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We employ the closed-shell perturbed relativistic coupled-cluster (RCC) theory developed by us earlier
[Phys. Rev. A 77, 062516 (2008)] to evaluate the ground-state static electric dipole polarizabilities (αs) of
several atomic systems. In this work, we have incorporated a class of higher-order many-body effects in our
calculations that had not been taken into account in the above paper. We highlight their importance in improving
the accuracies of αs. We also calculate the ground state αs of the inert gas atoms and several isoelectronic singly
and doubly charged ions in order to make a comparative study of the trends of the correlation effects. Furthermore,
we have developed a method to construct intermediate diagrams that are required for the computations of the
unperturbed single and doubl coupled-cluster amplitudes. Our RCC results are compared with those of many-body
perturbation theory at different orders to demonstrate the importance of higher-order correlation effects for the
accurate determination of (αs) of the systems that we have considered.
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I. INTRODUCTION

The subject of atom-light interaction has received consid-
erable attention with the advent of sophisticated techniques to
trap and cool atomic systems and measure their properties
to very high precision [1]. An accurate knowledge of the
electric dipole polarizabilities of the atomic states is essential
in these experiments as they are required in the studies of
atomic interactions in optical lattices, atomic clocks, quantum
information, and many other important areas of atomic and
molecular physics [2–4]. This range of applications of electric
dipole polarizabilities (α) puts a premium on their accurate
determination in atomic systems. Precise measurements of α

are challenging and involve using a number of techniques
like deflection of atomic beam by electric field [5], the E-H
balance method [6–8], atom interferometry [9,10], cold atom
velocity change [11], etc. In fact, the ground state α of many
atomic systems are not yet measured very precisely owing
to difficulties in eliminating some of the larger systematics.
Therefore, accurate theoretical studies of electric dipole
polarizabilities in atomic systems are of particular interest.

Dalgarno and his collaborators initiated work on the polar-
izabilities of many-electron atoms more than five decades ago
[12,13]. Currently one of the most advanced approaches to this
property is based on the linear-response coupled cluster theory
[14–21]. We had formulated a relativistic coupled-cluster
(RCC) method to calculate polarizabilities in which the electric
dipole operator was effectively treated as a perturbation [22].
The first-order perturbed RCC wave function in this case
was obtained by solving an inhomogeneous equation, thereby
circumventing the sum-over-states approach [22–24]. This
method has been used to compute the polarizabilities of the
ground states for a number of atomic systems [25–28]. In
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this work, we apply our method to some systems that we
had studied earlier in addition to many new candidates for
acquiring insights into the behavior of electron correlation in
the calculations of the static electric dipole polarizabilities
of these systems. We have included higher-order nonlinear
RCC terms through special computational techniques, thereby
improving our previous results. We present our Dirac-Fock
(DF), third-order many-body perturbation theory [MBPT(3)]
and RCC results to show the quantitative changes in correlation
effects in the passage from finite order MBPT to RCC and we
offer explanations for this behavior.

The rest of the paper is organized as follows: In the
next section, we present briefly the theory of static electric
dipole polarizability and the basic working equations for its
evaluation in the framework of the method that we have
developed. Then, we describe the procedure for obtaining the
atomic wave function and the electric dipole polarizability
using the RCC method. This is followed by discussions of our
results which are compared with the other calculations and
measurements. We use atomic units (a.u.) in this paper.

II. THEORY

A. Theory of static dipole polarizability

The second-order change in the energy of an atomic state
|�(0)

n 〉 when placed in an external weak electric field E= E r̂ is
given by

δE = − 1
2αE2, (1)

where α is known as the static electric dipole polarizability
of the state which can be mathematically expressed using the
second-order perturbation theory as

α = − 2〈
�

(0)
n

∣∣�(0)
n

〉 ∑
I

∣∣〈�(0)
n

∣∣D∣∣�(0)
I

〉∣∣2

E
(0)
n − E

(0)
I

, (2)
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where the summation over I represents the inclusion of all
possible intermediate states |�(0)

I 〉 and E(0)s are the energies
of the respective states denoted by the index in the subscripts.
It is possible to determine α by calculating the second-order
derivative of the energy shift given by Eq. (1) with respect to
the electric-field strength E . A straightforward approach would
be to sum over the intermediate states explicitly in Eq. (2).
However, this is not very practical from a numerical point of
view. In the method that we used earlier, polarizabilities can
be determined without summing over intermediate states. In
that approach, we express Eq. (2) as

α = −2

〈
�(0)

n

∣∣D∣∣�(1)
n

〉
〈
�

(0)
n

∣∣�(0)
n

〉 , (3)

where |�(1)
n 〉 is a modified wave function similar to the first-

order perturbed wave function of |�(0)
n 〉 which is given by

∣∣�(1)
n

〉 =
∑

I

∣∣�(0)
I

〉 ∣∣〈�(0)
I

∣∣D∣∣�(0)
n

〉
E

(0)
n − E

(0)
I

. (4)

