [2], who predict that the initially $1.5 \,\mathrm{M}_{\odot}$ stars with Z = 0.008 will eject $\sim 0.09 \,\mathrm{M}_{\odot}$ during the last thermal pulse and end as $\sim 0.63 \,\mathrm{M}_{\odot}$ stars.

References

- [1] Parthasarathy M, Garcia-Lario P, Pottasch S R, Manchado A, Clavel J, de Martino D, van de Steene G C M and Sahu K C 1993 Astron. Astrophys. 267 L19–L22
- [2] Karakas A and Lattanzio J C 2007 Publ. Astron. Soc. Australia 24 103-117
- [3] Ferland G J, Porter R L, van Hoof P A M, Williams R J R, Abel N P, Lykins M L, Shaw G, Henney W J and Stancil P C 2013 Revista Mexicana de Astronomia y Astrofísica 49 137-163
- [4] Reindl N, Rauch T, Parthasarathy M, Werner K, Kruk J W, Hamann W R, Sander A and Todt H 2014 Astron. Astrophys. 565 A40
- [5] Lanz T and Hubeny I 2003 Astrophys. J. Suppl. Series 146 417-441
- [6] Vassiliadis E and Wood P R 1994 Astrophys. J. Suppl. Series 92 125-144