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Correlation trends in the hyperfine structures of 210,212Fr
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We demonstrate the importance of electron correlation effects in the hyperfine structure constants of many
low-lying states in 210Fr and 212Fr. This is achieved by calculating the magnetic dipole and electric quadrupole
hyperfine structure constants using the Dirac-Fock approximation, second-order many-body perturbation theory,
and the coupled-cluster method in the singles and doubles approximation in the relativistic framework. By
combining our recommended theoretical results with the corresponding experimental values, improved nuclear
magnetic dipole and electric quadrupole moments of the above isotopes are determined. In the present work, it is
observed that there are large discrepancies between the hyperfine structure constants of the 7D5/2 state obtained
from the experimental and theoretical studies, whereas good agreement is found for the other D5/2 states. Our
estimated hyperfine constants for the 8P , 6D, 10S, and 11S states could be very useful as benchmarks for the
measurement of these quantities.
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I. INTRODUCTION

Francium (Fr) is the heaviest alkali-metal atom in the
periodic table, possessing 87 electrons. Therefore, the proper-
ties of this system are expected to exhibit moderately strong
correlation effects, and their determination calls for using
powerful many-body methods. The Fr atom, because of its
large atomic number Z, is being considered for many important
experimental studies. A few prominent examples among
them are the measurements of the electric dipole moment
(EDM) due to parity and time-reversal symmetries [1,2]
and parity nonconservation (PNC) effects due to neutral
weak interaction [2,3] and the nuclear anapole moment [4].
Like the EDM and PNC interactions, the magnetic dipole
hyperfine interaction has a fairly strong dependence on
Z [5] as it involves electrons interacting with the nucleus.
Thus, theoretical investigations of hyperfine structures are
necessary for EDM and PNC studies to test the accuracies
of the wave functions in the nuclear region [6,7]. On the
other hand, comparison of theoretical results from various
approximations with the experimental values can provide
a comprehensive understanding of the passage of electron
correlations from lower to higher levels of many-body theory.
This knowledge is essential to validate the theoretical results
when experimental data are unavailable. Attempts have been
made to investigate trends in the correlation effects in the
calculations of hyperfine structure constants of the S− states
using lower-order many-body methods [8–11], but such trends
have not been demonstrated explicitly for states of Fr having
higher angular momenta.

The focus of this paper is the study of variation in the
trends of correlation effects in the evaluation of the hyperfine
structure constants of as many as 17 low-lying states in Fr using
the relativistic second-order many-body perturbation theory
[MBPT(2) method] and the coupled-cluster (CC) method
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at various levels of approximation using the reference state
obtained by the Dirac-Fock (DF) method with V N−1 potential.
In the present work, we have undertaken theoretical studies of
the hyperfine structure constants of 210Fr and 212Fr isotopes
for two reasons. First, 210Fr has been proposed as one of
the most suitable Fr isotopes for both the PNC and EDM
studies [1,2]. To draw meaningful conclusions and to be
consistent in the findings from comparisons between the
theoretical and experimental hyperfine structure constants of
different states, it is necessary to consider the results for as
many states as possible for both the isotopes. The second, but
essential, reason behind considering the above two isotopes is
that experimental results of the hyperfine structure constants
for only a few selective low-lying states of 210Fr [12–15] and
some other excited states of 212Fr are available [16].

II. THEORY

The Hamiltonian describing the noncentral form of the
hyperfine interaction between the electrons and nucleus in
an atomic system is expressed in terms of the tensor operator
products as [17]

Hhf =
∑

k

M(k)
n · O(k)

hf , (1)

where M(k)
n and O(k)

hf are the spherical tensor operators with
rank k (> 0) in the nuclear and electronic coordinates,
respectively. These interaction strengths become weaker with
higher values of k, so we consider only up to k = 2 in the
present case. Due to the coupling between the electronic
(J) and nuclear (I) angular momenta, the hyperfine states
|γ IJ ; FMF 〉 are the proper bases with total angular momen-
tum F = J + I and corresponding azimuthal quantum number
MF and γ representing the rest of the unspecified quantum
numbers.