It is clear that |�(1)
n 〉 is obtained by perturbing |�(0)

n 〉 by the
vector operator D. Therefore, |�(1)

n 〉 can be obtained by solving
the inhomogeneous equation

(H − En)
∣∣�(1)

n

〉 = −D
∣∣�(0)

n

〉
. (5)

This procedure is similar in spirit to the approach given in
[12] in the sense that our first-order perturbed wave function
is obtained from an inhomogeneous equation rather than by
summing over intermediate states. To be specific, in the present
work |�(1)

n 〉 is the first-order correction to the atomic wave
function with the electric dipole operator as the perturbation.
Now expressing the total wave function as |�n〉 = |�(0)

n 〉 +
λ|�(1)

n 〉 and owing to the fact that D is an odd Hermitian
operator, we have

α = 〈�n|D|�n〉
〈�n|�n〉 , (6)

from keeping terms up to linear in the arbitrary parameter λ.

B. Generalized Bloch equation for two external perturbations

The generalized Bloch equation for the model Hamiltonian
H0 and the interaction term V is given by [29]

[�,H0]P = QV �P − χPV �P, (7)

where P and Q are the projection operators corresponding to
the model and orthogonal spaces respectively and � = 1 + χ

is the wave operator that generates the atomic state function
from the reference state |�n〉 of a Hamiltonian, say H0; i.e.,
|�n〉 = �|�n〉. By expanding the wave operator order by
order, we obtain the following working equation:

[�(k),H0]P = QV �(k−1)P −
k−1∑
m=1

�(k−m)PV �(m−1)P,

where �(0) = 1 and the superscript k represents orders of V

present in the evaluation of �(k). When there are two sources
of perturbation, we can still express |�n〉 = �|�n〉 with the
new perturbation potential V = V1 + V2. In this case, the kth
order �(k) is redefined by �(β,δ) such that k = β + δ for the β

orders of V1 and δ orders of V2. In this case, the corresponding
Bloch equation is expressed by [30]

[�(β,δ),H0]P = QV1�
(β−1,δ)P + QV2�

(β,δ−1)P

−
β−1∑
m=1

δ−1∑
l=1

(�(β−m,δ−l)PV1�
(m−1,l)P

−�(β−m,δ−l)PV2�
(m,l−1)P ), (8)

with �(0,0) = 1, �(1,0) = V1, and �(0,1) = V2. In this proce-
dure, the atomic state function up to kth order is given by

∣∣�(k)
n

〉 =
[
�(k,0) +

k−1∑
δ=1

λδ�(k−δ,δ)

]
|�n〉, (9)

where we have introduced a parameter λ without any loss of
generality to keep track of the order of V2 and it can be later
set to 1 in the final consideration.

Using the above prescription in Eqs. (5) and (3), it yields∣∣�(k,0)
n

〉 = �(k,0)|�n〉 (10)

and its first-order correction due to V2 is given by∣∣�(k,1)
n

〉 = �(k,1)|�n〉. (11)

In our present work, the residual interaction Ves is treated
as the first perturbation (V1 = Ves) to include the electron
correlation effects in a many-body perturbation treatment and
we set V2 = D and δ = 1 for calculating α. In this approach,
the lowest and kth order results for α are given by

α = 2〈�n|D�(0,1)|�n〉 (12)

and

α = 2

∑k−1
β=0〈�n|�(k−β−1,0)†D�(β,1)|�n〉∑k−1
β=0〈�n|�(k−β−1,0)†�(β,0)|�n〉

, (13)

respectively.

III. METHOD OF CALCULATIONS

The Dirac-Coulomb (DC) atomic Hamiltonian which is
used in our calculation is given by

HDC =
∑

i

⎡
⎣cαi · pi + (βi − 1)c2 + Vnuc(ri) +

∑
j>i

1

rij

⎤
⎦ .

(14)

The single-particle energies are scaled with respect to the
rest mass energy of the electron, the nuclear potential is
evaluated considering a Fermi nuclear charge distribution, and
the electron-electron interaction due to one-photon exchange
is restricted to Coulomb interactions only.

The DF approximation (H0 = HDF ) yields the mean-field
wave function |�0〉 for the ground state which we consider as
the reference state |�n〉 for the construction of exact ground-
state wave function |�n〉 = |�0〉.

A. MBPT(3) method

The importance of various correlation terms in the de-
termination of α can be better understood from an explicit
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analysis of lower-order perturbation calculations where the
contributions from the individual term can be found explicitly.
For this purpose, we have considered up to β = 2 and δ = 1
[MBPT(3) method] to calculate α.

