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ABSTRACT

The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation
of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the
meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the
recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation
with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper
butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells
of the meridional circulation below the shallow return flow—both the case of multiple cells radially stacked above
one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes
at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there
is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior.
On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes
unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar
field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On
introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with
low diffusivity.
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1. INTRODUCTION

The most extensively studied theoretical model of the solar
activity cycle in the last few years is the flux transport dynamo
model, originally proposed in the 1990s (Wang et al. 1991;
Choudhuri et al. 1995; Durney 1995) and recently reviewed
by several authors (Charbonneau 2010; Choudhuri 2011). This
model had remarkable success in explaining various aspects of
the solar cycle and its irregularities. However, in spite of its
success, doubts are often expressed if this success is merely
accidental or if this is the really correct model. Essentially, the
answer hinges on whether the various assumptions used in the
model are correct.

Let us consider the crucial assumptions of the model.
The toroidal magnetic field is assumed to be produced from
the poloidal field by the differential rotation that is mapped
by helioseismology, leaving no scope for any doubts. This
toroidal field rises due to magnetic buoyancy to the so-
lar surface, where the poloidal magnetic field is produced
from it by the Babcock–Leighton mechanism (Babcock 1961;
Leighton 1964), for which there is now strong observa-
tional support (Dasi-Espuig et al. 2010; Kitchatinov & Olem-
skoy 2011a; Muñoz-Jaramillo et al. 2013). Magnetic buoy-
ancy and the Babcock–Leighton mechanism are inherently
three-dimensional processes and their representation in a two-
dimensional kinematic model can never be fully realistic
(Muñoz-Jaramillo et al. 2010; Yeates & Muñoz-Jaramillo 2013).
There are also considerable uncertainties in the values of some
parameters, such as the turbulent diffusivity inside the convec-
tion zone. The Boulder group (Dikpati et al. 2004) and the
Bangalore group (Chatterjee et al. 2004) used values of turbu-
lent diffusivity that differ by a factor of about 50. The higher

diffusivity used by the Bangalore group now has strong
support due to its success in explaining various aspects of
the observational data (Chatterjee et al. 2004; Chatterjee &
Choudhuri 2006; Jiang et al. 2007; Goel & Choudhuri 2009;
Hotta & Yokoyama 2010; Karak 2010; Karak & Choudhuri
2011, 2012, 2013; Choudhuri & Karak 2009, 2012; Miesch et al.
2012; Muñoz-Jaramillo et al. 2013). Because of these uncertain-
ties in the treatment of the Babcock–Leighton mechanism and in
the value of turbulent diffusivity, it is necessary to interpret the
results of the flux transport dynamo model with some degree
of caution. However, these uncertainties do not invalidate the
model. After all, different treatments of the Babcock–Leighton
mechanism and a range of values for the turbulent diffusivity
seem to give qualitatively similar results. The only other im-
portant ingredient of the flux transport dynamo model is the
meridional circulation. Because the nature of the meridional
circulation in the deeper layers of the convection zone is not
yet observationally established, the main source of doubt about
the flux transport dynamo model at the present time concerns
the question of whether the Sun has the kind of meridional
circulation that is assumed in the flux transport dynamo models.

Let us consider the role of the meridional circulation in flux
transport dynamo models. In order for sunspots to form at lower
and lower latitudes with the progress of the cycle, a condition
known as the Parker–Yoshimura sign rule was expected to be
satisfied (Parker 1955; Yoshimura 1975; see also Choudhuri
1998, Section 16.6). According to this condition, α ∂Ω/∂r
has to be negative in the northern hemisphere. It follows
from observations of the solar surface that α corresponding
to the Babcock–Leighton mechanism is positive in the northern
hemisphere. Helioseismology shows that ∂Ω/∂r is also positive
in the lower latitudes where sunspots are seen (except in

1

http://dx.doi.org/10.1088/0004-637X/782/2/93
mailto:ghazra@physics.iisc.ernet.in


The Astrophysical Journal, 782:93 (12pp), 2014 February 20 Hazra, Karak, & Choudhuri

a shear layer just below the solar surface). So, clearly the
Parker–Yoshimura sign rule is not satisfied and it may be
expected that the dynamo wave will propagate in the poleward
direction, contrary to observations. Choudhuri et al. (1995)
showed that an equatorward meridional circulation at the bottom
of the convection zone can overcome the Parker–Yoshimura
sign rule and make the dynamo wave propagate in the correct
direction. This is the main role of the meridional circulation
in the flux transport dynamo models. The second role of
the meridional circulation is that the poleward meridional
circulation near the solar surface advects the poloidal field
poleward, as seen in the observations. In dynamo models with
low turbulent diffusivity, the meridional circulation has a third
important role. It brings the poloidal field created near the
surface to the bottom of the convection zone where the strong
differential rotation can act on it to create the toroidal field.
In dynamo models with high turbulent diffusivity, however, the
poloidal field can diffuse from the surface to the bottom of the
convection zone (typically, in about 5 yr) and this third role of
the meridional circulation is redundant (Jiang et al. 2007). If
there is radial pumping, as suggested by some authors (Karak &
Nandy 2012), then that further eliminates the role of meridional
circulation for bringing the poloidal field to the bottom of the
convection zone. Because we will be using a higher value of
turbulent diffusivity in many of our calculations, the twin roles of
the meridional circulation in our model will be the equatorward
advection of the toroidal field at the bottom of the convection
zone and the poleward advection of the poloidal field near the
surface.

The simplest kind of meridional circulation assumed in
most theoretical models consists of one cell encompassing a
hemisphere of the convection zone, with a poleward flow in the
upper layers and an equatorward flow in the lower layers. This
kind of meridional circulation successfully plays the twin roles
expected of it in a flux transport dynamo model. Observations
show a poleward meridional circulation near the surface, so there
is absolutely no doubt that this part of the meridional circulation
advects the poloidal field poleward. The only remaining question
is whether the cell of the meridional circulation really penetrates
to the bottom of the convection zone where the equatorward flow
branch has to be located for the equatorward advection of the
toroidal field. Early helioseismic investigations going to a depth
of 0.85 R� could not find any evidence of the equatorward
return flow until that depth (Giles et al. 1997; Braun & Fan
1998). However, recently, Hathaway (2012), assuming that
the supergranules are advected by the meridional circulation,
analyzed observational data to conclude that the return flow
occurs at depths as shallow as 50–70 Mm. Zhao et al. (2013)
also claim, on the basis of their helioseismic inversion, that
the equatorward return flow exists between radii 0.82 R� and
0.91 R�. On the other hand, Schad et al. (2013), from the study
of global helioseismic analysis, find the indication of multi-cell
meridional circulation in the whole convection zone. If these
results are supported by other independent groups and turn out
to be true, then the important question is whether the attractive
aspects of the present flux transport dynamo models can be
retained with such a meridional circulation. In this paper, we
explore whether additional cells of meridional circulation below
the shallow return flow can help us solve the problem.

