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Abstract

Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle
and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field
regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to
solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects.
Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering
when dealing with strong chromospheric lines with broad damping wings. In this paper, we present a numerical
method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and
orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a
two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization
of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to
indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-
dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to
realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with
the assumption of an isothermal one-dimensional medium.
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1. Introduction

The regime of strong (kilogauss) magnetic fields where the
Zeeman effect dominates is a well explored topic over a long
period of time in solar magnetic field diagnostics (see the
review by Stenflo 2013). In recent years, the regime of weak
(milligauss to few tens of Gauss) magnetic fields where the
Hanle effect dominates is also quite well explored (Stenflo
1994; Landi Degl’Innocenti & Landolfi 2004; Stenflo 2013).
However, the regime of intermediate fields (hecto-Gauss fields
like 50–500 Gauss for optical lines), is relatively less explored.
This is because in this regime both the Hanle and Zeeman
effects contribute significantly and hence have to be treated
simultaneously in the formulation and solution of the
concerned polarized radiative transfer equation. Such a
problem of polarized line formation in the intermediate field
regime becomes numerically complex when partial frequency
redistribution (PRD) in scattering is taken into account.

A first numerical solution for this problem was presented in
Sampoorna et al. (2008), where a perturbation method (similar
to that of Nagendra et al. 2002) was proposed to solve the
concerned polarized transfer equation. However, the perturba-
tion method, wherein polarization is treated as a perturbation to
intensity, works well only for smaller degrees of polarization.
For larger degrees of polarization, direct numerical methods
such as the Feautrier method (see, e.g., Dumont et al. 1977;
Faurobert 1987) and discrete space method (see, e.g.,
Nagendra 1986, 1988) would be required. However, these
classical methods are computationally expensive for complex
polarized transfer problems, like the ones described above.
Therefore, it is more advantageous to work with iterative
techniques that provide accurate solutions at a much higher

computational speed. A comparison of the direct methods and
the iterative methods are given in Nagendra et al. (1999).
In the last few decades the iterative methods based on the

concept of operator perturbation (Cannon 1973) have been
applied to solve a variety of polarized transfer problems (see
the reviews by Trujillo Bueno 2003; Nagendra 2017). In the
present paper, we apply this operator perturbation technique to
solve the problem of polarized PRD line formation in arbitrary
strength magnetic fields. In order to make the treatment
computationally tractable, here we consider an isothermal one-
dimensional planar atmosphere, and a two-level atom model
with zero nuclear spin and infinitely sharp lower level. We
neglect lower-level polarization. The Hanle–Zeeman redistri-
bution matrix corresponding to scattering on such a two-level
atom is derived in Bommier (1997a, 1997b) using a rigorous
QED approach, in Bommier & Stenflo (1999) using a classical
oscillator theory, and in Sampoorna (2011) using the Kramers–
Heisenberg scattering approach of Stenflo (1994). The
equivalence between these theoretical approaches is shown in
Sampoorna et al. (2007a, 2007b) for a J 0 1 0=  
scattering transition and in Sampoorna (2011) for a
J J Jl u l  scattering transition (where Jʼs denote the total
angular momentum quantum number).
More recently, this problem has also been addressed by

Alsina Ballester et al. (2017) for the approximation of an angle-
averaged Hanle–Zeeman PRD matrix. An important result by
these authors (see also Alsina Ballester et al. 2016) is that, in
strong resonance lines for which the effects of PRD are
significant, the magneto-optical terms of the Stokes-vector
transfer equation produce a clear magnetic sensitivity in the
wings of the Q/I profile, as well as sizable U/I wing signals
that are also sensitive to the presence of magnetic fields with
strengths similar to or larger than those needed for the onset of
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the Hanle effect in the spectral line under consideration.
Recently, we have pointed out that in the presence of weak
magnetic fields the angle-dependent PRD effects cannot be
neglected (see Nagendra et al. 2002; Nagendra & Sampoorna
2011; Supriya et al. 2013; Sampoorna 2014). Therefore, in the
present paper, we consider both the angle-averaged and angle-
dependent Hanle–Zeeman redistribution matrices and study the
validity of the angle-averaged approximation for not only the
Hanle regime but also the intermediate regime of field
strengths.

