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Hard-core bosons in a zig-zag optical superlattice
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We study a system of hard-core bosons at half-filling in a one-dimensional optical superlattice. The bosons are
allowed to hop to nearest- and next-nearest-neighbor sites. We obtain the ground-state phase diagram as a function
of microscopic parameters using the finite-size density-matrix renormalization-group method. Depending on the
sign of the next-nearest-neighbor hopping and the strength of the superlattice potential the system exhibits three
different phases, namely the bond-order (BO) solid, the superlattice induced Mott insulator (SLMI), and the
superfluid (SF) phase. When the signs of both hopping amplitudes are the same (the unfrustratedase), the system
undergoes a transition from the SF to the SLMI at a nonzero value of the superlattice potential. On the other hand,
when the two amplitudes differ in sign (the frustrated case), the SF is unstable to switching on a superlattice
potential and also exists only up to a finite value of the next-nearest-neighbor hopping. This part of the phase
diagram is dominated by the BO phase which breaks translation symmetry spontaneously even in the absence
of the superlattice potential and can thus be characterized by a bond-order parameter. The transition from BO to

SLMI appears to be first order.
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I. INTRODUCTION

Ultracold atoms provide a unique opportunity to investigate
a wide range of phenomena, especially in low dimensions
where quantum fluctuations play a dominant role [1]. Because
of the exquisite control and precision possible experimen-
tally, they offer nearly perfect realizations of various model
condensed-matter systems. The seminal paper by Jaksch et al.
[2], which had predicted the quantum phase transition from
Mott insulator to superfluid phase in the Bose-Hubbard model,
paved the way for the first experimental observation of this
transition in an optical lattice by Greiner et al. [3]. Current
experimental techniques have successfully created various
lattice geometries using proper arrangements of laser beams,
such as optical superlattices [4,5], triangular [6], and kagome
lattices [7]. Such a diverse class of lattice systems gives us
the opportunity to study a variety of models which might
also be geometrically frustrated. The interatomic interactions
can be controlled to a high degree of accuracy with the help
of Feshbach resonances [8]. Recent developments in shaking
techniques have enabled experimentalists to modify the value
and sign of the intersite hopping [9,10], thus opening up
possibilities to investigate frustrated systems of bosonic lattice
gases [11].

Earlier works on ultracold bosons in optical superlattice
have shown the existence of phases with density-wave-like
configurations [12—-17]. Later studies of soft-core bosons in
optical superlattices [18,19] termed these phases as superlat-
tice induced Mott insulator (SLMI) phases. Recent studies on
models dealing with the interplay between frustration imposed
by geometry and interactions have revealed rich physics with
a variety of novel phases being exhibited [20-23].

In this paper, we analyze a system of hardcore bosons in
a one-dimensional (1D) superlattice with nearest- and next-
nearest-neighbor hoppings. The superlattice potential creates
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an energy offset in alternate sites. This model is equivalent to
a zig-zag superlattice as shown in Fig. 1. The nearest- and the
next-nearest-neighbor hoppings are equivalent to the hoppings
between the legs and within the legs of the zig-zag lattice,
respectively. The energy offset can be introduced by applying
a constant electric field in the y direction as shown in Fig. 1.
In such a situation the system can be described by the
Hamiltonian given by

H=—tY (alai +He) =1 (alain +He)

+ > hni, )

and g; are creation and annihilation operators for

hard-core bosons at site i, and n; = aiT a; is the boson number

operator at site i. Here ¢ and ¢’ are the hopping amplitudes for
tunneling to a neighboring site and a next-nearest-neighbor
site, respectively, and X; is the superlattice potential. In the
present work, we have considered a two-period superlattice,
with A; = XA for odd i and zero for even i. We assume that the
values of t' from even to even sites and from odd to odd sites are
equal in magnitude. In other words, the hopping amplitudes
along the legs of the zig-zag lattice are the same. A similar
assumption has been made in an earlier work on a square
ladder [15] and also in a recent experiment in a sqaure lattice
[5]. We study the system for a wide range of ¢’ and A and we fix
the energy scale in the units of ¢ by taking the value of r = 1.
As a result all the physical quantities are dimensionless.

When ' = 0 the above model can be mapped onto a
noninteracting model of spinless fermions. Using the Jordan-
Wigner transformation [24]

i—1
af = fi [Te™
p=1

]

i

where a

i—1

a=Tle™" 5. ©
p=1
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FIG. 1. (Color online) Schematic diagram for a zig-zag optical
superlattice with nearest- (¢) and next-nearest-neighbor (¢') hopping.
A is the optical superlattice potential.