So far, only a few theoretical studies of the flux transport
dynamo with a meridional circulation more complicated than
a single cell have been carried out. The effects of two cells
in the latitudinal direction have been considered by Dikpati

et al. (2004) and Bonanno et al. (2005). However, we now
want to consider a more complicated structure of the meridional
circulation in the radial direction, including the possibility of
multiple cells in the radial direction. Such a study was first
carried out by Jouve & Brun (2007). In their calculations,
they always had poleward meridional circulation at the bottom
of the convection zone in the lower latitudes where sunspots
are seen. They were able to obtain periodic solutions, but the
butterfly diagrams were always in the wrong sense, implying
poleward migration of the toroidal field. They concluded that
“the resulting butterfly diagram and phase relationship between
the toroidal and poloidal fields are affected to a point where
it is unlikely that such multicellular meridional flows persist
for a long period of time inside the Sun, without having to
reconsider the model itself” (Jouve & Brun 2007, p. 239). If this
conclusion were generally true for any meridional circulation
more complicated than the simple, single-cell circulation, then
the results of Hathaway (2012), Schad et al. (2013), and Zhao
et al. (2013), if supported by independent investigations by other
groups, would indeed be bad news for flux transport dynamo
models. Guerrero & de Gouveia Dal Pino (2008) considered
a single cell confined to the upper layers of the convection
zone. On introducing strong radial and latitudinal pumping,
they were able to obtain correct butterfly diagrams. However,
whether such equatorward latitudinal pumping actually exists
is highly questionable. Another recent attempt to save the flux
transport dynamo was made by Pipin & Kosovichev (2013),
who used the near-surface shear layer found in helioseismology
and an equatorward return flow of meridional circulation just
below it. Because ∂Ω/∂r is negative within this shear layer,
such a dynamo would have equatorward propagation, according
to the Parker–Yoshimura sign rule, even in the absence of an
equatorward meridional circulation in the right place. However,
we are unable to accept the model from Pipin & Kosovichev
(2013) as a satisfactory model of the solar cycle for the following
reasons. Magnetic buoyancy is particularly destabilizing in the
upper layers of the convection zone and it is impossible to store
magnetic fields generated there for sufficient time for dynamo
amplification (Parker 1975; Moreno-Insertis 1983). Also, the
scenario that the toroidal field is generated within the tachocline
and then parts of it rise to produce active regions can explain
many aspects of active regions, including Joy’s law, rather
elegantly (Choudhuri 1989; D’Silva & Choudhuri 1993; Fan
et al. 1993; Caligari et al. 1995). We find no compelling reason to
discard the scenario that the toroidal magnetic field is produced
in the tachocline, where magnetic buoyancy is suppressed in the
regions of sub-adiabatic temperature gradient (Moreno-Insertis
et al. 1992).

The main aim of the present paper is to address the question
of whether a meridional circulation with a return flow at a
relatively shallow depth would allow us to retain the attractive
features of the flux transport dynamo, without introducing such
uncertain assumptions as strong equatorward pumping and
without abandoning the scenario in which the toroidal field
is generated and stored in the tachocline from where it rises to
produce active regions. If there is a return flow at a shallow depth
and there are no flows underneath it, then we find that the solar
cycle cannot be modeled properly with such a flow. However,
if there are additional cells of meridional circulation below the
shallow return flow, we find that we can retain most of the
attractive features of the flux transport dynamo model, as long as
there is a layer of equatorward flow in low latitudes at the bottom
of the convection zone. The existence of such an equatorward
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flow at the bottom of the convection zone is consistent with
the findings of Zhao et al. (2013), who were unable to extend
their inversion below 0.75 R� using their limited data set.
Because our knowledge of the meridional circulation, either
from observational or theoretical considerations, is very limited,
in this paper, we take the meridional circulation as a free
parameter that can be assumed to have any form involving
multiple cells, and explore the dynamo problem with different
kinds of meridional circulation.

We discuss the mathematical formulation of our dynamo
model in Section 2. In Section 3 we present our results for several
cells of meridional circulation in the radial direction, while
Section 4 presents results for more complicated meridional
circulation with multiple cells in both radial and latitudinal
directions. Whether or not the results are modified for low
turbulent diffusivity will be discussed in Section 5. The effect
of turbulent pumping will be discussed in Section 6. Finally, we
summarize our conclusions in Section 7.

2. MATHEMATICAL FORMULATION

In the two-dimensional kinematic flux transport dynamo
model, we represent the magnetic field as

B = B êφ + ∇ × (Aêφ), (1)

where B(r, θ ) and A(r, θ ) correspond to the toroidal and
poloidal components, respectively, which satisfy the following
equations:
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where s = r sin θ . Here v is velocity of the meridional flow, Ω is
the internal angular velocity of the Sun, ηp and ηt are turbulent
diffusivities, and S(r, θ, t) is the coefficient that describes the
generation of the poloidal field at the solar surface from the
decay of bipolar sunspots. These equations have to be solved
with the boundary conditions A = B = 0 at θ = 0, π , whereas
at the top boundary, B = 0 and A, matches a potential field above
(Dikpati & Choudhuri 1995). The bottom boundary condition
does not affect the solutions as long as the bottom of the
integration region is taken sufficiently below the bottom of the
convection zone. Once the parameters Ω, ηp, ηt , v, and S(r, θ, t)
are specified, Equations (2) and (3) can be solved with the code
Surya to obtain the behavior of the dynamo (Nandy & Choudhuri
2002; Chatterjee et al. 2004). Chatterjee et al. (2004) present a
detailed discussion of how the parameters were specified in their
simulations. However, Karak (2010) made some small changes
in the parameters. In the calculations in this paper, we use Ω, ηp,
and ηt as Karak (2010), except that Sections 5 and 6 present some
discussion with different diffusivities, which will be explained
in Section 5. In this paper, we carry out dynamo simulations
with different kinds of meridional circulation v. Before coming
to the meridional circulation, we will describe how we specified
the poloidal source term S(r, θ, t).

