# HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS 

Wako Aoki ${ }^{1,2}$, Timothy C. Beers ${ }^{3,4}$, Young Sun Lee ${ }^{4,13}$, Satoshi Honda ${ }^{5}$, Hiroko Ito ${ }^{2}$, Masahide Takada-Hidai ${ }^{6}$, Anna Frebel ${ }^{7}$, Takuma Suda ${ }^{1}$, Masayuki Y. Fuimoto ${ }^{8}$, Daniela Carollo ${ }^{9}, 10,11$, and Thirupathi Sivarani ${ }^{12}$<br>${ }^{1}$ National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan; aoki.wako@nao.ac.jp, takuma.suda@nao.ac.jp<br>${ }^{2}$ Department of Astronomical Science, School of Physical Sciences, The Graduate University of Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan<br>${ }^{3}$ National Optical Astronomy Observatory, Tucson, AZ 85719, USA; beers@ noao.edu<br>${ }^{4}$ Department of Physics \& Astronomy and JINA: Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA; lee @ pa.msu.edu<br>${ }^{5}$ Kwasan Observatory, Kyoto University, Ohmine-cho Kita Kazan, Yamashin a-ku, Kyoto 607-8471, Japan; honda@kwasan.kyoto-u.ac.jp<br>${ }^{6}$ Liberal Arts Education Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; hidai@apus.rh.u-tokai.ac.jp<br>${ }^{7}$ Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; afrebel@mit.edu<br>${ }^{8}$ Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan; fujimoto @ astro1.sci.hokudai.ac.jp<br>${ }^{9}$ Department of Physics and Astronomy, Astronomy, Astrophysics, \& Astrophotonic Research Center, Macquarie University North Ryde, NSW 2109, Australia; daniela.carollo@mq.edu.au<br>${ }^{10}$ Department of Physics \& Astronomy, Macquarie University, NSW 2109, Australia<br>${ }^{11}$ INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, Pino Torinese, I-10020, Torino, Italy<br>${ }^{12}$ Indian Institute of Astrophysics, 2nd block Koramangala, Bangalore 560034, India; sivarani@iiap.res.in Received 2012 August 18; accepted 2012 October 2; published 2012 December 10


#### Abstract

Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metalpoor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise ( $\mathrm{S} / \mathrm{N}$ ) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately $80 \%$ ) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband $(V-K)_{0}$ and $(g-r)_{0}$ colors. Our abundance measurements reveal that 70 stars in our sample have $[\mathrm{Fe} / \mathrm{H}]<-3$, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements ( $\mathrm{C}, \mathrm{Na}$, $\mathrm{Mg}, \mathrm{Ca}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Sr}$, and Ba ) in addition to Fe . The fraction of carbon-enhanced metal-poor stars ( $[\mathrm{C} / \mathrm{Fe}]>+0.7$ ) among the 25 giants in our sample is as high as $36 \%$, while only a lower limit on the fraction ( $9 \%$ ) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher- $\mathrm{S} / \mathrm{N}$ observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.


Key words: Galaxy: halo - stars: abundances - stars: atmospheres - stars: Population II
Online-only material: color figures, machine-readable and VO tables

## 1. INTRODUCTION

The formation and evolution of the first generations of stars, once an entirely theoretical enterprise, has in recent years begun to enter the realm where observations are placing more and firmer constraints on the subject. Pertinent observations range from cosmology to star formation, stellar evolution, supernova explosions, and early galaxy formation (e.g., Bromm \& Larson 2004; Ciardi \& Ferrara 2005). Surveys for very high redshift galaxies, QSOs, and gamma-ray bursters have detected objects at $z \gtrsim 6$, when the age of universe was only several hundred million years. The recently reported high redshift ( $z=2.3$ ), extremely metal-poor damped Ly $\alpha$ system by Cooke et al. (2011; [Fe/H] ~ -3 ) exhibits enhanced carbon $([\mathrm{C} / \mathrm{Fe}]=+1.5)$ and other elemental abundance signatures

[^0]that Kobayashi et al. (2011) associate with production by faint supernovae in the early universe.

Such studies are complemented by investigations of ancient (but still shining) stars of the Milky Way and Local Group. The elemental abundances of the chemically most primitive stars are believed to record the nucleosynthesis yields of the first generations of objects, thereby constraining their mass distribution, evolution, and nature of their supernova explosions (Beers \& Christlieb 2005; Frebel \& Norris 2011). If low-mass ( $<0.8 M_{\odot}$ ) stars were able to form from primordial, metal-free gas clouds, stars with zero metallicity are expected to be found in the present Galaxy.

A number of extensive searches for very metal-poor (VMP; $[\mathrm{Fe} / \mathrm{H}]<-2$ ) and extremely metal-poor (EMP; $[\mathrm{Fe} / \mathrm{H}]<-3$ ) stars in the Galaxy have been undertaken in the past few decades. Since the discovery of $\mathrm{CD}-38^{\circ} 245$ with $[\mathrm{Fe} / \mathrm{H}] \sim-4$ (Bessell \& Norris 1984), several objects having similar metallicity have been found by the HK survey (Beers et al. 1985, 1992) and
studied with follow-up high-resolution spectroscopy. Stars with even lower metallicities have been found in recent years, including the ultra metal-poor (UMP; $[\mathrm{Fe} / \mathrm{H}]<-4$ ) star HE 0557-4840 (Norris et al. 2007) and the hyper metal-poor (HMP; $[\mathrm{Fe} / \mathrm{H}]<-5$ ) stars HE 0107-5240 (Christlieb et al. 2002) and HE 1327-2326 (Frebel et al. 2005; Aoki et al. 2006), based on follow-up observations of candidates from the Hamburg/ESO Survey (HES; Christlieb 2003; Christlieb et al. 2008), which has a fainter limiting magnitude and larger survey volume than the HK survey. Quite recently, a new UMP star with $[\mathrm{Fe} / \mathrm{H}] \sim-5$ was discovered by Caffau et al. (2011) among the candidate metal-poor stars identified with medium-resolution spectroscopy from the Sloan Digital Sky Survey (SDSS, see below).