The energy splitting due to the first-order correction in the
atomic state |JM〉 because of the hyperfine interactions is
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given by

W
(1)
F,J = 〈γ IJ ; FMF |

∑
k

M(k)
n .O(k)

hf |γ IJ ; FMF 〉

=
∑

k

(−1)I+J+F

{
J I F

I J k

}

×〈I |∣∣M (k)
n

∣∣|I 〉〈J |∣∣O(k)
hf

∣∣|J 〉, (2)

which after expanding up to multipoles k = 2, gives

W
(1)
F,J = WM1

F,J + WE2
F,J , (3)

where WM1
F,J and WE2

F,J are the contributions due to the magnetic
dipole (M1) with k = 1 and electric quadrupole (E2) with
k = 2 interactions, respectively. It is commonly expressed as

WM1
F,J = 1

2AhfK (4)

and

WE2
F,J = Bhf

3
4K2 + 3

4K − I (I + 1)J (J + 1)

2I (2I − 1)J (2J − 1)
(5)

with the hyperfine structure constants defined as

Ahf = μNgI

〈J |∣∣O(1)
hf

∣∣|J 〉√
J (J + 1)(2J + 1)

(6)

and

Bhf = 2Q

[
2J (2J − 1)

(2J + 1)(2J + 2)(2J + 3)

]1/2

〈J |∣∣O(2)
hf

∣∣|J 〉,

(7)

where μN is the nuclear Bohr magneton; gI = μI

I
; μI

and Q are the nuclear magnetic and quadrupole moments,
respectively; and K = F (F + 1) − I (I + 1) − J (J + 1). It
appears from the above expressions that the quantities Ahf/gI

and Bhf/Q are independent of nuclear factors, but these values
can vary slightly among isotopes due to different nuclear
potentials experienced by the electrons in these systems.

III. METHOD OF CALCULATIONS

The wave function (|�n〉) of an atomic state corresponding
to the closed-shell configuration [6p6] and a valence orbital n

in Fr can be expressed as [18]

|�n〉 = �n|�n〉, (8)

where �n is known as the wave operator, and it generates
virtual excitations from the reference state |�n〉 to create all the
possible excited configurations that are necessary to construct
the atomic states |�n〉. The choice of |�n〉 is crucial for
obtaining accurate results; we construct these determinantal
states with orbitals generated using the V N−1 potential. These
states can be expressed as |�n〉 = a

†
n|�0〉, where the DF

wave function |�0〉 of the closed-core [6p6] is obtained by
considering the Dirac-Coulomb (DC) Hamiltonian (HDC) and
is treated as the reference state for all the atomic states that we
have considered.

The electron correlation effects are accounted for via �n in
the evaluation of |�n〉 in two steps. In the first step, we consider
correlation effects within the closed-shell configuration [6p6],

following which we take into account correlation of the valence
electron coupling with the core electrons to generate the virtual
excitations. For this purpose, we express �n as

�n = �0 + �v
n, (9)

where �0 (independent of n) has correlation effects from the
closed-shell core while �v

n contains correlation effects involv-
ing the electron from the valence orbital. In the perturbative
expansion, we write [18]

�n =
2∑

k=0

�(k)
n (10)

with �(k)
n representing components of the wave operator

carrying out k residual Coulomb interactions among the
electrons. Using this formulation, hyperfine structure constants
due to O

(1)
hf and O

(2)
hf (commonly denoted by O) are calculated

as

〈�n|O|�n〉
〈�n|�n〉 = 〈�n|�†

nO�n|�n〉
〈�n|�†

n�n|�n〉

= 〈�n|
∑

i,j �
(i)†
n O�

(j )
n |�n〉

〈�n|
∑

i,j �
(i)†
n �

(j )
n |�n〉

. (11)

For the MBPT(2) method, i + j � 2 in the above summations.
In the Fock-space CC approach, we define �0 = eT and

�v
n = eT Sn, which for a single valence system yields the form

|�n〉 = eT {1 + Sn}|�n〉, (12)

where T and Sn are the excitation operators involving core
and core-valence electrons, respectively. Since our reference
state is |�0〉, we take Sv in normal order with respect to |�0〉
for which, in the above expression, it is mentioned within
curly braces. It is worthwhile to mention that T is also in
normal order with respect to |�0〉 by construction. From
a practical point of view we only consider the singles and
doubles excitations through the CC operators, known as the
CCSD method in the literature [19,20], by defining

T = T1 + T2 and Sn = S1n + S2n. (13)

Even though we have used the CCSD approximation, we are
able to include many important contributions from the triples
and quadruples through the nonlinear terms of Eq. (12). In
order to understand the role of these contributions in Fr for
accurate evaluation of the hyperfine structure constants, we
also determine contributions only from the linear terms of
Eq. (12) by approximating

|�n〉 = {1 + T1 + T2 + S1n + S2n}|�n〉, (14)

which we refer to as the LCCSD method. This approximation
resembles the singles and doubles configuration interaction
(CISD) method.