The effects of the magnetic buoyancy and the Babcock–
Leighton mechanism have to be incorporated by suitably spec-
ifying the poloidal source term S(r, θ, t). There are two widely

used procedures to specify magnetic buoyancy. In the first pro-
cedure, whenever the toroidal field B at the bottom of the con-
vection zone crosses a critical value, a part of it is brought to the
solar surface. In the second procedure, the Babcock–Leighton
coefficient α in the source term multiplies the toroidal magnetic
field at the bottom of the convection zone rather than the local
toroidal field. Although the two procedures do not give identical
results, even with all the other parameters kept the same (Choud-
huri et al. 2005), they both reproduce the qualitative behaviors
of the solar cycle. Because we believe that the first procedure is
more realistic, we used it in the majority of calculations from
our group (Chatterjee et al. 2004; Choudhuri et al. 2007; Karak
2010). However, it can be difficult to introduce this procedure in
a stable way when the meridional circulation is made very com-
plicated. Because we are studying the behavior of the dynamo
with various complicated meridional circulations, we opted for
the second procedure. We specify the poloidal source term in
Equation (2) in the following way:

S(r, θ;B) = α(r, θ )

1 + (B(rt , θ )/B0)2
B(rt , θ ), (4)

where B(rt , θ ) is the value of the toroidal field at latitude θ
averaged over the tachocline from r = 0.685 R� to r =
0.715 R�. We take

α(r, θ ) = α0

4

[
1 + erf

(
r − 0.95 R�

0.05 R�

)] [
1 − erf

(
r − R�
0.01 R�

)]

× sin θ cos θ

[
1

1 + e−30(θ−π/4)

]
. (5)

Note that the last factor in Equation (5) suppresses α in the higher
latitudes and constrains the butterfly diagram from extending to
very high latitudes. We are following many previous authors
who also suppressed α in high latitudes by such means (Muñoz-
Jaramillo et al. 2010; Hotta & Yokoyama 2010). Because the
suppression of α is not based on a clear physical reason, we did
not use the suppression of α in the previous calculations from our
group using the first procedure of treating magnetic buoyancy
outlined above. However, when treating magnetic buoyancy by
the second procedure, flux eruptions tend to occur at higher
latitudes (Choudhuri et al. 2005) and it becomes necessary
to suppress eruptions at high latitudes to get more reasonable
butterfly diagrams. For the calculations presented in Sections 3
and 4 using high diffusivity, we use α0 = 8.0 m s−1. In the low
diffusivity case presented in Section 5, we use a lower value
α0 = 0.5 m s−1. When we include the effect of radial turbulent
pumping in Section 6 we use α0 = 0.1 m s−1. Note that the
parameter B0 in Equation (4) introduces the only nonlinearity
in the problem and determines the amplitude of the magnetic
field. We will later present magnetic fields in units of B0.

Below we discuss how the meridional circulation is pre-
scribed. The meridional circulation is always defined in terms
of stream function ψ , which is given by

ρv = ∇ × [ψ(r, θ )eφ], (6)

with the density profile given by

ρ = C

(
R�
r

− 0.95

)3/2

, (7)

We can generate different types of meridional circulation by
choosing ψ suitably. For example, the one-cell meridional
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circulation used in many of the recent works from our group
(Karak 2010) is obtained by taking

ψr sin θ = ψ0(r − Rp) sin

[
π (r − Rp)

(R� − Rp)

]
{1 − e−β1θ

ε }

× {1 − eβ2(θ−π/2)}e−((r−r0)/Γ)2
, (8)

with β1 = 1.5, β2 = 1.3, ε = 2.0000001, r0 = (R� − Rb)/3.5,
Γ = 3.47 × 108 m, Rp = 0.635 R�. The value of ψ0/C
determines the amplitude of the meridional circulation. On
taking ψ0/C = 0.95 × 15.0, the poleward flow near the surface
at mid-latitudes peaks around v0 = 15.0 m s−1. The cell of
the meridional circulation is confined between Rp and R�. By
making Rp larger (but less than R�), we can make the meridional
circulation confined in the upper layers of the convection zone.

In order to have N cells of meridional circulation, we can take
a stream function of the form

ψ = ψ1 + ψ2 + · · · + ψN, (9)

where each term in the stream function gives rise to a cell of
meridional circulation. Here we describe how we generate a
two-cell meridional circulation pattern, which is used in some
of our simulations. The details of how we generate three-cell and
more complicated patterns are given in the Appendix. Because
Zhao et al. (2013) claim that the upper cell of the meridional
circulation is confined above 0.82 R�, we did some calculations
with two cells above and below Rm = 0.82 R�. To generate such
a pattern of meridional circulation, we used the stream function

ψ = ψu + ψl. (10)

The stream function ψu, which generates the upper cell, is
given by

ψu = ψ0u

[
1 − erf

(
r − 0.91 R�

1.0

)]
(r − Rm,u)

× sin

[
π (r − Rm,u)

(R� − Rm,u

] {
1 − e−β1θ

ε }
× {

1 − eβ2(θ−π/2)
}
e−((r−r0)/Γ)2

, (11)

where the parameters have the following values: β1 = 3.5, β2 =
3.3, r0 = (R� − Rb)/3.5, Γ = 3.4 × 108 m, Rm,u = 0.815 R�.
The stream function ψl , which generates the lower cell, is
given by

ψl = ψ0l

[
1 − erf

(
r − 0.95Rm,l

1.8

)]
(r − Rp)

× sin

[
π (r − Rp)

(Rm,l − Rp)

] {
1 − e−β1θ

ε }
× {

1 − eβ2(θ−π/2)
}
e−((r−r0)/Γ)2

, (12)

where the parameters have the following values: β1 = 3.2, β2 =
3.0, r0 = ( R� − Rb)/3.5, Γ = 3.24 × 108 m, Rp = 0.65 R�,
Rm,l = 0.825 R�. We chose ψ0u/C and ψ0l/C in such a way
that the velocity amplitudes in the upper and lower cells were
around 20.0 m s−1 and 4.0 m s−1, respectively.

The two-cell meridional circulation given by the above
expressions is shown in the upper part of Figure 2. Figure 2(a)
shows the streamlines of flow and Figure 2(b) shows how vθ

varies with r at the mid-latitude. The vertical dashed lines in

(a) (b)

(c)

(d)

Figure 1. (a) Streamlines of the shallow meridional circulation with no flow
underneath. (b) vθ as a function of r/ R� at the mid-latitude θ = 45◦. (c)
Butterfly diagram, that is, the time-latitude plot of the toroidal field at the
bottom of the convection zone (r = 0.70 R�). (d) Time-latitude plot of the
radial field at the surface of the Sun. All the toroidal and radial fields are in
units of B0.