The majority of VMP stars found by the HK survey and the HES, including the two stars with $[\mathrm{Fe} / \mathrm{H}]<-5$, are fainter than $V \sim 13$. Detailed abundance measurements, based on high-resolution spectroscopy for such stars, has only become possible through the use of $8-10 \mathrm{~m}$ class telescopes such as Keck, the Very Large Telescope, and Subaru. Previous studies of large samples of candidate metal-poor stars from these surveys have revealed the chemical compositions of stars with [Fe/H] ~-3 (Cayrel et al. 2004; Cohen et al. 2004; Honda et al. 2004; Barklem et al. 2005; Aoki et al. 2005; Lai et al. 2008; Bonifacio et al. 2009). However, the sample size of stars having even lower metallicity, in particular for the intrinsically fainter main-sequence turnoff stars, is still rather small, and the relationship between the abundance patterns observed for the EMP, UMP, and HMP stars remains unclear. A large sample of candidate metal-poor stars have been provided by SDSS (see below), and abundance studies for them based on highresolution spectroscopy have been rapidly growing (e.g., Aoki et al. 2008; Caffau et al. 2011; Bonifacio et al. 2012). ${ }^{14}$

In this paper, the first of a series, we report on followup high-resolution "snapshot" $(R \sim 36,000,30 \lesssim \mathrm{~S} / \mathrm{N} \lesssim$ 60) spectroscopic observations of a large sample (137) of candidate EMP stars selected from the SDSS (York et al. 2000), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE) sub-survey of the SDSS (Yanny et al. 2009). In this paper we describe the selection of our targets (Section 2), the observational and reduction/analysis procedures used (Section 3), and the determinations of stellar atmospheric parameters and estimates of a limited number of important elements ( $\mathrm{C}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Sr}$, and Ba ; Section 4). In Section 4, we also comment briefly on a number of the double-lined (and one triple-lined!) spectroscopic binaries discovered during the course of this work. In Section 5, we discuss the nature of the carbon-enhanced metal-poor (CEMP) stars found in our sample, and the trends and outliers found among the $\alpha$-elements and the neutron-capture elements for stars in our sample.

Papers to follow in this series will discuss constraints on the low-metallicity tail of the halo-system metallicity distribution function, the binarity properties of the sample, and correlations between the chemical compositions and kinematics of VMP and EMP stars. Results of higher-S/N, higher resolution spectroscopy of a number of the most interesting stars found during this effort will also be presented, including the Li abundances for main-sequence turnoff stars.

[^1]
## 2. SAMPLE SELECTION

### 2.1. Selection of Candidate EMP Stars from SDSS/SEGUE

SDSS-I was an imaging and spectroscopic survey that began routine operations in 2000 April, and continued through 2005 June. The SDSS, and its extensions, use a dedicated 2.5 m telescope (Gunn et al. 2006) located at the Apache Point Observatory in New Mexico. The telescope is equipped with an imaging camera and a pair of spectrographs, each of which is capable of simultaneously collecting 320 medium-resolution ( $R \sim 1800$ ) spectra over its seven square degree field of view, so that on the order of 600 individual target spectra and roughly 40 calibration-star and sky spectra are obtained on a given spectroscopic "plug-plate." It is important to recall that SDSS imaging (done in drift-scan mode) has an effective bright limit corresponding to roughly $g \sim 14.0-14.5$, which means that high-resolution spectroscopic follow-up observations for large samples of these stars is challenging to obtain with telescopes of 4 m aperture and smaller.

The SEGUE sub-survey, carried out as part of SDSS-II, ran from 2005 July to 2008 June. SEGUE obtained some 240,000 medium-resolution spectra of stars in the Galaxy, selected to explore the nature of stellar populations from 0.5 kpc to 100 kpc (Yanny et al. 2009). These stars, as well as all previous SDSS stellar observations, were released as part of DR7 (Abazajian et al. 2009).

The SEGUE Stellar Parameter Pipeline (SSPP) processes the wavelength- and flux-calibrated spectra generated by the standard SDSS spectroscopic reduction pipeline, obtains equivalent widths and/or line indices for about 80 atomic or molecular absorption lines, and estimates the effective temperature, $T_{\text {eff }}$, surface gravity, $\log g$, and metallicity, $[\mathrm{Fe} / \mathrm{H}]$, for a given star through the application of a number of approaches. A given method is usually optimal over specific ranges of color and S/N ratio. The SSPP employs 8 primary methods for the estimation of $T_{\text {eff }}, 10$ for the estimation of $\log g$, and 12 for the estimation of $[\mathrm{Fe} / \mathrm{H}]$. The final estimates of the atmospheric parameters are obtained by robust averages of the methods that are expected to perform well for the color and $\mathrm{S} / \mathrm{N}$ obtained for each star. The use of multiple methods allows for empirical determinations of the internal errors for each parameter, based on the range of reported values from each method-typical internal errors for stars in the temperature range that applies to the calibration stars are $\sigma\left(T_{\text {eff }}\right) \sim 100 \mathrm{~K}$ to $\sim 125 \mathrm{~K}, \sigma(\log g) \sim 0.25 \mathrm{dex}$, and $\sigma([\mathrm{Fe} / \mathrm{H}]) \sim 0.20$ dex. The external errors in these determinations are of a similar size. See Lee et al. (2008a, 2008b), Allende Prieto et al. (2008), Smolinski et al. (2011), and Lee et al. (2011) for additional discussion of the SSPP. The SSPP estimates of $T_{\text {eff }}, \log g$, and $[\mathrm{Fe} / \mathrm{H}]$ were also released as part of DR7.

### 2.2. Sample Selection for High-resolution Spectroscopy

In order to assemble a set of likely EMP stars for highresolution spectroscopy with Subaru/HDS, we selected targets that have $V_{0} \lesssim 16.5\left(g_{0} \lesssim 16.7\right)$ and $[\mathrm{Fe} / \mathrm{H}] \leqslant-2.7$, as provided by the SSPP, in the temperature range $4500 \mathrm{~K}<T_{\text {eff }}<$ 7000 K , over which the SSPP estimates are best behaved. The choice of a conservative upper metallicity cut of $[\mathrm{Fe} / \mathrm{H}]=$ -2.7 was made because previous high-resolution follow-up with Subaru and other telescopes had shown that the SSPP estimates of metallicity, at the time of sample selection, were consistently $0.2-0.3$ dex too high at the lowest metallicities. The upper panel of Figure 1 shows the distribution of $[\mathrm{Fe} / \mathrm{H}]$ estimated from SDSS spectra (horizontal axis) using the version


Figure 1. Upper panel: comparison of $[\mathrm{Fe} / \mathrm{H}]$, based on the snapshot Subaru high-resolution spectra, with those estimated from medium-resolution SDSS spectra, based on the version of the SSPP in use prior to 2008. Lower panel: same as the upper panel, but using estimates from the latest version of the SSPP. Large open circles and squares are overplotted for giants and cool main-sequence stars, respectively. The level of improvement in the SSPP is clear.
of the SSPP that was available when the targets for Subaru/ HDS observations were selected in early 2008. Several stars having higher SSPP estimates of $[\mathrm{Fe} / \mathrm{H}]$ or $V_{0}>16.5$ were observed when appropriate targets did not exist in the observing period with Subaru/HDS. The Subaru high-resolution estimates of $[\mathrm{Fe} / \mathrm{H}]$ for these same stars, shown on the vertical axis, are described below.