The paper is organized as follows. In Section 2, we briefly
present the basic equations governing the problem at hand. The
numerical method of the solution is described in Section 3. The
emergent Stokes profiles for different field strengths, and angle-
averaged and angle-dependent cases are presented in Section 4.
Conclusions are presented in Section 5. In Appendices A and B,
we present the Hanle–Zeeman redistribution matrix and Zeeman
line absorption matrix in the atmospheric reference frame.
Appendix C presents the normalization of the Hanle–Zeeman
redistribution matrix.

2. The Basic Equations

In the presence of a magnetic field, the polarized radiative
transfer equation for the Stokes vector I nx, ,t =( )
I Q U V, , , T( ) may be written as

I n KI n S nx x x, , , , , , , 1m
t

t t t
¶
¶

= -( ) ( ) ( ) ( )

where τ is the line-center optical depth, x 0 Dn n n= - D( ) is
the frequency separation from line center 0n in Doppler width
( DnD ) units, the vector n ,J j( ) is the propagation direction of
the ray (where ϑ is the co-latitude and j the azimuth), and

cosm J= . The absorption matrix K is given by

K Er , 2F= + ( )

where F is the 4 × 4 Zeeman line absorption matrix, E is the
4 × 4 unity matrix, and r is the ratio of continuous to line-
center opacity. The source vector is given by

S n E U S nx r B x, , , , , 3scat0t tF= + +n( ) ( ) ( ) ( )
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In Equation (3), ò denotes the photon destruction probability per
scattering, B 0n is the Planck function, and U 1, 0, 0, 0 T= ( ) . The
redistribution matrix R n n Bx x, ; , ;¢ ¢( ) accounts for the correla-
tions in frequency, angle, and polarization between the incident
radiation field at frequency x¢ and direction n¢ and the reemitted
radiation at frequency x and direction n in the presence of a vector
magnetic field B. The quantity nd ¢ is an element of solid angle
around n¢. The explicit form of the Hanle–Zeeman redistribution
matrix R and the Zeeman line absorption matrix F are given in
Appendices A and B respectively.

Let us define a total optical depth d d rI
tott t j m= +( ) ,

where Ij is the diagonal element of the Zeeman line absorption
matrix F. For notational simplification, here we will call

d dtott t= . Equation (1) can then be rewritten as

I n I n S nx x x, , , , , , . 5eff
t

t t t
¶
¶

= -( ) ( ) ( ) ( )

Here the effective source vector is

S n S n K I nx x x, , , , , , , 6eff tott t t= - ¢( ) ( ) ( ) ( )

where we have redefined the total absorption matrix of
Equation (2) as

K
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The formal solution of Equation (5) is obtained by using the
DELOPAR method of Trujillo Bueno (2003, see also
Sampoorna et al. 2008).

3. Numerical Method of the Solution

Here we present an iterative method based on the concept of
operator perturbation to solve Equation (5). Hereafter, we omit
the τ dependence of the quantities, while their angle-frequency
dependences appear as subscripts. The formal solution of
Equation (5) can be written in terms of the lambda operator as

I S . 9n n nx x xeff,L= [ ] ( )

Following Olson et al. (1986), we define a local, “angle-
frequency dependent” approximate lambda operator nx*L
through

. 10n n n nx x x x* *L L L L= + -( ) ( )

We can now set up an iterative scheme to compute the effective
source vector as

S S S , 11n n nx
n

x
n

x
n

eff,
1

eff, eff,d= ++ ( )

where the superscript n refers to the nth iteration step. From
Equation (6), we find that

