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Abstract. We report on first experiences with real-life applications using the MHD-module
of CO5BOLD together with the piecewise parabolic reconstruction scheme and present
preliminary results of stellar magnetic models with Teff = 4000 K to Teff = 5770 K.
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1. Introduction

CO5BOLD is a radiation-hydrodynamics code
for the numerical simulation of stellar surface
layers in three spatial dimensions.It is also used
for the simulation of entire stars. The code and
applications of it are described in Freytag et al.
(2012). Two different approximate Riemann
solvers are used—a Roe type solver (Roe
1986) for the integration of the hydrodynam-
ical equations, and an extension of the HLL
solver (Harten et al. 1983) for the integration of
the magnetohydrodynamical equations. Each
of these solvers can be combined with different
methods for the reconstruction of a piecewise
continuous solution from the numerical solu-
tion given at discrete nodes (Freytag 2013).
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Piecewise linear reconstruction is used with the
van Leer scheme, while PP uses a piecewise
parabolic reconstruction (Colella & Woodward
1984). The reconstructions yield left and right
states at computational cell interfaces, which
defines the Riemann problem to be resolved
with the Riemann solver (see, e.g., Toro 2009).

In the past, numerous applications with
CO5BOLD have been carried out using
HLLMHD in combination with the van Leer
reconstruction scheme (e.g., Schaffenberger
et al. 2006; Steiner et al. 2008, 2010; Kato
et al. 2011; Nutto et al. 2012; Steiner & Rezaei
2012; Wedemeyer-Böhm et al. 2012). Here,
we report on first experiences obtained with
HLLMHD in combination with the PP re-
construction scheme, using the code version
002.00.2011.04.28. While standard 1-D and
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Fig. 1. Temperature in a horizontal section 1200 km above the solar surface of τ5 =1 (top row), bolometric
intensity (middle row), and vertical velocity at 800 km depth (bottom row) of a magnetic field free simula-
tions in a box of side lengths 9.6 Mm. The grid constant in the horizontal directions is 40 km. Starting from a
unique model, it was advanced for 540 s with different combinations of Riemann solvers and reconstruction
methods. Left: HLLMHD and van Leer; Middle: HLLMHD and PP; Right: Roe and van Leer.

multi-dimensional test problems were carried
out in the course of the code development, we
give in Sect. 2 a qualitative comparison be-
tween different schemes when applied to real-
life problems and discuss applications to stellar
atmospheres in Sect. 3.

2. Qualitative comparisons

The PP reconstruction is formally of higher or-
der accuracy than the van Leer reconstruction.
On the other hand, the Roe solver is more ac-
curate than the HLL solver because it approx-
imates the true Riemann solution in more de-

tails than HLL does. It is therefore interesting
to ask whether the HLLMHD solver in combi-
nation with PP performs as well as the standard
hydrodynamic module of CO5BOLD, which
combines the Roe solver with the van Leer re-
construction scheme (but see Freytag 2013, for
the latest standard combination for hydrody-
namics). Of course, we can answer this ques-
tion only for a magnetic field free model at-
mosphere because the implemented standard
Roe solver works without magnetic field only.
On the other hand, HLLMHD also works when
setting the magnetic field to zero.
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The middle row of Fig. 1 shows the emer-
gent bolometric intensity from the surface of
a solar model with a field of view of 9.6 ×
9.6 Mm2. Starting from a unique model, it
was advanced for 540 s, which is of the or-
der of the granulation life-time. We see that the
HLLMHD solver in combination with the van
Leer reconstruction scheme (left panel) pro-
duces a distinctly more diffusive solution than
the HLLMHD solver in combination with the
piecewise parabolic reconstruction PP (middle
panel). The latter combination produces much
more granular substructure than HLLMHD
with van Leer does. At the same time it pro-
duces a solution, which is much closer to the
solution obtained with the Roe solver in com-
bination with van Leer (right panel), which
was the standard combination for pure hydro-
dynamic simulations in the past.

The same statement can be made regard-
ing the temperature structure at a height of
1200 km above τ5 = 1, which is shown in the
top row of Fig. 1. This height level corresponds
to the lower chromosphere. There, magnetic
field free simulations produce a distinct mesh-
work of shock fronts (Wedemeyer et al. 2004).
Despite the fact that the time scale of this shock
meshwork is much shorter than the granulation
life-time, the solution produced by HLLMHD
in combination with PP its quite similar to the
standard combination Roe plus van Leer.

The bottom row shows the vertical veloc-
ity between −10 km s−1 (downflow, black) and
+4 km s−1 (upflow, white) in a depth of 800 km
below τ5 = 1. Once again, HLLMHD with
the van Leer reconstruction is distinctly more
diffusive than the other two schemes. At this
depth level, however, HLLMHD with PP does
not really match the solution produced by the
Roe solver very well. Details differ, in particu-
lar, shapes and strengths of down flow plumes.
On the other hand, the solution produced by
HLLMHD and PP reconstruction looks barely
more diffusive than that obtained with the Roe
solver.

When introducing magnetic fields,
HLLMHD with PP produces wiggles and
saw-teeth in the internal energy and derived
quantities (especially the temperature) at chro-
mospheric heights (see Fig. 2 as an example).

Fig. 2. Temperature in a horizontal section 1200 km
above the solar surface of τ5 = 1 of a model with
an initially homogeneous, vertical magnetic field
of strength 50 G and a box side-lengths 4.8 Mm.
HLLMHD and PP was used to advance the solution.
While showing much more details than HLLMHD
plus van Leer, it also produces wiggles, saw-teeth,
and single cells with very low temperature.