It is clear from Figure 1 that the conservative choice of metallicity cut was indeed appropriate, as a considerable fraction ( $65 \%$ ) of the stars with high-resolution estimates of $[\mathrm{Fe} / \mathrm{H}]<$ -3.0 would have been missed had we set the selection boundary at $[\mathrm{Fe} / \mathrm{H}](\mathrm{SSPP})=-3.0$. The lower panel of Figure 1 shows the effect of recent improvements in the SSPP, as discussed further below (Section 4.2).

The list of 137 stars for which acceptable high-resolution spectroscopy was obtained with Subaru/HDS is given in Table 1, where the object name, coordinates, photometry, and reddening data are provided, and discussed in detail below. In the following analysis, the objects are separated into turnoff stars, giants, and cool main-sequence stars, based on determinations of their effective temperature and gravity. According to this taxonomy, about $80 \%$ of the objects in our sample are main-sequence turnoff stars. Note that although some objects were identified
as carbon-rich stars from the SDSS medium-resolution spectra prior to our obtaining high-resolution follow-up spectra, we gave no preference in their choice (for or against), so that our estimates of the fractions of such stars at low metallicity remains meaningful (see below).

## 3. OBSERVATIONS AND DATA REDUCTION

Acceptable quality high-resolution snapshot spectra for 137 of the original 143 target stars selected above were obtained with the Subaru Telescope High Dispersion Spectrograph (HDS; Noguchi et al. 2002) in four observing runs in 2008 (March, May, July, and October). Several stars among the remaining eight stars were excluded because their $\mathrm{S} / \mathrm{N}$ ratios were insufficient for our purpose. The other stars exhibit spectra that differ from "normal" metal-poor stars. The objects which are excluded in the analyses are reported in the Appendix.

The spectra cover 4000-6800 $\AA$, with a gap of $5330-5430 \AA$ due to the separation of the two EEV-CCDs used in the spectrograph. The resolving power $R=36,000$ is obtained with the slit of 1.0 arcsec width and $2 \times 2$ CCD on-chip binning. The observing log is listed in Table 2, where the observing dates, exposure time, signal-to-noise ( $\mathrm{S} / \mathrm{N}$ ) ratios, and heliocentric radial velocity are presented. The average $\mathrm{S} / \mathrm{N}$ ratios at 4300 and $5000 \AA$ per resolution element are 31 and 51, respectively.

Data reduction was carried out with standard procedures using the IRAF echelle package, ${ }^{15}$ including bias-level correction using the overscan regions of the CCD data, scattered light subtraction, flat-fielding, extraction of spectra, and wavelength calibration using Th arc lines. Cosmic-ray hits were removed by the method described in Aoki et al. (2005). Sky background was not very significant in our spectra, which were obtained during times of little contamination from the moon. The multi-order echelle spectra were combined into a single spectrum by adding photon counts for the overlapping wavelength regions, and the combined spectrum was then normalized to the continuum level. Spectra obtained with more than one exposure were combined by adding photon counts before continuum normalization.

### 3.1. Equivalent Width Measurements

Equivalent widths ( $W$ 's) were measured for isolated absorption lines in our spectra by fitting Gaussian profiles, using the line list given in Table 3. The measurements were made with a fortran program of Gaussian fitting based on Press et al. (1992), including an estimate of the continuum level around each absorption line.

The number of lines detected in the spectra depends on the metallicity, the stellar luminosity classification, and the S/N ratio. In the spectra of turnoff stars, typically $10-20 \mathrm{Fe}$ I lines are measured. In some spectra with relatively lower $\mathrm{S} / \mathrm{N}$ ratios and relatively high temperatures, the number of $\mathrm{Fe}_{\mathrm{I}}$ lines detected is less than 10 . While a few $\mathrm{Fe}_{\text {II }}$ lines are measured in most turnoff stars, no $\mathrm{Fe}_{\text {II }}$ line is detected for 24 of our stars. A few lines of $\mathrm{Na}, \mathrm{Mg}_{\mathrm{I}}$, and Ca I are measured for most turnoff stars, while other elements (e.g., Sc, Ti, Sr, Ba) are detected only for a limited number of objects. In general, the number of lines measured for giants is larger than that for turnoff stars, due to their lower effective temperatures. At least a few Fe ir lines are detected for all giants in our sample.