S S K I . 12n n nx
n

x
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x
n
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For numerical simplicity, we neglect the I nx
nd term, and obtain

from Equations (8) and (3)
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Substituting Equations (6), (8), and (3) in Equations (11) and
(13), it is easy to find that
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Combining Equations (9)–(14) with Equation (4), we derive an
expression for S nx

n
scat,d as
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where

S
n
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4
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is obtained from a formal solution of the effective source vector
S nxeff, of the previous iterate. The system of Equations (15) can
be rewritten in the form

A S r , 17n n
scatd = ( )

where residual vector rn is given by the right-hand side of
Equation (15). At each depth point, S n

scatd and rn are vectors of
length N N N4 2x m j, where Nx is the number of frequency points
in the range of x0, max[ ], Nm is the number of angle points in the
range 0 1m<[ ], and Nj is the number of azimuth points in
the range 0 2 j p[ ]. The matrix A thus has dimensions

N N N N N N4 2 4 2x x´m j m j( ) at each depth point. It is compu-
tationally formidable to compute this huge matrix and then
invert it. Thus it is necessary to find a work around for this
problem.

Following Trujillo Bueno & Manso Sainz (1999, see also
Alsina Ballester et al. 2017), we apply the approximate lambda
iteration technique only to the intensity component of the
source vector, i.e., SI, because it drives the convergence rate.

Other polarization components of the source vector are
computed by the classical lambda iteration method, but with
the important difference that the Stokes I parameter on which
these components depend is being improved in the previous
iteration by applying the approximate lambda iteration scheme
to SI. In this case, Equation (15) simplifies to
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for the intensity component of the source vector. It is important to
note that S nI x

n
,scat, FS[ ] is the intensity component of S nx

n
scat, FS[ ] ,

which is obtained from the formal solution of the effective source
vector S nxeff, of the previous iterate. Thus the coupling of other
Stokes parameters to Stokes I is retained in the computation of
S nI x

n
,scat, FS[ ] . However, this coupling is neglected in the computa-

tion of the second term in the left-hand side of Equation (18), to
reduce the computational cost. Again Equation (18) can be written
in a form similar to Equation (17), but now the length of the
residual vector and source vector correction is N N N2x m j and
correspondingly the dimension of the A matrix is
N N N N N N2 2x x´m j m j( ) at each depth point. With this

Figure 1. Comparison of emergent Stokes profiles computed using angle-dependent type-II and type-III redistribution functions (dotted lines) and those using angle-
dependent type-II and CRD functions (solid lines). The line of sight is at 0.11m = and 0j = . An isothermal self-emitting slab is considered with the following
model parameters: T a r, , , , 200, 10 , 10 , 10 , 1 ;E R

3 4 9 G G = - - -( ) ( ) and magnetic field orientations: , 30 , 0B BJ j =  ( ) ( ). Panel (a) corresponds to 1BG = and panel
(b) to 100BG = .
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simplification, the problem becomes computationally feasible. We
find that the numerical method presented in this section converges
well for field strengths up to 300 G.

4. Results and Discussions

We consider isothermal, plane-parallel atmospheres with either
no incident radiation at the boundaries (self-emitting slabs)
or semi-infinite atmospheres with Planck function radiation
field incident on the lower boundary (typical of optically thick
stellar atmospheres). Such slab models are characterized by
T a r, , , , E R G G( ), where T is the optical thickness of the slab.
The Planck function at the line center B 0n is taken as unity. The
depolarizing elastic collision parameter is assumed to be
D D 0.5 E

1 2= = G( ) ( ) , while D 00 =( ) . The magnetic field
parameters are , ,B B BJ jG( ), where gB J RLu

wG = G and angles
,B BJ j( ) define the field orientation with respect to the

atmospheric normal. We use a logarithmic depth grid with five
points per decade. The first depth point is at 101

4t = - . For the
frequency grid, we use equally spaced points in the line core and

logarithmically spaced ones in the wings. Furthermore, the
maximum frequency xmax is chosen such that the monochromatic
optical thickness at xmax is much smaller than unity. We typically
have 70 points in the interval x0, max[ ]. We use a seven-point
Gaussian quadrature in 0 1m<[ ] and an eight-point trapezoi-
dal grid for 0 2 j p. We consider a two-level atom model
with Jl= 0 and Ju= 1. To obtain accurate solution, particularly
for the case of angle-dependent redistribution functions, it is
necessary to correctly normalize the Hanle–Zeeman redistribution
matrix. This aspect is discussed in more detail in Appendix C.

