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We constrain the energy scale of noncommutativity of spacetime using cosmic microwave background
data from PLANCK. We find that PLANCK data put the lower bound on the noncommutativity energy
scale to about 20 TeV, which is about a factor of 2 larger than a previous constraint that was obtained using
data from WMAP, ACBAR and CBI. We further show that inclusion of data of E mode of cosmic
microwave background polarization will not significantly change the constraint.
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I. INTRODUCTION

Physics at the Planck scale must incorporate quantized
gravity, and the correct way to describe physical events at
that scale must be either a quantum theory of gravity or
string theory. These theories suggest that spacetime may be
noncommutative at a length scale of the order of Planck
length.
There is strong evidence from observational data that

inflation [1–5], a period of accelerated expansion in the
very early history of the Universe, happened when the
energy scale of the Universe was about 3 orders of
magnitude lower than the Planck scale [6]. Because of
the accelerated expansion, very small distances got
stretched to cosmological sizes during inflation. If space-
time is noncommutative at very small length scales, then
such scales would have been stretched to possibly detect-
able cosmological sizes at the end of inflation. So, inflation
provides a window of opportunity for probing Planck
scale physics. Inflation is usually modeled to arise due
to the evolution of a scalar field, the so-called inflaton field.
Quantum fluctuations of the inflaton field provide the
initial seeds of gravitational potential wells around which
matter could cluster and form structures. If spacetime is
noncommutative, the statistical properties of these quantum
fluctuations must be affected by it.
Fluctuations seen in the temperature and polarization of

the cosmic microwave background radiation [7,8] encode
information about the physical properties of the Universe,
its evolution and the properties of the primordial fluctua-
tions generated during inflation. The cosmic microwave
background (CMB) is possibly the cleanest means to
understand the properties of the primordial fluctuations.
Investigations on the effect of spacetime noncommutativity
on inflation and signatures in the CMB have been carried
out in several works [9–26]. In [19] the authors obtained a

constraint on the noncommutativity parameter using data
from WMAP [27–29], ACBAR [30–32] and CBI [33–37].
In this paper we investigate the effect of noncommuta-

tivity of spacetime on the two-point correlations of the
CMB temperature fluctuations along the same line as [19].
We first analyze the effect of the noncommutativity
parameter on the theoretical CMB angular power spectrum.
We find that its effect is most pronounced in the range
of scales probed by the PLANCK mission and, hence,
PLANCK data are best suited for constraining it. We
further analyze the effect on the angular power spectrum
of the E mode of CMB polarization. Then we perform
Monte Carlo Markov chain (MCMC) analysis to obtain the
constraint on the noncommutativity parameter using data
from PLANCK [6], baryon acoustic oscillations (BAO)
from SDSS-DR9 [38,39] and the 6dFGS [40] and BICEP2
[41]. We obtain about a factor of 2 tighter constraint on the
noncommutativity parameter in comparison to the value
obatined in [19]. The improved constraint comes primarily
from the higher resolution and accuracy of PLANCK
compared to WMAP, ACBAR and CBI.
This paper is organized as follows. In Sec. II we briefly

review the basics of noncommutative spacetime, quantum
fields on such a spacetime and the effect on inflaton fluc-
tuations. In Sec. III we discuss the consequence on the
angular power spectrum of temperature fluctuations of the
CMB. In Sec. IVwe discuss theMCMCanalysis and present
our results.We endwith a summary and discussion in Sec. V.

II. NONCOMMUTATIVE SPACETIME AND ITS
EFFECT ON CMB ANGULAR POWER SPECTRA

In this section we briefly review the basic equations of
noncommutative spacetime and how its effect manifests
in the angular power spectrum of the CMB temperature
fluctuations and E mode of polarization. We follow the
formulation in [18,19]. If spacetime is noncommutative,
the coordinate operators, x̂μ, do not commute and instead
take the form

