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Abstract. To investigate the M• − σ relation, we consider realistic elliptical galaxy profiles that are taken
to follow a single power-law density profile given by ρ(r) = ρ0(r/r0)

−γ or the Nuker intensity profile. We
calculate the density using Abel’s formula in the latter case by employing the derived stellar potential; in both
cases. We derive the distribution function f (E) of the stars in the presence of the supermassive black hole
(SMBH) at the center and hence compute the line-of-sight (LoS) velocity dispersion as a function of radius.
For the typical range of values for masses of SMBH, we obtain M• ∝ σ p for different profiles. An analytical
relation p = (2γ +6)/(2+γ ) is found which is in reasonable agreement with observations (for γ = 0.75−1.4,
p = 3.6−5.3). Assuming that a proportionality relation holds between the black hole mass and bulge mass,
M• = f Mb, and applying this to several galaxies, we find the individual best fit values of p as a function of f ;
also by minimizing χ2, we find the best fit global p and f . For Nuker profiles, we find that p = 3.81 ± 0.004
and f = (1.23 ± 0.09) × 10−3 which are consistent with the observed ranges.

Keywords. Galaxies: bulges—galaxies: elliptical—galaxies: kinematics and dynamics—galaxies: nuclei—
galaxies: structure.

1. Introduction

It is now widely accepted that all massive galaxies have
supermassive black holes at their centers. At distances
close to the centers of these galaxies, stellar or gas
motions are completely dominated by the gravity of the
SMBH than that of the nearby stars. The relation of the
SMBHs to their host galaxies can be seen by the strong
correlation between the mass of SMBH and velocity
dispersion σ of the stars in the galaxy. This is some-
what surprising because the stars are too far from the
SMBH for the velocity dispersion to be affected by its
gravitational field. Its origin is still a topic of debate.

The M• − σ relation is given by the equation

M• = kσ p, (1)

which was first reported by Ferrarese & Merritt (2000)
with the index p = 4.8 ± 0.5, whereas, Gebhardt et al.
(2000) reported p = 3.75 ± 0.3. The former used sym-
metric linear regression method for their analysis and in
this process both the variables M• and σ had an unique
error in measurements as well as intrinsic scatter, while
the later used non-symmetrical least square regression,
where it was assumed that σ had no uncertainty in

measurement and M• had the same the uncertainty for
all. This relation is observed in ellipticals and evolved
bulges. Debattista et al. (2013) claimed that their latest
measurements indicate that there is no evidence of offset
for this relation between ellipticals and classical bulges.
Table 1 shows the values of the indices determined by
different authors using different techniques.

There are many theoretical models proposed for
explaining the M• − σ relation. Silk and Rees (1998)
discussed an energy-driven flow where the energy
released in accretion is used completely in the process of
unbinding the mass of the galactic bulge. They modeled
a protogalaxy and assumed it to be an isothermal sphere
to find p = 5. King (2003) described another model
based on gas accretion but with momentum-driven flow,
giving p = 4. In this process, it has been assumed that
cooling occurs by inverse Compton, and thereby a frac-
tion of energy is lost to radiation while some part of the
accretion energy is available for unbinding the bulge.
At a point, the gas accretion stops and the black hole
mass saturates; this is the maximum mass attained by
gas accretion in the presence of cooling. Zhao et al.
(2002), based on the loss cone dynamics in an isother-
mal halo, obtained p = 5 for a model based on growth
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Table 1. A survey of the M• − σ relation giving the historical determinations of the slopes.

