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Holography, dark energy and entropy of large cosmic structures
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Abstract As is well known, black hole entropy is propor-
tional to the area of the horizon suggesting a holographic
principle wherein all degrees of freedom contributing to the
entropy reside on the surface. In this note, we point out that
large scale dark energy (such as a cosmological constant)
constraining cosmic structures can imply a similar situation
for the entropy of a hierarchy of such objects.
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The holographic principle (Susskind 1995; ‘t Hooft 1993)
has been invoked in connection with the well known result
that the entropy of black holes scales with the area of the
horizon (rather than volume like other systems). Thus:

S = kB

c3

4G�
A (1)

where A is the black hole horizon given by:

A = 4π

(
2GM

c2

)2

(2)

M is the black hole mass.

This implies: S ∼= kB

A

L2
P l

(3)

where, LPl = (�G

c3 )1/2 is the Planck length.
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Now in recent papers (Sivaram 1994a, 2008; Sivaram
and Arun 2012a) a new kind of cosmological paradigm was
invoked wherein the requirement that for a hierarchy of
large scale structures, like galaxies, galaxy clusters, super-
clusters, etc. their gravitational (binding) self energy density
must at least equal or exceed the background repulsive dark
energy density (a cosmological constant as current observa-
tions strongly suggests) implies a mass-radius relation of the
type:

M

R2
= c2

G

√
Λ (4)

(The requirement that gravitational self energy density =
GM2

8πR4 should be comparable to the background cosmic vac-

uum energy density of Λc4

8πG
for the object to be gravitation-

ally bound (autonomous) structures, implies Eq. (4) above
(Sivaram 1994a, 2007, 2008)). Λ here is the cosmological
constant with an observed value of 10−56 cm−2.

Thus: M ∝ R2 (5)

Equations (4) and (5) are seen to hold for a whole range of
large scale structures, including the Hubble volume. Thus:

Rgal = 3 × 1022 cm ⇒ Mgal = 1045 g

Rclus = 3 × 1024 cm ⇒ Mclus = 1049 g

This relation holds right down to globular clusters (Sivaram
1994b).

Considering that these structures are constituted by N

particles of mass m, then the entropy can be written as:

S = kBN (6)

(for identical particles).
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Thus (from Eq. (4)):

kBN ∝ kB

M

m
∝ kB

R2

m
(7)

Using Eq. (4) we have:

S = kB

√
Λ

c2

Gm
R2 (8a)

For m = mP , the proton mass, we have:

S = kB

√
Λ

c2

GmP

R2 (8b)

So we see that the entropy is proportional to the surface area
of the structure, given by 4πR2.

As Λ, mP , c, G are constants, the entropy just involves
the area, thus implying a new holographic principle simi-
lar to that for black holes. We can estimate S for different
structures.

For a large galaxy, Rgal ≈ 1023 cm; S ≈ 1068kB (corre-
sponding to 1068 protons).

For a galactic cluster, Rclus ≈ 1025 cm; S ≈ 1072kB .
This also gives the baryonic entropy ∼1078kB for the

Hubble radius.
For the average energy of the CMBR photon ∼10−12 GeV

this gives the total entropy of the radiation as ∼1088kB . Thus
basically, we have entropy proportional to area, suggesting
some kind of cosmic holography, distinct from that for black
holes. In the case of black holes, we have:

Sbh = kB

A

L2
P l

whereas for these cosmic structures we have:

S = kB

√
Λ

(GmP /c2)
A (9)

Now (GmP /c2) ≈ 2 × 10−52 cm is the proton-Schwarz-
schild radius. As (

√
Λ)−1gives a length scale of ∼1028 cm,

i.e. of the order of the Hubble radius, it is interesting that
√

Λ

(GmP /c2)
≈ 10−24 cm2 ∼ (proton radius)2 (10)

So Eq. (9) can be written as:

S = kB

A

L2
Pr

(11)

where LPr is the proton radius.
So while black hole entropy can be pictured as the to-

tal number of ‘Planck areas’, covering the horizon surface
area (Sivaram and Arun 2009; Bekenstein 1973, 1975), the
entropy for these cosmic structures (constrained by dark en-
ergy) is given by the number of ‘proton areas’ covering the

surface area of these objects. If dominated by dark matter
particles of mass mD and the fraction of dark matter con-
tributing to the mass M is f , then the entropy due to the
dark matter particles is just their number, i.e. f M

mD
, which by

Eq. (9) would still be proportional to the area of the struc-
ture. (So we can add up the entropies for the different con-
stituent particles, i.e. f1, f2, etc. each being proportional to
the area.)