Here, PP seems to act too aggressive (see also
Freytag 2013, in this volume). Interestingly,
this problem occurs with magnetic field only
and disappears when setting B = 0.

At first, we experienced with HLLMHD
plus PP strong overstable oscillations of the en-
tire atmosphere when computing models with
effective temperature Teff = 5000 K and even
more so with Teff = 4000 K. We traced this
problem back to the employed time integra-
tion scheme: when the original Hancock time-
integration scheme was replaced by the sec-
ond order Runge-Kutta scheme, the problem
disappeared. Meanwhile, a more consistent
(higher temporal order) treatment of the gravi-
tational terms with the Hancock scheme, yet to
be tested, should have remedied this problem
(B. Freytag, W. Schaffenberger, priv. comm.).

3. The magnetic fine structure of
stellar atmospheres

Other than the solar atmosphere with Teff =
5770 K, we have also computed stellar mod-
els with Teff = 5000 K and Teff = 4000 K.



Steiner et al.: CO5BOLD using HLLMHD and PP 103

Fig. 3. Emergent bolometric intensity of models with effective temperature, surface gravity, and field-of-
view as indicated. The initial models were supplemented with a homogeneous, vertical magnetic field of
50 G and advanced for 1 to 3 hours using HLLMHD with PP reconstruction.

Example snapshots of these simulations are
shown in Fig. 3. Since the average size of
granules approximately scales with the pres-
sure scale-height, it decreases with decreas-
ing effective temperature, as does the contrast
(Freytag et al. 2012). All the time instants
of Fig. 3 show a bright filigree in the form
of sheets, dots, and crinkles, which coincide
with locations of magnetic flux concentrations.
They look similar in all three snapshots, maybe
with the tendency of being more roundish and
crinkle-like at Teff = 4000 K and more sheet
like for the solar model. At this point, we have
not yet verified whether the appearance of dou-
ble layered sheets are a consequence of phys-
ically real ‘hot walls’ or if they are rather an
artifact of the PP reconstruction being too ag-
gressive

Table 1 lists a few properties of the
strongest small-scale magnetic flux concen-
trations that evolve in the three models of
Fig 3. The second column lists the mean (from
n snapshots) of the maximal field strength
at optical depth unity. The third column is
the corresponding mean of the maximal field
strength at the fixed geometrical height where
the mean optical depth is unity. The geomet-
rical difference between these two depth lev-
els (again averaged over n snapshots) is termed

WD, in reminiscence of the Wilson depression.
Beq th is computed from the mean gas pres-
sure at mean optical depth unity from Beq th =√

8πpgas(〈τ〉 = 1). These are results of a very
preliminary analysis with only a few snapshots
taken into account, analyzed ‘by hand’, i.e., not
in a systematic and very accurate manner.

We note the following: (1) Bmax(τ = 1)
stays fairly constant, (2) Bmax(〈τ〉 = 1) steeply
increases with decreasing temperature, (3) the
Wilson depression drops more rapidly with de-
creasing effective temperature than one would
expect from the drop in the pressure scale-
height, and (4) while Bmax(〈τ〉 = 1) assumes
super equipartition values for the solar model,
it does clearly not so for the model with Teff =
4000 K. Property (3) can be seen to be a conse-
quence of property (4), which itself is possibly
a consequence of the reduction of convective
velocities with decreasing temperature. Given
property (1), property (2) can be understood in
terms of property (3) but essentially, it is due
to the fact that the optical depth unity drops to
deeper layers of higher pressures and densities
with decreasing temperature. Most intriguing
is property (1).

An interesting open question is the ra-
diative energy budget of magnetic vs. non-
magnetic stellar models because it relates to
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Table 1. Properties of small scale magnetic flux concentrations of three model atmospheres with
different effective temperatures, Teff . Field strengths are given in G. τ is a Rosseland mean op-
tical depth, WD the Wilson depression in km, Beq th the approximate thermal equipartition field
strength at the fixed geometrical height of mean optical depth 〈τ〉 = 1, and Hp the approximate
pressure scale-height in km. n is the number of snapshots that were analyzed. The indices give
the extreme deviations from the given value found in n snapshots.

Teff Bmax(τ = 1) Bmax(〈τ〉 = 1) WD Beq th Hp n

5770 2567
+310
−252 1616

+168
−81 315

+45
−28 1497 142 6

5000 2619
+471
−339 1876

+108
−130 154

+45
−29 1884 118 10

4000 2593
+451
−236 2056

+91
−90 73

+16
−14 2571 84 9

the photometric variability of a star in function
of its magnetic cycle. Since the outwardly di-
rected radiative flux at the top of the compu-
tational domain is considerably fluctuating in
time for a finitely sized box, one would have to
run extremely long time series for accurately
determining differences between the magnetic
and the non-magnetic model.

Here, we propose a straightforward solu-
tion to this problem, which consists in con-
structing a magnetic mask. The unmasked area,
A0 (with field strength below a certain level)
defines the ‘quiet star’ region with the mean
bolometric intensity I0. The masked area, Amag,
defines the mean intensity of the magnetic fea-
tures, Imag. Here, “mean” means spatial aver-
age over the respective mask. Thus,

δ =
〈A0I0 + AmagImag〉 − 〈(A0 + Amag)I0〉

〈(A0 + Amag)I0〉
defines the relative radiative surplus or deficit
of the magnetic model with respect to a hy-
pothetically field-free model. The average 〈...〉
is taken over a suitable time period. However,
caution is indicated because this approach im-
plicitly assumes that the unmasked area is not
influenced by the magnetic field at all, viz., that
〈I0〉 is the mean intensity of a model without
magnetic field.
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