p Comments References

4.8 ± 0.5 12 elliptical galaxies with known σ Ferrarese & Merritt (2000)
3.75 ± 0.3 26 galaxies with measured M• and σ Gebhardt et al. (2000)
4.72 ± 0.36 27 galaxies with measured M• and σ Merritt & Ferrarese (2001)
4.58 ± 0.52 16 spirals and 20 elliptical galaxies Ferrarese (2002)
4.02 ± 0.32 31 galaxies with measured M• and σ Tremaine et al. (2002)
4.86 ± 0.43 SMBHs which have resolved rh Ferrarese & Ford (2005)
4.24 ± 0.41 Combination of spiral and elliptical galaxies Gültekin et al. (2009)
3.96 ± 0.42 25 Elliptical galaxies Gültekin et al. (2009)
4.38 ± 0.29 Classical bulges and ellipticals Kormendy & Ho (2013)
5.64 ± 0.32 19 late type and 53 early-type galaxies McConnell & Ma (2013)
5.53 ± 0.34 51 non-barred galaxies Graham & Scott (2013)
4.39 ± 0.42 Sample of Gültekin et al. (2009) with newly measured M• and σ Debattista et al. (2013)
4.76 ± 0.60 32 quiescent galaxies Batiste et al. (2017)
3.90 ± 0.93 16 AGN host galaxies Batiste et al. (2017)

by stellar ingestion. The origin of this relation is still
a mystery but various models give a range p = 4–5,
which is in rough agreement with observations.

From observations, it is seen that bulge mass, M• �
f Mb, where f = 1.259 × 10−3 (Merritt & Ferrarese
2001). Later Marconi & Hunt (2003) and Häring & Rix
(2004) found f = 2×10−3 and f = (1.4±0.4)×10−3

respectively. For higher masses, the relation is said to
be nonlinear and given by M• ∝ M1.12

b (Häring & Rix
2004) where the Jeans equation has been applied with
zero anisotropy in the system to determine the velocity
dispersion of 30 elliptical galaxies whose bulge masses
are sourced from Magorrian et al. (1998). Kormendy
and Ho (2013) have also found the following relation:
(

M•
109M�

)
= 0.49+0.06

−0.05

(
Mb

1011M�

)1.17±0.08

. (2)

Byun et al. (1996) introduced and calculated Nuker
profiles for 57 early type galaxies from HST data. This
profile is described by two power laws and matches
with the observational profiles very well. Instead of
conventional structural parameters such as core radius
and central surface brightness, new parameters like the
break radius rb, and surface brightness, μb, at that radius
were used. Another parameter α describes the sharpness
of the break and they have calculated these parameters
by applying χ2 minimization technique to the mean
surface brightness profiles of the early type galaxies.
Faber et al. (1997) have analyzed 61 elliptical galaxies
and spiral bulges from HST data and derived parameters
like rb, the intensity at that radius, Ib, σ and L . Wang &
Merritt (2004) and Stone & Metzger (2016) used these

results in their spherical galaxy model for deriving the
distribution function while we use it to derive the empir-
ical M − σ relation.

In this paper, we describe a theoretical model for
calculating line-of-sight velocity dispersion for spher-
ical systems, thereby deriving the M• − σ relation. In
section 2, we discuss the nexus between the M•−σ rela-
tion and the power-law mass density index analytically,
motivating the theoretical models of power-law galax-
ies. In section 3, we have extended the model to the case
of Nuker intensity profile, which is much more general-
ized than the special case of a single power-law profile.
Using parameters derived from the observational pro-
files for 12 galaxies, we have determined the M• − σ

relation and the Mb − M• relation for the proportion-
ality case from χ2 analysis. We discuss our results in
section 5 and present our conclusions in section 6.

2. Connection of M• − σ relation with power law
mass density of galaxies

If M• is proportional to Mb, then equation (1) can be
written as

f Mb = kσ p. (3)

The total mass scales as ρr3, where ρ is the mass density
of the galaxy and r is the distance from the center of
the galaxy; similarly σ scales as

√
ρr2. Therefore, from

equation (3), it can be seen that
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ρr3 ∝ ρ
p
2 r p

⇒ ρ ∝ r
2p−6
2−p . (4)

From the above relation it can be confirmed that the
density follows a single power law so that

γ = 2p − 6

2 − p
; or equivalently p = 2γ + 6

2 + γ
, (5)

where γ is the power-law index. Taking typical obser-
vational values for p, we find that γ = 0.75−1.4 gives
p = 3.6−5.3. For a single power-law profile given by