[^2]Table 1
Object List

| ID | Object | Object Name | Object ID | $g_{0}$ | $(g-r)_{0}$ | $V_{0}{ }^{\text {a }}$ | $E(B-V)^{\text {b }}$ | $K^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | SDSS J0002 + 2928 | SDSS J000219.87 + 292851.8 | 2803-54368-459 | 15.133 | 0.304 | 14.958 | 0.051 | 13.683 |
| 002 | SDSS J0008-0529 | SDSS J000812.54-052926.5 | 2624-54380-061 | 16.564 | 0.737 | 16.147 | 0.033 | 13.620 |
| 003 | SDSS J0018-0939 | SDSS J001820.51-093939.2 | 1912-53293-352 | 16.140 | 0.789 | 15.693 | 0.045 | 13.278 |
| 004 | SDSS J0020-0040 | SDSS J002015.45-004058.1 | 1121-52873-136 | 16.619 | 0.221 | 16.491 | 0.028 | 15.069 |
| 005 | SDSS J0021-0050 | SDSS J002113.78-005005.2 | 0390-51816-187 | 16.571 | 0.262 | 16.420 | 0.028 | 15.403 |
| 006 | SDSS J0023-0003 | SDSS J002356.26-000311.9 | 0688-52203-152 | 16.454 | 0.405 | 16.223 | 0.028 | 14.505 |
| 007 | SDSS J0027 + 1404 | SDSS J002749.46+140418.1 | 0753-52233-013 | 16.533 | 0.278 | 16.373 | 0.102 | 15.013 |
| 008 | SDSS J0027-1909 | SDSS J002756.76-190929.8 | 2848-54453-300 | 15.574 | 0.204 | 15.456 | 0.024 | 14.390 |
| 009 | SDSS J0028-1015 | SDSS J002857.42-101530.7 | 1912-53293-031 | 16.734 | 0.281 | 16.572 | 0.036 | 15.408 |
| 010 | SDSS J0029-1910 | SDSS J002910.72-191007.5 | 2848-54453-252 | 14.273 | 0.221 | 14.145 | 0.022 | 13.048 |
| 011 | SDSS J0033-1859 | SDSS J003305.15-185906.8 | 2848-54453-059 | 16.440 | 0.577 | 16.112 | 0.020 | 13.841 |
| 012 | SDSS J0041-0953 | SDSS J004150.22-095327.7 | 0656-52148-307 | 16.900 | 0.320 | 16.716 | 0.033 | 15.248 |
| 013 | SDSS J0100 + 0049 | SDSS J010026.69 + 004915.8 | 1083-52520-579 | 15.995 | 0.420 | 15.755 | 0.026 | 13.993 |
| 014 | SDSS J0111 + 1442 | SDSS J011150.32 + 144207.8 | 2804-54368-126 | 15.546 | 0.279 | 15.385 | 0.046 | 14.106 |
| 015 | SDSS J0115 + 2637 | SDSS J011501.57+263708.8 | 2040-53384-407 | 15.754 | 0.427 | 15.510 | 0.059 | 13.764 |
| 016 | SDSS J0120-1001 | SDSS J012032.63-100106.5 | 2849-54454-012 | 16.591 | 0.332 | 16.401 | 0.037 | 14.779 |
| 017 | SDSS J0126 + 0607 | SDSS J012617.95 + 060724.8 | 2314-53713-090 | 15.634 | 0.188 | 15.525 | 0.029 | 14.468 |
| 018 | SDSS J0131-0908 | SDSS J013152.01-090851.8 | 1914-53729-357 | 15.877 | 0.564 | 15.557 | 0.027 | 13.420 |
| 019 | SDSS J0140 + 2344 | SDSS J014036.22 + 234458.1 | 2044-53327-515 | 15.340 | 0.345 | 15.142 | 0.133 | 13.668 |
| 020 | SDSS J0209 + 2120 | SDSS J020912.03 + 212028.1 | 2046-53327-124 | 16.865 | 0.273 | 16.708 | 0.120 | 15.267 |
| 021 | SDSS J0254 + 3328 | SDSS J025453.33 + 332840.9 | 2378-53759-083 | 16.817 | 0.248 | 16.674 | 0.101 | 15.379 |
| 022 | SDSS J0259 + 0057 | SDSS J025956.45 + 005713.3 | 1513-53741-338 | 16.397 | 0.758 | 15.968 | 0.081 | 13.673 |
| 023 | SDSS J0308 + 0505 | SDSS J030839.27 + 050534.9 | 2335-53730-314 | 15.774 | 0.372 | 15.561 | 0.247 | 14.261 |
| 024 | SDSS J0317 + 0023 | SDSS J031745.82 + 002304.2 | 0711-52202-489 | 16.461 | 0.333 | 16.270 | 0.087 | 14.791 |
| 025 | SDSS J0320 + 4143 | SDSS J032044.05 + 414345.5 | 2397-53763-563 | 15.190 | 0.303 | 15.016 | 0.174 | 13.710 |
| 026 | SDSS J0351 + 1026 | SDSS J035111.27+102643.2 | 2679-54368-543 | 16.062 | 0.340 | 15.867 | 0.234 | 14.283 |
| 027 | SDSS J0414 + 0552 | SDSS J041438.25 + 055219.8 | 2805-54380-301 | 15.973 | 0.203 | 15.855 | 0.317 | 14.973 |
| 028 | SDSS J0416+0713 | SDSS J041618.03 + 071303.4 | 2805-54380-329 | 16.432 | 0.509 | 16.142 | 0.398 | 14.499 |
| 029 | SDSS J0629 + 8303 | SDSS J062947.45 + 830328.6 | 2540-54110-062 | 15.633 | 0.455 | 15.374 | 0.069 | 13.663 |
| 030 | SDSS J0630 + 2552 | SDSS J063055.58 + 255243.7 | 2696-54167-214 | 16.839 | 0.274 | 16.681 | 0.327 | 15.968 |
| 031 | SDSS J0711+6702 | SDSS J071105.43+670228.2 | 2337-53740-564 | 16.046 | 0.494 | 15.765 | 0.053 | 13.860 |
| 032 | SDSS J0723 + 3637 | SDSS J072352.21 + 363757.2 | 2941-54507-222 | 15.302 | 0.540 | 14.995 | 0.061 | 12.903 |