Eq. (1) can be mapped to

H=—tY (f fin+HO+ S Mt @

where ﬁ and f; are the creation and annihilation operators for

the spinless fermions and ﬁ fi 1s the fermion number operator.
The single-particle eigenstates of the Hamiltonian given by
Eq. (3) can be obtained exactly. There are two bands arising
from the fact that the translational symmetry of the lattice has
been broken by the superlattice potential. The energy spectra
of the two bands are given by

A & /A2 + [41 cos(ka)]?
5 ,
where a is the lattice spacing and k is the crystal momentum
that runs from —J- to 5-. A plot of these spectra is shown in
Fig. 2. From this figure and Eq. (4), it can be seen that there
is a gap equal to A at half-filling. Turning on ¢’ augments the
effect of ¢ if they have the same sign yielding a superfluid as we
show below. For the opposite sign of ¢’ the system is frustrated
and we find that this frustration coupled with the superlattice
potential prevents superfluidity from occurring. For either
sign of ¢/, the model can no longer be mapped onto one of
noninteracting spinless fermions and thus we have to take
recourse to numerics to study it. We do this via a state-of-the-art
density-matrix renormalization-group (DMRG) method [25].

E_ (k)=

“4)

2 -1 0
ka/m

FIG. 2. (Color online) Dispersion relation as computed from
Eq. (4).
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The remaining part of the paper is organized as follows. In
Sec. II, we outline the method of calculation we have used,
followed by a presentation of results in Sec. III and a summary
of our conclusions in Sec. I'V.

II. METHOD OF CALCULATION

We study the ground-state properties of the model described
by Eq. (1) using the finite-size DMRG method with open
boundary conditions [26,27], which is best suited to (quasi-
)Yone-dimensional problems [27]. For our calculations we study
system sizes up to 300 sites and retain 128 density-matrix
eigenstates with the weight of the discarded states in the
density matrix being less than 1075,

In order to obtain the ground-state phase diagram we
calculate several physical quantities of interest. Some of these
quantities have been calculated by us using the DMRG method
to study related models [23,28]. To separate out the gapped and
gapless phases we calculate the single-particle excitation gap
given by

G. = E(L,N + 1)+ E(L,N — 1) —2E(L,N). (5)

In Eq. (5), E(L,N) is the ground-state energy of a system with
L sites and N bosons. To identify the BO phase we compute
the bond-order parameter given by

1 .
Oso = 7 Z(—l)’ B, (6)

where B; = (b;(b,«ﬂ + bj +1bi) 1s the bond energy. The pres-
ence of the SLMI phase can be determined through a
calculation of the structure factor obtained by taking the
Fourier transform of the density-density correlation function

S(k) = Li > njnj). @
)

We also calculate the momentum distribution function given
by

nk) = % Zei(ifj)k(ajaj). )
iJj

Before discussing the results obtained from our FS-DMRG
calculation we mention that we have verified that our numerical
method gives us very accurate results in the analytically
tractable case t’ = 0. We compute the single-particle excitation
gap using Eq. (5) for this case, which from the analysis of the
previous section is equal to A. Our numerics give us a gap
which is within 0.01% for various values of . We thus believe
that our FS-DMRG calculation yields very accurate results
even for ¢’ # 0.

III. RESULTS

We now discuss the results of the present work. Before
we give the results of our numerical calculations in detail,
we present arguments for the general structure of the phase
diagram. As discussed in Sec. I, when ¢/ = 0, the system has
a gap for any finite value of A. The presence of the gap would
make the state robust to perturbations due to ¢/, until they get
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FIG. 3. (Color online) Phase diagram for a system of hard-core
bosons with nearest-neighbor (+ = 1) and next-nearest-neighbor (¢')
hopping in an optical superlattice with potential A, at a filling factor
of half.

to be roughly of the order of the gap. The SLMI phase is the
adiabatic continuation of the ¢ = 0 gapped phase for ¢’ # 0.
The gap at ¢’ = 0 increases with increasing A. As a result, the
extent of the SLMI phase along the ¢’ axis will be larger as
A increases. This can indeed be seen in the phase diagram
obtained from our numerical calculations shown in Fig. 3,
where we have set the energy scale by r = 1.