The hyperfine structure constants are determined in the CC
method as

〈�n|O|�n〉
〈�n|�n〉 = 〈�n|{1 + S

†
n}eT †

OeT {1 + Sn}|�n〉
〈�n|{1 + S

†
n}eT †

eT {1 + Sn}|�n〉
. (15)

The above expression has two nonterminating series eT †
OeT

and eT †
eT in the numerator and denominator, respectively.
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To account for the contributions that are significant from
these series, we have used Wick’s general theorem to divide
these terms into effective one-body, two-body, and three-body
terms [18]. The effective one-body terms are dominant owing
to the single-particle form of the above O operators. They are
computed self-consistently and stored as intermediate parts
before contracting with the corresponding Sn operators. While
the effective two-body and three-body terms are computed
directly, we also reuse the effective one-body terms to construct
the effective two-body and three-body terms. To illustrate
the computational procedure adopted in our calculations,
we outline the important steps below. First of all, we calculate
the effective one-body terms of eT †

eT and store them as
hole-hole (h-h), particle-particle (p-p), and particle-hole (p-h)
blocks. The p-h block is first evaluated considering only linear
terms and then stored as an intermediate effective p-h block
which is then contracted further with an extra T

†
2 operator

to get the h-p block. Consequently, the p-h block is obtained
from the h-p block by multiplying appropriate phase factors
and the procedure is repeated until self-consistent results with
tolerance 1×10−8 are achieved. Following this, the h-h and
p-p blocks are constructed considering the direct contractions
among the T2 and T

†
2 operators and along with the contractions

of the h-p and h-p blocks with the T1 operators. As a result,
the h-h and p-p blocks still contain terms from infinite series
through the h-p and p-h blocks. In a similar fashion we compute
eT †

OeT but by slightly modifying the above strategy. Here we
make use of the effective one-body terms of eT †

eT for the
construction of the effective one-body diagrams of eT †

OeT

and special attention has been paid to avoid the repetition of
any diagram through the iterative procedure. We also replaced
the T1 and its conjugate operators appearing in the effective
two-body and three-body terms of eT †

OeT by the effective p-h
and h-p blocks of eT †

eT , respectively, to improve the results
due to inclusion of the contributions from the higher-order CC
terms.

We also estimate contributions from the important triple
excitations considering them perturbatively in the above
property evaluation expression by defining a triple excitation
operator

S
pert
3n = 1

4

∑
ab,pqr

(HDCT2 + HDCS2n)pqr

abn

εn + εa + εb − εp − εq − εr

, (16)

where a,b and p,q,r indices represent for the core and virtual
orbitals, respectively. Particles appearing in the subscripts
are annihilated while those appearing in the superscripts are
created in the course of defining excitation processes. We refer
to this approach as the CCSDt3 method in this work.

We use a recently developed basis function having the
analytic exponential form with quadratic exponents to express
the single-particle wave functions. These functions for the
orbitals having orbital angular momentum value l are given as

|φl(r)〉 = rl

Nl∑
ν=1

cl
νe

−ανr
4 |χ (θ,ϕ)〉, (17)

where |χ (θ,ϕ)〉 represents for the angular momentum part,
Nl corresponds to the total number of analytic functions

TABLE I. List of different parameters of bases used in the present
calculations.

s p d f g

Nl 40 39 38 37 36
α0 2.0×10−8 2.5×10−8 2.5×10−8 2.1×10−1 2.1×10−7

β 5.06 5.04 5.06 5.08 5.15

considered in the calculations, and αν is an arbitrary coefficient
constructed satisfying the even tempering condition between
two parameters α0 and β as

αν = α0β
ν−1. (18)

The motive for using the above analytic function is to describe
the atomic wave functions more accurately than the Slater- and
Gaussian-type orbitals in the nuclear region of a heavy atom
like Fr. We give the list of parameters in Table I that are used
in the present calculations.