| 033 | SDSS J0727 + 1609 | SDSS J072725.15 + 160949.4 | 2713-54400-390 | 15.816 | 0.255 | 15.669 | 0.087 | 14.305 |
| 034 | SDSS J0741 + 6708 | SDSS J074104.22 + 670801.8 | 2939-54515-414 | 15.626 | 0.539 | 15.320 | 0.040 | 13.313 |
| 035 | SDSS J0746 + 2831 | SDSS J074641.34+283142.7 | 1059-52618-429 | 15.906 | 0.305 | 15.731 | 0.033 | 14.442 |
| 036 | SDSS J0748 + 1758 | SDSS J074859.89 + 175832.8 | 1921-53317-334 | 15.727 | 0.276 | 15.568 | 0.051 | 14.285 |
| 037 | SDSS J0749 + 1801 | SDSS J074945.24+180103.6 | 2054-53431-033 | 14.603 | 0.569 | 14.292 | 0.054 | 12.186 |
| 038 | SDSS J0804 + 5153 | SDSS J080428.21 + 515303.1 | 1870-53383-002 | 16.267 | 0.342 | 16.071 | 0.055 | 14.451 |
| 039 | SDSS J0809 + 0907 | SDSS J080917.06+090748.5 | 2419-54139-037 | 16.068 | 0.268 | 15.914 | 0.021 | 14.607 |
| 040 | SDSS J0814+3337 | SDSS J081458.68 + 333712.9 | 0825-52289-595 | 16.208 | 0.216 | 16.083 | 0.050 | 14.928 |
| 041 | SDSS J0817+2641 | SDSS J081754.93 + 264103.8 | 1266-52709-432 | 16.179 | 0.290 | 16.012 | 0.037 | 14.707 |
| 042 | SDSS J0819 + 3119 | SDSS J081923.99+311919.4 | 0931-52619-469 | 16.085 | 0.233 | 15.950 | 0.038 | 14.730 |
| 043 | SDSS J0821 + 1819 | SDSS J082118.18+181931.8 | 2271-53726-365 | 16.602 | 0.262 | 16.451 | 0.037 | 15.101 |
| 044 | SDSS J0825 + 0403 | SDSS J082521.29+040334.4 | 1185-52642-519 | 16.965 | 0.221 | 16.837 | 0.027 | 15.182 |
| 045 | SDSS J0827 + 1052 | SDSS J082736.27 + 105200.8 | 2423-54149-031 | 16.519 | 0.237 | 16.382 | 0.045 | 15.057 |
| 046 | SDSS J0840 + 5405 | SDSS J084016.16+540526.5 | 0446-51899-239 | 16.265 | 0.253 | 16.119 | 0.026 | 14.533 |
| 047 | SDSS J0847 + 0121 | SDSS J084700.50 + 012113.7 | 0467-51901-484 | 15.595 | 0.226 | 15.464 | 0.044 | 14.123 |
| 048 | SDSS J0851 + 1018 | SDSS J085136.68 + 101803.2 | 2667-54142-094 | 15.099 | 0.254 | 14.953 | 0.054 | 13.731 |
| 049 | SDSS J0858 + 3541 | SDSS J085833.35 + 354127.3 | 2380-53759-094 | 15.301 | 0.583 | 14.970 | 0.031 | 12.933 |
| 050 | SDSS J0859 + 0402 | SDSS J085934.48 + 040232.4 | 2888-54529-615 | 15.994 | 0.498 | 15.711 | 0.046 | 13.766 |
| 051 | SDSS J0907 + 0246 | SDSS J090733.28 + 024608.1 | 0566-52238-100 | 16.256 | 0.299 | 16.084 | 0.029 | 14.784 |
| 052 | SDSS J0912 + 0216 | SDSS J091243.72 + 021623.7 | 0471-51924-613 | 15.560 | 0.324 | 15.374 | 0.028 | 14.065 |
| 053 | SDSS J0932 + 0241 | SDSS J093247.29 + 024123.8 | 0475-51965-602 | 16.378 | 0.229 | 16.246 | 0.049 | 14.752 |
| 054 | SDSS J1004 + 3442 | SDSS J100427.70 + 344245.7 | 2387-53770-316 | 14.795 | 0.297 | 14.624 | 0.010 | 13.185 |
| 055 | SDSS J1033 + 4001 | SDSS J103301.41 + 400103.6 | 1430-53002-498 | 16.118 | 0.217 | 15.992 | 0.014 | 14.701 |
| 056 | SDSS J1036 + 1212 | SDSS J103649.93+121219.8 | 1600-53090-378 | 15.580 | 0.332 | 15.390 | 0.027 | 13.817 |
| 057 | SDSS J1106+0343 | SDSS J110610.48 + 034321.9 | 0581-52356-245 | 16.463 | 0.274 | 16.305 | 0.058 | 15.324 |
| 058 | SDSS J1108 + 1747 | SDSS J110821.68 + 174746.6 | 2491-53855-389 | 15.702 | 0.308 | 15.525 | 0.022 | 14.177 |
| 059 | SDSS J1120 + 3027 | SDSS J112051.74+302724.4 | 1979-53431-181 | 16.011 | 0.391 | 15.788 | 0.015 | 14.224 |
| 060 | SDSS J1128 + 3841 | SDSS J112813.57 + 384148.9 | 2036-53446-324 | 15.523 | 0.197 | 15.408 | 0.022 | 14.256 |
| 061 | SDSS J1147 + 1510 | SDSS J114723.53+151044.7 | 1761-53376-551 | 16.118 | 0.218 | 15.992 | 0.049 | 14.956 |
| 062 | SDSS J1159+5425 | SDSS J115906.18 + 542512.6 | 1018-52672-268 | 16.145 | 0.383 | 15.926 | 0.012 | 14.405 |
| 063 | SDSS J1213 + 4450 | SDSS J121307.22 + 445040.9 | 1370-53090-458 | 16.176 | 0.167 | 16.078 | 0.013 | 14.741 |
| 064 | SDSS J1230 + 0005 | SDSS J123055.25 + 000546.9 | 2895-54565-360 | 14.701 | 0.256 | 14.553 | 0.027 | 13.182 |
| 065 | SDSS J1233 + 3407 | SDSS J123300.08 + 340758.1 | 2020-53431-313 | 16.734 | 0.285 | 16.570 | 0.018 | 15.206 |
| 066 | SDSS J1241-0837 | SDSS J124123.92-083725.5 | 2689-54149-292 | 16.309 | 0.603 | 15.967 | 0.028 | 13.788 |

