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Abstract. Here we present a systematic study of force-free field equation
for simple axisymmetric configurations in spherical geometry. The con-
dition of separability of solutions in radial and angular variables leads to
two classes of solutions: linear and non-linear force-free fields. We have
studied these linear solutions (Chandrasekhar 1956) and extended the non-
linear solutions given in Low & Lou (1990) to the irreducible rational form
n = p/q, which is allowed for all cases of odd p and to cases of q > p
for even p. We have further calculated their energies in shell geometries
using the virial theorem and the energy density integral. The relative helic-
ities are computed independently using the Finn Antonesen formula (Finn
& Antonsen 1985) and the Berger formula (Berger 1985) which are ana-
lyitically equivalent. We demonstrate here a method here to be used to
fit observed magnetograms as well as to provide good exact input fields
for testing other numerical codes used in reconstruction on the non-linear
force-free fields.
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1. Introduction

In systems dominated by magnetic fields in the presence of kinematic viscosity, lin-
ear force-free fields are the natural end states. More general force-free fields can be
obtained when the constraints of total mass, angular momentum and helicity are put
in the equations, (e.g. Finn & Antonsen, 1983; Mangalam & Krishan, 2000). There

∗email: avijeet@iiap.res.in
†email: mangalam@iiap.res.in



54 A. Prasad & A. Mangalam

have been several attempts to numerically construct the full three dimensional models
of coronal fields from two dimensional three component data available from the vec-
tor magnetograms. Some of the popular techniques include Optimization (Wheatland
et al.,2000; Wiegelmann, 2004) Magnetofrictional (Yang et. al., 1986; McClymont
et. al., 1997), Grad-Rubin based (Amari et al., 2006; Wheatland & Leka, 2010),
and Green’s function-based methods (Yan & Sakurai, 2000). We construct analytical
models of linear and non-linear axisymmetric force-free fields by solving the govern-
ing equations. We then take a cross-section of these 3D fields at different orientations
to construct a library of template magnetograms corresponding to the different modes
of our solutions which can be then compared with the observed magnetograms to
pick out the best fit. We apply the techniques outlined here to magnetograms and
reconstruct the coronal fields in Prasad, Mangalam & Ravindra (2013, in prepara-
tion, henceforth referred to as PMR13), which also contains details of the formulation
presented below.

2. Axisymmetric separable linear & non-linear force-free fields

The force-free magnetic field B is described by the equation ∇ × B = αB An axisym-
metric magnetic field can be expressed in terms of two scalar functions ψ and Q in
spherical polar coordinates :

B =
1

r sin θ

(
1
r
∂ψ

∂θ
r̂ − ∂ψ

∂r
θθ̂ + Qφ̂

)
. (1)

We try separable solutions of the form ψ = f (r)P(µ), Q = aψβ. which yields

r2 f ′′

f
+ (1 − µ2)

P′′

P
+ a2βr2 f 2β−2P2β−2 = 0. (2)

There are two possibilities for getting separable solutions. The third term can be a
function of:(i) r alone, which is satisfied if β = 1; these solutions were presented in
Chandrasekhar (1956) and which we refer to as C modes or (ii) µ alone, which is
satisfied if r2 f 2β−2 = 1; these solutions were partially explored by Low & Lou (1990)
and termed here as LL modes.

Free energy and relative helicity are very helpful quantities for studying the dy-
namics of the magnetic field configurations near active regions in the Sun. The free
energy of the system is the difference between the energies of a force-free field and a
potential field in a volume. The potential field is constructed using the normal com-
ponents of the force-free field at the boundary. The expression for free energy E f ree

is given by E f ree = E f f − EP, We model the force-free field using both the linear
solutions (C modes) and the non-linear solutions (LL modes). where E f f and EP

are the energies of the force-free field and the potential field respectively. Since the
potential field is the minimum energy configuration for a given boundary condition,
E f ree is always positive. Here we are modeling the entire active region as as a part



Models of force-free spheres and applications 55

r1

r2

I

II

Figure 1. The left figure shows the geometry of the problem. The force-free field is first
computed in the entire region (I and II) and then corresponding potential field is constructed
in the spherical shell between radii r1 and r2 (region II) using the normal components of the
force-free field at the lower boundary, r1. The right figure shows a magnetogram which is
simulated by taking a cross-section of the axisymmetric 3D force-free field at a radius r1.The
magnetogram is then rotated through the Euler angles θ′ and ψ′ to match the components of the
observed magnetogram. The rotation φ′ is redundant as the field is axisymmetric.

of a force-free sphere with an inner radius r1; where the magnetogram measurements
are available and an outer radius r2 as shown in the left panel of Fig.1.

C modes: with the condition β = 1, we get r2 f ′′

f
+ a2r2 = n(n + 1) as the equa-

tion for the radial part where n is a constant, the solution to which is given by

fn(r) = c1
√

rJ [(1 + 2n)/2, ar] + c2
√

rY [(1 + 2n)/2, ar] . (3)

The angular part is given by the following equation (1 − µ2) P′′
P = −n(n + 1) whose

solution is given by P(µ) = (1 − µ2)1/2P1
n(µ).