We consider a two-parameter Fermi-charge distribution to
account for the finite size of the nucleus as

ρn(r) = ρ0

1 + e(r−b)/a
, (19)

for the normalization factor ρ0, the half-charge radius b, and
a = 2.3/4(ln 3) is related to the skin thickness, while we
evaluate the nuclear potential. We have used a = 2.3/4(ln 3),
but b = 6.7032 fm and b = 6.7166 fm for 210Fr and 212Fr,
respectively, that are determined using the relation

b =
√

5

3
r2

rms − 7

3
a2π2, (20)

by taking the respective values for the root-mean square (rms)
charge radii of the nuclei rrms from the nuclear data table [21].

IV. RESULTS AND DISCUSSION

In order to demonstrate the propagation of electron corre-
lation effects from the lower to higher orders of many-body
methods, we present results using the DF, MBPT(2), LCCSD,
CCSD, and CCSDt3 methods for Ahf/gI and Bhf/Q of the
first 17 low-lying states of 210Fr in Table II. We find changes
beyond the third decimal places in these results for all the
states except for the Ahf/gI values of the S states, which are
reduced by −1.141, −0.242, −0.095, −0.047, and −0.028 (in
MHz) in the 7S, 8S, 9S, 10S, and 11S states, respectively, of
212Fr compared to the results of 210Fr. We account for these
differences later while considering the results for 212Fr. It
can be seen from the above table that the MBPT(2) results are
larger than the corresponding DF results for both the properties
except for the Ahf/gI values of the D5/2 states. In fact, there
are sign differences between the DF and MBPT(2) results of
Ahf/gI in the D5/2 states, implying that correlation effects
are very strong for these states. It is found that the LCCSD
method yields much larger values for both Ahf/gI and Bhf/Q

compared to the other methods. The nonlinear terms in the
CCSD methods contribute substantially but with opposite sign
to reduce the LCCSD values. Triples through the CCSDt3

method also further reduce the Ahf/gI values while they lead
to small increases in the values of Bhf/Q. Thus, we conclude
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TABLE II. Results for Ahf/gI and Bhf/Q obtained using the DF, MBPT(2), LCCSD, CCSD, and CCSDt3 methods. Previously reported
calculations using varieties of many-body methods are also quoted as “Others”.

Ahf/gI (MHz) Bhf/Q (MHz)

State DF MBPT(2) LCCSD CCSD CCSDt3 Others DF MBPT(2) LCCSD CCSD CCSDt3 Others

7s 2S1/2 6531.06 10186.68 11457.29 9916.20 9885.24 9927.69a

9947.07b

10155.40c

8432.65d

7p 2P1/2 707.70 1169.41 1522.50 1281.84 1279.56 1308.67b

1265.77c

876.12e

7p 2P3/2 55.68 97.20 124.80 104.34 104.28 103.38b 118.03 234.51 300.47 258.99 259.73 231e

115.09c

96.28e

6d 2D3/2 36.24 44.10 123.00 85.02 85.20 26.19 73.47 100.17 96.33 98.61
6d 2D5/2 14.28 − 23.04 − 84.36 − 58.92 − 58.82 30.34 97.09 134.01 129.38 131.40
8s 2S1/2 1674.12 2234.40 2337.92 2159.16 2151.90 2160.98a

2165.88b

2218.47c

2155.27d

8p 2P1/2 251.76 381.06 457.38 402.84 402.01 408.68b

409.46c

8p 2P3/2 20.40 33.96 40.62 35.04 35.03 34.25b 43.29 78.74 94.73 83.81 84.01
39.64c

7d 2D3/2 18.30 16.14 36.45 30.84 30.90 13.23 24.99 29.28 29.97 30.53
7d 2D5/2 6.90 −12.24 −18.62 −16.32 −16.28 14.57 32.84 38.56 39.45 39.92
9s 2S1/2 687.54 881.28 910.01 852.78 849.72 852.39a