Therefore, the expression for α of the ground state in the
MBPT(3) method is given by

α = 2

N 〈�0|[�(0,0) + �(1,0) + �(2,0)]†D

× [�(0,1) + �(1,1) + �(2,1)]|�0〉
= 2

N 〈�0|D�(0,1) + D�(1,1) + D�(2,1) + �(1,0)†D�(0,1)

+�(1,0)†D�(1,1) + �(2,0)†D�(0,1)|�0〉, (15)

with N = 〈�0|1 + �(1,0) + �(2,0) + �(1,0)† + �(2,0)† +
�(1,0)†�(0,1)|�0〉.

The above wave operators are obtained using the following
Bloch equations:

[�(1,0),H0]P = QVesP,

[�(2,0),H0]P = QVes�
(1,0)P − �(1,0)PVesP,

and

[�(0,1),H0]P = QDP,

[�(1,1),H0]P = QVes�
(0,1)P + QD�(1,0)P,

[�(2,1),H0]P = QVes�
(1,1)P + QD�(2,0)P

−�(1,0)PVes�
(0,1)P − �(1,0)PD�(1,0)P.

Important lower-order diagrams that contribute at the
MBPT(3) level are shown in Fig. 1.

B. RCC theory: CCSD method

In the RCC theory, the ground state of a closed-shell atom
is expressed as

|�0〉 = �|�0〉 = eT |�0〉, (16)

where the operator T corresponds to the excitations from the
reference state |�0〉.

Following Eq. (6), we have

α = 〈�0|�†D�|�0〉
〈�0|�†�|�0〉 = 〈�0|eT †

DeT |�0〉
〈�0|eT †

eT |�0〉
. (17)

By definition, the T operators are in normal order form
with respect to the reference state |�0〉. Therefore, the above
expression yields [31]

α = 〈�0|eT †
DNeT |�0〉con〈�0|eT †

eT |�0〉
〈�0|eT †

eT |�0〉
= 〈�0|eT †

DNeT |�0〉con, (18)

this is a favorable denouement for the calculation of properties
of the ground state of closed-shell atomic systems using the
RCC theory. The subscript N represents the normal order

MBPT (1) = DF
D

Ω(0,1)

MBPT (2)

D

MBPT (3)

(i)

(i)

D

(iv)

D

Ω(1,1) DΩ(0,1)

(v) (vi)

(iii)

D

Ω(1,1)

(ii)
Ω(1,1)

D

(i)

Ω(1,1)

D

Ω(1,0)†

Ω(0,1)

Ω(2,1)

Ω(1,0)†
Ω(1,0)†

(v)
DΩ(1,1)

(vi)
DΩ(1,1)

Ω(1,0)†

(iv)

D
Ω(1,1)

(vii) (viii)

D

D

Ω(2,1)

Ω(2,0)†

Ω(0,1)

(ii)

D

Ω(2,1)

(iii)

D

Ω(2,1)

FIG. 1. A few important contributing diagrams of the MBPT(3)
method. The lowest-order contribution is given as the DF result.

form of D and con refers to survival of only the connected
diagrams.

In the above RCC expression, the operator T includes con-
tributions from both Ves and D. Taking this into consideration,
we split T into

T = T (0) + λT (1), (19)

where T (0) corresponds to correlation effects due to Ves and
T (1) takes into account the opposite parity excitations in the
wave function due to D. Substituting Eq. (19) in Eq. (16), we
get ∣∣�(0)

0

〉 = eT (0) |�0〉 (20)

and ∣∣�(1)
0

〉 = eT (0)
T (1)|�0〉. (21)

In the present work, we have considered all possible singly and
doubly excited configurations (known as the CCSD method)
by defining

T (0) = T
(0)

1 + T
(0)

2 (22)

and

T (1) = T
(1)

1 + T
(1)

2 . (23)

The T (0) amplitudes are obtained by solving the following
equation: 〈

�τ
0

∣∣HDC
N |�0〉 = 0, (24)
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P − P

H − H

P − H

(i) (ii) (iii)

(iv) (v) (vi) (vii)

(viii) (ix) (x)

(xi) (xii)

(xiii)
(xiv)

FIG. 2. Effective one-body intermediate diagrams for the evalu-
ation of CCSD amplitudes.

where τ = 1,2 stands for either singly or doubly excited
configurations from |�0〉, subscript N represents the normal
ordered form of the DC Hamiltonian and the dressed Hamilto-
nian HDC

N = e−T (0)
H

(DC)
N eT (0)

which is equal to (H (DC)
N eT (0)

)con

[32]. To solve the above equation, we adopt the Jacobi iterative
procedure and the nonlinear terms from (H (DC)

