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have about five years before it actually fell into the Sun. ¥
it was only as large as Uranus, it would enly become visible
o0 the naked eye as Uranus is now visible, and would reach
the Sun in three years from that time.

We are therefore bound, you see, to have some warning of a
collision of a dark body with the Sun causing such. an out-
burst as would destroy the world. The larger the dark body,
the greater the collision, and the more extensive the final
catastrophy, the longer our warning would be, extendipg to
perhaps twenty or thirty years. On the other hand if the
dark body were of the smallest size that by its direct collision
with the sun could cause the evolution of enough heat to
destroy the earth we might only have a couple of years of
warning.

Dynamical Theory and Tidal Friction.

Questions regarding the tides have been recognised as
being of the very first importance by great sea-faring nations
like the English from the remotest antiquity. The ancients
must have early disecovered that there was a connection
between the sbb and flow of the tides and the diurnak
motion of the Moon. Camsar shows us in bhis De bello
Gallico that he possessed a rough and ready idea of that
eonnection. He must have noticed that the intervals
between. the times of high water were equal to half those
between the Moon’s meridian passage. Of course he did not
know that the Moon could cause high tides when on the meri-
dian below the horizon. TFor high water is meot produced
merely under the Moon, but equally (or to be more accurate,
almost equally) on the side of the Earth furthest removed
from the Moon. These great tidal waves are separated from
each other by } circumference of the Earth. As the Earth
rotates, every part of its surface that is roughly in the same
plane with the Moon, passes successively under these tidal
waves. And then it is high tide at these particular places.
But if the Moon’s absolute attraction caused the tides,
there would be only one high tide, whereas there ate
two tides daily. Again if the Moon’s tidal force were equal
on all the component parts of the Earth, there would be ne
tides at all. Why then are these two lunar tides (we.are, for
simplicity’s sake at present neglecting the solar tides) daily ?
If the solid part of the Earth were fixed in space, and if the
Moon were. also fixed then there would be but one high-tide
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heaped up always under the Moon. But Earth and Moon
are all the time tracing out ellipses round each other, or to be
more accurate, around their common centre of gravity, which
is about 3,000 miles distant from the Earth’s centre, and so
the conditions are quite different and more complicated. The
great mathiematician Newton was the first to give us any-
thing like a rigorous theory of the tides. But he necessarily
left this very difficult problem imperfectly solved. He showed
that every particle of water on the Earth is attracted towards
the Moon with a force proportional to her mass, and to the
inverse square of her distance from the particle. Hence she
attracts' a particle nearest to her, more than a particle at the
Earth’s centre, and still more than a particle on the furthest
gide of the Earth away from her. Therefore she diminishes
the Barth’s attraction on any particle of water nearest her,
and on any particle on the furthest side from her. Now, if
you have two bodies not far apart, and attach to them two
long strings, and if then you pull the strings towards yau, you
will thereby also pull the two bodies towards each other. And
this accelerating force driving the balls together, varies
in the ratio of the distance of the balls from each other, and
the inverse ratio of the length of the strings. Thus the Moon’s
tidal force on the waters which lie at 90° from the common
plane of the Eartb and Moon reinforces the Earth’s attraoc-
tion there. But the Moon’s contractive tidal force at thege
points is only %} xher tidal differential or separative force
above mentioned. Of course the Moon exerts = tidal force
upon the Earth’s matter as well as on the ocean, but the
firmness of the Earth’s solid matter destroys any apparent
reaction to this force. But the fluid ocean is free to obey this
tidal force, and thus to exhibit the change in its form. Now
let us go more accurately and mathematically into the Moon’s
and Sun’s tidal force on the ocean. We will, for the present
oonfine ourselves to the tide-raising force of the Moon only.
The attraction of the Moon on the Earth as a whole is the
Erqduet of their masses divided by the square of their distance.

et M and m represent the masses of the Earth and Moon
and ¢ be the Earth’s centre, and » be the point nearest the
Moon, and f be the point furthest from her. Now the attrac-
tion by the Moon, on the Earth as a whole willbe K 22 the