4.1. Validity of Approximating the Type-III Redistribution
Function by CRD

From Equations (31)–(34), it is clear that the numerical
evaluation of type-III redistribution functions is computation-
ally expensive because it involves evaluating an integral.
Therefore, in the literature, the type-III redistribution function
is often approximated by the complete frequency redistribution
(CRD) function. The validity of this approximation for the
computation of intensity is discussed in detail in Mihalas
(1978). In this section, we present the validity of this
approximation for polarization.
For the problem at hand, the above-mentioned approx-

imation implies approximating the magnetic redistribution
functions of type-III by

R x x H a x H a x
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Figures 1 and 2 show a comparison of emergent Stokes profiles
computed using the angle-dependent type-II and type-III redis-
tribution functions (dotted lines) and those using angle-dependent
type-II and CRD functions (solid lines). For optically thin self-
emitting slabs, small differences are noticed in Q/I and U/I for
weak fields (see Figure 1(a)). However, these differences reduce
and nearly vanish as the field strength increases (see Figure 1(b)).
This may be due to the increasing dominance of the Zeeman
effect with an increase in field strength. Intensity and circular
polarization are nearly identical for both the cases. For semi-
infinite atmospheres, the approximation of replacing the type-III
redistribution function by CRD does not seem to produce any
noticeable effect on the emergent Stokes profiles already for weak
fields (see Figure 2). Therefore, replacing the type-III redistribu-
tion function by CRD (see Equations (19)) is a good
approximation not only for the computation of intensity but also
for the computation of polarized profiles in arbitrary field
strengths. From here on we use this approximation for all the
illustrations presented in the rest of the paper.

4.2. Effect of Anomalous Dispersion Coefficients on Emergent
Stokes Profiles

In Zeeman effect theory, the anomalous dispersion coefficients
ic (see Equation (42)) are known to play a significant role in the

emergent Stokes profiles only for strong fields (see, e.g.,
Stenflo 1994; Landi Degl’Innocenti & Landolfi 2004). However,
in the case of optically thick scattering lines, these coefficients are
shown to play a significant role already for fields that are in the
Hanle regime (see Alsina Ballester et al. 2017). In this section, we

Figure 2. Comparison of emergent Stokes profiles computed using angle-
dependent type-II and type-III redistribution functions (dotted lines) and
those using angle-dependent type-II and CRD functions (solid lines). The
line of sight is at 0.11m = and 0j = . An isothermal semi-infinite
atmosphere is considered with the following model parameters:
T a r, , , , 10 , 10 , 10 , 10 , 1 ;E R

9 3 4 7 G G = - - -( ) ( ) and magnetic field para-
meters: , , 1, 90 , 45B B BJ jG =  ( ) ( ).
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re-confirm their finding, but now for the case of angle-dependent
Hanle–Zeeman redistribution matrix.

Figure 3 shows a comparison of emergent Stokes profiles
computed including (solid lines) and neglecting (dashed lines)
the anomalous dispersion coefficients in the Zeeman absorption
matrix. Even for very weak fields ( 0.1BG = ), we see significant
differences between the two cases, particularly in the wings of
the U/I profiles. Indeed, all of the wing signatures in U/I are
entirely due to the anomalous dispersion coefficients (particu-
larly due to the Vc coefficient that couples the Stokes Q and
the U). As the field strength increases, the effect of these
coefficients are also seen in the wings of Q/I. We remark that
these wing signatures are not directly caused by the PRD
functions or the Hanle effect. Indeed, the PRD is responsible
for the generation of Q/I signals in the line wings, which are
modified subsequently by the Vc coefficient to give rise to the
full magnetic sensitivity noticed in the wings of Q/I and U/I
profiles. The intensity and V/I on the other hand do not show
much sensitivity to these coefficients for the magnetic field
parameters considered in Figure 3.