(A color version of this figure is available in the online journal.)

Figure 2(b) indicate the bottoms and tops of the two cells. Note
that both the cells have counter-clockwise flow patterns, which
means that the flows at the bottom of the upper cell and at
the top of the lower cell (which are adjacent to each other)
are in opposite directions, involving a jump in the value of
vθ from one cell to the next, as seen in Figure 2(b). If we
replace ψl by −ψl , then we can avoid this jump in the value
of vθ . This flow pattern is shown in the upper part of Figure 3,
however, the meridional circulation at the tachocline is in the
poleward direction. Section 3 will show that this case will not
give solar-like solutions. If we want the meridional circulation
to be poleward at the surface and equatorward at the tachocline,
and additionally we want to avoid a jump in vθ , then we need
at least three cells stacked one above the other in the radial
direction. The flows in the top and bottom cells have to be
counter-clockwise, whereas the flow in the middle cell has to be
clockwise. The Appendix presents the steam function that would
give this flow, which is shown in the upper part of Figure 4. The
results from all the flow patterns are presented in the next section
and results from the more complicated flow will be presented in
Section 4. When we discuss the effects of changing the turbulent
diffusivity in Section 5, we will describe how the diffusivity
is changed. Similarly, in Section 6 we discuss the effects of
turbulent pumping and explain how pumping is included in the
mathematical theory.

3. RESULTS WITH RADIALLY STACKED CELLS

First we consider when the meridional circulation has a return
flow at the middle of the convection zone and there are no
flows underneath it. We generate the meridional circulation by
taking ψ = ψu with ψu given by Equation (11). The upper part
of Figure 1 shows the streamlines and the profile of vθ as a
function of r at the mid-latitude. The middle part of Figure 1 is
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(a) (b)

(c)

(d)

Figure 2. (a) Streamlines for two radially stacked cells of meridional circulation.
Arrows show the direction of the flow. (b), (c), and (d) are the same plots as in
Figure 1 for this meridional circulation.

(A color version of this figure is available in the online journal.)

the “butterfly diagram,” which is essentially a time-latitude plot
of B at the bottom of the convection zone. The bottom part of
the figure shows the radial field at the solar surface as function
of time and latitude. In the butterfly diagram, we find that the
belt of strong B propagates poleward rather than equatorward
at the low latitudes, although there is a slight tendency of
equatorward propagation at high latitudes. This result can be
easily understood from the Parker–Yoshimura sign rule, which
holds when there is no flow at the bottom of the convection
zone. We have positive α in the northern hemisphere. Because
∂Ω/∂r is positive in the low latitudes and negative in the high
latitudes (see Figure 1 of Chatterjee et al. 2004, which shows
the differential rotation we are using), the Parker–Yoshimura
sign rule implies poleward propagation at low latitudes and
equatorward propagation at high latitudes. In this case, we are
unable to reproduce the solar behavior. It may be noted that
Guerrero & de Gouveia Dal Pino (2008) obtained solar-like
behavior with a meridional circulation similar to what we used
by including equatorward latitudinal pumping at the bottom
of the convection zone. However, there are some uncertainties
about the nature of latitudinal pumping and the results of
different simulations often do not match each other (Racine
et al. 2011).

Next we consider the two-cell pattern given by Equa-
tions (10)–(12). For this case, Figure 2 provides plots similar to
those shown in Figure 1 for the earlier case. There is an equator-
ward flow at the bottom of the convection zone, although there
is a jump in vθ between the cells. We find that the equatorward
flow at the bottom forces an equatorward transport of B in accor-
dance with what we see in the Sun. Looking at the lowest part
of Figure 2, we also see that the polar field changes sign at the
time of the sunspot maximum, in accordance with the observa-
tions. Thus, on using the two-cell pattern with an equatorward
flow at the bottom of the convection zone, we can reproduce the
equatorward migration of the sunspot zone as well as the cor-
rect phase relationship between the toroidal and poloidal fields.
The butterfly diagram does start at a somewhat high latitude

(a) (b)

(c)

(d)

Figure 3. (a) Streamlines for two radially stacked cells of meridional circulation
with circulations in the opposite sense. Arrows show the direction of the flow.
(b), (c), and (d) are the same plots as in Figure 1 for this meridional circulation.

(A color version of this figure is available in the online journal.)

compared to what we see in the Sun. It is well known that the
butterfly diagram can be confined more to lower latitudes by
making the meridional circulation a more penetrating (Nandy
& Choudhuri 2002) and playing with other parameters. We did
not fine-tune the parameters to achieve this because we were fo-
cused on studying the qualitative behavior of the system under
various kinds of meridional circulation. Note that in Figures 2(c)
and (d) the maximum B at the bottom of the convection zone
and the maximum Br at the surface bear a ratio of about 100. It
should be emphasized that this ratio corresponds to smoothed
mean field values of B and Br, which can have very different
values inside flux concentrations (Choudhuri 2003).

We can avoid the jump in the value of vθ seen in Figure 2(b) by
using a two-cell meridional circulation in which ψl is replaced
by −ψl . Because the flow at the bottom of the convection zone
is poleward in this case, it also sheds light on the behavior of
the dynamo with such a flow. Our results are shown in Figure 3.
The butterfly diagram indicates poleward migration and the solar
behavior is not reproduced in this case. The two-cell meridional
circulation we used is very similar to what was used by Jouve
& Brun (2007) in one of their cases (see their Figures 2 and 3).
Our butterfly diagram is quite similar to theirs.

If we want to avoid a jump in vθ and also having an
equatorward flow at the bottom of the convection zone, then we
need at least three cells of meridional circulation stacked one
over the other in the radial direction. The Appendix provides
the mathematical prescription for generating such a meridional
circulation. Figure 4 presents the results. Because there is an
equatorward flow at the bottom of the convection zone, we
again find that the solar behavior is reproduced—in the sense of
having a butterfly diagram showing equatorward migration, as
well as the correct phase relationship between the toroidal and
poloidal fields.

An important result for the flux transport dynamo with a
single cell of meridional circulation is that the period of the
dynamo decreases when the meridional circulation is made
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(a) (b)

(c)

(d)

Figure 4. (a) Streamlines for three radially stacked cells of meridional
circulation. Directions are shown by arrows. (b), (c), and (d) are the same
plots as in Figure 1 for this meridional circulation.