(m )%
Earth moving with acceleration K =% towards the common

eentre of gravity of Earth and Moon. Now at point n, the
Moon’s attraction will be K ~=.. and is greater than at c,
because the denominator m n is less than m c¢. Hence the
Moon tends to accelerate the point # more than the point ¢,
and conssquently tends to draw a particle -at point n awny
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from the Earth’s centre. And this relative acccleration can
be expressed by the formula 2k - Again, aj; f the Moon’s
acceleration is K5r;, and this is less than K’ e because the
denominator m f is greater than m c¢. Thercfore t‘l}e Moon
tends to draw away the Earth from the point f, or in other
words, the Earth’s attraction on f is diminished by the Moon’s
tidal force. Thus we have proved that water both at n and
f tends to be separated from the centre of the Earth. We
have said above that water at the points 90° from n and f
tends to be driven towards the Earth’s centro by the Moon’s
tidal foree. Let p be the one point, and q the other. Thon

the Moon’s accelerating force on p is K. This forco can
be conveniently resolved into its 2 components, which are
parallel to ¢ m and p e, respectively. But the component
that is parallel to ¢ m simply makes the particlo at p move
along with the rest of the Earth, and therefore produces no
relative acceleration at all. Therefore it is only the 2nd
component, viz. :—that which is parallel to p o, that has any
effect on the relative acceleration of p. And this constrio-
tive force can be represented mathematically by the formula
KmZZs =Km =43 Km ;. Similarly at ¢ the
Moon tidally attracts ¢ with relative acceleration K m -5, =
Km 45 = Km 5. Hence at either points p or q, &
particle of the ocean tends to approach the Earth by a force

=% . Of course similar results arise from the attraction
of the Sun, the solar wave tending to follow the apparent
motion of the Sun, but to a much less dogree, because this
tide-raising force is in the ratio of the masses, but in the
inverse triplicate ratio of the distances. And this distance in
the case of the Moon is only 30 x Earth’s diameter, but in the
case of the Sun 12,000 x Earth’s diameter.

The mathematical ratio of the two tide-raising forcos of tho
Sun and Moon, respectively, can be shown thus—
2 x g 2 x 322,000 .
@y X “mEooep - = 802
(nearly). Thus although the Sun is so much heavier than the
Moon, the proportion of the distances cubed is far groator
than the simple proportion of their masses. The Moon’s
tidal wave is about 58 inches, that of the Sun only about 23
inches. Whilst gravity =15 million x Sun’s tide-raising force,
it only = 6 million x Moon’s tide-raising force, or about 4
million x tidal force of Sun and Moon together. As a matter
of fact however, as the Earth is a spheriod of revolution and
not a sphere, the Earth’s gravity is more than 4 million x

Moon : Sun =g x
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tidal force of Sun and Moon together, being nearer 5 million

times greater. It can be calculated mathematically, that

the Moon’s tide-raising force =4 of her whole attraction,

bgcause it is as twice the Earth’s radius divided by the Moon’s
distance, or & = 4. And as the Moon’s mass is g %
Earth’s mass and her distance =60 x Earth’s radius, therefore
the fraction of the Earth’s gravity represented by the Moon’s

differential tide-raising force =g x 3T X ¥y g x 1 And

] . (60)2 8,640,000

since the Moon’s constrictive tide-raising force =% her differen-
tial, her constrictive tide-raising force =g x sason-  Thus if
the constrictive force =1, the differential will be 2, and there
is a force altogether of 3 tending to make the water under the
Moon higher than the water 90° distant. We can easily com-

pare the tide-raising force of the Moon at points 7, ¢ and f.
For the attraction of the Moon—

1
at n=g x (é—’é%i =g x 0-00000359.

|
at c=g x (_ago_";.g =g % 0-:00000347.

1
= RO — .
at f=g x (61)9 =g x 0:00000335.

It is impossible however actually to. observe by experi-
ment the variations in the force of gravity due to the Moon’s
tidal force, owing to the fact that they are such very small
quantities. Darwin thus failed to measure them experi-
mentally, because other causes of far larger amounts
interfered. It should be remembered that the tide-raising
force due to the attraction of the Moon or Sun varies inversely
not as the square but as the cube of the distance, as we have
shown above by the formulas 2k ;7 r, (representing the
differential force) and k g r (the conmstrictive). This can
easily be shown thus.

Since attraction atn ==(.a_;§;_)_z_
and attraction at ¢ = ;‘Lﬂ
.. tide raising-force at n=m(_._.__~_.( d——l—r)z —_— dl_s)

—m 2d r—r® )
- dé4-2d% r +d® r?