Table 1
(Continued)

| ID | Object | Object Name | Object ID | $g_{0}$ | $(g-r)_{0}$ | $V_{0}{ }^{\text {a }}$ | $E(B-V)^{\mathrm{b}}$ | $K^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 067 | SDSS J1242-0336 | SDSS J124204.42-033618.1 | 2897-54585-210 | 14.661 | 0.550 | 14.348 | 0.024 | 12.217 |
| 068 | SDSS J1245-0738 | SDSS J124502.68-073847.1 | 2689-54149-491 | 16.230 | 0.283 | 16.067 | 0.029 | 14.815 |
| 069 | SDSS J1300+2632 | SDSS J130017.20 + 263238.6 | 2240-53823-008 | 16.180 | 0.233 | 16.045 | 0.008 | 14.839 |
| 070 | SDSS J1303 + 2515 | SDSS J130339.62 + 251550.3 | 2662-54505-455 | 15.741 | 0.282 | 15.579 | 0.011 | 14.287 |
| 071 | SDSS J1304 + 3239 | SDSS J130402.25 + 323909.1 | 2029-53819-374 | 16.522 | 0.244 | 16.381 | 0.009 | 15.186 |
| 072 | SDSS J1312+2450 | SDSS J131201.48 + 245007.0 | 2663-54234-467 | 15.730 | 0.271 | 15.574 | 0.015 | 14.155 |
| 073 | SDSS J1316+1747 | SDSS J131640.80 + 174734.2 | 2476-53826-575 | 15.587 | 0.743 | 15.166 | 0.000 | 12.688 |
| 074 | SDSS J1334 + 0022 | SDSS J133453.44+002238.6 | 0298-51955-485 | 15.949 | 0.403 | 15.719 | 0.026 | 14.025 |
| 075 | SDSS J1338 + 1204 | SDSS J133841.16+120415.2 | 1700-53502-483 | 15.613 | 0.267 | 15.459 | 0.026 | 14.230 |
| 076 | SDSS J1349-0229 | SDSS J134913.54-022942.8 | 0913-52433-073 | 16.462 | 0.296 | 16.292 | 0.045 | 14.688 |
| 077 | SDSS J1400+0753 | SDSS J140035.31 + 075317.7 | 1807-54175-089 | 16.735 | 0.255 | 16.588 | 0.026 | 15.070 |
| 078 | SDSS J1408 + 6239 | SDSS J140813.88 + 623942.1 | 0605-52353-567 | 16.624 | 0.242 | 16.484 | 0.022 | 15.242 |
| 079 | SDSS J1410+5350 | SDSS J141001.77 + 535018.2 | 1325-52762-194 | 16.171 | 0.271 | 16.015 | 0.012 | 14.761 |
| 080 | SDSS J1412+5609 | SDSS J141207.32 + 560931.9 | 2447-54498-274 | 15.949 | 0.139 | 15.867 | 0.014 | 14.622 |
| 081 | SDSS J1422+0031 | SDSS J142237.43+003105.2 | 0304-51609-528 | 16.505 | 0.304 | 16.330 | 0.030 | 14.120 |
| 082 | SDSS J1424+5615 | SDSS J142441.88 + 561535.0 | 2447-54498-073 | 15.788 | 0.257 | 15.640 | 0.015 | 14.168 |
| 083 | SDSS J1425 + 1137 | SDSS J142518.09 + 113713.9 | 1708-53503-250 | 15.628 | 0.236 | 15.492 | 0.027 | 14.191 |
| 084 | SDSS J1425 + 5742 | SDSS J142541.33 + 574207.5 | 2539-53918-264 | 16.231 | 0.194 | 16.118 | 0.009 | 14.836 |
| 085 | SDSS J1434 + 1036 | SDSS J143451.02 + 103626.4 | 1709-53533-595 | 16.926 | 0.245 | 16.785 | 0.025 | 14.959 |
| 086 | SDSS J1436+0918 | SDSS J143632.27+091831.5 | 1711-53535-285 | 15.958 | 0.233 | 15.823 | 0.030 | 14.784 |
| 087 | SDSS J1436 + 0301 | SDSS J143654.45 + 030143.2 | 0536-52024-405 | 16.982 | 0.276 | 16.823 | 0.034 | 15.399 |
| 088 | SDSS J1437 + 5231 | SDSS J143708.92 + 523146.6 | 1327-52781-480 | 16.265 | 0.243 | 16.125 | 0.010 | 14.906 |
| 089 | SDSS J1437 + 5837 | SDSS J143759.06+583723.5 | 0790-52433-535 | 15.809 | 0.243 | 15.669 | 0.008 | 14.442 |
| 090 | SDSS J1446+1249 | SDSS J144640.63+124917.5 | 1712-53531-636 | 16.084 | 0.239 | 15.946 | 0.021 | 14.505 |
| 091 | SDSS J1502 + 3113 | SDSS J150217.16+311316.5 | 2910-54630-287 | 15.662 | 0.222 | 15.533 | 0.018 | 14.282 |
| 092 | SDSS J1504 + 4623 | SDSS J150425.13 + 462320.9 | 1049-52751-126 | 16.526 | 0.267 | 16.372 | 0.018 | 15.025 |
| 093 | SDSS J1515 + 4503 | SDSS J151534.44+450317.7 | 1050-52721-132 | 16.491 | 0.286 | 16.327 | 0.032 | 15.129 |
| 094 | SDSS J1516+4333 | SDSS J151646.69 + 433331.6 | 1677-53148-588 | 16.613 | 0.191 | 16.502 | 0.022 | 15.328 |
| 095 | SDSS J1521 + 3437 | SDSS J152158.62 + 343729.4 | 1354-52814-191 | 16.828 | 0.290 | 16.661 | 0.020 | 15.458 |
| 096 | SDSS J1522 + 3055 | SDSS J152202.09 + 305526.3 | 1650-53174-492 | 16.518 | 0.334 | 16.327 | 0.022 | 14.802 |
| 097 | SDSS J1523 + 4942 | SDSS J152301.86+494210.7 | 2449-54271-200 | 15.828 | 0.361 | 15.621 | 0.022 | 14.041 |
| 098 | SDSS J1528 + 4915 | SDSS J152810.51 + 491526.8 | 2449-54271-142 | 15.492 | 0.199 | 15.376 | 0.017 | 14.161 |
| 099 | SDSS J1551 + 2521 | SDSS J155117.36+252135.5 | 1850-53786-467 | 16.129 | 0.322 | 15.944 | 0.060 | 14.448 |
| 100 | SDSS J1553 + 2511 | SDSS J155310.83 + 251140.2 | 2459-54339-140 | 16.387 | 0.389 | 16.165 | 0.062 | 14.544 |
| 101 | SDSS J1603 + 2917 | SDSS J160303.74 + 291709.5 | 1578-53496-471 | 16.519 | 0.291 | 16.352 | 0.040 | 15.122 |
| 102 | SDSS J1612+0421 | SDSS J161226.18 + 042146.6 | 2178-54629-546 | 16.082 | 0.449 | 15.826 | 0.069 | 14.053 |
| 103 | SDSS J1613+5309 | SDSS J161313.53 + 530909.7 | 2176-54243-614 | 16.658 | 0.470 | 16.390 | 0.013 | 14.402 |
| 104 | SDSS J1623 + 3913 | SDSS J162311.84+391319.6 | 1172-52759-319 | 16.448 | 0.268 | 16.294 | 0.010 | 15.120 |
| 105 | SDSS J1626+1458 | SDSS J162603.61 + 145844.3 | 2202-53566-537 | 16.998 | 0.232 | 16.864 | 0.056 | 15.371 |
| 106 | SDSS J1633 + 3907 | SDSS J163331.44 + 390742.7 | 1173-52790-561 | 16.743 | 0.277 | 16.584 | 0.009 | 14.951 |
| 107 | SDSS J1640 + 3709 | SDSS J164005.30 + 370907.8 | 2174-53521-423 | 15.622 | 0.240 | 15.483 | 0.016 | 14.191 |
| 108 | SDSS J1646+2824 | SDSS J164610.19 + 282422.2 | 1690-53475-323 | 15.806 | 0.314 | 15.626 | 0.065 | 14.451 |
| 109 | SDSS J1650 + 2242 | SDSS J165016.66+224213.9 | 2180-54613-258 | 16.145 | 0.242 | 16.005 | 0.063 | 14.898 |
| 110 | SDSS J1659 + 3515 | SDSS J165934.74 + 351554.3 | 0974-52427-332 | 16.586 | 0.266 | 16.433 | 0.019 | 14.974 |
| 111 | SDSS J1703 + 2836 | SDSS J170339.60 + 283649.9 | 2808-54524-510 | 15.679 | 0.593 | 15.342 | 0.065 | 13.271 |
| 112 | SDSS J1728 + 0657 | SDSS J172846.88 + 065701.9 | 2797-54616-258 | 16.260 | 0.247 | 16.117 | 0.116 | 15.088 |
| 113 | SDSS J1734 + 4316 | SDSS J173417.89 + 431606.5 | 2799-54368-138 | 16.499 | 0.547 | 16.188 | 0.026 | 14.273 |
| 114 | SDSS J1735 + 4446 | SDSS J173532.16+444635.9 | 2799-54368-502 | 15.910 | 0.545 | 15.600 | 0.021 | 13.391 |
| 115 | SDSS J1736 + 4420 | SDSS J173628.07 + 442036.2 | 2799-54368-560 | 16.141 | 0.497 | 15.858 | 0.022 | 13.894 |
| 116 | SDSS J1746+2455 | SDSS J174624.13 + 245548.8 | 2183-53536-175 | 16.022 | 0.521 | 15.726 | 0.064 | 13.665 |
| 117 | SDSS J1830 + 4141 | SDSS J183045.75 + 414126.8 | 2798-54397-354 | 15.939 | 0.183 | 15.832 | 0.057 | 14.670 |
| 118 | SDSS J1834 + 2023 | SDSS J183414.28 + 202335.5 | 2534-53917-002 | 16.277 | 0.184 | 16.170 | 0.204 | 14.984 |
| 119 | SDSS J1836+6317 | SDSS J183601.71 + 631727.4 | 2552-54632-090 | 16.345 | 0.569 | 16.022 | 0.052 | 14.326 |
| 120 | SDSS J2005-1045 | SDSS J200513.48-104503.2 | 2303-54629-377 | 16.477 | 0.234 | 16.342 | 0.138 | 15.101 |
| 121 | SDSS J2052 + 0109 | SDSS J205252.68 + 010939.3 | 2815-54414-098 | 16.890 | 0.311 | 16.712 | 0.096 | 15.380 |
| 122 | SDSS J2104-0104 | SDSS J210454.84-010440.8 | 1918-53240-306 | 16.579 | 0.479 | 16.306 | 0.066 | 14.482 |
| 123 | SDSS J2111+0109 | SDSS J211125.40+010920.4 | 1112-53180-325 | 16.461 | 0.256 | 16.313 | 0.102 | 15.008 |
| 124 | SDSS J2118-0640 | SDSS J211850.12-064055.8 | 2305-54414-429 | 16.364 | 0.235 | 16.228 | 0.154 | 15.117 |
| 125 | SDSS J2123-0820 | SDSS J212310.83-082039.1 | 2305-54414-081 | 16.716 | 0.319 | 16.533 | 0.074 | 15.152 |
| 126 | SDSS J2128-0756 | SDSS J212841.25-075629.3 | 0641-52199-315 | 16.479 | 0.268 | 16.325 | 0.062 | 14.832 |
| 127 | SDSS J2206-0925 | SDSS J220646.20-092545.7 | 2309-54441-290 | 15.227 | 0.571 | 14.903 | 0.034 | 12.735 |
| 128 | SDSS J2207 + 2017 | SDSS J220743.35 + 201752.3 | 2251-53557-279 | 16.782 | 0.212 | 16.659 | 0.070 | 15.468 |
| 129 | SDSS J2208 + 0613 | SDSS J220845.57 + 061341.3 | 2308-54379-227 | 15.549 | 0.251 | 15.404 | 0.119 | 14.192 |
| 130 | SDSS J2213-0726 | SDSS J221334.14-072604.1 | 2309-54441-564 | 15.326 | 0.643 | 14.961 | 0.051 | 12.636 |
| 131 | SDSS J2300 + 0559 | SDSS J230026.35 + 055956.2 | 2310-53710-131 | 16.341 | 0.245 | 16.200 | 0.073 | 14.914 |
| 132 | SDSS J2308-0855 | SDSS J230814.85-085526.4 | 0726-52226-335 | 16.347 | 0.313 | 16.167 | 0.041 | 15.137 |