We now consider the phases that arise at large values of |’
after the SLMI phase has disappeared. We note that when
A =0, our model as described in Eq. (1) is the same as
hardcore bosons hopping on a triangular ladder. For ¢ > 0,
we have determined from DMRG calculations that the ground
state is always a superfluid and we find that this state is not
immediately destroyed by a nonzero value of A. There is thus
a phase boundary between the SLMI and SF as shown in
Fig. 3 in the & — ¢’ plane. For t' < 0 and A = 0, the system is
frustrated and it is known that the superfluid does not persist up
to arbitrarily large values of |¢'| [23]. The superfluid persists
up to |¢’| ~ 0.33 after which a gapped bond-ordered (BO)

0.5 T T T T T T T T
N A=0.5
0.4—\\ ]
\
R
03F \ -
T
ooy
@)
021 \ ]
\
\\
0.1 AN ]
AN
.\
.Nh
& — b e oimoces
00 0.3 0.6 0.9 1.2 1.5
t/

FIG. 4. Thermodynamic values of G plotted againstz’ for A = 0.5
to locate the transition point.
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FIG. 5. (Color online) Gap, G, plotted against 1/L, along with
the extrapolation for different values of ¢’ for A = 0.5.

phase forms through a Berezinski-Kosterlitz-Thouless (BKT)
type transition. A physical picture of the BO phase can be
obtained by studying the model at the exactly solvable point
|t'] = 0.5, where it can be mapped onto an XY version of the
spin-1/2 Majumdar-Ghosh spin chain [29]. The BO phase is
a valence bond solid, where the valence bonds are of the type
\/Li(|0),-|1),-+1 +10);+1/1);) for adjacent sites i and i + 1. Note
that this state spontaneously breaks translational symmetry
even for A = 0. Since the BO phase is gapped, we expect it to
be stable up to a critical value of A after which the SLMI phase
emerges. This is indeed the case as can be seen from Fig. 3. The
SF phase that exists below |¢'| ~ 0.33, however, appears to be
unstable to the introduction of A in contrast to the SF phase for
t'" > 0. It should be noted that though both the SLMI and the
BO phases are gapped and not translationally invariant, they
are fundamentally different in that the BO phase has a nonzero
BO order parameter given by Eq. (6), which is zero for the
SLMI phase. All three phases have a nonzero structure factor
S(k = ) given by Eq. (7) when X # 0, since translational
symmetry is being broken by hand. However, as we will show,
there is a kink in the structure factor as a function of " at the
boundary between the BO and SLMI.

A. Positive ¢’ case

As argued above, we expect a transition between the SLMI
and SF phases for ¢’ > 0. Since this transition is from a gapped
to gapless phase, it is determined numerically by calculating
the single particle excitation gap as defined in Eq. (5). We
perform a finite-size scaling of the gap G, by fitting a quadratic
polynomial in 1/L and extrapolating it to L — oo to get the
thermodynamic limit values of G. For the fitting we consider
fairly large system sizes, i.e., from L = 100 to L = 300. The
extrapolated values of G as a function of ¢ for A = 0.5 are
shown in Fig. 4, which clearly shows a transition from a gapped
to gapless phase. The gap appears to close slowly as the value
of ¢ approaches the critical value at 1.21. In Fig. 5 we show
the finite-size scaling of the gap G for different values of ¢'.
It can be seen that the fitting functions gradually go to zero as
the transition point approaches. We estimate the critical point
by noting that the extrapolated gap G, -, appears to stabilize
to a value that is less than 1073, Since, we expect the gap to
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FIG. 6. B; is plotted against i for > = 0.5 for different values of ¢'.

approach to zero in the true thermodynamic limit in the SF
phase, we obtain the phase boundary by using the criterion
that for G _, o less than 1073 the system is gapless.

B. Negative ¢’ case

To determine the BO phase, we calculate the order param-
eter B; and plot it as a function of i for different values of ¢'.
This is done for A = 0.5 in Fig. 6.

It can be clearly seen that, for small values of ||, there
is an exponential decay in B; [Figs. 6(a)-6(d)]. However,
in Fig. 6(e), we observe the emergence of long-range bond
oscillations. In Figs. 6(e) and 6(f), there are distinct oscillations
throughout the lattice. This indicates the presence of the
BO phase at higher negative values of #. In order to locate
the transition to the BO phase we compute the bond-order
parameter defined in Eq. (6).