4
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=(Since r is very small compared with d) miI, It may be
interesting to compare the difference of the tide-raising forces
of Moon and Sun at perigee and apogee. Sinte the eccen-
tricity of the Moon’s orbit is -4, her distances at apogee and
perigee are in the ratio of (1 + %) : (1—%)=17 : 15, therefore
the tide-raising forces are as (17)%: (15)% = (about) 7: b.
Since the eccentricity of the Sun’s orbit is ¢y, his distances at
apogee and perigee are in the ratio of (1 +44) : (I—4) =21:

'19.° We have now investigated the amount and the ratios of
Moon’s and Sun’s tidal-forces at the four cardinal points,
wiz..—those in the plane of the attracting bodies, and those
at 90° from these points. It now remains to enquire a8 to
what will be the effect of these tidal forces at other points
than the four cardinal points. The tidal forces will then be
tangential forces tending to draw the water towards the plane
of the ‘attracting bodies. This tangential force is the
resultant of two component forces, one of which is parallel to
the direction of the attracting bodies and the other perpendi-
cular to this direction. 'This force will then have the effect,
not of raising or lowering the water, but of imparting to it a
motion. Its amount and direction can be represented by the
length and direction of the resultant diagonal, divided by the
oube of the distance, thus :—Km Dliasighbeonl — We have
hitherto been chiefly considering the effect of the Moon’s tidal-
attraction, we will now consider the tides as due to both Moon
and Sun. We have already shown that the Sun has its 2 tidal
waves as well as the Moon (although in actuality they coalesce
o form one ellipse) and that their ratios are as 7; 8. At half
"Moons the Sun is at 90° or 6 hours from the Moon. The Sun
s ‘therefore pulling crosswise to or athwart the Moon, trying
‘to make it high water when the Moon is trymg to make it low
water. But the Moon’s tidal-force is 7 x Sun’s tidal-force,

and as the actual tide is then due to the difference of the 2
forces, the effect of the Sun is to lower the tide, so that it then
Tises and falls least, the height of the tide being then the differ-
ence of the lunar and solar tides. This is called “ Neap tide.”
When the Moon is in syzygies (either hew or full Moon) the
Sun is then reinforcing her tidal-attraction and the result is
the “ Spring Tide ”, when the tide rises and falls most. The
height is then equal to the sum of the solar and lunar tides.

