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Relativistic many-body analysis of the electric dipole moment of 223Rn
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We report the results of our ab initio relativistic many-body calculations of the electric dipole moment (EDM)
dA arising from the electron-nucleus tensor-pseudotensor (T-PT) interaction, the interaction of the nuclear Schiff
moment (NSM) with the atomic electrons and the electric dipole polarizability αd for 223Rn. Our relativistic
random-phase approximation results are substantially larger than those of lower-order relativistic many-body
perturbation theory and the results based on the relativistic coupled-cluster method with single and double
excitations are highly accurate for all three properties that we have considered. We obtain dA = 4.85(6) ×
10−20〈σ 〉CT |e| cm from T-PT interaction, dA = 2.89(4) × 10−17S/(|e| fm3) from NSM interaction, and αd =
35.27(9)ea3

0 . The former two results in combination with the measured value of 223Rn EDM, when it becomes
available, could yield the best limits for the T-PT coupling constant, EDMs, and chromo-EDMs of quarks and θQCD

parameter, and would thereby shed light on leptoquark and supersymmetric models that predict CP violation.
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The observation of an electric dipole moment (EDM) of a
nondegenerate system would be a signature of the violations of
parity (P ) and time-reversal (T ) symmetries [1,2]. T violation
implies charge conjugation and parity (CP ) violation as a
consequence of CPT invariance [3]. The standard model (SM)
of elementary particle physics is able to explain the observed
CP violation in the decays of neutral K [4] and B [5] mesons,
but the amount of CP violation predicted by this model is not
sufficient to account for the matter-antimatter asymmetry in
the Universe [6,7]. The current limits for the electron EDM
as well as semileptonic and hadronic CP violating coupling
constants extracted by combining atomic EDM experiments
and relativistic many-body calculations are several orders of
magnitude higher than the predictions of these quantities by
the SM [8–10]. This information cannot be obtained from the
ongoing experiments at the Large Hadron Collider [11]. The
study of atomic EDMs could shed light on matter-antimatter
asymmetry as the origins of both these phenomena might lie
beyond the SM [12].

The EDM experiments on diamagnetic and paramagnetic
atoms and molecules that are currently under way could
improve the sensitivity of the current measurements by a
few orders of magnitudes [13–19]. The EDMs of diamagnetic
atoms arise predominantly from the electron-nucleus (e-N )
tensor-pseudotensor (T-PT) interaction and interaction of
electrons with the nuclear Schiff moment (NSM) [20]. The
e-N T-PT interaction is due to the CP violating electron-
nucleon (e-n) interactions which translates to CP violating
electron-quark (e-q) interactions at the level of elementary
particles that are predicted by leptoquark models [20]. The
NSM, on the other hand, could exist due to CP violating
pion-nucleon-nucleon (π -n-n) interactions and the EDM of
nucleons and both of them in turn could originate from CP

violating quark-quark (q-q) interactions or EDMs and chromo-
EDMs of quarks that are predicted by certain supersymmetric
models [8–10]. In order to obtain precise limits for the coupling
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constants of these interactions and EDMs of quarks, it is
necessary to perform both experiments and calculations as
accurately as possible on suitable atoms.

According to the Schiff theorem [21], the EDM of a system
vanishes if it is treated as pointlike and in the nonrelativistic
approximation even if its constituents have nonzero EDMs.
However, if relativistic and finite-size effects are taken into
account, then they not only give rise to a nonzero EDM
of a composite system, but also play an important role in
enhancing it [22]. The EDM of a composite system could
be larger than those of its individual constituents due to
their coherent contributions and, also, the internal structure of
these systems in some cases can further enhance these effects
overwhelmingly; owing to which observations of EDMs in
these systems might be possible. In general, heavy atomic
systems are best suited for EDM measurements. A case in
point is the diamagnetic 223Rn atom, which is sensitive to the
T-PT and NSM interactions.

The e-n T-PT interaction Hamiltonian is given by [20,23]

He-n
T-PT = GF√

2
Ce-n

T ψ̄eγ5σμνψeψ̄nιγ5σμνψn, (1)

where Ce-n
T is the dimensionless e-n T-PT interaction coupling

coefficient, σμν = (γμγν − γνγμ)/2 where the γ ’s are the
usual Dirac γ matrices and GF is the Fermi constant. This
corresponds to the e-N T-PT interaction Hamiltonian (Hint) in
an atom as

Hint ≡ H T-PT
EDM = i

√
2GF CT

∑
e

σN · γeρN (re), (2)

where CT is the e-N T-PT coupling constant, σ N= 〈σN 〉 I
I

is
the Pauli spinor of the nucleus for the nuclear spin I , ρN (r) is
the nuclear density, and subscript e represents the electronic
coordinate.