N eT (0)
)con are

accounted through the intermediate diagrams. A standard
procedure for defining intermediate diagrams is described
in [33,34]. However, we follow a different strategy here.
The idea behind this is to avoid the repetition of defining
different variables to store the intermediate diagrams. In
our approach, we define some distinct types of intermediate
diagrams by classifying them into effective one-body and
two-body diagrams as given in Figs. 2 and 3, respectively.
They are further combined with suitable T (0) operators
for constructing the final diagrams that contribute to the
computations of the T

(0)
1 and T

(0)
2 amplitudes as shown in

Figs. 4 and 5. The diagrams which involve fewer internal
lines but are problematic for generating repetitive diagrams
when included in the above effective one-body and two-body
intermediate diagrams are computed directly. Examples of
such diagrams for the evaluation of the T

(0)
1 and T

(0)
2 amplitudes

are shown in Figs. 6 and 7, respectively. To avoid the double
counting of topologically equivalent diagrams arising from
the above effective intermediate diagrams and from symmetry
considerations, we multiply by a factor of 1/2 wherever
necessary as mentioned in Figs. 3 and 5.

After obtaining T (0) amplitudes, we solve the following
equation to determine the T (1) amplitudes:

〈
�τ

0

∣∣HDC
N T (1)|�0〉 = −〈

�τ
0

∣∣Hint|�0〉. (25)

(i)

PP − PP

HP − PP

(ii) (iii)

(iv) (v)

(vii)

(vi)

(viii) (ix)

(x) (xi) (xii)

(xiii)

HH − PP

1
2

1
2

1
2

(xxi)
(xxii) (xxiii)

(xxiv) (xxv) (xxvi)

(xxvii) (xxix) (xxx)(xxviii)

HP − HH

HH − HH

(xiv) (xv) (xvi)

(xiii) (xix)(xvii)

HP − PH

1
2

1
2

1
2

1
2

1
2

1
2

1
2

(xx)

FIG. 3. Effective two-body intermediate diagrams for the evalu-
ation of CCSD amplitudes.

We now make use of the locations of the previously defined
intermediate variables to store all possible effective one-body

and two-body diagrams of HDC
N . In this case, no additional

multiplicative factors are needed owing to the fact that finally
these diagrams are contracted with T (1) amplitudes. Also,
all the contributing terms from T (0) are included at this
stage. Contributions from Hint = (Hinte

T (0)
)con are computed

directly.
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P − P P − P H − H

H − H

P − H P − H

FIG. 4. Final CCSD amplitudes determining diagrams after
contracting effective one-body intermediate diagrams with the T (0)

operators.

With the knowledge of T (0) and T (1) amplitudes, we
evaluate α using the relation

α = 〈�0|eT †
DNeT |�0〉con

= 〈�0|T †(1)
︷︸︸︷
D

(0)
N +

︷︸︸︷
D

(0)
N T (1)|�0〉con

= 2〈�0|
︷︸︸︷
D

(0)
N

(
T

(1)
1 + T

(1)
2

)|�0〉con, (26)

where
︷︸︸︷
D

(0)
N = eT †(0)

DNeT (0)
is a nontruncating series.

We compute this by dividing it into connected effec-
tive one-body and two-body terms using the general-
ized Wick’s theorem [29] before contracting them with
T (1). In the CCSD approximation that we have con-
sidered here, we need only the fully contracted terms

from
︷︸︸︷
D

(0)
N (T (1)

1 + T
(1)

2 ). Therefore only the effective one-,

two-, and three-body terms will survive from
︷︸︸︷
D

(0)
N . Effective

PP − PP HP − PP PP − HH

PP − HH
HP − PH HP − PH

HP − PH HP − HH HH − HH

1
2

FIG. 5. Final CCSD amplitudes determining diagrams after
contracting effective two-body intermediate diagrams with the T (0)

operators.

FIG. 6. Direct contributing diagrams to the singles of the CCSD
method.

one-body diagrams arising from the nontruncating series
︷︸︸︷
D

(0)
N

which contribute significantly are further binned into the
hole-hole (H -H ), particle-particle (P -P ), hole-particle (H -
P ), and particle-hole (P -H ) -type diagrams as shown in Fig. 8
(H -P diagrams are not shown as they are complex conjugate
(c.c.) terms of the P -H type of diagrams) considering up
to minimum fifth order in the residual Coulomb interaction.
It can be noticed from Fig. 8(c) of the P -H and H -P -type
diagrams that they contain diagrams (e.g., i, ii, iii, etc.)
resembling the random phase approximation (RPA) along with
some of the non-RPA diagrams (e.g., iv, v, vi, etc.) which
account for the core-polarization effects to all orders. We
found, as will be demonstrated in the next section, they are the
leading contributors. Therefore, we replace the corresponding
D operator from the P -H and H -P effective diagrams by
the P -P and H -H diagrams as shown in Fig. 9 to dress up
the effective H -P and P -H operators for evaluating these
contributions more rigorously. These effective diagrams are
then further combined with the T (1) and T (0)T (1) operators
to obtain the final contributions. The important diagrams that
make significant contributions from the effective two-body