The height of the spring tide =(14§)=42 x that of the lupar
tide alone. The height of the neap tide =(1—$) = 4 x the
lunar tide. Hemnce the ratio between the spring and the neap
tide=2%: $=10: 4. When however the Moon is neithér at
Syzygies m)r quadratures, the Sun’s tidal-interference with the
Moon’s tide is of a different nature at every period of the
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month, the actual high water is either accelerated or retarded
by the Sun. Thus in the 1st and 3rd quarters of the Moon,
the Sun will tend to pull the tide westwards of the lunar
direction, when the time of high-tide will then be accelerated
for us on the Earth’s surface, and the opposite effect will take
place in the second and last quarters, when the time of high-
tide will be retarded. - Because, when the two tidal waves do
not coincide, their combined culmination must be at a point
intermediate between them. Consequently the tide is not 49
minutes later every day, as it would be if it exactly followed
the Moon, but some times it is as much as 11 minutes earlier
than this 49 minutes period (i.e., 24 hours 38 minutes) and
sometimes later by 11 minutes (i.e., 25 hours). This is called
the priming and lagging of the tides. The approximate time
of high water at any particular port in the afternoon of the
day when the Moon is in syzygies is called the ‘“ Establish-
ment of the Port.”” It represents the mean interval between
the moment when the Moon crosses the Meridian, and the
moment when it is high-water at that port. This interval
depends upon local circusmtances, as to how the tide has to
reach the place. Except for the interfering effect of wind
and barometric pressure, this * Establishment of Port’’ is
constant. This comparative lateness of high-tide is due to
the interference with the free motion of the tide due to large
continents, the narrowness of channels, their length and depth
etc. At London the establishment of port is 1 hour 58 minutes,
so that mean high tide occurs 1 hour 58 minutes later than
the transit of the Moon, ¢.e., when the Moon’s hour angle is
1 hour 58 minutes or 29° 30" angular distance from the meri-
dian. By correcting for the priming and lagging of the tides
the lunar time of high-water can be calculated for any phase
of the Moon. It is very important for maritimie purposes to
make accurate observations in reference to the establishment
of ports, and these observations unfortunately are sometimes
made incorrectly, owing to observers often confusing the time
of high-tide with the time of “ Slack-water > which is quite a
different thing, and means merely the time when the tide
ceases to flow qne way or the other. The heights of the
spring and neap tides are proportional to the distances of Sun
and Moon from the Earth. When both are in perigee, spring
tides will be at their highest. When the Moox is in apogee,
and the Sun in perigee, the neap tides will then be at, their
lowest. The Spring tides are greatest, we have said, when
Sun and Moon are in perigee, but they are in reality still
greater at the Equinoxes, when the Sun is on the equator and
‘the Moon therefore necessarily only 5° from it, because then
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their pull is direct (that is not obhque). They are greatest
of all, when (added to all these favourable circumstances)
the Moon's nodes are at the Equinoxes, which happens every
93 years. The variation in the height of tides due to the
declination of the Sun and Moon, is 1n consequence of the fact
that the vertex of the tide-wave tends to take its position
immediately under or normal to the Sun and Moon, and thus
when the Sun or Moon shifts North or South the tide must
shift too  For example, if the Moon is 1n North declination,
and the place on the Earth is in North latitude ; of two con-
secutive tides, that which happens when the Moon is near the
Zenith will be greater than that which happens when the Moon
is near the Nadir, because the Moon’s least Zenith distance is
then less than her least Nadir distance The difference will
be greatest when Sun and Moon are m oppogition and in
opposite declinations. This is called the ““ Diurnal Inequality.’
These inequalities in height of the tides can be regarded
as half periods, of a day or fortnight. But, after a fortnight
the Moon’s declination will have the same value but opposite
sign. Hence a fortnightly tide. In the same way these in-
equalities in the heights of the tides can be referred to the
Sun, being then semi-diurnal and six-monthly. When both
the Sun’s and Moon’s declination is Zero, of course there is no
such difference in the diurnal, fortmightly or half-yearly tades.
It is interesting to note that the first attempts at finding the
relative masses of Sun and Moon were made by means of
measurcments of the relative heights of the Solar and lunar
tides. Thus, if the spring tide anywhere is say 41 feet, and
neap-tide is 15 feet, then the ratio between lunar and solar
tide =(41 +15) : (41—15)=28 13. But tidal forces are pro-
portional to the masses and inversely proportional to the
cubes of the distances Now the Sun’s distance = 385 x

Moon’s distance. Therefore the Moon’s Mass = %; x 1

13 (385)8 ~

1
———_ _ x Sun’s mass, and ’
56,500,000 X 8 as the Sun’s

mass is known by other means to be 324,000 x Earth’s mass,
324000

26,500,000

x Earth’s mass. Again if the ratio of the Sun and

Sun’s mass =

therefore the Moon’s mass = » Earth’s mass =

1
81:79
Moon’s mass 1s known, then by a similar method the ratio of
their cdistances can be calculated We should mention here
that in speaking of ‘ diurnal” tides, reference 1s made not
to solar, but lunar days, because the time of high-tides
depends upon the Moon’s motion relative to the meridian, the
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sun merely modifying these effects. The lunar day is the
interval occuring between two upper transits of the Moon
across the meridian. And since 28} lunar days=29}% mean

solar days, therefore one lunar day = (1 +§glf) mean solar
2
days = 12 mean solar days = 24 hours 50} minutes. Be-