½x̂μ; x̂ν� ¼ iθμν; ð1Þ
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where θμν is an antisymmetric constant matrix with

dimension L2. Let ~θ0 ≡ ðθ01; θ02; θ03Þ be in the third

direction. Then ~θ0 ¼ θθ̂0, where θ̂0 is the unit vector
(0,0,1). This relation is not invariant under Lorentz trans-
formation (but is invariant under a deformed Lorentz
symmetry). For cosmological application, a natural choice
of coordinates is the one where the time coordinate
measures the proper time for an observer in a galaxy
and the spatial coordinates measure the physical distances
in such spatial slices. So what enters on the right-hand side
of Eq. (1) is the physical θμν which is constant throughout
the history of the Universe.
If instead we choose conformal coordinates, Eq. (1) will

have the same form, with x̂μ now being coordinates in the
conformal frame and θμν will no longer be time indepen-
dent. θμν in the two frames will be related to each other as

θ0i;ph ¼ aðtÞθ0i;coðtÞ;
θij;ph ¼ a2ðtÞθij;coðtÞ; ð2Þ

where aðtÞ is the scale factor of expansion of space and the
upper scripts are “ph” for physical and “co” for conformal.
We carry out the computations here in the comoving frame
and only in the end translate the result into the physical
frame. For simplicity of notation, we use θμν where we
actually mean θμν;coðtÞ.
In noncommutative spacetime, the requirement of con-

sistent statistics leads to deformation of the quantum fields,
ϕθ, in comparison to fields on commutative spacetime, ϕ0.
When applied to the context of cosmological scalar
perturbations generated during inflation, the deformation
of the mode expansion of the fields leads to a primordial
power spectrum of scalar perturbations, whose form is
modified from the corresponding expression in commuta-
tive spacetime, given by

PΦθ
ðkÞ ¼ PΦ0

ðkÞ cosh ðH~θ0 · kÞ; ð3Þ
where PΦ0

ðkÞ is the usual direction independent power
spectrum in the commutative case given by

PΦ0
ðkÞ ¼ As

k3

�
k
k0

�
ns−1

; ð4Þ

with As being the amplitude, ns the spectral index and k0 a
pivot scale that can be suitably chosen. Then, the angular
power spectrum of the CMB temperature fluctuations is
given by

CTT
l ¼

Z
dkk2PΦ0

ðkÞjΔT
lðkÞj2i0ðθHkÞ; ð5Þ

where the function i0 is the modified spherical Bessel
function of the first kind, given by i0ðxÞ ¼ sinhðxÞ=x, H is
the Hubble parameter during inflation. For details of the
calculations of Eqs. (3) and (5), we refer to [18,19]. ΔT

lðkÞ

is the transfer function for temperature fluctuations which
encodes the physical processes relevant within the causal
patches of the Universe during the decoupling and sub-
sequent epochs. In writing this equation we have implicitly
assumed that ΔlðkÞ is not affected by the noncommutavity
of spacetime and it is reasonable to do so since the
noncommutativity scale is expected to be much smaller
than the scales at which the transfer function is relevant.
A small fraction of the CMB photons, those that had

their last scattering from free electrons towards the end
of the decoupling epoch, are polarized due to velocity
gradients in the plasma. The polarization degrees of free-
dom are usually decomposed into the so-called E and B
modes [42,43]. Fluctuations of the E mode originate from
the primordial scalar perturbations while fluctuations of
the B mode arise from primordial tensor perturbations.
Actually E mode fluctuations also depend on primordial
tensor perturbations but the effect is subdominant since the
amplitude of tensor fluctuations is much smaller than that
of scalar fluctuations. Hence, we ignore it here. The effect
of noncommutativity on the E mode of polarization can
then be deduced along the same lines as done for temper-
ature fluctuations in [19]. The angular power spectrum of E
mode is obtained to be

CEE
l ¼

Z
dkk2PΦ0

ðkÞjΔE
lðkÞj2i0ðθHkÞ; ð6Þ

where ΔE
lðkÞ is the corresponding transfer function for

E mode.

III. EFFECT OF θ ON THE CMB ANGULAR
POWER SPECTRA

In this section we estimate the effect of θ on Ci
l, where

the index i refers to either TT or EE. To show the results we
use the variable Di

l which is related to Ci
l as

Di
l ≡ lðlþ 1Þ

2π
Ci
l: ð7Þ

We denote α≡ θH and study how varying α affects Di
l.