and three-body terms of
︷︸︸︷
D

(0)
N are computed directly after

contracting them with the T (1) operators.
We also store the effective H -P and P -H type one-body

diagrams from
︷︸︸︷
D

(0)
N having more than two orders of residual

Coulomb interaction, as shown in Fig. 10 separately and
contract them with another set of T (0)T (1) terms in the final
calculations to include the contributions of core-polarization
effects, higher in order than those described above. We found
that these contributions are crucial for improving the final
results for the alkaline-earth–metal atoms that were neglected
in our previous calculations [22–24]. As they are just another
set of effective one-body terms, they marginally affect the
computational cost.

FIG. 7. Direct contributing diagrams to the doubles of the CCSD
method.
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P − P

H − H

P − H

D D

D D

D
D

D D

D

DD

DD

(a)

(b)

(c)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii) (iv) (v)

(i) (ii) (iii)

(iv) (v) (vi) (vii)

D

D

D

D

FIG. 8. Few effective one-body diagrams from eT †(0)
DNeT (0)

that
are connected further with T (1) operator in the final evaluation of the
polarizabilities.

IV. RESULTS AND DISCUSSIONS

We present our polarizability results for the ground states
for several atomic systems and compare them with other
calculations and experimental results in Table I. We have
also estimated the errors in our calculations arising from
the numerical uncertainties due to the finite size of the
basis, neglected contributions from the Breit interaction, and
QED effects due to the lowest-order vacuum polarization
and self-energy corrections. Moreover contributions from
the Breit and QED effects are found to be small for the
property under consideration here, but the size of the basis
is crucial for the numerical accuracy of the calculations. We
estimated contributions from the Breit and QED interactions
using the MBPT(3) method by carrying out calculations with
these interactions separately along with the DC Hamiltonian.
Inaccuracies from the choice of basis functions are estimated
in two steps using the DF method: (i) results are obtained
for a different set of optimized Gaussian parameters and
(ii) estimating contributions from the inactive orbitals that are
not considered in the RCC calculations from the DF method.
We present these estimated contributions from the individual
source in Table II. Experimental results for light atomic
systems are more accurate than our calculations. However,
for heavy systems, the accuracies of our results are better than
those of experiments and many of the previous calculations.

A variety of many-body methods have been used to
determine α for the systems that we have considered except
for Sc+ and Y+. The method we have employed in the present

H − HP − P

FIG. 9. Examples of further dressed-up effective H -P type
diagrams from the effective P -P and H -H type one-body diagrams.

D

+ Exchanges
H − P

D

FIG. 10. Additional effective diagrams which are stored sepa-
rately and contracted finally with the T (0)T (1) for accounting higher-
order core-polarization correlation effects.

work had been used previously to calculate these quantities

[22–24]. In those calculations, we had truncated
︷︸︸︷
D

(0)
N at︷︸︸︷

D
(0)
N = T †(0)DNT (0) neglecting higher-order RPA contribu-

tions coming through the T †(0)DN (T (0))2 and (T †(0))2DNT (0)

whose contributions are found to be significant in the neutral
alkaline-earth atoms, Sc+ and Y+. Also the results have
improved, particularly in these systems, since the dipole
operators in the P -H /H -P effective diagrams described by
Fig. 10 and in the construction of the effective two-body
operators have been used. Recently a similar approach, which
had included the normalization of the wave function, had
been used for evaluating the α’s of some of the inert gas
atoms [25,26]. In fact, both these works account for nonlinear
terms at different levels of approximations resulting in some
differences in the results. Another calculation for the inert
gas atoms was carried out by Nakajima and Hirao [43],
where they have investigated the relativistic effects in α

using a scalar relativistic Douglas-Kroll (DK) Hamiltonian.
The other difference between this work and ours is that
Nakajima and Hirao had estimated polarizability from the
second-order energy shift due to an arbitrary external electric
field by a numerical finite field approach whereas we have
evaluated this quantity by calculating the expectation value
of the dipole operator using the first-order dipole perturbed
wave function. It is interesting that both the results agree
fairly well with each other within the quoted uncertainties.
For the alkaline-earth elements we compare our results of
α with those of Porsev et al. [56,72], who had used a hybrid
approach combining the configuration interaction (CI) method
in the valence space and the MBPT method by scaling the
energies and dressing the external electromagnetic field in the
RPA framework to evaluate the core-polarization effects. Lim
et al. [61] had performed the RCC calculations in the finite field
method using the DK Hamiltonian. Our results for most of the
atoms are in good agreement with them except for Sr which
differs significantly. As mentioned in the previous section, we
have found that higher-order nonlinear terms, especially those
corresponding to RPA, are essential for obtaining accurate
results. One probable reason for the discrepancies in the results
between our RCC results and those of Porsev et al. is the
treatment of core-core correlation effects in the two cases. We
have computed these effects by the all order CCSD method,
while they have used a finite order MBPT approach. An
important difference between our approach and that of Lim
et al. [61] is that we have used the proper DC Hamiltonian
unlike its scalar components in [61] and the polarizabilities are