sides irregularities in the tides due to the local configuration
of the sea, base, and shore, etc., the tides are also affected by
the state of the atmosphere and the wind. The rise of the
tide is roughly in inverse proportion to the (height of the
barometer). Thus a fall of the barometer of % inch will cor-
respond to a rise of the tide of about £ feet = 8 inches. The
ratio being about one foot for every inch of the mercury.
Again the wind, if it blows into port, will make the tide rise
often several feet above the normal. But then the tide will
be delayed (curious as it may seem), because although the
depth of the high water at the bar is reached before the proper
time, yet the greatest depth is not attained till some time
afterwards. And opposite effects take place in the opposite
circumstances. If a tide has to run into a narrowing channel,
it will attain a height much greater than the normal. If on
the contrary the tide has to widen out into a large sea through
a small channel (such as through the straits of Gibraltar into
the Mediterranean), the tides will be almost imperceptible.
It is very difficult to detect the tides in lakes or land-locked
seas. Their height ought theoretically to be in the same ratio
to the height of a mid-ocean-tide, as the length of the particular
gea is to the length of the Earth’s diameter. But practi-
cally this theoretical valuation is so much masked by the
effects of wind and barometric pressure (which are far greater
in their results) that it necessitates a long series of careful
observations to separate real tides from the effects of these
other causes. Tides travel up rivers at & rate proportional to
the depth of the river, the amount of friction encountered by
the rivers’s bed, and the river’s velocity. It usually ascends
the river as far ag the point where the velocity of the river
=the velocity of the tide. At this point it will be ‘““slack
water,” as we before mentioned. It is the point where any-
thing on the river’s surface would cease to float upwards. The
tidal velocity in rivers is something between 10 and 20 miles -an
hour, and it will attain a height far greater than the apex
of the tide at the river’s mouth. @ We have hitherto bcen
treating chiefly of the great ocean in its statical aspect, i.e.,
as forming the figure of a prolate spheriod around the Earth
(this prolate spheriod being generated by the revolution of the
ocean’s ellipse about its major axis), which points in the
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direction of the tidal attraction. This no doubt would be &
perfectly accurate description of the form which the ocean
would assume, if the Earth did not rotate. But when we
take into account at the same time the Earth’s rotation, we
find that the form of the ocecan’s surface is greatly modified
thereby, and instead of the major axis of the prolate spheroid
peinting towards the Moon, we learn on the contrary the
surprising fact that it would be low tide in direction of the
tide-raising force and high tide at 90° angular distance from
it. However, whether the Earth rotated or not, the tide-
raising bodies would always tend to draw the water away
from the poles towards the equater. Moreover from the
equilibrium theory of the tides, certain useful deductions can
be made. For example, the height of the tide is proportional
to the ratio of the tide raising force to gravity, and hence
inversely proportional to the intensity of gravity, which is
itself proportional to the density of the Harth. Another
-mathematical consequence ig, that the height of the tide is.
proportional to the Earth’s radius, because both the inten-
sity of gravity and the intensity of the tide-raising forces are
themselves proportional to the Earth’s radius. We are thus
enabled to calculate tidal quantities on different celestial
bodies. For if M represent the mass of the attracting bedy
and R its distance, and r represent the radius of the body
whose tides we are considering and d its density, then we have
the formula ;%' -to denote the height of the tide on that parti-
cular body. But as we have said this statical theory of the
tides is wholly intomplete, because it fails to take into aecount
the fact that the Moon and Sun besides merely raising the
tides, have to keep up their motion round the Earth, in the
opposite direction from its rotation (viz :—from East to West).
The statical theory also fails to take into account the fact,
that a tidal wave hag impetus of its own. This trapetus varies
according o the depth of the water and the force of gravity,
and the amount of friction it has to encounter. The dyna-
mical theory then which tales into account all these things
is @ much more complicated and difficult problem. But what
has been said above in connection with the statical theory is
absolutely necessary to be thoreughly compreliended before
we can understand the true dynamical theory. Now if the
Earth had no continents, but was entirely covered with
‘water, ‘the tidal waves would travel round the globe at a
constant velocity. And this velocity would be the apparent
velocity of the Moon, the vertex of the tidal wave keeping
always under her, if the depth of the water were as much as
or more than 14 to 124 miles. If the dopth were less than 124