The e-N NSM interaction Hamiltonian is given by [24]

Hint ≡ H NSM
EDM = 3S · r

B4
ρN (r), (3)
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where S = S I
I

is the NSM and B4 = ∫ ∞
0 dr r4ρN (r). The

magnitude of NSM S is given by [25–27]

S = gπnn

(
a0ḡ

(0)
πnn + a1ḡ

(1)
πnn + a2ḡ

(2)
πnn

)
, (4)

where gπnn � 13.5 is the CP -even π -n-n coupling constant,
ai’s are the polarizations of the nuclear charge distribution
that can be computed to reasonabe accuracy using the Skyrme
effective interactions or the Hartree-Fock-Bogoliubov mean-
field method [25–27], and ḡ(i)

πnn’s with i = 1,2,3 represent the
isospin components of the CP -odd π -n-n coupling constants.
Owing to the extremely small value of ḡ(2)

πnn, it is generally
neglected in the literature while imposing upper limits on
ḡ(0)

πnn and ḡ(1)
πnn. They are related to the up- and down-quark

chromo-EDMs d̄u and d̄d as ḡ(1)
πnn ≈ 2 × 10−12(d̄u − d̄d ) [28]

and ḡ(0)
πnn/ḡ

(1)
πnn ≈ 0.2(d̄u + d̄d )/(d̄u − d̄d ) [29].

To date the best limit for the EDM of a diamagnetic atom
(dA) is obtained from 199Hg as dA < 3.1 × 10−29|e| cm [30].
The EDM of 223Rn has been estimated to be a factor of 400
to 600 times larger than that of 199Hg [31]. This enhancement
together with a sensitivity of 10−26|e| cm to 10−27|e| cm that
has been projected for an experiment on this isotope of Rn
[32,33] could yield a better limit for dA relative to 199Hg EDM
[30]. Moreover, the values of ai determined using different
Skyrme interactions vary over a wide range in Hg and in some
cases, even their signs are opposite [26,27]. It is therefore
problematic to infer limits on quark chromo-EDMs reliably.
In contrast, these quantities can be evaluated quite consistently
for Rn with various Skyrme interactions [26], making it a more
suitable candidate for EDM studies than Hg. It is necessary
to improve the calculations of dA/CT and dA/S for 223Rn so
that when the EDM measurement is available, we can combine
the two results to get more accurate limits for CT and S than
those that are currently available. The earlier calculations of
dA/CT and dA/S for 223Rn were performed in [34,35] using
the relativistic random-phase approximation (RPA) to account
for the correlation effects. Recently, we have developed and
employed the Dirac-Fock (DF) method, second- [MBPT(2)]
and third- [MBPT(3)] order many-body perturbation theory
(MBPT), RPA, and coupled-cluster (CC) methods in the
four-component relativistic framework for the closed-shell
atomic systems from different groups of the periodic table
to study the passage of the correlation effects from one level
of approximation to another in the calculations of the ground
state electric dipole polarizabilities (αd ) [36,37] and 129Xe
EDM [38]. Given that the rank and parity of the dipole operator
are the same as those of the electronic component of the T-PT
and NSM interaction Hamiltonians, some insights into the
accuracies of dA calculations for the closed-shell atoms can
be provided by the calculations of αd by considering Hint

as the electric dipole operator D. No measurement for αd

of a Rn atom has been reported so far and all the previous
calculations of this quantity are not in good agreement with
each other [39–43]. In this Rapid Communication, we use the
aforementioned methods to determine αd and the EDM of
a 223Rn atom from the T-PT interaction and NSM with the
purpose of elucidating the role of the correlation effects in
different many-body approximations.

We consider the DF wave function |�0〉 as the starting
point and electron correlation effects are incorporated at

different levels of approximation through the relativistic
MBPT(2), MBPT(3), RPA, and CC methods. In our relativistic
CC calculations, we have considered the single and double
excitations retaining only the linear terms (LCCSD method)
as well as all the linear and nonlinear terms (CCSD method). In
both cases, we consider the Dirac-Coulomb (DC) Hamiltonian
which is given in atomic units (a.u.) by

H =
∑

i

⎡
⎣cαi · pi + (βi − 1)c2 + VN (ri) +

∑
j>i

1

rij

⎤
⎦ , (5)

where αi and βi are the Dirac matrices, VN (r) is the nuclear
potential obtained using the Fermi charge distribution, and
rij ’s are the interelectronic distances.