ρ(r) = ρ0

(
r

r0

)−γ

, (6)

we use Poisson’s equation to calculate the stellar poten-
tial of the system

∇2� = 4πGρ, (7)

to find a stellar potential of the form

ψ
(r) = 4πGρ0r
γ
0 r

2−γ

h

(2 − γ )(3 − γ )

[
1 −

(
r

rh

)2−γ ]
. (8)

The total mass of stars contained within rh is given by

M
(r < rh) =
∫ rh

0
ρ(r)4πr2dr

= 4πρ0r
γ
0

∫ rh

0
r2−γ dr

= 4πρ0r
γ
0

r3−γ

h

3 − γ
= 2M•, (9)

where ρ0r
γ
0 = (3−γ )

2π
M•rγ−3

h , so that the stellar poten-
tial takes the form

ψ
(r) = 2

2 − γ

GM•
rh

[
1 −

(
r

rh

)2−γ ]
, (10)

and the total potential is given by

ψ(r) = ψ
(r) + GM•
r

+ ψc, (11)

where ψc is a constant which ensures that ψ(r) asymp-
totes to zero. We normalize the total potential in units
of GM•/rh so that

ψ = 1

r

+ 2

2 − γ
(1 − (r
)

2−γ ) + ψ0

= x + 2

2 − γ
(1 − (x)γ−2) + ψ0, (12)

where

r
 = r

rh
, x = 1

r

, ψ0 = ψc

GM•
rh

. (13)

Figure 1. The velocity vector v, LoS direction ŝ and the
definition of the angles α, η and ψ ′ are sketched.

Next, we calculate the distribution function from
Eddington’s formula as

f (ε) = 1√
8π2m


d

dε

∫ ε

0

dρ

dψ

dψ√
ψ − ε

, (14)

where m
 is the stellar mass which results in

f (ε) = γ (3 − γ )

4
√

2π3

1

m


1

G3M2•
g(ε),

where

g(ε) = d

dε

∫ x2

x1

xγ−1√
ε − x − 2

2−γ
(1 − xγ−2)

dx, (15)

and x1 and x2 are the roots of the equations ψ(x) = 0
and ψ(x) = ε respectively.

The LoS velocity dispersion is given by (Binney &
Tremaine 2008):

σ 2|| =
∫

dx||d3vv2|| f (x, v)∫
dx||d3v f (x, v)

. (16)

We use σ in place ofσ|| for the rest of the paper. Consider
the system to be spherical, and use polar coordinates in
velocity space as (see Fig. 1),

vr = v cos η, vθ = v sin η cos ψ ′, vφ = v sin η sin ψ ′.
(17)

We take the LoS (line-of-sight) direction to be an arbi-
trary direction, ŝ, which lies in the r − θ plane making
an angle α with r̂ axis so that

ŝ = cos αr̂ + sin αθ̂. (18)

The projected velocity in this plane of LoS is given
by

v.ŝ = v|| = v cos η cos α + v sin η cos ψ ′ sin α. (19)

The distance along the LoS is now x|| = r cos α, where
the perpendicular distance is x⊥ = ω = r sin α and

x|| =
√
r2 − r2 sin2 α =

√
r2 − ω2, (20)
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where r2 varies from ω2 to ∞. We find the denominator
D and the numerator N of the LoS velocity dispersion
(equation (16)) separately as

D1 =
∫

dx||d3v f (x, v)

= 1

2

∫ ∞

r2=ω2

d(r2)√
r2 − ω2

∫ √
2ψ

v=0

∫ π

η=0

∫ 2π

ψ ′=0
v2 ·

dv sin ηdηdψ ′ f (ε), (21)

which after substituting u = ω2/r2 and v2 = 2(ψ − ε)

reduces to

D1 = πωJ0

∫ 1

0

du

u2
√

1
u − 1

∫ ψ

0
dε(2(ψ − ε))

1
2 f (ε),

(22)

where J0 = ∫ π

0 sin ηdη = 2. Now,

N1 =
∫

dx||d3vv2|| f (x, v)

= 1

2

∫ ∞

r2=ω2

d(r2)√
r2 − ω2

∫ √
2ψ

v=0

∫ π

η=0

∫ 2π

ψ ′=0

v2dv sin ηdηdψ ′

v2
(

cos η

√
r2 − ω2
√
r2

+ sin η cos ψ ′
√

ω2

r2

)2

f (ε).