NOV. & DEC. '14.] DYNAMICAL THYORY OF THE TIDES, &o. 27

miles, the tidal wave would travel 90° behind the Moon, whilst
the water near the poles, since it hag a far less distance to
travel in each rotation than the water at the Equator would
still be able to keep up with the Moon. There would thus be
aneutral latitude of tideless water between these two extremes,
‘We must however distinguish between a wave whose motion
is one of ““ forced ” or on the other hand *‘ free oscillation.”
If an earth-quake should suddenly disturb the ocean and then
the wave generated were to be left to take its own course, this
would be an instance of “ free oscillation.”” In this cage it
can be mathematically proved that its (velocity)® will vary
in the ratio of the depth of the ocean, and will be given by the
formula v® = gh or v=i/gh, which is the velocity which a
body would acquire in its fall through the depth of the ocean.
Thus in a depth of water of say 100 ft. the wave’s velocity
would be = 40 miles an hour, and in 10,000 ft. would =
nearly 400 miles an hour. Now as the Moon passes daily
from over the continent of America into the Pacific ocean,
she generates after the manner of a forced oscillation an initial
tide in the Pacific. The wave then continues its course much
after the manner of a free wave, but not quite, sincc the Moon
still accelerates it, because she travels slower than does the
surface of the Earth at the Equator, and therefore relatively
Westwards. Another tide wave is generated by her in the
same place 12 hours later when she is on the meridian below
the horizon. It also commences as a forced and continues
merely as a free oscillatory wave. If we enquire more accu-
rately into the manner of the tidal wave’s motion round the
globe, we notice that in the first and third quadrants of the
Earth’s equatorial circumference, the Moon’s tidal attraction
will pull the wave in a direction contrary to that of the Tarth’s
rotation, and in the 2nd and 4th quadrants the Moon will
pull in a similar direction to the Karth’s rotation. Therefore
after the first and third terrestrial quadrants the wave will be
going comparatively slowly (having been retarded by the
Moon), ‘but after the 2nd and 4th quadrants, the wave will
be going at its fastest, having been accelerated by the Moon.
Thus at quadratures the wave will bo travelling slowly, and
at Syzygies it will be travelling fast. And if the water be
travelling fast (say for simplicity’s sake) in & uniform canal
it must be shallow when it is travelling fast, and deep when
it is travelling slowly. But as we have shown, the place
where it is travelling fast is in the direction of the Moon, and
when it is travelling slowly is at 90° to that dircetion. There-
fore from the dynamical theory of the tidal motion, we arrive
at a result which is the exact opposite from the result obtained
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on the statical theory, wiz —that under the Moon it will be
lowtide, and at 90° from the Moon it will be hightide. This
dynamical theory however, though being nearer the truth
than the statical theory, does not give a result which is abso-
lutely and mathematically correct in fact, owing to the ex-
tensive complications that arise from the varying depths of
the ocean, etc., etc. Supposing for simplicity’s sake, the tidal
wave to be running in a canal round the world of constant
depth and width, let us see the results. You will easily per-
ceive that the deeper the canal, the greater the amount of
water lifted in any vertical column by the Moon, because
more water is displaced in the case of a deep vertical column
than a shallow one: and hence the morc it will be elevated
relatively to the water at its side. Now the only way the
raised water is able to fall again to the normal level of the
ocean, is by pushing forward and upward its adjacent column.
And hence the motion of the tidal wave depends upon the
ratio of the height of the tidal wave to the normal height
of the surface of the ocean. And this depends upon the
depth, as I stated above. To keep up with the Moon the
tidal wave would have to travel over 1,000 miles an hour,
which would necessitate a depth of from 12 to 14 miles.
But the sea is nowhere anything approaching this depth,
being mnowhere .probably deeper than & miles. And this
would give a velocity of only 600 miles an hour, cven if it
were as deep as 5 miles all over. In other words gravity is
quite unequal to the task of making the tidal-wave keep pace
with the Moon, except perhaps very near the poles.