In the presence of Hint, the ground state wave function of
an atom can be approximated to

|0〉 � ∣∣(0)
0

〉 + λ
∣∣(1)

0

〉
, (6)

where |(0)
0 〉 and |(1)

0 〉 are the unperturbed wave functions
corresponding to the DC Hamiltonian and its first-order cor-
rection due to Hint, represented by a parameter λ, respectively.
In the CC method, we express

|0〉 = eT |�0〉 = eT (0)+λT (1) |�0〉
� eT (0)

(1 + λT (1))|�0〉, (7)

with the CC operators T (0) and T (1) creating even and odd
parity excitations, respectively, from |�0〉 due to the electron
correlation effects. It therefore follows that∣∣(0)

0

〉 = eT (0) |�0〉 and
∣∣(1)

0

〉 = eT (0)
T (1)|�0〉. (8)

The solution for |(1)
0 〉 is obtained by solving an equation

equivalent to the first-order perturbed equation given by

(H − E(0))
∣∣(1)

0

〉 = (E(1) − Hint)
∣∣(0)

0

〉
, (9)

where E(0) is the eigenvalue energy of |(0)
0 〉 and E(1) is

its first-order correction due to Hint which vanishes in the
present case. In the LCCSD and CCSD methods, the single
and double excitations are denoted with the subscripts 1 and 2
of T operators, respectively.

The final expression used to evaluate αd and EDMs
(commonly referred to as X) is given by

X = 〈0|D|0〉
〈0|0〉 = 〈�0|eT †

DeT |�0〉
〈�0|eT †

eT |�0〉

� 2
〈�0|

︷︸︸︷
D(0) T (1)|�0〉

〈�0|eT †(0)
eT (0) |�0〉

= 2〈�0|(
︷︸︸︷
D(0) T (1))c|�0〉, (10)

with
︷︸︸︷
D(0) = eT †(0)

DeT (0)
, which in the LCCSD method ter-

minates to
︷︸︸︷
D(0) = D + DT (0) + T †(0)D + T †(0)DT (0) and the

subscript c means the terms are connected.
We present the results of αd and dA of our calculations and

those of other calculations in Table I. Among these results, we
consider the CCSD results to be the most accurate on physical
grounds. We first discuss our αd results for the ground state of
Rn. There is no experimental result available for this quantity.
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TABLE I. Results of αd in ea3
0 , dA due to T-PT interaction (dT

A ) in
×10−20〈σ 〉CT |e| cm and dA due to NSM (dS

A) in ×10−17S/(|e| fm3)
of the ground state of 223Rn using different many-body methods.
“Others” refers to previous results from other works.

Employed This work Others

method αd dT
A dS

A αd dT
A dS

A

DF 34.42 4.485 2.459 34.42a, 33.54b 2.47a

29.22c, 32.81d 4.6e,f 2.5e,f

MBPT(2) 29.57 3.927 2.356 28.48c, 33.19d

32.6g

MBPT(3) 18.10 4.137 2.398
RPA 35.00 5.400 3.311 35.00a, 32.75b 3.33a

5.6e,f 3.3e,f

LCCSD 35.08 5.069 3.055
CCSD 35.27(9) 4.85(6) 2.89(4) 34.39b, 28.61c

32.90d, 35.391h

Error budget
Triples 0.01 − 0.003 − 0.005
QEDi 0.02 0.053 0.028
Breiti 0.09 − 0.020 − 0.033

aReference [34].
bResults are quoted from basis 2 of [39].
cReference [40].
dReference [42].
eCalculations are for 211Rn.
fReference [35].
gReference [41].
hReference [43].
iCalculations are estimated using RPA.

Broadly, the approaches followed in the calculations of αd

can be classified into two categories. The results reported in
[39–42] are obtained by evaluating the second derivative of
the ground state energy with respect to an arbitrary electric
field. However, the calculations carried out in [34,43] and by
us involve the determination of the expectation value of D in
the ground state which has a mixed parity wave function due to
Hint ≡ D. Our results at the DF and RPA levels agree very well
with those of Ref. [34]. The agreement between the results of
our CCSD and another similar work, Ref. [43], is also very
good. Our T-PT and NSM EDM results for 223Rn at the DF
and RPA levels agree with those of Refs. [34,35]. Our EDM
results using the CCSD method which subsumes the DF, RPA,
and all-order non-RPA (the rest apart from RPA) contributions
are clearly the most rigorous to date.

We also estimate uncertainties to our CCSD results by
determining contributions from important triple excitations
by defining a perturbative triple excitation operator (CCSDpT

method), as described in [37,38], and using it in Eq. (10), from
the frequency independent Breit interaction given by

VB(rij ) = − 1

2rij

{αi · αj + (αi · r̂ij)(αj · r̂ij)} (11)

and from the lower-order vacuum polarization effects from
the quantum electrodynamics (QED) corrections through the
Uehling [VU (r)] and Wichmann-Kroll [VWK(r)] potentials

given by

VU (r) = − 4

9cπ
VN (r)

∫ ∞

1
dt

√
t2 − 1

(
1

t2
+ 1

2t4

)
e−2ctr

(12)

and

VWK(r) = −2

3

1

cπ
VN (r)

0.092c2Z2

1 + (1.62cr)4
(13)

with Z as the atomic number of the atom. Contributions from
the Breit and QED interactions are estimated using RPA and
they are given in Table I towards the bottom under error
budget. Although these contributions for EDMs cancel out,
we have added them using the quadrature formula to find out
the net uncertainties of all the quantities that are given in the
parentheses alongside the CCSD results.