(A color version of this figure is available in the online journal.)
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Figure 5. Variation of solar cycle period with the velocity amplitudes of the
three different cells shown in Figure 4(a). Black filled circles show the variation
of the cycle period with velocity amplitude of the lower cell, while keeping
velocities of other cells constant. Similarly, blue circles show the variation of
period with the velocity amplitude of the middle cell and red boxes for the upper
cell.

(A color version of this figure is available in the online journal.)

faster (Dikpati & Charbonneau 1999; Karak 2010). To explore
how the dynamo period depends on the flow velocity in the
multi-cell situation, we carried out a study for the three cells
presented in Figure 4. We carried out numerical experiments
by varying the flow amplitude of one cell, while keeping the
flows in the other two cells constant. Figure 5 shows how the
dynamo period changes with the change of the flow speed
in each of the three cells. It is clearly shown that the flow
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Figure 6. Streamlines for two complicated meridional circulation patterns. The
blue contours imply counter-clockwise circulation, whereas the red contours
imply clockwise circulation. The lowest cell in (a) extends from the equator to
fairly high latitudes, whereas this cell in (b) only extends to mid-latitudes.

(A color version of this figure is available in the online journal.)

speeds in the upper two cells have a very minimal effect on
the dynamo period. The flow speed in the lowermost cell is
what determines the dynamo period and the period decreases
with the increase in flow speed (T ∼ v−0.72

0,l ). This result makes
sense, as the flow in the lowermost cell causes the equatorward
migration of B (giving solar-like butterfly diagram), and the
period understandably becomes shorter when this flow is faster.

To sum up, as long as there is an equatorward flow at the
bottom of the convection zone (the cases of Figures 2 and 4),
we are able to get solar-like behavior of the dynamo even if
there is a complicated multi-cell structure of the meridional
circulation, the period being determined by the flow in the
cell at the bottom of the convection zone. Thus, even with a
return flow of the meridional circulation at a shallow depth,
the flux transport dynamo model can be made to work in this
situation. On the other hand, if there is no flow at the bottom
of the convection zone (as shown in Figure 1) or if there is a
poleward flow there (Figure 3), then the dynamo model fails to
reproduce solar behavior. This conclusion was obtained by only
considering multiple cells in the radial direction. We consider
more complicated flows in the next section and show that our
main conclusion still holds.

4. RESULTS WITH MORE COMPLICATED CELLS

We carried out some simulations with fairly complicated
multi-cell meridional circulation which reinforced our main
conclusion from the previous section: we can have solar-like
dynamo solutions as long as there is an equatorward flow
in low latitudes at the bottom of the convection zone. For
the very complicated meridional circulation pattern shown in
Figure 6(a), we present the results in Figure 7. The Appendix
shows how this complicated flow was obtained from a suitable
stream function. Because there is an equatorward flow in
low latitudes at the bottom of the convection zone, we get
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(a)

(b)

Figure 7. (a) and (b) are the same plots as (c) and (d) in Figure 1 for the
meridional circulation given in Figure 6(a).

(A color version of this figure is available in the online journal.)

(a)

(b)

Figure 8. Same as Figure 7, for the meridional circulation given in Figure 6(b).

(A color version of this figure is available in the online journal.)

solar-like butterfly diagrams even with this flow. It should be
noted that the lowermost cell in Figure 6(a) from the equator
does not go all the way to the pole, but the cell ends at some high
latitude. This cell has to extend sufficiently to reasonably high
latitudes in order to give a solar-like butterfly diagram. If the
cell does not extend beyond mid-latitudes, then we are unable
to get very solar-like butterfly diagrams. In Figure 6(b) we show
a meridional circulation with the lower cell not extending to
high latitudes and the results are presented in Figure 8. We
see that the butterfly diagram is much less realistic compared
to the butterfly diagram presented in Figure 7. It is clear from
Figures 7 and 8 that a solar-like butterfly diagram requires an
equatorward flow at the bottom of the convection zone having
a sufficient latitudinal extent from the equator to a reasonably
high latitude.

5. RESULTS FOR LOW DIFFUSIVITY
VERSUS HIGH DIFFUSIVITY

We have pointed out that the nature of the dynamo depends
quite a bit on whether the turbulent diffusivity within the

0.6 0.7 0.8 0.9 1
10

8

10
9

10
10

10
11

10
12

10
13

r/R
s

D
iff

us
iv

ity
 (

cm
2 s−

1 )

η
p

η
t

Figure 9. Plots of ηp(r) and ηt (r) as given by Equations (13) and (14). For the
low diffusivity case we take ηp = ηt .

(A color version of this figure is available in the online journal.)

convection zone is assumed to be high or low (Jiang et al. 2007;
Yeates et al. 2008; Hotta & Yokoyama 2010; Karak 2010; Karak
& Choudhuri 2011). So far all the calculations in this paper
have been carried out with a diffusivity on the higher side. With
such diffusivity, the poloidal field generated near the surface by
the Babcock–Leighton mechanism reaches the bottom of the
convection zone primarily due to diffusion and this process is
not affected by the presence of multiple cells. However, when
the diffusivity is low, it is the meridional circulation that has to
transport the poloidal field from the surface to the bottom of the
convection zone and such transport becomes more complicated
when there are multiple cells. Now we come to the question of
whether our main conclusion in the previous two sections holds
when the diffusivity is low. Following Chatterjee et al. (2004),
we specify the diffusivity for the high diffusivity case in the
following way:

ηp(r) = ηRZ +
ηSCZ

2

[
1 + erf

(
r − 0.7 R�

0.03 R�

)]
, (13)

ηt (r) = ηRZ +
ηSCZ1

2

[
1 + erf

(
r − 0.725 R�

0.03 R�

)]

+
ηSCZ

2

[
1 + erf

(
r − 0.975 R�

0.03 R�

)]
, (14)

Here ηRZ is the diffusivity below the bottom of the convection
zone, which is assumed to be small, whereas ηSCZ and ηSCZ1
are the diffusivities of the poloidal and the toroidal components,
respectively, within the body of the convection zone. Because
the toroidal magnetic field is believed to be much stronger than
the poloidal magnetic field, the diffusivity ηSCZ1 of the toroidal
field is assumed to be less than the diffusivity ηSCZ of the
poloidal field. For the high diffusivity case (i.e., all the results
presented in Sections 3 and 4), the values of the parameters for
ηp are ηRZ = 2.2 × 108 cm2 s−1, ηSCZ = 2.2 × 1012 cm2 s−1,
and for ηt are ηSCZ1 = 4.0 × 1010 cm2 s−1. Figure 9 shows
these diffusivities as functions of r, which have been used in
the calculations of Sections 3 and 4. Our aim in this section is
to study the case when the diffusivity of the poloidal field is
less. To achieve this, we take both ηp and ηt to be equal to ηt in
the high diffusivity case, as given by Equation (14). This means

7



The Astrophysical Journal, 782:93 (12pp), 2014 February 20 Hazra, Karak, & Choudhuri

(a)

(b)

Figure 10. Same as Figure 7, for the case of the three radially stacked cells used
in Figure 4, except that the diffusivity of the poloidal field is now lowered by
making ηp = ηt .