Table 1
(Continued)

| ID | Object | Object Name | Object ID | $g_{0}$ | $(g-r)_{0}$ | $V_{0}{ }^{\text {a }}$ | $E(B-V)^{\mathrm{b}}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 133 | SDSS J2309+2308 | SDSS J230959.55+230803.0 | $2623-54096-458$ | 16.446 | 0.335 | 16.254 | 0.230 | 14.884 |
| 134 | SDSS J2334+1538 | SDSS J233403.22+153829.3 | $0747-52234-337$ | 16.011 | 0.229 | 15.879 | 0.076 |  |
| 135 | SDSS J2338+0902 | SDSS J233817.55+090207.5 | $2622-54095-483$ | 15.099 | 0.774 | 14.661 | 0.128 |  |
| 136 | SDSS J2349+3832 | SDSS J234939.71+383217.8 | $1882-53262-132$ | 16.312 | 0.200 | 16.196 | 0.189 | 12.192 |
| 137 | SDSS J2357-0052 | SDSS J235718.91-005247.8 | $1489-52991-251$ | 15.959 | 0.612 | 15.612 | 0.030 | 13.802 |

## Notes.

${ }^{\text {a }} V_{0}$ is derived by the transform of Zhao \& Newberg (2006).
${ }^{\mathrm{b}} E(B-V)$ is estimated from Schlegel et al. (1998).
${ }^{\mathrm{c}} K$ is taken from 2MASS (Skrutskie et al. 2006).


Figure 2. Comparison of heliocentric radial velocities measured from the Subaru spectra with those from SDSS spectra. The open circles are overplotted for the three double-lined spectroscopic binaries. Except for these three stars, the two measurements exhibit excellent agreement.