It can be seen from Table I that the correlation trends for
αd and dA are different. A possible reason for this is that even
though all the Hint operators that have been considered have the
same rank and parity, only the s1/2 and p1/2 orbitals contribute
predominantly to dA, while other higher symmetry orbitals
also contribute significantly in the case of αd . The trends for
both the T-PT and NSM interactions seem to be qualitatively
similar, but the relative sizes of the correlation contributions
are different for the two cases.

The following conclusions can be drawn from Table I:
(i) The lower-order RPA effects are appreciable in magnitude
and they reduce the MBPT(2) and MBPT(3) results relative
to that of the DF values. Their higher-order counterparts are
collectively large and this is reflected in the final RPA results
for our αd and EDM calculations. (ii) There are significant
cancellations between the all-order RPA and the all-order
non-RPA contributions at the CCSD level for the EDMs. The
inclusion of the non-RPA terms which first appear in MBPT(3)
in a perturbative theory framework, is therefore crucial.
(iii) There are cancellations between the linear and nonlinear
CCSD terms for the EDMs. It is therefore imperative to use
an all-order approach like the CCSD method to capture the
above-mentioned points. In order to identify which non-RPA
diagrams take part in the cancellations, we give a few of these
diagrams in Fig. 1 at the MBPT(3) level and their contributions
explicitly in Table II.

The differences in the LCCSD and CCSD results given in
Table I highlight the importance of the nonlinear correlation
terms such as T

(0)
1 T

(0)
2 , 1

2T
(0)

2 T
(0)

2 , . . ., which correspond to the
contributions from higher level excitations such as triples,

Hint

Hint HintD D DH

H

H H

H

H

(i) (ii) (iii)

FIG. 1. A few important non-RPA diagrams from the MBPT(3)
method. Here (ii) is obtained by contracting Hint with the second-order
unperturbed wave operator, while (iii) is from the contraction of a
Coulomb operator with the first-order perturbed wave operator. Lines
with up and down arrows represent occupied and unoccupied orbitals,
respectively.
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TABLE II. Individual contributions from the non-RPA diagrams
that are shown in Fig. 1.

Diagram αd dT
A dS

A

(i) − 4.522 − 0.339 − 0.241
(ii) − 1.166 − 0.086 − 0.051
(iii) − 1.137 − 0.053 − 0.039

quadruples, etc. A detailed analysis of our calculations reveals
that the role of the nonlinear effects is more significant when
included in the wave functions rather than in the exponential
terms in Eq. (10). This can be observed from the contributions
of the linear CC terms in the LCCSD and CCSD methods in
Table III. Results given as “Others” from the CCSD method
are the nonlinear contributions from the exponential terms in
the expectation value given in Eq. (10).

In conclusion, we give the results of our CCSD
calculations as our recommended values for 223Rn EDMs,
i.e., dA = 4.853 × 10−20〈σ 〉CT |e| cm and dA = 2.892 ×
10−17S/(|e| fm3). They are both about nine times larger than
the results for 129Xe that we had reported recently [38]. Our
Schiff moment calculation could be combined with the future

TABLE III. Contributions from CC terms to αd and dA (with the
same units as in Table I) from the LCCSD and CCSD methods.

CC LCCSD CCSD

terms αd dT
A dS

A αd dT
A dS

A

DT
(1)

1 37.747 4.881 2.960 37.492 4.630 2.774
T

(0)
1 DT

(1)
1 −0.166 0.015 0.007 −0.319 0.005 −3 × 10-4

T
(0)

2 DT
(1)

1 −3.827 0.248 0.099 −4.166 0.308 0.132
T

(0)
1 DT

(1)
2 −0.052 0.004 0.002 −0.074 0.002 0.001

T
(0)

2 DT
(1)

2 1.380 −0.079 −0.013 1.400 −0.087 −0.014
Others −0.093 −0.005 −0.001

measured value of 223Rn EDM to give limits for the EDMs and
chromo-EDMs of quarks and the θQCD parameter that would
be competitive with those obtained from a few other heavy
closed-shell atoms. These limits have the potential to provide
a wealth of information on new physics beyond the SM. Our
ground state polarizability result of the Rn atom will be useful
in the context of the EDM studies of 223Rn and its experimental
verification.
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