839.40d

10s 2S1/2 382.38 468.12 449.63 455.82 454.26 402.97d

8d 2D3/2 9.38 7.75 16.62 14.45 14.47 6.79 9.47 13.15 13.43 13.66
8d 2D5/2 3.46 −5.34 −7.62 −6.90 −6.88 7.35 12.62 17.26 17.59 17.78
9d 2D3/2 5.08 4.22 9.13 7.84 7.86 3.68 5.01 7.08 7.12 7.24
9d 2D5/2 1.87 −3.02 −3.89 −3.53 −3.52 3.96 6.74 9.21 9.25 9.35
11s 2S1/2 186.13 238.72 252.16 231.13 230.12 208.11d

aReference [15].
bReference [22].
cReference [23].
dReference [11].
eReference [24].

that the correlation effects represented by the nonlinear terms
that correspond to the triple and quadruple excitations are
crucial for the accurate evaluation of the hyperfine structure
constants of the Fr atom.

We also mention about previously reported calculations of
Ahf/gI and Bhf/Q in Fr in Table II as “Others” [11,15,22–24].
Owusu et al. investigated the core-polarization effects system-
atically in the S− states of 212Fr using the relativistic many-
body perturbation theory. These values are found to be smaller
than our MBPT(2) results. The singles and doubles with partial
triples all-order (SDpT) method, which is analogous to our
LCCSD approximation but with important triples effects in the
wave-function determination, was employed in Refs. [15,22]
to evaluate the Ahf/gI values of a few low-lying states and
is in close agreement with our CCSD and CCSDt3 results.
Dzuba et al. employed a restricted Hartree-Fock method
in the relativistic framework and incorporated correlation
effects using many-body perturbation theory to investigate

correlation effects in the hyperfine structure constants of a few
low-lying states of 211Fr [23]. Heully and Mårtensson-Pendrill
used a relativistic many-body perturbation method treating
polarization effects to all orders [24]. Their results differ
significantly from our calculations.

To understand the role of various correlation effects in
the evaluation of the Ahf/gI values for the states belonging
to different angular momenta, we discuss here their trends
by plotting individual contributions from a few important
CCSD terms. This knowledge is of immense interest for
the theoretical studies of PNC and EDM properties in a Fr
atom [6,7]. As demonstrated explicitly by us earlier [25,26],
the OS1v and OS2v terms from the CCSD method correspond
to all-order pair-correlation and core-polarization effects,
respectively. Similarly, correlation effects through the OT1

CC term can be interpreted as the core-valence correlations
that were missing in the generation of the single particle
orbitals using the V N−1 DF potential. Therefore, the DF value
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FIG. 1. Goldstone diagrammatic representation of O, OT1, OS1v , and OS2v terms corresponding to the DF and correlation contributions
to the hyperfine structure constants. Lines with double arrows or a single arrow pointing upwards denote valence (v) and virtual particle (p)
orbitals, respectively, while lines with a downward arrow stand for the occupied orbitals (a).

with the correlation contributions from the OT1, OS1v (which
also contains the DF value at its lowest order) and OS2v

CCSD terms make the dominant contributions in the evaluation
of the properties that we have considered. Diagrammatic
representations of these terms are shown in Fig. 1. In order
to compare the correlation effects, we plot the Ahf/gI values
from the DF method (given as O) and correlation contributions
through the OT1, OS1v (after subtracting their respective
lowest-order DF contributions) and OS2v terms along with
their Hermitian conjugate terms in Fig. 2. For convenience,
we plot results of the S, P , D3/2, and D5/2 states separately as
have been shown in the figure. As expected, the DF results are
larger in all the cases except for the D5/2 states, implying that
only an all-order perturbative method is suitable for carrying
out the calculations accurately in these states. In most of
the states, core-valence effects are negligibly small except
for the ground state where these effects contribute to some
extent. Except for the D5/2 states, pair-correlation effects
through the OS1v term seem to contribute significantly, but
with opposite sign relative to the DF results. However, the

next dominant contribution comes from the core-polarization
effects through the OS2v term and has the same sign as
the DF values for these states. The final results arise from
the strong cancellations between these contributions. On the
other hand, core-polarization effects through the OS2v term
make the largest correlation contributions in the evaluation of
Ahf/gI as in the case of the alkaline-earth-metal ions [26] and
have opposite sign relative to their DF values. In these states
too, the core-valence and pair-correlation effects contribute
with negative sign to their DF values except in the 6D3/2

state. Again, by comparing all the plots one can easily notice
that the correlation effects in the lower-lying states for each
angular momentum are large compared to their corresponding
high-lying states.