062504-6



CORRELATION TRENDS IN THE GROUND-STATE STATIC . . . PHYSICAL REVIEW A 88, 062504 (2013)

TABLE I. Ground-state static dipole polarizability α of various closed-shell atoms and ions. In the parentheses of our results, we have given
the estimated uncertainties from the calculations. The square brackets refer to the references of other works.

Systems This work Others Experiments

He 1.360(20) 1.322 [35], 1.383763 [36] 1.383223(67) [37,38], 1.3838 [39]
1.38376079(23) [40], 1.382(1) [22] 1.384 [41], 1.383759(13) [42]

Ne 2.652(15) 2.38 [35], 2.6648 [36], 2.697 [43] 2.670(3) [44], 2.66110(3) [45]
2.665 [46], 2.668(6) [47] 2.6695 [25] 2.6680 [39], 2.663 [41]

Ar 11.089(4) 10.77 [35], 11.084 [36], 11.22 [43] 11.081(5) [44], 11.091 [39]
11.085(6) [48] 11.213 [26] 11.080 [41], 11.083(2) [49]

Kr 16.93(5) 16.47 [35], 16.80 [50], 16.736 [26] 16.766(8) [44], 16.740 [39], 16.740 [41]
Be 37.86(17) 37.755 [51], 37.73(5) [52], 37.807 [53], 37.29 [54],

37.69 [55], 37.76 [56], 37.80(47) [22]
Mg 72.54(50) 71.7 [57], 70.90 [58], 70.74 [54], 71.35 [55],

71.33 [56], 74.9(2.7) [59], 73.41(2.32) [22]
Ca 157.03(80) 157 [57], 171.7 [60], 156.0 [54] 169(17) [7]

159.4 [55], 158.00 [61], 152 [62]
159.0 [56], 157.1(1.3) [56], 154.58(5.42) [22]

Sr 186.98(85) 201.2 [55], 198.85 [61], 190 [62], 186(15) [8]
202.0 [56], 197.2(2) [56], 199.71(7.28) [22]

Li+ 0.1913(5) 0.192486 [63,64], 0.1894 [35] 0.1883(20) [65]
Na+ 0.9984(7) 0.9947 [54], 0.9457 [35] 0.978(10) [66], 1.0015(15 [67]

1.00(4) [68], 1.025 [27] 0.9980(33 [69]
K+ 5.522(7) 5.354 [54], 5.457 [35] 5.47(5) [66]

5.52(4) [68], 5.735 [27]
Rb+ 9.213(15) 9.076 [35], 9.11(4) [68], 9.305 [27] 9.0 [70]
Sc+ 53.24(20)
Y+ 72.26(50)
Be2+ 0.0521(2) 0.05182 [35], 0.052264 [63,64]
Mg2+ 0.4852(5) 0.4698 [70], 0.495 [28] 0.489(5) [66]

0.4814 [54] 0.486(7) [71]
Ca2+ 3.295(6) 3.254 [35], 3.161 [54] 3.26(3) [66]

3.262 [61], 3.387 [28]
Sr2+ 5.877(8) 5.813 [35], 5.792 [61], 5.913 [28]

estimated from the second-order corrections to their calculated
energies.

We now compare our results for the singly charged alkali
and doubly charged alkaline-earth–metal ions, which have
electronic configurations similar to that of the inert gas atoms
with the results obtained using the RPA method by Johnson
et al. [35] and another RCC calculation [27,28]. The method
employed in the latter calculations have already been referred
to in the previous paragraph. The close agreement between the
RPA and our RCC results is due to the fact that the dominant
correlation effects in the evaluation of the polarizabilities
for the closed-shell systems come from the core-polarization
effects which are taken to all orders in both the calculations.
We find from the MBPT(3) calculations that the non-RPA di-
agrams also contribute significantly in the closed-shell atoms.
However, they cancel out to a large extent in these ions and their
net contributions are consequently not significant. In another
work, Lim et al. [68] have reported results for the alkali-metal
ions considering the scalar relativistic DK Hamiltonian and
accounting for the spin-orbit coupling corrections through the
MBPT(2) method using a fully relativistic four-component DF
wave functions. In addition to the above-mentioned systems
we have also calculated α for Sc+ and Y+ ions, but there are
no data available for comparison with our results.