Let us now consider what is the motion of any individual
particle composing the tidal-wave. When a particle is above
the mean level of the ocean, it will be advancing, since the
wave is produced by the pushing of a whole vertical column of
particles. But when the particles are below the mean levet,
they are then receding. Hence, an individual particle des-
cribes & long ellipse. If, however, the wator has an indepen-
dent current of its own, the ellipse will travel along in com-
pany with the current either backwards or forwards. The
velocity of any individual particle can be mathematically
calculated. It bears the same ratio to the velocity of the tidal-
wave, as the wave’s height above the mean level of the occan
bears to the whole ocean’s depth. We will now enquire more
fully into the components of the Moon’s tidal-attraction. At
the four cardinal points, 4.e.,the two points in the Moon’s plane
(or at 0° and 180°), and the other two points at 90° and 270°,
the water is pulled neither East nor West by the Moon’s
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action. But between these points and most of all at the half-
quarters, the force is tangential towards the plane of the
Moon. Therefore at these half-quarter points, the tidal-
wave cannot rest in equilibrium, for it is being pulled back-
wards or forwards by the tangential force. And this tangen-
tial force is counteracted by no other force, since, gravity is
indifferent to motion forward or backward along the Earth’s
circumference. And herein lies the most glaring defects of
the statical theory when taken alone, in that it absolutely
neglects this tangential force which is really the most impor-
tant force of them all, because it is quite independent of
gravity. Thus whilst the tidal wave cannot keep under the
Moon, it cannot remain (owing to tangential force) at any point
from there up to 90°. Hence, not only, as we have said above,
the true dynamical theory of the tides proves that it is low
water under the Moon but it proves the still more startling
fact, that the particles of the water under the Moon are
flowing backwards, because water below the level of the
advancing wave flows backwards in an elliptical curve,
though of course much more slowly than the tidal-wave
advances. The only matter that remains to be noticed, is
the effect of friction, which is always acting as a drag
upon the motions of the water. We have showed above
that the head of the tidal prolate spheroid cannot remain in a
line with tlie Moon, nor owing to tangential force can it lie
between that point and 90° Eastwards. But even at 90°
from the plane of the Moon’s direction, the wave cannot
remain, because being a cardinal point, there is no tangential
force there and gravity exerts no influence backwards or for-
wards, but the water is advancing with its greatest velocity
there, and therefore meets with the greatest amount of fric-
tion in opposition. Consequently friction unopposed by any
other force would carry the major axis of the tidal prolate
spheroid still further back than 90°. But between 90° and
L80°, both friction and tangential force would continue to
urge the wavehead still further backwards, and so it cannot
stay there. And as we have secen above, it could not stay at
180°. But it can at lagt find a resting place, so to speak,
between 180° and 270°, because at a point intermediate (say
225°), friction is acting backwards or Kastwards with the
Earth’s rotation, and the tangential force is acting Wost-
wards, and so from these two forces in opposition, equilibrium
is at lagt attained. Thus according to the true dynamical
theory, the wave-head of the tidal spheroid has fallen back,
225° from the Zero point facing the Moon, which was the
position which according to the statical theory it should have
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assumed. And this looks for all practical purposes (because
for practical purposes, it is of no consequence what particular
end of the major axis points in either direction) ag though the
wave-head had only fallen back 45° from the direction of tho
Moon. We will next consider the actual coursc of a tidal
wave., It is as follows. It starts on the West coast of South
America, and travels West through the deepest water of the
Pacific Ocean at a rate of 850 miles an hour, so that the tidal-
wave reaches New Zealand in about 12 hours from the start.
It then passes on by Australia through the Indian Occan and
arrives at the Cape of Good Hope in 29 hours. It then enters
the Atlantic and verges towards the North at about 700 miles
an hour. It arrives at Florida in about 40 hours from tho
start. But in order to get to London it has to go round the
North of Scotland and then southwards through the North
Sea, and arrives there in 58 hours from the start. Hence in
the great oceans there are four great tides following each other
at the same time, and nearly in the same paths.  Their paths
are however modified continually by the changing declination
ard distances of Sun and Moon. In the middle of the great
oceans the height of the tidal-vertex is not more than 2 or 3
feet, but on the continental shores it is a great deal more
pronounced. And in bays which narrow very rapidly (for
example the Bay of Fundy) the tide is nearly 100 ft. At
Bristal it is 50 ft. The shallower the bottom, the less will bo
the velocity and the greater will be the hcight of tho tidal-
wave. The height of the tidal-wave varies theoretically
inversely as the fourth root of the depth. But this theore-
tical calculation is greatly meodified in practice, by tides
interfering with one another. For example, when a tidal
wave beats up against a coast, specially if the water be decp
there, it will be reflected for a very considerdible distance back
dgain into the ocean, and will meet the next tide coming in.
And these so-called ‘ interferences > greatly vary the height
of the tides even at places comparatively noar to each other.
Again there are places, where the tide comes in by two different
routes. For example on the East coast of England the tide
not only comes round by the North of Scotland, but in a minor
degree also up the English Channcl. "This has the offect of
producing tides at some places of twice the normal height,
and at other places the tide is reduced to almost nil. We
must' not forget to mention a most important scientific fact,
which 1s proved by the action of the tides, namely that the
Earth’s interior core is exceedingly rigid ; a fact which goed
glean‘ against the theories of the geologists, who held that the
interior of the Earth was a viscous molten mass. The Barth's
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rigidity is proved in this way. If the Earth’s core were
viscous, it would yield somewhat to the tidal-attracting forces.
And if it yielded the tides would be diminished. But the
most careful observation shows that the tides are not dimi-
nished by the minutest fraction from what they ought to be if
the Earth were as rigid as steel. Now we must consider the
very interesting results which follow from tidal-friction. As
the Moon revolves 27} times slower than the Earth from
West to ast, she of course moves relatively to the Earth’s
rotation in a direction East to West, tending to drag the water
of the ocean (or rather a portion of it) in a direction contrary
to that of the Earth’s rotation. Thus friction is set up be-
tween the Earth’s surface and the ocean. Hence whatever
water stays behind with the Moon must retard the Earth’s
rotational velocity. This is due to the fact that liquids are
viscous, and resist change of form, and in doing so convert
part of their kinetic energ gy into heat. Owing to this friction,
the Harth’s rotating surface drags the water along with it,
whilst the Moon drags the Water back. Hence a couple is
formed, which tends to diminish the angular velocity of the
Earth’s rotation. If the tidal motion consisted merely in the
small variations of height twice a day in mid-ocean, tidal
friction would be a quite negligible factor. The case is quite
different however, when we consider the action of the tides
against the continents. Here immense waves'of water flow
with great friction against the shores involving a great amount
of energy which has to be made up for by the expenditure of
an equal amount of energy from the Earth’s rotating motion.
This means a lessening of rotational velocity. As the amount
however is really comparatively very small, the length of the
day is affected to only a very small extent. The day cannot
be more than "1'0'1666 second of time longer than it was a
hundred years ago. This excessive minuteness of the retard-
ation of the Earth’s angular velocity is no doubt due to the
fact that there is another cause which acts in an opposite
direction tending to accelerate the Earth’s velocity. For the
fact that the Earth is always giving out heat into space, means
that the Earth iz always contracting,-and hence the Earth’s
radius is diminishing and hence (as far as this cause is concern-
ed) its angular velocity is increasing. However the frictional
cause on the whole preponderates, resulting as we have said
in the Earth’s rotation being diminished by s 000 of a second
in a century. But if the Moon exerts a couple on the Earth,
it is obvious that the Earth will exert a counter couple on the
Moon. Now the Earth’s rotating surface tends to carry the