Having described the correlation trends in the evaluation
of the Ahf/gI values in different states, we now proceed
to comprehend these trends for the Bhf/Q results for the
states with angular momenta J > 1/2. Plots for these results
are shown in Fig. 3 for the P3/2, D3/2, and D5/2 states
separately. Clearly, the correlation trends for the Bhf/Q results
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FIG. 2. (Color online) Demonstration of correlation trends in the evaluation of Ahf/gI values (in MHz) in a Fr atom through a few important
CCSD terms. Results among the considered (a) S, (b) P , (c) D3/2, and (d) D5/2 states are compared from the DF, OT1, OS1v (after subtracting
the DF value), and OS2v terms along with their Hermitian conjugate terms in a sequence in each arbitrary unit distance.
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FIG. 3. (Color online) Comparison of correlation trends in the
evaluation of Bhf/Q values (in MHz) of the considered states of Fr
through a few important CCSD terms. Results among the considered
(a) P3/2, (b) D3/2, and (c) D5/2 states are compared from the DF, OT1,
OS1v (after subtracting the DF value), and OS2v terms along with
their Hermitian conjugate terms in a sequence in each arbitrary unit
distance.

are different from those of the Ahf/gI values, although both the
hyperfine interaction operators are of even parity and originate
from the nucleus. The reason for these differences could be
due to different angular momentum selection rules for their
evaluations. In general, both the DF and core-polarization
effects contribute to Bhf/Q results with positive sign and the
DF values are larger in the P3/2 states while core-polarization
effects are larger in the D states. The core-valence and
pair-correlation effect contributions have negative sign with
smaller magnitudes.

We list the calculated and experimental values of Ahf

and Bhf of 210Fr and 212Fr in Table III for which a few
high-precision measurements are available. Coc et al. obtained
the Ahf value for the ground 7S state as 7195.1(4) MHz
using high-resolution spectroscopy [27]. In the same work,
Coc et al. had also given Ahf and Bhf values of the 7P3/2

state as 78.0(2) MHz and 51(4) MHz, respectively. Using the
two-photon excitation spectroscopy of a 210Fr atom confined
and cooled in a magneto-optical trap, Simsarian et al. obtained
the experimental Ahf value for the 8S state as 1577.8(23)
MHz at the ISOLDE facility [13]. Fairly recently, Gomez

et al. measured the Ahf value for the 9S state as 622.25(36)
MHz using a similar experimental technique [15]. From
another experiment, Coc et al. reported the Ahf value of the
7P1/2 state as 945.6(5.8) MHz [28]. A more precise value
of Ahf in the 7P1/2 state was obtained by Grossman et al.
as 946.6(5.8) MHz [12]. Soon after that Grossman et al.
extracted the Ahf values for the 7D3/2 and 7D5/2 states by
measuring hyperfine splittings as 22.3(5) MHz and −17.8(8)
MHz, respectively [14]. Here, they had neglected the Bhf

value of the 7D3/2 state while estimating a large Bhf value
as 64(17) MHz for the 7D5/2 state. Similarly, for the 212Fr
isotope there are many experimental results available for the
Ahf and Bhf values measured using various spectroscopic
techniques, which are presented in the same Table III. For
instance Coc et al., adopting the same experimental technique
as for 210Fr, measured the Ahf values of the 7S and 7P1/2,3/2

states in 212Fr [27,28]. It can be noticed from the tabulated
results for the Ahf values that there is excellent agreement
between the present calculations with the experimental values
of the 7P1/2,3/2 states, where our results differ from the
measurements by about 1.2% for the ground state. In another
experiment Duong et al. used stepwise laser excitation in
collinear geometry with the online mass separator of the
ISOLDE facility at CERN and measured the Ahf and Bhf values
for the 7S, 7P , and 8P states of 212Fr [29]. Our calculations
are also in good agreement with these experimental results for
the above states. Arnold et al. further extended this project to
carry out measurements of the hyperfine structure constants
of the 10S, 11S, 8D, and 9D states in 212Fr [16], which are
also given in Table III. It can be seen that these results and our
calculations agree very well.