The main aim of the present work is to analyze the
trends in the correlation effects in the static electric dipole
polarizabilities of the ground states in a variety of closed-shell
atomic systems evaluated by different many-body methods in
order to assess their potential for yielding accurate results for
the coupling constants associated with the permanent electric
dipole moments due to parity and time-reversal violations in
atoms of experimental interest [73–79]. To fulfill our objective,
we have carried out a range of calculations using lower-order
MBPT to MBPT(3) methods and have presented the results
at each stage in Table III. These results are further compared
with our final all order calculation using the relativistic CCSD
method in the same table. This clearly demonstrates the
importance of the correlation effects starting from lower- to
higher-order perturbation theory systematically and provides a
good understanding of their roles in obtaining accurate results.
We have given results by grouping the isoelectronic systems
together in this table in order to make a comparative analysis
of the correlation effects as the atomic number varies. As can
be seen in the table, the DF results are smaller than the MBPT
results for the light inert gas atoms while this trend changes
for the heavier ones. Finally, the CCSD results are larger than
the DF results for all these atoms. Therefore this implies that
there are strong cancellations between the correlation effects
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TABLE II. Contributions to the estimated uncertainties from the
Breit interaction (δB ), QED corrections (δQ), and finite basis size (δF )
in the considered atomic systems.

System δB δQ δF

He ∼0.0 ∼0.0 0.0200
Ne 0.0006 ∼0.0 0.1499
Ar 0.0023 0.0002 0.0032
Kr 0.0148 0.0008 0.0478
Be 0.0027 −0.0001 0.1699
Mg 0.1460 −0.0008 0.4782
Ca −0.1609 −0.0041 0.7836
Sr −0.1767 −0.0201 0.8312
Li+ ∼0.0 ∼0.0 0.0005
Na+ 0.0003 ∼0.0 0.0004
K+ 0.0004 0.0001 0.0070
Rb+ 0.00960 0.0002 0.0115
Sc+ −0.0453 −0.0533 0.1874
Y+ −0.0631 −0.0089 0.4959
Be2+ ∼0.0 ∼0.0 0.0002
Mg2+ 0.0001 ∼0.0 0.0004
Ca2+ 0.0005 0.0001 0.0059
Sr2+ 0.0061 0.0002 0.0052

in these atoms and the higher-order correlation effects play a
pivotal role in determining the final results. A similar trend is
also followed by other inert gas like singly charged alkali and
doubly charged alkaline-earth–metal ions. However, the trend
for the correlation effects in the neutral alkaline-earth–metal
atoms is rather different. In this case the DF results are
always smaller than those of MBPT and CCSD. In fact, it
is also quite interesting to note that the correlation trends
for Sc+ and Y+ do not follow those of other isoelectronic
alkaline-earth–metal atoms, but rather of the inert gas atoms.
For a quantitative description, we plot (α − αDF )/αDF ob-
tained using the MBPT(3) and CCSD methods versus atomic

TABLE III. Contributions to α at different level of approximations
in the many-body method.

Atoms DF=MBPT(1) MBPT(2) MBPT(3) CCSD

He 0.998 1.240 1.215 1.360
Li+ 0.1579 0.1839 0.1851 0.1913
Be2+ 0.0453 0.0510 0.0512 0.0521
Ne 1.977 2.254 1.654 2.652
Na+ 0.8337 0.9154 0.8504 0.9984
Mg2+ 0.4277 0.4555 0.4371 0.4852
Ar 10.152 9.964 8.005 11.089
K+ 5.466 5.130 4.468 5.522
Ca2+ 3.369 3.082 2.568 3.295
Kr 15.82 15.00 10.70 16.93
Rb+ 9.273 8.374 7.103 9.213
Sr2+ 6.146 5.388 4.492 5.877
Be 30.53 40.24 38.16 37.86
Mg 54.70 70.72 65.64 72.54
Ca 122.90 151.70 132.80 157.03
Sc+ 50.10 57.17 47.02 53.24
Sr 156.83 188.98 163.13 186.98
Y+ 68.60 75.42 65.10 72.26
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FIG. 11. (Color online) Plots of (α − αDF )/αDF results vs atomic
numbers from different groups of atomic systems. α results are
obtained using the MBPT(3) and CCSD methods in order to make a
comparative study between these two approaches.

numbers in Fig. 11 for the different categories of systems that
we have considered. We also plot the same for all the systems
together including Sc+ and Y+ ions in Fig. 12 to make a
comparative analysis of the correlation trends among different
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FIG. 12. (Color online) Plots of MBPT(3) and CCSD (α −
−αDF )/αDF results for all the considered atoms and ions vs atomic
numbers.