82 TRANSIT OF MERCURY. [V.1 & o,

head of the major axis of the tidal spheroid Bastward of the
Moon, and since the particles there are nearer to the Moon
than the particles at the other end of the major axis, the tidal
head tends to pull the Moon forward or Eastward, and hence
increases her velocity, and her distance (because her areal
velocity remains the same) and her period. Thus the month
is lengthened by tidal friction, as well as the day. Now, since
the Moon’s distance from the centre of gravity of Earth and
Moon is far greater than the distance of the ocean from its
axis of rotation which passes through the centre of the Earth,
the effect of tidal friction upon the Earth’s rotation is far
greater than it is upon the Moon’s orbital motion. Hence the
final effect of tidal friction is to make the day equal in length
of time to the month. Hence after many millions of years
to come, the day and the month will be equal, and it can be
calculated mathematically that they will both be 1,400 hours
long. The Barth will then always present the same hemis-
phere to the Moon, and lunar tides and lunar tidal friction
will then have ceased. But solar tidal friction will still con-
tinue. And its effect will be to continueto diminish the
Barth’s rotatary velocity. And it will have the opposite
effect upon the Moon’s orbital motion from what the lunar
tide had, namely to retard instead of accelerate her velocity
and to diminish instead of increase her distance. The Moon
will thus ultimately rejoin her parent Earth, and owing to the
immense gravitational pressure which will then be set up
between Earth and Moon, will to a certain extent coalesce with
the Earth, and the two bodies will together form one some-
what misshapen ellipsoid. The last step will be when the
rotation of this Earth-Moon body or in other words its day,
will .coincide with its year, and will follow the example of the
two inner planets Mercury and Venus in turning always the
same face to the Sun, one hemisphere remaining in eternal day
and the other in eternal night.

Observation of the Transit of Mercury,
7th November 1914,

By R.J. Pocock, B.A., B.Sc., FR.AS.,
Dirrcror, N1zamiar OBSERVATORY,
HyDpERABAD.

A’o Hydera]qa,d the first and second contacts alone were
visible, the third and fourth taking place after sunset.
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