A Table for use with Star Charts.

By B. M. Raksitt.

In order to find out easily at any hour of the night on any day the constellations that are on the meridian, and henco those that are on the eastern and westorn sides of it, a simple table has been drawn up, and a part of it is shewn in this lantern slide. The method generally adopted for finding stars on the meridian at any hour is as follows: Suppose it is required to find the stars on the meridian at 8 p.m. to day-28th March 1911. From the British Nautical Almanac, or the American Epheris and Nantical Almanac, or any other such book, take the siderial time at mean noon. The British Nautical Almanac gives the siderial time at mean noon at Greenwich for to-day to be Oh. $19 \mathrm{~m} .8 \cdot 34 \mathrm{~s}$. The correction for reducing it to the siderial time at mean noon at Calcutta is 58.1 s . Hence the siderial time at mean noon at Calcutta becomes $0 \mathrm{~h} .18 \mathrm{~m} .10 \cdot 24 \mathrm{~s}$. The interval from mean noon to $8 \mathrm{p} . \mathrm{m}$. is 8 h . of mean time, which is equal to $8 \mathrm{~h} .1 \mathrm{~m} .18 \cdot 85 \mathrm{~s}$. of siderial time. Therefore the siderial time at 8 p.m. to-day is $8 \mathrm{~h} .19 \mathrm{~m} .29 \cdot 09 \mathrm{~s}$. Stars whose right ascensions are equal to this are on the meridian; but the table which has been drawn up, and part of which is shewn in this lantern slide, saves all these computations. First, L shall state generally the method of using it, and then take particular example. The hours of observation are given at the top of the table, and the first vertical column gives the date of observation, and the Roman numerals in the body of the table are the right ascensions in hours of time of stars on the meridian. Find the Roman numeral corresponding to the hour of observation as shewn in the top line, and the nearest day precoding that of obsorvation as shewn in the first vertical column, and add 4 minutes for each day from that tabulated day to the day of observation. The hours and minutes thus found are the right ascensions of stars on the meridian. With this result refer to the star maps The stars which are in the vertical line marked with that R A. are on the meridian ; those marked with greater R.A. are on the eastern side of the meridian, and those with less R. A. are on the western side of it. Let us take the same example as before : i.e., what stars are on the meridian at 8 p.m. to-day-28th March 1911 ?

The hour of observation being 8 p.m., and the ncarest tabulated day preceding the day of observation being 23rd March, we get from the table under 8 p.m. and against 23rd March the Roman numeral VIII hours. From 23rd to 28th there are 5 days; taking 4 m . per day we get 20 m . This
added to VIII hours, we have found from the table we get VIII hours 20 m . This result agrees very closely with what we obtained before by the previous method. With VIII hours 20 m . now obtained we refer to our star maps. From Plate I of the star maps of this Society, we find the following to be on the meridian. The Great Bear is just coming on the meridian, the staro which is represented to be on the snout of the Great Bear is on the meridian.

Next below the Great Bear we find the middle of Lyun, though a and Fl. 38 Lyucis, the only stars of the constellation which deserve any notice, are on the east side of the meridian about an hour distant.

Then from plate IV of the star maps we see on the meridian the western part of Cancer, β Cancri, is only a few minutes on the west, and it will take about 12 minutes for Prosepe or the beehive of Cancer to be on the meridian. Further down we find the western parts of Monoceros and Argo to be on the meridian. On the eastern side of the moridian and within 3 h . 20 s. we find a very large number of conspicuous stars. These are Capella of Auriga, Castor and Pollux of Gemini, Procyon of Canis Minor, all the bright stars of Orion, Sirius of Canis Major, and Canopus of Argo.

Tabte far finding the constellations on the Meridian at any hour of the night on any day.

		7 п.M.	8 P.M.	Q P.M.	$10 \mathrm{p} . \mathrm{m}$.	11 P.M.	Mid- night.	1 A.M.	2 A.M.	3 4.M.	4 A.M.	Б A.M.
January	${ }^{64 \mathrm{~h}}$	II	III	IV	VT	Vr	VII	VIII	IX	X	XI	XIIT
	21st	III	$\stackrel{\text { IV }}{V}$	V	VIT	VII	VIII	${ }_{\text {IX }}$	X ${ }^{\text {X }}$	XIT	Xir	XI'II
Febrarry	818t	IV	VI	V1T	VIII	VIX	IX_{X}	X	XII	$\underset{\text { XIII }}{ }$	$\underset{\text { ximy }}{ }$	XVY
Marsh	8 8th	VI	VII	VIII	IX	X	XI	XIL	XIII	XIV	$\frac{10}{x y}$	XVY
	23 rd	V1I	VIII	IX	X	XI	XII	XITI	XIV	XV	XVI	XYII
April	8 8th	VIII	IX	\%	$\underset{\sim}{\mathrm{XI}}$	XII	XIII	XIV	XV	XVI	XVII	XVIII
	${ }^{23 \mathrm{BrO}}$	IX	${ }^{\text {X }}$	XIT	$\underset{\text { XII }}{ }$	XIEI	XIV	XV\%	XVI	XV1T	XVITI	XIX
May	${ }_{2 \text { 8rid }}^{\text {8th }}$	${ }^{\chi}$	$\underset{\text { XIt }}{ }$	XIIT	XTV	XV	XVI	XVII	XVIII	XVIII	$\underset{X X}{ }$	XX
June	7 th	XII	XIrI	XIV	XV	XVI	xVII	XVIT	$\mathrm{x1X}$	XX	XXI	XXII
	23 rd	XITI	XIV	XY	XVI	XVII	XVIIL	XIX	XX	XXI	XXII	Xxin
July	8 8th	XYV	XVT	xVIr	XVIL	XVITI	XIX	xx	XXI	xxir	XXII	XXIV
	${ }^{23 \mathrm{rad}}$	XVI	XVI	XVIII	XVIL	XIX	$\mathrm{XX}_{\mathrm{X}} \mathrm{I}$	${ }_{\text {x }} \times 1$	$\underset{X X I I}{ }$	XXIII	XXIV	IT
	23 rd	x xIr	XVIII	${ }_{\text {XIX }}$	${ }^{\mathrm{x}} \mathrm{X}$	XXI	-	xxir	xxiv	${ }^{1}$	II	IIII
September	7 th	XVIII	XIX	$\times \mathrm{x}$	XXT	XXIT	x $\times 15$	xXIV	1	Ir	III	IV
Septombar	22 nd	XIX	XX	$\times \times 1$	XXIr	$\underset{\sim}{x}$			II	III.	IV	V
October	7 th	x ${ }^{\text {x }}$	XXI	XXIT	XXLII	XXIV	I	MIT	1 II	IV	V	$\checkmark 1$
	22nd	XXI	XXII	XxITI	XXIV	1	II	IIT	IV	$\stackrel{\text { V }}{ }$	VI	VIT
November	22 nd	XXIIT	XXIV		$\stackrel{1}{11}$	III	IV	V	VI	VII	VIII	VIX
December	$7 \text { th }$	${ }_{\text {X }}^{\text {X }}$ IV	I	III	$\stackrel{\text { IV }}{\text { IV }}$	IV	$\stackrel{\text { V }}{\text { V }}$	VIr	${ }_{\text {VIII }}$	$\stackrel{\text { VIII }}{\text { IX }}$	IX	X