isoelectronic sequences. To shed light on the role of different
types of correlation effects that are crucial in the determination
of polarizabilities and to explain the reasons for their trends in
different isoelectronic sequences, we identify diagrams from
the MBPT(3) approximation that belong to lower-order RPA.
We, then, present MBPT(3) results in Table IV classifying
its diagrams as RPA and non-RPA types. It can be seen
from Fig. 1 that all the diagrams up to MBPT(2) belong to
RPA and hence, they are the dominant contributors. However,
diagrams shown in Figs. 1(vi)–1(viii) are a few examples of
non-RPA-type diagrams that also contribute significantly at
the third-order level, but they largely cancel out each other
in the heavy atomic systems. The final results are the outcome
of the interplay between these cancellations which can only be
accounted correctly using an all order method like our CCSD
method. This is evident from the contributions of the separate
RCC terms presented below.

We now present the contributions from different correlation
effects represented by the RCC terms in the evaluation of
α for different atomic systems. In Table V, we give the
individual contribution from the important CCSD terms to
α, where the leading term DT

(1)
1 contains the lowest-order

DF result. The next important term is T
(0)†

2 DT
(1)

1 and the
sign of its contribution is opposite to that of the former

TABLE IV. Contributions from the RPA and non-RPA type of
diagrams from the MBPT(3) method.

System RPA Non-RPA

He 1.274 −0.059
Ne 2.303 −0.649
Ar 9.878 −1.873
Kr 14.980 −4.280
Be 36.788 1.372
Mg 65.074 0.566
Ca 135.459 −2.659
Sr 170.340 −7.210
Li+ 0.1862 −0.0011
Na+ 0.9261 −0.0757
K+ 5.035 −0.567
Rb+ 8.326 −1.223
Sc+ 50.115 −3.095
Y+ 67.181 −2.081
Be2+ 0.0513 −0.0001
Mg2+ 0.4627 −0.0256
Ca2+ 3.009 −0.441
Sr2+ 5.352 −0.860

TABLE V. Contributions from various CCSD terms for the
evaluation of α in the ground states of the considered atomic systems.

System DT
(1)

1 T
(0)†

1 DT
(1)

1 T
(0)†

2 DT
(1)

1 T
(0)†

2 DT
(1)

2 Others

He 1.362 0.005 −0.035 0.035 −0.007
Ne 2.613 0.073 −0.099 0.089 −0.024
Ar 11.806 −0.068 −1.143 0.511 −0.017
Kr 18.11 −1.12 −1.82 0.74 1.02
Be 39.45 −1.53 −7.21 3.84 3.31
Mg 75.66 −2.96 −10.16 5.54 4.46
Ca 163.87 −9.24 −24.89 16.05 11.24
Sr 201.90 −12.77 −28.77 15.57 11.05
Li+ 0.1894 ∼0 0.0019 0.0019 −0.0019
Na+ 0.9756 ∼0 −0.0005 ∼0 0.0233
K+ 5.972 −0.038 −0.620 0.211 −0.003
Rb+ 9.971 −0.067 −1.049 0.333 0.025
Sc+ 61.71 −2.16 −8.24 3.84 −1.91
Y+ 83.19 −3.18 −10.68 5.05 −2.12
Be2+ 0.0526 ∼0 −0.0007 0.0003 −0.0001
Mg2+ 0.4774 ∼0 ∼0 ∼0 0.0078
Ca2+ 3.578 −0.019 −0.585 0.117 0.204
Sr2+ 6.396 −0.037 −0.689 0.191 0.016

resulting in a substantial cancellation between these two
largest contributors. In addition to the above two terms,
contributions from T

(0)†
1 DT

(1)
1 further reduce the final results.

Pair excitations contributing through T
(0)†

2 DT
(1)

1 and other
higher-order nonlinear terms together take our final results
towards the experimental values.

V. CONCLUSION

We have employed the relativistic coupled-cluster method
to calculate the static electric dipole polarizabilities of the
ground states of many closed-shell atomic systems. We
have improved the results of our previous calculations for
some of them by adding important nonlinear RCC terms
which correspond to higher-order correlation effects in the
present calculations. The crucial role of correlation effects
is highlighted by presenting and comparing the results at
different levels of approximations from lower-order many-
body perturbation theory to the relativistic CCSD method.
Correlation trends among the neutral atoms, singly charged
ions, and doubly charged ions are presented. Investigation of
various correlation effects in evaluating polarizabilities will
provide valuable insights into the ongoing theoretical work on
atomic electric dipole moments which arise due to parity and
time-reversal symmetry violation. Our results will also serve
as a guide to the future measurements of systems where the ex-
perimental values of polarizabilities are not precisely known.
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