As the Planck area L2
P l is much smaller than the proton

radius squared, the black hole entropy would be 1038 times
larger, i.e. if the galaxy mass collapses to a black hole its
entropy would be ∼10105kB , i.e. 1038 times larger! So if the
universe were to be a black hole, its entropy would increase
by the same factor, ∼10123kB , a well quoted figure in the
literature, as maximum entropy or information content con-
tained within a Hubble radius.

In Sivaram (1994a) it was also pointed out that remark-
ably enough the M/R2 relation as given by Eqs. (4) and (5)
also hold for individual elementary particles like a proton,
i.e. RP ∼ 10−12 cm ⇒ mP = 10−24 g. So that the entropy
as given by Eqs. (9) and (11) would just be kB (the small-
est unit of entropy)! So the holographic principle could go
down to the level of individual fundamental particles! This
was justified much earlier in Sivaram (1982), Sivaram and
Arun (2012b).

Thus entropy/area is a constant for black holes; the con-
stant being (c3/�G) = L−2

P l ≈ 1066. And entropy/area is
also a constant for all the above large scale structures (con-

strained by dark energy) and the constant is now
√

Λ

GmP /c2 ≈
1024.

Λ plays the role of background curvature (Sivaram
1994a, 1994b), so we can write:

M

R2
≈ background curvature × superstring tension (12)

while c2

G
is just the tension in superstring theories fixing the

gravitational constant (Sivaram 1990). In the case of black
holes, the background curvature is just the Schwarzschild

radius inverse squared, i.e. c4

G2M2 , so that with R = RS =
2GM

c2 , we have Mbh

RS
= c2

G
, which is the string tension.

This also explains why for a closed universe:

RS = 1√
Λ

,
M

R
= c2

G
(13)

The large scale structures are ‘embedded’ in a space of
background curvature Λ(which is the dark energy). The
M

R2 relation is suggestive of a membrane tension (or surface
tension) which has the same universal value for all the large
scale cosmic structures from globular cluster to the Hubble
universal, this value being (Sivaram 1994a):

T = c2

G

√
Λ ergs/cm2 (14)
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A kind of universal surface tension, suggesting the holo-
graphic picture.

Indeed the energy (mass) per unit area, i.e. surface

tension given by above equations, i.e. M

R2 = c2

G

√
Λ, has

the same numerical value as that in nuclear physics, like
the surface tension in the nuclear liquid drop model of
∼1021 ergs/cm2 (Sivaram 2005, 2007). This has conse-
quences for the entropy of nuclear matter. This is a most
intriguing fact, which would be explored in a subsequent
work.

Thus the holographic concept for entropy goes well be-
yond black holes and encompasses many other objects, sug-
gesting a deep underlying link connecting all scales.

The large scale structure can constrain the cosmologi-
cal constant has been considered earlier by several people
(Sivaram 1986; Barrow and Tipler 1986; Weinberg 1996;
Dyson et al. 2002). Weinberg (1996), for instance, showed
that galaxies cannot form unless the cosmological constant
(dark energy) is bounded by something close to its observed
value. Again antropic arguments were used by Barrow and
Tipler (1986) to suggest bound on the cosmic constant from
existence of large scale structures. A large enough posi-
tive cosmological constant makes the universe expand too
rapidly for matter to clump into galaxies, etc. Thus the exis-
tence of these structures requires models or states of a model
having a cosmological constant close to Weinberg’s bound.
In this connection see also Sivaram (1994c) wherein the im-
portance of having a balance between cosmic repulsion and
gravitational attraction was pointed out to form the observed
structures.

Too much of matter giving rise to attractive gravity will
cause structures to collapse early. Largest scale structures
form when repulsive dark energy (cosmological constant)
dominates the background density (say around z ∼ 1.5).
A field theoretic origin for the dark energy domination was
given in Sivaram (1986) and later.

Essentially the zero point energy is estimated by includ-
ing quantum corrections to Einstein’s equations, using an
infrared cut-off (determined by the Hubble radius) and an
ultraviolet cut-off at the Planck scale. This gives a more or
less constant dark energy density close to the observed value
(Sivaram 2005, 2007; Sivaram and Arun 2009).

In the case of black holes, the infrared cut-off is the
Schwarzschild radius and the ultraviolet cut-off is again the
Planck radius. So in both cases, i.e. in the cosmological case
and for black holes, we have the holographic relation, where
the number of degrees of freedom (i.e. entropy) is propor-
tional to the area. So the same field theory for estimating the
zero point vacuum energy is used, the cut-offs being differ-
ent.

Thus for large scale structures M

R2 = c2

G

√
Λ, where Λ, is

the infrared cut-off.
For black holes, the infrared cut-off (i.e. the maximum

wavelength) is the gravitational radius GM/c2.
So putting

√
Λ = c2

GM
, just gives: M

R
= c2

G
! This point is

also contained in Sivaram (1986).
Thus we have the concept of holography being extended

to situations other than black holes.
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