(A color version of this figure is available in the online journal.)

that the diffusivity of the poloidal field within the main body of
the convection zone is now reduced by a factor of more than 50
(from 2.2 × 1012 cm2 s−1 to 4.0 × 1010 cm2 s−1) for the studies
presented in this section.

To understand the effect of lowering the diffusivity, we
carry on calculations for the case of three radially stacked
cells (shown in Figure 4) by changing the diffusivity from the
higher value to the lower value as mentioned previously. While
reducing the diffusivity, we also reduce the strength of the α-
coefficient as pointed out in Section 2. All the other parameters
are kept unchanged. Figure 10 presents the results. Although
we still find solar-like butterfly diagrams, the period becomes
much larger on reducing the diffusivity. This is not surprising.
When the diffusivity is low, the poloidal field generated by the
Babcock–Leighton mechanism near the surface is transported
to the bottom of the convection zone (where the toroidal field
is generated from it) by the meridional circulation. If there is
only one cell, then this is easily accomplished. However, when
there are three radially stacked cells, the situation becomes much
more complicated. The uppermost cell brings the poloidal field
from the surface to its bottom. From there, the middle cell has
to advect the poloidal field to its bottom. Finally, the lowermost
cell takes the poloidal field to the bottom of the convection zone.
In this process, the dynamo period increases. Figure 11 shows
how the poloidal field lines evolve with the cycle with three
radially stacked cells—both when the diffusivity is high (the
case of Figure 4) and when it is low (the case of Figure 10).
In the high diffusivity case, the poloidal field generated at the
surface is transported downward to the bottom of the convection
zone by diffusion. Thus, in this case, we find that the poloidal
field lines are still not very different from what we find in the
case of meridional circulation with one cell, as shown in Figure 4
of Jiang et al. (2007). However, when the diffusivity is low, the
poloidal field is nearly frozen during a cycle and is advected by
the meridional circulation. In a three-cell meridional circulation
the poloidal field becomes very complicated, as shown in the
right column of Figure 11.

It has been pointed out that, when we introduce fluctuations
to model the irregularities of solar cycle, the dynamo models
with high and low diffusivities behave completely differently
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Figure 11. Poloidal field lines at four different stages of a solar cycle for the
cases of (a) high diffusivity and (b) low diffusivity. The magenta and black colors
indicate the clockwise and counter-clockwise sense of field lines, respectively.
The background colors indicate the strength of the toroidal field.

(A color version of this figure is available in the online journal.)

(Jiang et al. 2007; Karak & Choudhuri 2011). In the high
diffusivity model, the fluctuations diffuse all over the convection
zone in timescales comparable to the dynamo period. On the
other hand, fluctuations in the low diffusivity model remain
frozen during the dynamo period. Jiang et al. (2007) explained
how the observed correlation between the polar field during a
sunspot minimum and the strength of the next cycle arises in the
high diffusivity model. This correlation, which forms the basis
of solar cycle prediction in the high diffusivity model, does
not exist in the low diffusivity model. We now check if these
results hold even when we have multiple cells of the meridional
circulation. Choudhuri et al. (2007) identified the fluctuations in
the Babcock–Leighton process as the main source of irregularity
in the sunspot cycles. These fluctuations arise from the scatter
in the tilt angles of sunspots caused by the effect of convective
turbulence on rising flux tubes (Longcope & Choudhuri 2002).
To model these fluctuations, we introduce stochastic fluctuations
in α0 appearing in Equation (5). We set

α0 ≡ α0[1 ± 0.75σ (τcor)], (15)

where σ is a uniformly generated random number between 0
to 1 that changes value after a coherence time τcor = 1 month.
This makes α0 fluctuate randomly around its mean value α0
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Figure 12. Correlation between peak polar flux strength at the end of the nth
cycle and the peak toroidal flux strength of the (n + 1)th cycle for (a) high
diffusivity and (b) low diffusivity cases.

with 75% amplitude of fluctuations. A simulation with such
stochastic fluctuations in α in a traditional αΩ dynamo model
was first presented by Choudhuri (1992).

To study the correlation between the polar field and the
strength of the next cycle, we consider the procedure of Yeates
et al. (2008). We calculate the correlation between the peak of the
surface radial flux φr at high latitudes of a cycle with that of the
peak value of the deep-seated toroidal flux φtor of the next cycle.
We take φr as the flux of the radial field over the solar surface
from latitude 70◦ to 89◦, and φtor as the flux of toroidal field over
the region r = 0.677 R� to 0.726 R� and latitude 10◦ to 45◦.
In the case of a one-cell meridional circulation (not presented
in detail in this paper), we see a strong correlation between the
high-latitude radial flux at the end of a cycle with the toroidal flux
of the next cycle, with a correlation coefficient of 0.79, which
is comparable to the result of Jiang et al. (2007, their Figure
5) and Yeates et al. (2008, their Figure 11(b)). Interestingly, for
radially stacked three cells, we also get a strong correlation of
0.75 for the high diffusivity case. Figure 12 shows this result,
along with the result for the low diffusivity case, which had a
substantially poorer correlation. Thus, a multi-cell meridional
circulation not only reproduces the regular periodic features of
a simple flux transport dynamo model, it also reproduces some
of the irregular features of the cycle if the diffusivity is high.
The methodology for predicting the next cycle developed by
Choudhuri et al. (2007) and Jiang et al. (2007) should work in
approximately the same way in the high diffusivity model even
when the meridional circulation has a complicated multi-cell
structure.