LL modes: the second condition r2 f 2β−2 = 1 implies β = (n + 1)/n for the
functional form f (r) = r−n, The differential equation for the angular part then becomes

(1 − µ2)
P′′

P
+ a2 n + 1

n
P1+2/n + n(n + 1)P = 0. (4)

The above equation is solved numerically as no general closed form is known for all
values of n. For a given value of n, we get different modes for different eigenvalues of
an,m satisfying the above equation for a given boundary condition. Low & Lou(1990)
were able to solve the above equation only for n = 1 due to singular nature of the
solutions. We were able to tackle this problem for higher values of n through the
transformation P(µ) = (1 − µ2)1/2F(µ), by which eqn (4) now stand as

(1 − µ2)F′′(µ) − 2µF′(µ) +

[
n(n + 1) − 1

(1 − µ2)

]
F(µ) + a2 (n + 1)

n
F

(n+2)
n (1 − µ2)

1
n = 0.

(5)
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We were able to obtain an infinite set of solutions for all rational values of n =
p
q

.

For even values p, solutions exist if F(µ) > 0 in the domain −1 ≤ µ ≤ 1. In this case

we get α =
a(1 + 1/n)(1 − µ2)1/2nF1/n

rn . The physical quantities of interest such as the
force-free energy, free energy, E f f , E f ree and the relative helicity Hrel are calculated
for the region above the magnetogram. The formulary of the results for the C and LL
modes are presented in Table 1. The details of derivation are presented in PMR13.

3. Simulation of magnetograms

The following steps are involved in the simulation of the magnetogram: (i) An opera-
tor Λ(θ′, φ′) is used for the Euler rotation to find the orientation of the magnetogram,
see Fig. (1, right panel). The expression for Λ is given by

Λ(θ′, ψ′) = {(cosψ′, cos θ′ sinψ′, sinψ′ sin θ′);
(− sinψ′, cos θ′ cosψ′, cosψ′ sin θ′); (0,− sin θ′, cos θ′)} (6)

(ii) An operator S is used for transformation of the coordinates from Cartesian (x, y, z)
to spherical (r, θ, φ). (iii) An operator T (θ, φ) is used to transform the magnetic field
vector B from spherical to Cartesian coordinates.

T = {(sin θ cos φ, cos θ cos φ,− sin φ); (sin θ sin φ, cos θ sin φ, cos φ), (cos θ,− sin θ, 0)}
(7)

(iv) A Cartesian point on the magnetogram xC ≡ (x, y, z) is first rotated through the
inverse of Λ and then converted to spherical coordinates xS ≡ (r, θ, φ) through the
operation of S such that xS = S

(
Λ−1(θ′, ψ′)xC

)
. (v) We then evaluate the magnetic

field in spherical coordinates with BS (xS ) and then convert the components of mag-
netic field to cartesian through the T and obtain the correct orientation by the operator
Λ given by BC[xC] = Λ(θ′, ψ′)T (BS [xS ]) . In Fig. 2, we show realizations of mag-
netograms thus constructed for the cases of C and LL modes. These templates can
then be compared with the available photospheric vector magnetograms and thus pro-
viding a full 3 dimensional and 3 component information of the coronal magnetic
fields. Such studies using photospheric magnetograms obtained from HINODE are
presented in PMR13.

4. Summary and Conclusions

We have shown that there are two solutions possible (albeit known already and de-
noted here as C and LL) from the separability assumption. For the LL mode we were
able to extend the solution set obtained in Low & Lou (1990) from n = 1 to all ra-
tional values of n =

p
q

by solving the eqn (5) for all cases of odd p and for cases

of q > p for even p, in effect extending solution to practically all n. The results are
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Table 1. Formulary for the various quantities calculated for the C and LL modes. B and A de-
note the force-free magnetic field and its corresponding vector potential. The same quantities
for the potential field are denoted by BP and AP respectively. E f f , Epot, E f ree are the force-free
energy, potential energy, free energy respectively. HFA

rel and HB
rel are the relative helicity formu-

lae calculated using the Finn Antonesen & Berger formulae respectively and are analytically
equivalent.

C MODES

B(r1 < r < r2) =
( −Jm+3/2(αr)

r3/2
d

dµ [(1 − µ2)C3/2
m (µ)],

−1
r

d
dr [r1/2 Jm+3/2(αr)](1 − µ2)1/2C3/2

m (µ), αJm+3/2(αr)
r1/2 (1 − µ2)1/2C3/2

m (µ)
)

A(r1 < r < r2) = B/α; am+1 =
(m+2)rm+3/2

1 Jm+3/2(αr1)

r2m+3
1 −r2m+3

2
; bm+1 =

(m+1)r2m+3
2 rm+3/2

1 Jm+3/2(αr1)

r2m+3
1 −r2m+3

2

BP(r1 < r < r2) =
( [

(m + 1)am+1rm − (m+2)bm+1
rm+3

]
Pm+1(µ),

−(1 − µ2)1/2
[
am+1rm +

bm+1
rm+3

] dPm+1
dµ , 0

)

AP(r1 < r < r2) =

(
0, 0, (1 − µ2)1/2P′l (µ)