As has been stated before, the evaluation of the theoretical
results for Ahf and Bhf require the knowledge of the gI

(i.e., μI and I ) and Q values of the atom. Our calculations
using our CCSDt3 method are the most rigorous theoretical
results to date as they take into account more physical effects
than the previous calculations. The current best value of μI

in 210Fr was extracted by combining the experimental Ahf

value of its 9S state with the corresponding calculation using
the SDpT method [15]. However, if experimental results for
the hyperfine structure constants of any state are known to
high precision, the extraction of nuclear moments from these
measurements can be justified. In reality, most of the measured
Ahf values in 210Fr are known quite precisely among which
the ground-state result is the most accurate (see Table III).
To infer a gI value for 210Fr from the Ahf results, we
take the mean value from the data obtained combining the
measurements with their corresponding calculations using the
CCSDt3 method for all the states except for the D5/2 states.
The reason for not considering the results of these states is
that the correlation effects in these cases are more than 100%
while for other states the principal contributions come from
the DF values. In this approach, we obtain gI = 0.733765942
which corresponds to μI = 4.40(5) of 210Fr. Here only the
uncertainties from the measurements are taken into account.
This value is in agreement with its earlier reported values as
μI = 4.40(9) [30] and μI = 4.38(5) [15], which were also
determined by a similar approach. Unlike the case of Ahf, only
two experimental values for Bhf in 210Fr have been reported,
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TABLE III. Comparison between the theoretically determined and experimentally available Ahf and Bhf results for 210Fr and 212Fr with
the uncertainties given in the parentheses. Theoretical results are obtained by combining the CCSDt3 values from Table II with the deduced
nuclear moments in this work.

210Fr 212Fr

Ahf (MHz) Bhf (MHz) Ahf (MHz) Bhf (MHz)

States CCSDt3 Expt. CCSDt3 Expt. CCSDt3 Expt. CCSDt3 Expt.

7s 2S1/2 7254(75) 7195.1(4)a 9124(94) 9064.2(2)a

9064.4(1.5)b

7p 2P1/2 939(7) 945.6(5.8)c 1181(9) 1189.1(4.6)c

946.3(2)d 1187.1(6.8)b

1192.0(2)d

7p 2P3/2 77(2) 78.0(2)a 51.9(8) 51(4)a 96(3) 97.2(1)a − 26.0(4) −26.0(2)b

97.2(1)b

6d 2D3/2 63(4) 19.3(6) 79(5) − 9.9(3)
6d 2D5/2 −43(4) 25.8(8) −54(5) − 13.1(4)
8s 2S1/2 1579(15) 1577.8(23)e 1986(19)
8p 2P1/2 295(4) 371(5) 373.0(1)b

8p 2P3/2 26(2) 16.5(2) 32(3) 32.8(1)b − 8.4(1) −7.7(9)b

7d 2D3/2 23(2) 22.3(5)f 6.0(4) Assume 0f 29(3) − 3.1(2)
7d 2D5/2 −12(2) − 17.8(8)f 7.8(2) 64(17)f −15(3) − 4.0(1)
9s 2S1/2 624(7) 622.25(36)g 784(9)
10s 2S1/2 333(7) 419(9) 401(5)h

8d 2D3/2 11(1) 2.7(2) 13(1) 13.0(6)h − 1.4(1) Assume 0h

8d 2D5/2 −5(1) 3.5(1) −6(1) − 7.1(6)h − 1.78(5) −2(10)h

9d 2D3/2 6(1) 1.4(1) 7(1) 7.1(7)h − 0.72(5) Assume 0h

9d 2D5/2 −2.6(5) 1.8(1) −3.3(6) − 3.6(4)h − 0.94(5) Assume 0h

11s 2S1/2 169(7) 212(9) 225(3)h

aReference [27].
bReference [29].
cReference [28].
dReference [12].
eReference [13].
fReference [14].
gReference [15].
hReference [16].