For calculating Ci
l, we use the publicly available cosmo-

logical Boltzman code CAMB [44,45]. CAMB essentially
calculates the respective transfer functions, Δi

lðkÞ, for
temperature fluctuations and for the E and B modes of
polarization. Then it integrates over k to get the C0

ls, using
Eq. (5), (6) and a corresponding equation for the B mode,
for commutative spacetime without the i0 factor. For
our purpose, we modify CAMB to incorporate i0 in the
expression for the primordial scalar power spectrum. We
calculate Di

lðαÞ for different values of α and then calculate
the difference ΔDi

lðαÞ≡Di
lðαÞ −Di

lðα ¼ 0Þ to see how
the difference changes systematically as we vary α.
In Fig. 1 we have plotted ΔDTT

l ðαÞ for different values
of α. CAMB uses units where k is given in Mpc−1, and
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so α is in units of Mpc. The ΛCDM cosmological
parameters used are the PLANCK best-fit values [6].
Since i0ðxÞ asymptotically goes to one as x → 0 and
monotonously increases as x increases, we observe an
overall increase in the amplitude of Cl as α increases. As
seen in the top panel of Fig. 1, we find that ΔDTT

l ðαÞ is
largest in the multipole range < 3000, which is the range
probed by PLANCK. The deviation amplitude drops
sharply as α decreases and in the top lower panel of the
same figure we have shown ΔDTT

l ðαÞ with log scale on
the y axis to highlight the sharpness of the amplitude drop.
The plots in the bottom panel are ΔDTT

l ðαÞ=Dlðα ¼ 0Þ
with linear and log scale on the y axis and they bring out the
effect of i0. In [18], five years data fromWMAP which give
information up to about lmax ∼ 839 were used to constrain
θ. Our calculation here shows that we can expect signifi-
cantly tighter constraint if we use data from PLANCK.
Figure 2 shows the effect of α on DEE

l and all the panels
are similar to those in Fig. 1. We find that the amplitude of

ΔDEE
l is just over 2 orders of magnitude lower than seen

for temperature fluctuations. The ratio DEE
l =DEE

l ðα ¼ 0Þ
has similar values. From this we conclude that though
polarization data provide independent information about
the properties of the Universe we cannot expect significant
improvement on constraints on θ from E mode data.

IV. CONSTRAINT ON θ FROM DATA FROM
PLANCK, BAO AND BICEP2

Based on the above discussion, in this section we
compare the standard ΛCDM cosmological model with
noncommutative spacetime with data of CMB temperature
fluctuations from PLANCK. We also use BAO data from
SDSS [38,39] and 2DFGS [40], and CMB polarization
data from BICEP2 [41]. The cosmological parameters are
the baryon densityΩbh2, cold dark matter densityΩch2, the
Hubble parameter H0, optical depth to reionization τ, the
amplitude As and spectral index ns of primordial scalar

FIG. 1 (color online). The plots show how ΔDTT
l varies with

α≡ θH. The unit for α is Mpc. Top panel: ΔDTT
l ≡DTT

l ðα≠ 0Þ−
DTT

l ðα¼ 0Þ with linear and log scale on y axis. Bottom panel:
ΔDTT

l =DTT
l ðα ¼ 0Þ with linear and log scale on y axis.

FIG. 2 (color online). The plots show how ΔDEE
l varies with α.

Top panel: ΔDEE
l ≡DEE

l ðα ≠ 0Þ −DEE
l ðα ¼ 0Þ with linear and

log scale on y axis. Bottom panel: ΔDEE
l =DEE

l ðα ¼ 0Þ with linear
and log scale on y axis.
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fluctuations. In addition, we include the noncommutative
parameter α≡ θH.
We perform a Bayesian statistical inference analysis

using the publicly available MCMC cosmological param-
eter estimation package COSMOMC [45,46]. To calculate
the theoretical angular power spectra for temperature
fluctuations and E mode, which go in as inputs for the
likelihood analysis, we use our modified version of CAMB
described in the previous section. We adopt the Gelman-
Rubin convergence criterion R − 1 < 0.02 when generat-
ing multiple Markov chains, where R is the variance of
chain means divided by the mean of chain variances. We
use the default flat priors given in COSMOMC for the
standard model parameters. For α we use a flat prior with
the upper limit value 0.1 and lower limit 10−8. The upper
limit was chosen so that we have a range wide enough to
accommodate the constraint obtained by [19]. For the lower
limit we did several runs of COSMOMCwith progressively
smaller values starting from 10−4 and ensured that our
results are stable. We run COSMOMC using various
combinations of observational data sets. Here we present
results for (a) PLANCK data alone, (b) PLANCKþ BAO
data, (c) PLANCKþ BAOþ BICEP2 data. The largest
multipole for PLANCK data is lmax ¼ 2479.