4.3. Stokes Profiles Computed with the Angle-dependent and
Angle-averaged Hanle–Zeeman PRD Matrix

The solution of the polarized transfer equation, including
angle-dependent PRD functions is known to be computation-
ally very expensive. To avoid such computationally expensive
problems, it is often a common practice to replace the angle-
dependent PRD functions by their angle-averaged versions
(see, e.g., Rees & Saliba 1982; Faurobert 1987; Nagendra et al.
2002). For the problem at hand, the angle-averaged approx-
imation implies replacing the angle-dependent magnetic
redistribution functions defined in Equations (29)–(34) by their

angle-averaged counterparts, which are defined as

R x x R x x d,
1

2
, , sin , 20M M M M M M
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l u l l u lò¢ = ¢ Q Q Q
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,
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u l u l u l u lò¢ = ¢ Q

´ Q Q
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( )

where X and Y stand for the symbols H and/or F.
We have studied the validity of the angle-averaged

approximation as a function of field strength. For this, we
considered the case of an isothermal semi-infinite atmosphere
and varied the field strength parameter BG from 0.1 to 100. We
recall that, the damping parameter a is given by

a
4

. 22R I E

Dp n
=

G + G + G
D

( )

For a spectral line at 5000 Å, a typical Doppler width of 30 mÅ,
a damping parameter a 10 3= - , and 1E RG G = , we obtain
from Equation (22) 2.26 10R

7G = ´ s−1 (where we have
assumed 1I RG G  ). In terms of the field strength B in Gauss,

g B0.88 10B J R
7

u
G = ´ G( ). For a J 0 1 0=   scattering
transition considered for the illustrations presented in this
paper, the Landé factor of the upper level g 1Ju

= . Clearly, a
variation of BG between 0.1 and 100, then corresponds to a
variation in the range between 0.25 and 256 G in field strength.
Figures 4 and 5 show a comparison of the emergent Stokes

profiles computed with the angle-dependent (solid lines) and
angle-averaged (dashed lines) Hanle–Zeeman redistribution
matrix for different values of the field strength parameter BG .
For optically thick lines, the differences between the two cases
are seen mainly in the line core region (which is in agreement

Figure 3. Effect of anomalous dispersion coefficients on emergent Stokes profiles computed using angle-dependent Hanle–Zeeman redistribution matrix. The line of
sight is at 0.11m = and 0j = . An isothermal semi-infinite atmosphere is considered with the following model parameters: T a r, , , , E R G G =( )
10 , 10 , 10 , 10 , 1 ;9 3 4 7- - -( ) and magnetic field orientations: , 90 , 45B BJ j =  ( ) ( ). Panel (a) corresponds to 0.1BG = , panel (b) to 1BG = , and panel (c) to

30BG = . The solid line is computed including the anomalous dispersion coefficients in the Zeeman absorption matrix, while the dashed line is computed by neglecting
these coefficients.
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with the results presented in Figure 6(b) of Nagendra &
Sampoorna 2011). The intensity and the V/I profiles are
insensitive to the choice of angle-dependent or angle-averaged
functions, while the linear polarization profiles are considerably
sensitive. From Figures 4 and 5, we see that the differences
between the U/I profiles computed with angle-dependent and
angle-averaged PRD functions are particularly large for the
Hanle saturation regime field strength represented by 3BG = .
The differences between the two cases continue to persist for
fields in the intermediate Hanle–Zeeman regime and for BG as
large as 100. This shows that angle-dependent effects are
important for the computation of linear polarization profiles,
particularly the U/I profiles.