We plot the thermodynamic values of the Ogo obtained
from a third-order polynomial extrapolation, as shown in
Fig. 7. The BO phase is expected to have a finite O, whereas

0.3 . , :

60 r T T 1 1

0.25, o 11

i 40 C 1 A

0.2 g3or 714

? o 20 1
10+ -1

30-15 [ 1 T R B

[=a) —8 65 -0.6 -0.55 -0.5]

o t

0.1

0.05

)

FIG. 7. (Color online) Plot of thermodynamic values of the Ogo
against t' for A = 0.5. A discrete jump in the values can be observed
around the transition point. Inset: first derivative O, ., ,, showing
a peak at the transition point from SLMI to BO phase.
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FIG. 8. (Color online) Energy gap, G, plotted for different lengths
against #'. The minimum of the L — oo curve implies the critical
point.

it will be zero in the SLMI phase. As can be clearly seen from
the figure, a discrete jump in its value is noticed, which is
further supported by a sharp peak in the first derivative as
shown in the inset. This clearly signifies a phase transition to
the BO phase from the SLMI phase. The transition is located
by taking the derivative maximum of the Opo(z—0) given by
O]’go(L_)oo) = d Opo(L—o0)/dt’, as shown in the inset of Fig. 7.

The bond-order parameter calculation to locate the SLMI-
BO transition critical point is complemented by the scaling
of the single-particle excitation gap G,. In Fig. 8 we plot
G as a function of ¢’ for different lengths and for L — oo
obtained by extrapolation. It can be seen that the system is
always gapped along the A axis. The gap decreases as the
critical point approaches and remains finite and then increases
again. The minimum shifts towards the actual critical point for
larger lengths. Extrapolating to the thermodynamic limit we
find the minimum to occur at the critical point #’ = —0.604 as
obtained from the Ogo scaling. Note, however, that the gap

FIG. 9. Thermodynamic values of S(rr) is plotted for the entire
range of ¢’ for A = 0.5.
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FIG. 10. Thermodynamic values of S(sr) are plotted for the entire
range of ¢’ for A = 0.05.

does not go to zero at the transition indicating a first-order
transition consistent with the jump of the BO order parameter.

The imposition of the superlattice potential A will cause
a density modulation of the type [...1010...] in all the
three phases. The structure factor, S(k), as defined in Eq. (7)
will show finite peaks at k = +m, whose heights are large in
the SLMI phase and smaller in the BO and the SF phases.
The thermodynamic value of S(ir) is plotted for A = 0.5 in
Fig. 9. In the BO phase, S(r) is small and increases steadily
with decreasing |#'|. At the transition point between BO and
SLMLI, it has a kink and then increases gradually as the value of
t" approaches 0. A similar plot for a smaller value of A = 0.05
is shown in Fig. 10 showing a similar peak in the negative ¢’
region at the transition point. In the positive ¢’ region, both
Figs. 9 and 10 show a gradual decrease in the value of S(ir) as
the system undergoes a transition from SLMI to SF phase.

We have also obtained the momentum distribution since it
can, in principle, be observed experimentally through time-of-
flight images and plotted it in Fig. 11. In BO phase, two peaks
appear, which shift away from k = . But as the system
enters the SLMI phase, it shows a broad peak at around & = 0
[Figs. 11(a) and 11(b)]. The two peak structure in the BO
phase is obtained even for A = 0 and has been investigated
earlier [23]. For positive ¢’ region, the population of atoms in
the k = O state is small, as indicated in Fig. 11(c) but as the
system enters the SF region, the k = 0 starts filling up resulting
in a large peak as shown in Fig. 11(d).
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FIG. 11. Momentum distribution for different values of ¢’ for
A =0.5.

IV. CONCLUSIONS

We have obtained the phase diagram of a model of hard-core
bosons in a 1D lattice with nearest-neighbor hopping (¢ set to
the value of 1) and next-nearest- hopping (') in the presence
of a superlattice potential (A). We find that the phases obtained
depend on the sign of #'. For ¢’ > 0, there are two phases,
a gapped superlattice induced Mott insulator (SLMI) and a
gapless superfluid (SF). The superfluid is stable to switching
on the superlattice potential and a finite value of X is required
to drive the SF into the SLMI. On the other hand, fort’ < 0, we
obtain in addition to the SF and SLMI, a gapped bond-ordered
(BO) phase. The SF phase for ¢’ < 0 is unstable to switching
on a superlattice potential and thus exists only for A = 0 up to
a finite value of |#'|. The BO phase exists even when A = 0 and
thus spontaneously breaks lattice translational symmetry and
can be characterized by a bond-order parameter. The transition
from the BO to the SLMI phase appears to be first order.
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