[
alrl

l+1 − bl
lrl+1

])

Ev(r) =
(m+1)(m+2)

2(2m+3)

[
r
[ d
dr

{
r1/2 Jm+3/2(αr)

} ]2
+

{
α2r2 − (m + 1)(m + 2)

}
J2

m+3/2(αr)
]
;

E f f (α, n,m, r1, r2) = Ev(r2) − Ev(r1) =
(m+1)(m+2)

2(2m+3)

[ ∫ r2
r1

{ (m+1)(m+2)J2
m+3/2(αr)

r

+
[ d
dr

{
r1/2 Jm+3/2(αr)

}]2
+ α2rJ2

m+3/2(αr)
}
dr

]

Epot(m, r1, r2) = 1
2(2m+3)

∫ r2
r1

[ (
(m + 1)am+1rm+1 − (m+2)bm+1

rm+2

)2

+(m + 1)(m + 2)
(
am+1rm+1 +

bm+1
rm+2

)2
]
dr

HFA
rel (α, n,m, r1, r2) =

8πE f f
α +

4π(m+1)(m+2)
α(2m+3)[

α2
∫ r2

r1

(
am+1rm+1

m+2 − bm+1
(m+1)rm+2

)
r3/2 Jm+3/2(αr)dr

+r1/2
1

(
am+1rm+1

1 +
bm+1

(m+1)rm+2
1

)
Jm+3/2(αr1)

]

HB
rel(α, n,m, r1, r2) =

8πα(m+1)(m+2)
2m+3

∫ r2
r1

rJ2
m+3/2(αr)dr;

HFA
rel (α, n,m, r1, r2) ≡ HB

rel(α, n,m, r1, r2)

LL MODES

B(r < r2) =

(
−1

rn+2
dP
∂µ ,

n
rn+2

P
(1−µ2)1/2 ,

a
rn+2

P(n+1)/n

(1−µ2)1/2

)
;

A(r < r2) =

(
0, −a

nrn+1
P(µ)(n+1)/n

(1−µ2)1/2 ,
1

rn+1
P(µ)

(1−µ2)1/2

)

al = 0, bl = 2l+1
2(l+1) rl−n

1

∫ 1
−1

dP
dµ Pl(µ)dµ;

BP(r1 < r < r2) =
(∑∞

l=0 −(l + 1) bl
rl+2 Pl(µ),

∑∞
l=0

−bl
rl+2 (1 − µ2)1/2 dPl

dµ , 0
)
.

AP(r1 < r < r2) =

(
0, 0, (1 − µ2)1/2P′l (µ)

[
alrl

l+1 − bl
lrl+1

])
; Epot(l, r1) =

∑∞
l=0

b2
l (l+1)

2(2l+1)r2l+1
1

E f f (n,m, r1) = 1
4(2n+1)r2n+1

1

∫ 1
−1 dµ

[
P′(µ)2 +

n2P(µ)2

1−µ2 +
a2P(µ)(2n+2)/n

1−µ2

]

= 1
4r2n+1

1

∫ 1
−1

{(
dP
dµ

)2 − (n2+a2P2/n)P2

(1−µ2)

}
dµ

HFA
rel (n,m, r1) = −2πa

∑∞
l=0

∫ 1
−1

bl
nlrn+l

1
P1+1/n dPl

dµ dµ

≡ HB
rel(n,m, r1) = 2πa

nr2n
1

∫ 1
−1

P2+1/n

(1−µ2)
dµ.
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Figure 2. Examples of magnetogram sections are presented in the figure for C (left) and
LL (center and right) modes. The parameters for the C modes are (α, n,m, r1, r2, θ, φ)=
(-10.95,2,10,1.35,1.85,0.3,-0.12) and the parameters for the LL modes are given by
(n,m, r1, θ, φ)=(3,2,0.5,0.31,4.1) and (1.4,2,0.3,1.75,4.14) for the center and right panel respec-
tively. The left and the center correspond to a double polarity region whereas the right panel
represents a triple polarity region.

presented in Table 1. The LL solution of (n = 1 in Low & Lou (1990) and n = 5, 7, 9
(odd cases) in Flyer et al. (2004)) have been extended here to the cases of nearly all n.
We have further calculated their energies in shell geometries using the virial theorem
and the energy density integral. The relative helicities are computed independently
using the Finn Antonesen formula (Finn & Antonsen 1985) and the Berger formula
(Berger 1985) which are analytically equivalent. The analytic solutions for LL suffer
from the problem of a singularity at the origin which render them unphysical; this im-
plies that more realistic boundary conditions are necessary. To learn more about the
evolution and genesis of these structures, it would be useful to carry out dynamical
simulations allowing for footpoint motions with the analytic input fields constructed
above to study how the non-linearity develops; a stability analysis of the non-linear
modes would also useful tool (Berger (1985) has analyzed the linear constant α case).
Clearly, these are difficult mathematical problems to be addressed in the future. We
explore fits of these solutions to HINODE magnetograms of NOAA AR 10930, 10923
and 10933 and obtain the best fits to C and LL modes using the procedure discussed
above in PMR13.
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