6. THE EFFECT OF TURBULENT PUMPING

One possible mechanism for transporting magnetic fields
across the solar convection zone that we have not yet mentioned
is turbulent pumping. Many theoretical as well as numerical
studies indicated that, in the strongly stratified solar convec-
tion zone, the magnetic fields can be pumped preferentially
downward toward the base of the convection zone (Branden-
burg et al. 1996; Tobias et al. 1998). Several magnetoconvection
simulations have detected a downward pumping speed of a few
meters per second in the solar convection zone (Ossendrijver
et al. 2002; Käpylä et al. 2006; Racine et al. 2011). Guided by
these studies, we now include the effect of turbulent pumping
in our dynamo model by introducing the following downward

(a)

(c)

(d)

(b)

Figure 13. (a) Radial pumping γr as a function of radius at different colatitudes
(θ ). The solid (blue), dashed (black), and dash-dotted (red) lines correspond
to θ = 90◦, 45◦, and 0◦, respectively. (b) γr as a function of θ at different
radii. The solid (blue), dashed (black), and dash-dotted (red) lines correspond
to r = R�, 0.95 R�, and 0.75 R�, respectively. (c) and (d) are the same as (a)
and (b) in Figure 10 with the radial pumping added.

(A color version of this figure is available in the online journal.)

pumping velocity:

γr = − 0.1854

[
1 + erf

(
r − 0.715 R�

0.015 R�

)]

×
[

exp

(
r − 0.715 R�

0.25 R�

)2

cosθ + 1

]
, (16)

in units of m s−1. The variations of γr as functions of radius and
colatitude are shown in the upper part of Figure 13. Turbulent
pumping appears as an advective term in the magnetic field
equations. Therefore, in Equations (2) and (3), we add the extra
term γr in the radial velocity (i.e., we take vr ≡ vr + γr ). As in
Karak & Nandy (2012), Kitchatinov & Olemskoy (2012), and
Jiang et al. (2013), we first present results including only the
radial pumping and not the latitudinal pumping.

Because the downward transport of the poloidal field by
diffusion is reasonably efficient in the high diffusivity model, the
effect of downward turbulent pumping is not very pronounced
in this model. However, in the low diffusivity model, the
poloidal field is advected by the meridional circulation in the
absence of turbulent pumping and the addition of downward
pumping can have quite dramatic effects. Karak & Nandy
(2012) found that many of the differences between the high
and the low diffusivity models disappear with the inclusion
of downward turbulent pumping. Section 5 showed that the
low diffusivity model with multi-cell meridional circulation
gives results that do not match observations as closely as the
results obtained with high diffusivity. Although the case of
meridional circulation with three radially stacked cells, even
with low diffusivity, produces reasonably good equatorward
propagation of the toroidal field at low latitude, the solar cycle
period becomes very long (see Figure 10). This calculation is
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repeated for the low diffusivity case by including the downward
pumping and the butterfly diagram is shown in the middle of
Figure 13. The period becomes much shorter and the butterfly
diagram looks quite similar to the butterfly diagram of Figure 4
in the high diffusivity case. Thus, even when multiple cells are
present in the meridional circulation, the inclusion of downward
turbulent pumping makes the results of the low diffusivity case
quite similar to the results of the high diffusivity case.

A few magnetoconvection simulations (Ossendrijver et al.
2002; Käpylä et al. 2006; Racine et al. 2011) have detected a
latitudinal turbulent pumping when rotation becomes important.
However, while there is a general consensus about the radial
downward pumping in the results of different groups, the results
of latitudinal turbulent pumping are more uncertain and the
physical origin is not easy to understand. In view of these
uncertainties, we will not carry out a detailed study of the effects
of latitudinal pumping in this paper. As we already mentioned,
Guerrero & de Gouveia Dal Pino (2008) found that they could
obtain solar-like solutions when including suitable equatorward
latitudinal pumping, even when the return flow of the meridional
circulation was at a shallow depth and there was no flow below
it. We checked that we also get the same result when we include
the latitudinal pumping used by Guerrero & de Gouveia Dal
Pino (2008) in our model.

7. CONCLUSION

In the flux transport dynamo model, which has been very
successful in modeling different aspects of the solar cycle, the
meridional circulation of the Sun is a crucial ingredient. Cur-
rently, the major uncertainly in the flux transport dynamo model
is our lack of knowledge about the nature of the meridional cir-
culation in the deeper layers of the convection zone. Although
two-dimensional models can never realistically treat magnetic
buoyancy and the Babcock–Leighton mechanism, we do not
believe that these uncertainties are so serious because different
treatments of magnetic buoyancy and the Babcock–Leighton
mechanism give qualitatively similar results (Nandy & Choud-
huri 2001; Choudhuri et al. 2005). Because the meridional cir-
culation arises out of a delicate imbalance between the cen-
trifugal forcing and the thermal wind (Kitchatinov 2011), it is
challenging to model it theoretically. Models of differential ro-
tation based on a mean field treatment of turbulence give rise to
a meridional circulation (Kitchatinov & Rüdiger 1995; Rempel
2005; Kitchatinov & Olemskoy 2011b). Magnetohydrodynamic
(MHD) simulations of convection with the dynamo process also
produce meridional circulations (Brown et al. 2010; Racine et al.
2011; Warnecke et al. 2013; Käpylä et al. 2013). In such simu-
lations, the meridional circulation is often found to have several
cells and vary rapidly with time. We are still far from having a
definitive theoretical model of the Sun’s meridional circulation.

Most of the flux transport dynamo models are based on
the assumption of a single-cell meridional circulation having a
return flow at the bottom of the convection zone. While support
for such a return flow may have been missing, this assumption
of a deeply penetrating single-cell meridional circulation was
at least consistent with all the observational data available until
about a couple of years ago. The equatorward propagation of the
sunspot belt was indeed regarded as indicative of the meridional
circulation flow velocity at the bottom of the convection zone
(Hathaway et al. 2003). Only recently have there been claims
that the meridional circulation may have a return flow at a much
shallower depth (Hathaway 2012; Zhao et al. 2013). If these
claims are corroborated by the independent investigations of

other groups, then we will have to conclude that the assumption
of a deep one-cell meridional circulation is not correct. Because
this assumption was extensively used in most of the kinematic
flux transport dynamo models, we now face a crucial question
about whether this assumption is so essential that the flux
transport dynamo models would not work without it or whether
the flux transport dynamo models can still be made to work with
a suitable modification of this assumption.