Similarly, with the same substitutions, N1 reduces to

N1 = ω2
1
2

[
2π J1

∫ 1

0

du
√

1
u − 1

u

∫ ψ

0
dε(ψ − ε)

3
2 f (ε)

+J2 J3

∫ 1

0

du

u
√

1
u − 1

∫ ψ

0
dε(ψ − ε)

3
2 f (ε)

]
,

(23)

where

J1 =
∫ π

0
sin η cos2 ηdη= 2

3
, J2 =

∫ π

0
sin3 ηdη= 4

3
,

J3 =
∫ 2π

0
cos2 ψ ′dψ ′= π.

The dimensionless LoS velocity dispersion given by

σ =
√

N1
D1

for power-law galaxies is shown in Fig. 2,
where we can see that the velocity dispersion is flat-
tening out as we move outwards from the center of the
galaxy. Near the center of the galaxy where the SMBH
potential dominates, σ ∝ 1/

√
r . Later it flattens out

because of the dominance of the stellar potential. By
finding σ at any radius one can verify the M• − σ rela-
tion if M• is known.

Figure 2. The dimensionless σ is plotted against projected
r/rh for various power-law indices γ .

From the definition, equation (9), rh for a single
power-law galaxy can be written as

rh =
(

ρ0r
γ
0

2π

3 − γ

1

M•

) 1
γ−3

. (24)

The total mass out to the bulge can be calculated to
be∫ rs

0
ρ0

(
r0

r

)γ

4πr2dr = Ms, (25)

where, rs is the radius of the central bulge. Therefore,
ρ0r

γ
0 can be written as

ρ0r
γ
0 = Ms∫ rs

0 4πr2−γ dr
= Ms(3 − γ )

4πr3−γ
s

. (26)

For a range of black hole mass (M• = 106 to 109M�)
our calculated σ(Ms, γ ), log k(Ms, γ ) and p(γ ) (which
is observationally within 4–5) are shown in Fig. 3,
where, Ms varies from 1010 to 1014M�, rs varies from
1–10 kpc and γ varies from 0.75 to 1.5. We can see that
for a fixed value of γ , p is independent of the value of
Ms . We find the range of p to be 3.6–5.3, which agrees
well with the observations. Figure 3(b) shows a plot of
log k(Ms, γ ); a change in Ms for a fixed value of γ

affects the intercept though the slope is unchanged. To
explain the nature of these plots, we write equation (1)
as

M• =
(
Ms

2

) 1
γ−2

r
γ−3
γ−2
s (σ 2

h G)
− γ−3

γ−2 σ
2(γ−3)
γ−2 , (27)

where, σh is the value of dimensionless σ at 3rh . From
equation (27) we see that the constant k depends on γ , rs
and Ms , but the index p of the M• −σ relation depends
only on γ which clearly explains the nature of the plots
in Figures 3(a) and 3(b).

The contour plot of σ200 (see Fig. 3) at 3rh for dif-
ferent power laws by varying Ms and M• for a fixed
rs = 104 pc is shown in Fig. 3. By selecting a physical
and observed range for σ , one can obtain the allowed
M• − Ms combinations for those systems.
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(a) (b)

(c) (d)

Figure 3. Plot of p(γ ) (a) and plot of log k(Ms) (b) for different values of γ for different Ms − rs combinations. Contour
plot of σ200 at 3rh for different power laws (γ = 1.2 (c) and γ = 0.75 (d)) by varying Ms for different values of M• for a
fixed rs = 104 pc.

(a) (b) (c) (d)

Figure 4. The density, total potential, distribution function and velocity dispersion plots, (a)–(d) for f = 0.0012 for NGC
3115.