5. Conclusions

In the present paper, we consider the problem of polarized
line formation including the effects of PRD and magnetic fields
of arbitrary strength and orientation. We consider scattering on
a two-level atom with zero nuclear spin and an infinitely sharp
unpolarized lower level. The Hanle–Zeeman redistribution
matrix corresponding to this case has been derived in Bommier
(1997a, 1997b, see also Bommier & Stenflo 1999; Sampoorna
et al. 2007a, 2007b; Sampoorna 2011). We have developed an
iterative technique based on the concept of operator perturba-
tion to solve the concerned polarized radiative transfer

equation. Unlike the perturbation method presented in
Sampoorna et al. (2008), the present numerical method is
robust and is able to handle atmospheres with any total optical
thickness. However, like the perturbation method, the present
method converges well for field strengths up to 300 G. This is
due to the fact that the operator perturbation technique has been
applied only for the computation of source vector corresp-
onding to the intensity component of the Stokes vector.
Although the operator perturbation technique can be applied to
all four Stokes parameters, it becomes computationally
impractical to implement the same in reality.
We have performed numerical studies to analyze the

importance of the angle-dependent Hanle–Zeeman PRD matrix
in the computation of the emergent Stokes profiles of optically
thick lines, for a range of field strength parameters BG between
0.1 and 100. In agreement with the previous studies for the case
of the weak field (Nagendra & Sampoorna 2011), we find that
the angle-dependent effects are significant mainly in the line
core and particularly for the computation of linear polarization
profiles. Significant differences between the U/I profiles
computed with angle-dependent and angle-averaged PRD
functions are noticed for fields in the saturation regime of the
Hanle effect. The differences in both Q/I and U/I persist
for fields as large as 100BG = . Therefore, we conclude that
angle-dependent effects are important and should be taken into

Figure 4. Comparison of emergent Stokes profiles computed using an angle-dependent (solid lines) and those using an angle-averaged (dashed lines) Hanle–Zeeman
redistribution matrix. The line of sight is at 0.11m = and 0j = . An isothermal semi-infinite atmosphere is considered with the following model parameters:
T a r, , , , 10 , 10 , 10 , 10 , 1 ;E R

9 3 4 7 G G = - - -( ) ( ) and magnetic field orientations: , 90 , 45B BJ j =  ( ) ( ). Panel (a) corresponds to 1BG = , and panel (b) to 3BG = .
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account for an accurate determination of the magnetic field.
Furthermore, we have shown that the approximation of
replacing the angle-dependent type-III PRD functions by
CRD is a good approximation for optically thick lines. Finally,
we re-confirm the importance of anomalous dispersion
coefficients of the Zeeman absorption matrix on producing
interesting signatures in the wings of linear polarization profiles
even for very weak fields (as originally shown in Alsina
Ballester et al. 2017).

We thank an anonymous referee for constructive comments
that helped improve the paper. Computations are performed on a
20 node HYDRA cluster (dual Xeon X5675 with 6 cores per
processor and 3.06 GHz clock speed), FORNAX (dual opteron
6220 with 8 cores and 3.0 GHz clock speed), and KASPAR (dual
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Appendix A
The Hanle–Zeeman Redistribution Matrix

The Hanle–Zeeman redistribution matrix derived in Bommier
(1997b, see also Sampoorna et al. 2007a, 2007b; Sampoorna
2011) refers to a frame where the magnetic field is along the Z-
axis (namely, the magnetic reference frame: MRF). However, for
transfer computations, we need this matrix defined in a frame
where the Z-axis is along the atmospheric normal (namely, the

atmospheric reference frame: ARF). Transformation between the
two frames is described in Appendix D of Sampoorna et al.
(2007b), where this transformation is performed numerically. On
the other hand, the same transformation can be expressed in a
more compact analytic form by using the irreducible spherical
tensors for polarimetry introduced by Landi Degl’Innocenti
(1984). The latter is presented in this Appendix.
For a J J Jl u l  scattering transition with infinitely sharp

lower level Jl, the Hanle–Zeeman redistribution matrix is given
by (see Equation (48) of Bommier 1997b)