A. Best-fit values and joint constraints

We first describe the result obtained using PLANCK data
alone. In Fig. 3 we have plotted the one-dimensional mean
(dashed lines) and marginalized (solid lines) likelihood
curves for α. We observe that α is only constrained to take
values below an upper bound. For a comparison we show
the best-fit values and 2-σ confidence limits of the ΛCDM
parameters obtained in the noncommutative case with those
from the commutative case, along with the 1- and 2-σ upper
bounds for α, in Table I. We find that the parameters change
only marginally and, hence, they are not affected by the

noncommutativity of spacetime. We get the limits on α to
be α < 0.0026 and α < 0.0087 at 1-σ and 2-σ, respectively.
Since i0 is a monotonously increasing function, one

may expect degeneracy between α and ns, and to a very
mild extent with H0. To investigate this we have plotted
the 1- and 2-σ two-dimensional joint constraints between
these three parameters in Fig. 4. We find only a very
mild degeneracy between them and the strength of the

FIG. 3. The one-dimensional mean (the dashed lines) and
marginalized (solid lines) likelihood curves for α, obtained using
PLANCK data alone.

TABLE I. The mean values and the 2-σ confidence level limits
for the ΛCDM parameters in commutative spacetime and in
noncommutative spacetime, obtained using PLANCK data alone.
For α we show the 1-σ and 2-σ upper constraints. The pivot scale
used for As is k ¼ 0.05 Mpc−1.

Parameter

PLANCK
Commutative
spacetime

PLANCK
Noncommutative

spacetime

Ωbh2 0.02200.02260.0215 0.02190.02250.0214

Ωch2 0.11990.12510.1147 0.11980.12520.1147

H0 67.2969.6564.98 67.2369.5364.90

τ 0.08980.11580.0640 0.08780.11340.0622

ns 0.96050.97480.9462 0.95990.97380.9457

lnð1010AsÞ 3.0903.1393.043 3.0843.1343.036

α≡ θH — < 0.0026 (1-σ)
— < 0.0087 (2-σ)

H
0

66 68 70

5

10

15

x 10
−3

n
s

0.95 0.96 0.97 0.98

5

10

15

x 10
−3

FIG. 4 (color online). The 1-σ and 2-σ two-dimensional joint
constraints on α, ns and H0, obtained using PLANCK data alone.
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degeneracy is larger for larger values α, as can be seen from
the 2-σ contour.
We repeat the analysis for noncommutative spacetime

using PLANCKþ BAO and PLANCKþ BAOþ BICEP2
data sets. The mean values and the 2-σ confidence level
limits for the cosmological parameters and 1- and 2-σ upper
bounds for α are shown in Table II. There are only marginal
shifts in the 1- and 2-σ constraints on α after including these
data sets. Inclusion of BICEP2 data slightly tightens the
constraints on α.

B. Constraint on the physical
noncommutativity parameter

We now convert the constraint on α to the corresponding
constraint on θ. We use the results for PLANCK data alone.
We need to first fix the value of H during inflation. Using
the relation PT ¼ H2=2π, where PT is the power spectrum
of primordial tensor perturbations, and the tensor-to-scalar
ratio r≡ PT=PΦ, we have

H2 ¼ ð2πÞ2rPΦ: ð8Þ
Using the best-fit value of As from the third column of
Table I and the 2-σ limit r < 0.11 from PLANCK [6] in
Eq. (8), we obtain H to be