3. Spherical galaxies following Nuker profile of
intensity

The Nuker profile used to fit the observational luminos-
ity data is given by

I (ξ) = Ib2
(β−�)

α ξ−�(1 + ξα)−
(β−�)

α , (28)

where ξ = R
rb

, rb is the break radius, Ib is the intensity
at the break radius, � is the inner slope and the outer
slope is β. The visual mass-to-light ratio is denoted by
ϒv (assuming H0 = 80 km s−1 Mpc−1) and μb is the
surface brightness in visual magnitudes arcsec−2 at rb.
The quantity μ represents the apparent magnitude of
the equivalent total light observed in a square arcsec at
different points in the distribution and it can be related to
the physical surface brightness profile through (Binney
& Merrifield 1998)

μ = −2.5 log I + C, (29)

where C is a constant. If the intensity is measured in
units of L�pc−2, then the constant can be calculated
from the distance modulus formula and it is given as

C = −5 log10(δθ) + Mabs� − 5, (30)

where δθ is 1′′ = 1
206265 radians and the solar absolute

magnitude, Mabs� is 4.83 so that Ib(μb) can be calcu-
lated. The stellar mass density profile was computed
via Abel’s inversion equation as

ρ(r) = ϒv j (r) = −ϒv

π

∫ ∞

r

dI

dR

dR√
R2 − r2

, (31)

where j (r) is the luminosity density. The stellar poten-
tial ψ∗ is calculated from the stellar mass density as
follows (see Fig. 4(a)):
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ψ∗(r) = 4πG

r

∫ r

0
ρ(r ′)r ′2dr ′ + 4πG

∫ ∞

r
ρ(r ′)r ′dr ′.

(32)

As before the gravitational potential ψ(r) = −�(r)
is the total potential given by (see Fig. 4(b))

ψ(r) = ψ∗(r) + GMBH

r
. (33)

The density follows the same profile (double power
law) as intensity (see Fig. 4(a)), where we see the total
potential (see Fig. 5(b)) being dominated by SMBH
potential at the inner radii and is dominated by the stellar
potential as we move outwards from the center. Again
we use the Eddington’s formula, equation (14), to cal-
culate f (ε) as shown in Fig. 4(c). The denominator of
the LoS velocity dispersion can be written as

D2(α, β, �, ϒ, rb, μb, L , f ) =
∫

dx||d3v f (x, v)

=
∫ ∞

r=ω

rdr√
r2 − ω2

∫ √
2ψ

v=0

∫ π

η=0

∫ 2π

ψ ′=0

× v2dv sin ηdηdψ ′ f (ε). (34)

By replacing the variable r by 1/u, the denominator can
finally be written as

D2(α, β, �, ϒ, rb, μb, L , f ) = 2
3
2 2π J0∫ 1/ω

u=0

du

u2
√

1 − ω2u2

∫ ψ

ε=0
(ψ(u) − ε)

1
2 f (ε)dε.

(35)

The numerator N2 of the LoS velocity dispersion is

N2(α, β, �, ϒ, rb, μb, L , f ) =
∫

dx||d3vv2|| f (x, v)

= 1

2

∫ ∞

r2=ω2

d(r2)√
r2 − ω2

∫ √
2ψ

v=0

∫ π

η=0

∫ 2π

ψ ′=0

×v2dv sin ηdηdψ ′v2

·
(

cos η

√
r2 − ω2
√
r2

+ sin η cos ψ ′
√

ω2

r2

)2

f (ε).

(36)

This finally takes the form

N2(α, β, �, ϒ, rb, μb, L , f )

= 2
5
2

[
2π J1

∫ 1/ω

0

√
1 − ω2u2

u2

·
∫ ψ

0
dε(ψ − ε)

3
2 f (ε) + J2 J3

∫ 1
ω

0

ω2

√
1 − ω2u2

·
∫ ψ

0
dε(ψ − ε)

3
2 f (ε)

]
. (37)

Using the same procedure as was done in the case of
power-law galaxies, we compute the LoS velocity dis-
persion for these galaxies as shown in Fig. 4(d). The
distribution function (see Fig. 4(c)) increases towards
the higher side of the energy value implying the pres-
ence of more high energy stars. Here also the velocity
dispersion plot flattens out as we move outwards from
the center of the galaxy where the motion of the stars
are dominated by the stellar potential.