R n n B R n n B

R n n B

x x x x

x x

, ; , ; , ; , ;

, ; , ; . 23

II

III

¢ ¢ = ¢ ¢
+ ¢ ¢

( ) ( )
( ) ( )

In the MRF, the elements of the type-II and type-III
redistribution matrices are given by (see Equations (51) and
(49) of Bommier 1997b, see also Equations (53) and (55) of
Sampoorna 2011)

R n n B

n n

x x

i j x x B

, , , ,

1 , , , , , ,

24

ij

K K Q

Q
Q
K

Q
K

Q
K K

II

,II
,  å

¢ ¢

= - ¢ ¢ Q
¢ 


-
¢  ¢

( )

( ) ( ) ( ) ( )

( )

Figure 5. Same as Figure 4, but for 30BG = in panel (a) and 100BG = in panel (b).
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R n n B

n n

x x

i j x x B

, , , ,

1 , , , , , .

25

ij

KK K Q
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Q
K K K

III

,III
, ,  å

¢ ¢

= - ¢ ¢ Q
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-
¢  ¢

( )

( ) ( ) ( ) ( )
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In the above equations, i and j denote the Stokes parameter
indices, which take values 0, 1, 2, and 3; ni,Q

K ( ) are the
irreducible spherical tensors, where K takes values 0, 1, and 2,
while Q varies in the range of K Q K - + and n ,q f( )
refers to the ray direction with respect to the magnetic field; and
Θ denotes the scattering angle between the incident and
scattered rays. The laboratory frame redistribution functions

x x B, , ,Q
K K

,II
, ¢ Q ¢( ) and x x B, , ,Q

K K K
,III
, , ¢ Q ¢( ) are given by

26
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In the above equations,Mu, Mu¢, Mu, Mu¢¢¢ andMl, Ml¢ denote the
magnetic substates of the upper level Ju and the lower level Jl,
respectively; 2L Lw pn= is the Larmor frequency, and gJu is the

Landé factor of the upper level. Furthermore, RG denotes the
radiative de-excitation rate of the upper level, IG the inelastic
de-excitation rate, EG the elastic collisional rate, and D K( ) the
depolarizing collisional rate. The auxiliary quantities corresp-
onding to type-II redistribution are given by

h M M R R

f M M R R
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2
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where the magnetic redistribution functions of type-II are given
by
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In the above equations, H a x,( ) and F a x,( ) are the Voigt
and Faraday–Voigt functions, x x g M g MM M J u J lu l u l

= + -( )
L Dn nD( ) is the magnetically shifted non-dimensional fre-

quency (with a similar expression for the primed quantity),
xM M M M Dl l l l

n n= D¢ ¢ with M Ml l
n ¢ being the energy difference

between the magnetic substates Ml and Ml¢, and a =
4R I E Dp nG + G + G D( ) ( ) is the total damping width of the

line. The magnetic redistribution functions of type-III appear-
ing in Equation (27) are given by
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and
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Following Section 5.12 of Landi Degl’Innocenti & Landolfi
(2004, see also Frisch 2007), we transform Equations (24) and
(25) to the ARF. In the ARF, the magnetic field makes an angle

BJ with the atmospheric normal and has an azimuth Bj . The
elements of the type-II and type-III redistribution matrices in
ARF are given by
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where n ,J j( ) and n ,J j¢ ¢ ¢( ) now refer to the ray directions
with respect to the atmospheric normal. The type-II and type-III
magnetic kernels have the form
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Explicit forms of the reduced rotation matrices dQQ
K

BJ¢( ) are
given in Table 2.1 of Landi Degl’Innocenti & Landolfi (2004).

Appendix B
The Zeeman Line Absorption Matrix

For a two-level atom with an unpolarized lower level, the
explicit form of the Zeeman line absorption matrix is given in
Stenflo (1994) and Landi Degl’Innocenti & Landolfi (2004).
However, this matrix is usually given in a frame where the
magnetic field is along the Z-axis. For the problem at hand, it is
necessary to transform this matrix to the ARF. For clarity, we
present such a transformation in this appendix using the
irreducible spherical tensors for polarimetry.