among which the result for the 7D5/2 state might have been
overestimated given that the wave function of the 7D5/2 state
can have an extremely small overlap in the nuclear region. Note
that Bhf of the 7P3/2 state is 51(4) MHz. Thus, combining
the Bhf value of the 7P3/2 state with the corresponding
calculation, we obtain Q = 0.196(15)b, where the uncertainty
only from the measurement is taken into account, and the
value estimated earlier was Q = 0.19(2)b [30] for 210Fr.
The agreement between these two values is because the
same experimental Bhf value has been used in both the
results. By substituting these revised μI and Q values, we
have evaluated the theoretical Ahf and Bhf values of 210Fr
and they are reported in Table III. We have also given the
uncertainties of our calculated values by roughly estimating
the contributions from the triple excitations that would modify
the wave functions and also the possible error due to the
truncation in the basis functions used for the construction of
the atomic orbitals. This is not the actual uncertainty since the
correlation effects coming through the full triple excitations
could be much more significant in this heavy system which
needs to be verified by considering more powerful CC
methods.

Keeping in mind the small differences among the calcula-
tions of the values of Ahf/gI and Bhf/Q between 210Fr and
212Fr, as was mentioned earlier, we expect to observe the
ratios between the Ahf and Bhf values from 210Fr and 212Fr for
any given state to be almost equal to ratios of their μI and Q

values, respectively, as demonstrated in Ref. [31]. Considering
all the experimental values known for the common states
in both the isotopes, we find gI (212Fr)/gI (210Fr) = 1.25(1)
and Q(212Fr)/Q(210Fr) = −0.51(5). Experimental results for
Ahf and Bhf are reported for more states in 212Fr than
210Fr. Excluding Ahf results for the D5/2 states owing to
the reason stated previously, we obtain gI = 0.923070701 for
212Fr when we combine its experimental Ahf values of the
remaining states with their respective Ahf/gI calculations. This
corresponds to μI (212Fr) = 4.61(4). This, again, agrees with
the previously reported value μI (212Fr) = 4.62(9) [30]. In a
similar procedure, we get Q(212Fr) = −0.10(1)b which is the
same as that given in Ref. [30]. From these theoretical results,
we get gI (212Fr)/gI (210Fr) = 1.26 and Q(212Fr)/Q(210Fr) ≈
−0.51, which are in reasonable agreement with the estimated
values from the measurements. Combining the respective
nuclear moments, we have given the calculated values of the
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hyperfine structure constants of 212Fr in Table III along with
their estimated uncertainties.

Comparison of the theoretical and experimental Ahf and
Bhf results that are given in Table III are satisfactory for
almost all the states, but we find a large discrepancy between
the experimental and theoretical Bhf values for the 7D5/2

state. This result requires further theoretical and experimental
verifications. Also, it was assumed that the Bhf values of
other D3/2,5/2 states were negligible while extracting the
experimental Ahf values of the corresponding states; however,
the present work shows that Bhf of the 7D3/2 state is about
6 MHz.

It is also worth mentioning that reasonable agreement
between our calculations with the available experimental
data of the hyperfine structure constants suggests that our
calculated values of Ahf/gI and Bhf/Q are quite accurate.
Since calculations of these quantities do not depend much
on the size of the isotopes in the absence of anomalies, our
Ahf/gI and Bhf/Q values can be used to estimate the Ahf and
Bhf hyperfine structure constants in other isotopes of Fr by
multiplying them with their respective nuclear moments (also
possibly rescaling them with the knowledge of anomaly effects
such as from Refs. [12,23,30]).

V. CONCLUSION

In summary, we have employed many-body methods at
different levels of approximation to study the magnetic dipole

and electric quadrupole hyperfine structure constants of the
first 17 states in 210Fr and 212Fr. This work demonstrates
the importance of the inclusion of the nonlinear terms in
the coupled-cluster method to account for the contributions
of important triples and quadrupole excitations for the ac-
curate evaluation of the above-mentioned quantities that are
necessary for the studies of the violations of parity and time
reversal symmetries in Fr. By combining the experimental
values with our corresponding calculations, we obtain μI =
4.40(5) and Q = 0.196(15)b for 210Fr and μI = 4.64(4) and
Q = 0.10(1)b for 212Fr. Theoretical and experimental results
are found to be in good agreement except for the electric
quadrupole hyperfine structure constant of the 7D5/2 state.
Theoretically predicted values for the hyperfine structure
constants of many states including the 6D states, in the
present work, could be tested experimentally in the future. Our
calculations can also be used to estimate hyperfine structure
constants of other isotopes of Fr with the knowledge of their
respective nuclear moments.
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