To simplify our calculation we use the following
scales:

ρs = −ϒv

π

Ib
rb

, ψs = 4πGr2
bρs, fs = ρs

√
8π2m∗ψ

3
2
s

,

(38)

so that σ is in units of
√

ψs . In Table 2, we tab-
ulate the values of σ(

√
Q) at radius re/8, where

re is the effective radius (Ferrarese & Merritt 2000)
and Q(α, β, �, rb, μb) = N2/D2. The value of re is
obtained from∫ re

0
I (R)2πRdR = 1

2
LT . (39)

4. M• − σ relation

By using the data given in Wang and Merritt (2004)
for elliptical galaxies as shown in Table 2, we calcu-
late the bulge mass of those galaxies by multiplying the
total luminosity by the mass-to-light ratio as prescribed
in Magorrian et al. (1998). Using equation (16), we
calculate the LoS velocity dispersion to get the M• –
σ relation by fitting a straight line for 12 galaxies as
shown in Fig. 5(a) for different f values. The p and
log k values for different values of f are shown in the
scatter plot (see Fig. 5(b)). From χ2 minimization we
have determined p and f ; the procedure used is shown
in a flowchart given in Fig. 6. The formula we used for
determining χ2 is (Sivia & Skilling 2006)

χ2 =
∑
k

[
(Dk − Fk)2

Fk

]
, (40)

where a uniform prior is used. The observed values
Dk are obtained for M• and σ from our calculation
using the observational data and the expected value Fk
is obtained by the best-fit straight line to these points as
shown in Fig. 5(a). The range of f and p has been taken
from previous determinations as well as observational
values ( f = 0.001−0.002, p = 3−5). The quantity

S( f, p) ≡
(

1 − χ2−χ2
min

χ2
max−χ2

min

)
is in the range 0–1. The
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(a) (b)

Figure 5. The plot of log σ vs. log M• for 12 galaxies for f = 0.0012. σ is in units of 200 km/s (a) and (b) the scatter plot
of p and log k for different values of f shows a tight range of k and p.

Table 2. The first nine columns of the data are used for our calculations (rb is the break radius, μb is
the surface brightness, inner slope is � and the outer slope is β, sharpness of break is given by α, ϒ is
the mass-to-light ratio, L is the total luminosity, the bulge mass Mb = ϒvL) and in the last two columns,
the output values of re and the LoS velocity dispersion are shown (Wang & Merritt 2004).

Galaxy log( rb
pc ) μb α β � ϒv(

M�
L� ) log(

LV
L� ) Mb

1010M� log( re
pc ) σ (km/s)

NGC 3379 1.92 16.10 1.59 1.43 0.18 6.87 10.15 0.90 3.17 230
NGC 3377 0.64 12.85 1.92 1.33 0.29 2.88 9.81 1.86 3.15 217
NGC 4486 2.75 17.86 2.82 1.39 0.25 17.70 10.88 134.30 3.76 433
NGC 4551 2.46 18.83 2.94 1.23 0.80 7.25 9.57 2.69 3.03 218
NGC 4472 2.25 16.66 2.08 1.17 0.04 9.20 10.96 83.90 3.75 542
NGC 3115 2.07 16.17 1.47 1.43 0.78 7.14 10.23 12.12 3.15 230
NGC 4467 2.38 19.98 7.52 2.13 0.98 6.27 8.75 0.35 2.81 108
NGC 4365 2.25 16.77 2.06 1.27 0.15 8.40 10.76 48.34 3.68 524
NGC 4636 2.38 17.72 1.64 1.33 0.13 10.40 10.60 41.40 3.77 354
NGC 4889 2.88 18.01 2.61 1.35 0.05 11.20 11.28 213.4 4.10 469
NGC 4464 1.95 17.35 1.64 1.68 0.88 4.82 9.22 0.80 2.70 157
NGC 4697 2.12 16.93 24.9 1.04 0.74 6.78 10.34 14.83 3.36 215

maximum value of S( f, p) corresponds to the minimum
χ2 value. In the plot, we have shown S( f, p) contours
where S( f, p)≥ 0.97 is considered as the allowed range
(the red region) for the two parameters and from the plot,
we determine the value of p = 3.81 ± 0.004 and f =
(1.23 ± 0.09) × 10−3.