The Zeeman line absorption matrix has the form

. 39

I Q U V

Q I V U

U V I Q

V U Q I

j j j j
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j c j c
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( )

The absorption coefficients, ij with i 0, 1, 2, 3= (corresp-
onding to Stokes parameters I, Q, U, and V ) may be written
as (see Equation (A13.9) of Landi Degl’Innocenti &

Landolfi 2004)

ni J J x, , , , 40i
K

K K
l u0 0

0åj = F( ) ( ) ( )

where n ,q f( ) is the angle between the line of sight and the
magnetic field, and the generalized profile function is given by
(see Landi Degl’Innocenti et al. 1991)

J J x K
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The anomalous dispersion coefficients, ic with i 1, 2, 3=
(corresponding to Stokes parameters Q, U, and V ) may be
written as (see Equation (A13.14) of Landi Degl’Innocenti &
Landolfi 2004)

ni J J x, , , , 42i
K

K K
l u0 0

0åc = Y( ) ( ) ( )

where the generalized dispersion profile function is given by
(see Landi Degl’Innocenti et al. 1991)
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Equations (40) and (42) refer to the absorption and dispersion
coefficients in the MRF. They can be transformed to the ARF
using the rotation law obeyed by the irreducible spherical tensors.
From Equation (2.78) of Landi Degl’Innocenti & Landolfi
(2004), we can write

n ni i D, , 0, , ,

44

Q
K

Q
Q
K

QQ
K

B BMRF ARF * å J j= - -
¢

¢ ¢[ ( )] [ ( )] ( )

( )

where DQQ
K

¢ are the Wigner rotation matrices. Using this
transformation law, we obtain the absorption and dispersion
coefficients in the ARF as

ni e d J J x, , , , 45i
KQ

Q
K Q

Q
K

B
K

l u
i

0 0
0

Båj J= Fj-( ) ( ) ( ) ( )

ni e d J J x, , , , 46i
KQ

Q
K Q

Q
K

B
K

l u
i

0 0
0

Båc J= Yj-( ) ( ) ( ) ( )

where n ,J j( ) now refers to the angle made by the line of sight
with respect to the ARF.

Appendix C
Normalization of the Hanle–Zeeman Redistribution Matrix

As shown in Bommier (2017), the Hanle–Zeeman redis-
tribution matrix is normalized to

n n
R n n Bdx dx

d d
x x

4 4
, ; , ;

. 47

ij

i j
R

R I
0 0

ò ò p p

d d

¢
¢

¢ ¢

=
G

G + G

∮ ∮ ( )

( )

For accurate evaluation of the scattering integral, namely Sscat, it
is absolutely essential to correctly normalize the Hanle–
Zeeman redistribution matrix, particularly when angle-dependent
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redistribution functions are used. To achieve this numerically, we
first analytically derive the normalization of the type-II and type-
III redistribution matrices by integrating only over the incoming
angles and frequencies. The resulting analytic expressions (given
below) are used to re-normalize the redistribution matrices that
are numerically computed. From Equation (47), it is clear that
such a re-normalization is effective only for the R00 element.

We analytically integrate Equations (35)–(38) over the
incoming angles n¢ and frequencies x¢ and obtain
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for the type-II redistribution and
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for the type-III redistribution. When deriving the above equations,
we have made use of the normalization property of the irreducible
spherical tensors for polarimetry (see Landi Degl’Innocenti 1984,
see also Equation (27) of Bommier 2017). If we further integrate
Equations (48) and (49) over the outgoing angles n and frequencies

x, we obtain R R I EG G + G + G( ) for the type-II redistribution and
R R I E R I EG G + G ´ G G + G + G[ ( )] [ ( )] for the type-III redis-

tribution, which when added gives the right-hand side of
Equation (47).
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