H < 1.943 × 10−5MP; ð9Þ
whereMP is the Planck mass. From the 1-σ limit on α given
in the second column of Table I, we obtain the 1-σ limit
on θ to be θ < 0.427 × 10−9 m2. Using the 2-σ limit on α,
we get 2-σ limit on θ to be θ < 1.406 × 10−9 m2.
In order to obtain θph, we use the first line of Eq. (2). For

this we need the value of the cosmological scale factor, a, at
the timewhen inflation ended. As done in [19], if we assume
that the temperature of reheating of the Universe was close
to the grand unified theory energy scale, 1016 GeV, then the
scale factor at the end of inflation is roughly a≃ 10−29.
Using this, we obtain the constraint on the noncommutativity

parameter to be
ffiffiffiffiffiffi
θph

p
< 0.653 × 10−19 mat 1-σ and

ffiffiffiffiffiffi
θph

p
<

1.186 × 10−19 m at 2-σ. These correspond to lower bounds
on the noncommutativity energy scale given by 18.9764 and
10.4548 TeV at 1- and 2-σ, respectively. Note that these
numbers will scale correspondingly if the reheating temper-
ature is different. Comparing our 1-σ boundwith that in [19],
we find a factor of 2 improvement in the constraint on the
noncommutativity length scale.

V. CONCLUSION

We confront the prediction of noncommutative space-
time, which is essentially captured by a modification of
the power spectrum of primordial scalar perturbations, with
observational data from PLANCK, BAO and BICEP2.
We first analyze the effect of spacetime noncommutativity
on the theoretical angular power spectrum of temperature
fluctuations and the E mode of polarization of the CMB.
We find that the effect is most pronounced in the multipole
range < 3000, implying that PLANCK data will provide
more stringent constraint in comparison to using WMAP
data. We also find that the effect on the angular power
spectrum of E mode is much weaker than in temperature
fluctuations and hence inclusion of E mode data will not
significantly improve the constraint.
To obtain the constraint on the spacetime noncommu-

tativity scale, θph, we compare the theoretical CMB angular
power spectrum of temperature fluctuations with the
observed one obtained from PLANCK data. We perform
a Bayesian analysis to obtain the best-fit values of the
ΛCDM parameters and the spacetime noncommutativity
parameter by performing MCMC likelihood analysis.
We find that θph is constrained to be smaller than
6.23 × 10−20 m at 1-σ confidence level which is a factor
of 2 improvement from the previous limit obtained using
data from WMAP, ACBAR and CBI. The improvement
comes from the higher angular resolution of PLANCK in
comparison to WMAP, and higher precision in comparison
to ACBAR and CBI even though they probed comparable
smaller angular scales.
Since the effect of the spacetime noncommutativity

decreases at multipoles higher than 3000, it is expected
that including CMB data at smaller scales will not improve
the constraint significantly. Further, our finding that the
effect on the angular power spectrum of E mode is much
weaker than in temperature fluctuations suggests that
inclusion of Emode data will also not significantly improve
the constraint. The effect of spacetime noncommutativity
also affects the power spectrum of the primordial tensor
modes [47] and will show up in the angular power spectrum
of B mode polarization. In our analysis, we have not
included this effect. This will not impact our results since
the BICEP2 data are restricted to lower l values where
the effect of spscetime noncommutativity is negligible. The
results of the BICEP2 experiment have been recently

TABLE II. The mean values and the 2-σ confidence level limits
for the cosmological parameters in noncommutative spacetime,
obtained using PLANCKþ BAO and PLANCKþ BAOþ
BICEP2 data sets. For α we show the 1-σ and 2-σ upper
constraints. The pivot scale used for As is again k ¼ 0.05 Mpc−1.

Parameter PLANCKþ BAO PLANCK þ BAO þ BICEP2

Ωbh2 0.02200.02250.0215 0.02190.02240.0214

Ωcdmh2 0.11870.12230.1153 0.11960.12310.1162

H0 67.7166.1069.25 67.3068.8265.81

τ 0.08960.11510.0657 0.09640.12330.0717

ns 0.96220.97330.9504 0.96000.97090.9487

lnð1010AsÞ 3.083.133.03 3.103.153.05

α≡ θH < 0.0025 (1-σ) < 0.0021 (1-σ)
< 0.0083 (2-σ) < 0.0074 (2-σ)
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updated in a joint analysis by the BICEP2 and PLANCK
teams [48] and there is no statistical significant detection of
B mode. This does not affect our result here. In the future
the inclusion of high-resolution data of B modes can
potentially tighten the constraint on θph, subject to improve-
ment in our ability to disentangle physical effects that are
important at smaller scales such as gravitational lensing due
to large-scale structure.
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