5. Summary of results and discussion

We summarize and discuss our key results below.

(1) By assuming the M•−σ relation as M• = f Mb and a
single power-law profile for the stellar mass density, we
have analytically shown that p(γ ) = (2γ + 6)/(2 + γ )

(equation (4)). For a typical a range of γ = 0.75−1.4,
we find p = 3.6−5.3, which is within the observed
range.
(2) The second analysis shown is for the Nuker profile
which is a double power law with two slopes β and �.

As an approximate analysis, we take an average value
of the mean slope to be (β + �)/2 for the set of 12
galaxies (tabulated in Table 2) resulting in p = 3.86
from equation (5), where the value of p obtained from
χ2 analysis is 3.81, which is very close. Therefore, our
analysis of observational data agrees well with the the-
oretical expected value.
(3) We have described a procedure for determining the
M• − σ relation (see Fig. 6). Previous models (as dis-
cussed in the section 2) determined the M• −σ relation
and also the Mb − M• relation independently. We have
determined those two relations self-consistently in our
model from our χ2 analysis (see equation (40)).
(4) For power-law galaxies, we started directly from
mass density profile, which in the case of Nuker profile
was obtained by inverting the intensity profiles. The σ

for different power-law indices are shown in Fig. 2. The
variation of p and log k with different values of γ , rs
and Ms are shown in Fig. 3a and Fig. 3b. The variation
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Figure 6. The flowchart shows the procedure for calculating the M• − σ relation from the observational data. For the
Nuker profile, the stellar mass density is found using Abel inversion and from spherical shell structure the stellar potential is
calculated. The SMBH potential is added to get the total potential and the Eddington’s formula is used to derive distribution
function f (ε). The SMBH mass is calculated from the proportionality relation of Mb and M•. The path marked by the blue
lines only is followed for deriving the M• − σ relation in case of single power-law galaxies.

Figure 7. The S( f, p) plot for determination of p and f
is shown where, the maxima (minima of χ2) occurs at p =
3.81 ± 0.004 and f = (1.23 ± 0.09) × 10−3.

of σ with different M• and Ms is shown in Fig. 3c and
Fig. 3d. For a fixed value of γ , log k and σ depend on
the value of Ms and rs . These various diagnostics enable
us to interpret the relation by using observables such as
γ and Ms and to predict k and p. From observational
Nuker intensity profiles, we have determined the LoS
velocity dispersion of the stars in the galaxy through
their distribution function (see Fig. 4(c), 4(d)). By using
a proportionality relation between Mb and M•, we have
derived values of p and log k for different values of f by
a linear fit (see Fig. 5(b) for scatter plot and Fig. 5(a) for
the linear fit for a fixed f ) and through χ2 minimization
(see Fig. 7) for the Nuker case. From the scatter plot (see
Fig. 5b), it is seen even for a small set of galaxies that the
p and log k values within a specific range of f are very
close to the observed range; these are consistent with
observations. The obtained values are p = 3.81 ± 0.004
and f = (1.23 ± 0.09) × 10−3.

6. Conclusions

We have discussed a procedure of deriving the M• − σ

relation along with a proportionality relation of Mb and

M• starting from observational data by deriving the dis-
tribution function f (ε). Using our novel approach, we
can also determine the index of the nonlinear relation
between Mb and M• (as mentioned earlier) as well as p
self-consistently. The M• −σ relation is complicated to
explain by existing models. The self consistent deter-
mination of f , k and p is the key for improving the
models. The resolution of the problem can come from
a DF f (ε, Lz) built for a central BH and constrain-
ing a self-consistent dynamical model from which an
explanation of f Mb = kσ p can finally emerge. That
needs much more sophisticated analytical and numeri-
cal methods applied to both the bulge mass scaling as
well as the M• − σ determination.
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