On the basis of our studies, we conclude that, in order for a
flux transport dynamo to generate a solar-like butterfly diagram,
we need an equatorward flow in low latitudes at the bottom of
the convection zone. This flow is essential to overcome the
Parker–Yoshimura sign rule and to advect the toroidal field
generated in the tachocline in the equatorward direction. As
long as there is such a flow, we find that the flux transport
dynamo works even if the meridional circulation has a much
more complicated structure than what has been assumed in
previous models. If there is a return flow at a shallow depth and
there are no flows underneath, then the flux transport dynamo
will not work. If there is a poleward flow at the bottom of
the convection zone, then also we do not get solar-like butterfly
diagrams. However, underneath a shallow return flow, if we have
multiple cells in such a way that there is an equatorward flow
in low latitudes at the bottom of the convection zone, then the
flux transport dynamo works without any serious problem. The
assumption of such a multi-cell meridional circulation does not
contradict any observational data available at the present time.
MHD simulations also support the existence of a complicated
multi-cell meridional circulation (Brown et al. 2010; Racine
et al. 2011; Warnecke et al. 2013; Käpylä et al. 2013). With
such a multi-cell meridional circulation we can retain all the
attractive features of the flux transport dynamo model. The phase
relation between the toroidal and poloidal fields is correctly
reproduced. The observed correlation between the polar field
during a sunspot minimum and the strength of the next cycle is
also reproduced when the diffusivity is high, although a reduced
diffusivity diminishes this correlation.

One of the important processes in the operation of the flux
transport dynamo is the transport of the poloidal field generated
near the surface by the Babcock–Leighton mechanism to the
bottom of the convection zone where the differential rotation
can act on it. We have taken higher diffusivity in the calcula-
tions presented in Sections 3 and 4 and we find that the poloidal
field can diffuse from the surface to the bottom of the convec-
tion zone in a few years. A complicated multi-cell meridional
circulation does not get in the way of this process. However,
when the diffusivity is reduced, this transport has to be done by
the meridional circulation. Interestingly, even in the case of low
diffusivity with a multi-cell meridional circulation we are still
able to get periodic solutions, although the poloidal field within
the convection zone becomes very complicated and the cycle
period is lengthened. A downward turbulent pumping helps to
reduce the differences between the high and the low diffusivity
models. There is no concensus at the present time about latitu-
dinal pumping. However, we reproduce the result of Guerrero
& de Gouveia Dal Pino (2008), that an equatorward pumping
at the bottom of the convection zone can make a flux trans-
port dynamo work even in the absence of a flow there. Because
such equatorward pumping can have a profound effect on the
dynamo, the nature of such pumping needs to be investigated
thoroughly through magnetoconvection simulations.

To sum up, we do not think that the recent claims of an
equatorward return flow at a shallow depth pose a threat to the
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flux transport dynamo model. In particular, we see no reason
to give up the attractive scenario that the strong toroidal field
is produced and stored in stable regions of the tachocline,
from which parts of this toroidal field break away to rise
through the convection zone and produce sunspots. The crucial
assumption necessary to make the flux transport dynamo work
is an equatorward flow in low latitudes at the bottom of the
convection zone. At present, we do not have observational data
either supporting or contradicting it. Because the flux transport
dynamo has been so successful in explaining so many aspects of
the solar cycle, we expect this assumption of equatorward flow
in low latitudes at the bottom of the convection zone to be correct
and we hope that future observations will establish it. Only if
future observations show this assumption to be incorrect, then
a drastic revision of our current ideas about the solar dynamo
will be needed at that time.
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APPENDIX

STREAM FUNCTIONS FOR THE THREE-CELL AND
MORE COMPLICATED MERIDIONAL CIRCULATION

To get three radially stacked cells shown in Figure 4(a), we
take the stream function as

ψ = ψu + ψm + ψl. (A1)

The stream function, which generates the upper cell, is given by

ψu = ψ0u

[
1 − erf

(
r − 0.87 R�

1.5

)]
(r − Rm,u)0.3

× sin

[
π (r − Rm,u)

(R� − Rm,u)

]
{1 − e−β1θ

ε }

× {1 − eβ2(θ−π/2)}e−((r−r0)/Γ)2
, (A2)

where the parameters have the following values: β1 = 3.5, β2 =
3.3, r0 = (R� − Rb)/3.5, ε = 2.0000001, Γ = 3.4 × 108 m,
Rm,u = 0.82 R�. The stream function for middle cell is
given by

ψm = ψ0m

[
1 − erf

(
r − 0.85Rm,u

1.5

)]
(r − Rm,l)

× sin

[
π (r − Rm,l)

(Rm,u − Rm,l)

]
{1 − e−β1θ

ε }

× {1 − eβ2(θ−π/2)}e−((r−r0)/Γ)2
, (A3)

where the parameters have the following values: β1 = 1.9, β2 =
1.7, r0 = (R� − Rb)/3.5, Γ = 3.4 × 108 m, Rm,l = 0.75 R�,
Rm,u = 0.82 R�. Finally, the stream function, which generates
lower cell, is

ψl = ψ0l

[
1 − erf

(
r − 0.75Rm,l

0.8

)]
(r − Rp)

× sin

[
π (r − Rp)

(Rm,l − Rp)

]
{1 − e−β1θ

ε }

× {1 − eβ2(θ−π/2)}e−((r−r0)/Γ)2
, (A4)

where the parameters have the following values: β1 = 1.5, β2 =
1.3, r0 = ( R� − Rb)/3.5, Γ = 3.47 × 108 m, Rp = 0.65 R�,
Rm,l = 0.76 R�. We choose ψ0u/C, ψ0m/C and ψ0l/C in such
a way that v0 for upper cell, middle cell, and lower cell are
around 17.0 m s−1, 5.5 m s−1, and 2.0 m s−1, respectively.

In order to get the complicated meridional circulation as
shown in Figure 6, we choose our stream function as given
below

ψ = ψl + ψlm + ψm + ψu + ψuc, (A5)

where,ψl, ψlm, ψm,ψu, and ψuc generate the lower cell, lower
middle cells, middle cells, the complicated upper cell, and the
upper corner cell, respectively. To give an idea about the kind
of stream function we use in order to get a complicated cell,
we write down the stream function ψu for the most complicated
upper cell:

ψu = ψ0u

[
1 + erf

(
r − Rc

0.02 R�

)]
sin

[
π (r − Rp)

( R� − Rp)

]

× (r − Rp){1 − e−β1θ
ε }{1 − eβ2(θ−π/2)}e−((r−r0)/Γ)2

,(A6)

where

Rc = 1

2

[
1 + erf

(
θ − π/24

π/7

)]
×0.95 R�,

and the parameters have the following values:
β1 = 0.45, β2 = 1.3, r0 = (R� − Rb)/3.5, Γ = 3.1 × 108

m, Rp = 0.65 R�. Here do not write down the other stream
functions, which are constructed along similar lines.
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Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L. A., & DeLuca, E. E.
2013, ApJL, 767, L25
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