### 3.2. Radial Velocities

Radial velocities are measured using the $\mathrm{Fe}_{\mathrm{I}}$ lines for which equivalent widths are measured. The derived heliocentric radial velocities are given in Table 2. The random error in the measurement is estimated to be $\sigma_{v} N^{-1 / 2}$, where $\sigma_{v}$ is the standard deviation of the derived values from individual lines, and $N$ is the number of lines used. The table also provides the values obtained from the SDSS spectra used for sample selection. Comparisons of heliocentric radial velocities measured from the Subaru spectra with those from SDSS are shown in Figure 2. In our sample, three double-lined spectroscopic binaries are included, as reported below. The data points of these stars are overplotted by open circles in the figure. Excluding these stars, the agreement between the two measurements is quite good, in almost all cases well within the expected errors.

## 4. ABUNDANCE ANALYSIS

### 4.1. Effective Temperature Estimates

Chemical abundances are determined by a standard analysis for measured equivalent widths using the ATLAS NEWODF grid of model atmospheres, assuming no convective overshooting (Castelli \& Kurucz 2003). The calculations of equivalent widths from models are made by the LTE spectrum synthesis code based on the programs for the model atmospheres developed by Tsuji (1978).

Owing to the lack of sufficient numbers of well-measured metallic lines in our snapshot spectra, we are not in a position to determine spectroscopic estimates of $T_{\text {eff }}$ by the usual practice of minimizing the trend of the relationship between derived abundance and excitation potentials of the lines from which it is derived. Balmer line profiles are also not used to determine $T_{\text {eff }}$, because the $\mathrm{S} / \mathrm{N}$ ratios of our data are too low for accurate estimation of the continuum levels, although the Balmer lines were used in the first inspection of stellar types (see also the Appendix). Instead, we have first estimated effective temperatures based on two sets of color indices (Table 4), an approach that also has limitations. For example, estimates of $T_{\text {eff }}$ derived for stars affected by large reddening are more uncertain, due to errors in obtaining estimates of their intrinsic colors.

Estimates of effective temperature based on $(V-K)_{0}$ colors are made using the temperature scales of Casagrande et al. (2010) for turnoff stars ( $T_{\text {eff }}$. $\geqslant 5500 \mathrm{~K}$ ), and Alonso et al. (1999) for giants ( $T_{\text {eff }}$ 保SPP $<5500 \mathrm{~K}$ ). The metallicity is assumed to be $[\mathrm{Fe} / \mathrm{H}]=-3.0$ for all stars in order to carry out this calculation. The $V_{0}$ magnitude is derived from the SDSS $g_{0}$ and $(g-r)_{0}$, using the transformations of Zhao \& Newberg (2006), which are suitable for low-metallicity stars. The $K_{0}$ magnitude is adopted from the Two Micron All Sky Survey (2MASS) catalog (Skrutskie et al. 2006). In all cases, the absorption and reddening corrections were carried out based on the reddening estimates from Schlegel et al. (1998).

The top panel of Figure 3 shows a comparison of $T_{\text {eff }}$ between the estimate from $(V-K)_{0}$ and that supplied by the SSPP. The SSPP actually provides two sets of effective temperature estimates, one of which is based on spectroscopy alone (essentially relying on the shape of the calibrated spectral energy distribution, index measurements of temperature-sensitive lines, and spectral fitting), while the other additionally includes photometric information in the estimates. For the stars in our sample, we found essentially no zero-point offsets between these approaches, with an rms variation of no more than 50 K . Hence, we adopt the spectroscopy-only values determined by the SSPP for our comparisons. Stars for which the $T_{\text {eff }}$ estimates from photometry are potentially very uncertain, due to large reddening corrections, are excluded from this comparison.

By inspection of the top panel from Figure 3, there is no significant offset between the two estimates for turnoff stars ( $T_{\text {eff }} \gtrsim 5500 \mathrm{~K}$ ), although the scatter is rather large. A likely cause of this scatter is the error in the $K$ apparent magnitude measured by 2MASS, which can become large for stars as faint as some in our sample. An error of 0.1 mag in $(V-K)_{0}$ results in a $T_{\text {eff }}$ error of about 200 K . The $1 \sigma$ errors on the $K$ magnitude for some of our fainter turnoff stars ( $K>14.5$ ) are even larger than 0.1 mag. To draw attention to these, they are shown as

Table 2
Observing Log

| ID | Object | Obs. Date (1) | Obs. Date (2) | Exp. Time (minute) | $\begin{gathered} \hline \mathrm{S} / \mathrm{N} \\ (4300 \AA) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S} / \mathrm{N} \\ (5180 \AA) \end{gathered}$ | $\begin{gathered} V_{\mathrm{H}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \sigma\left(V_{\mathrm{H}}\right) \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \hline V_{\mathrm{H}}^{\mathrm{SDSS}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | SDSS J0002 + 2928 | July 6, 2008 |  | 20 | 40 | 65 | -308.22 | 0.18 | -297.2 |
| 002 | SDSS J0008-0529 | October 4, 2008 |  | 25 | 24 | 46 | 117.18 | 0.07 | 117.5 |
| 003 | SDSS J0018-0939 | July 5, 2008 |  | 20 | 26 | 51 | -122.89 | 0.07 | -119.9 |
| 004 | SDSS J0020-0040 | October 5, 2008 |  | 40 | 35 | 54 | 3.29 | 0.13 | 11.2 |
| 005 | SDSS J0021-0050 | July 5, 2008 |  | 30 | 32 | 49 | -94.57 | 0.19 | -90.2 |
| 006 | SDSS J0023-0003 | October 4, 2008 |  | 25 | 28 | 46 | 89.84 | 0.10 | 88.0 |
| 007 | SDSS J0027 + 1404 | October 5, 2008 |  | 40 | 31 | 51 | 27.74 | 0.24 | 35.9 |
| 008 | SDSS J0027-1909 | July 5, 2008 | July 6, 2008 | 40 | 54 | 83 | 14.97 | 0.10 | 15.0 |
| 009 | SDSS J0028-1015 | October 6, 2008 |  | 40 | 33 | 52 | -25.29 | 0.13 | -19.4 |
| 010 | SDSS J0029-1910 | July 5, 2008 |  | 5 | 38 | 58 | 48.00 | 0.08 | 52.5 |
| 011 | SDSS J0033-1859 | October 4, 2008 |  | 25 | 26 | 47 | 262.89 | 0.08 | 268.6 |
| 012 | SDSS J0041-0953 | October 6, 2008 |  | 40 | 29 | 46 | 98.22 | 0.13 | 101.2 |
| 013 | SDSS J0100 + 0049 | July 6, 2008 |  | 30 | 38 | 62 | 48.19 | 0.07 | 51.2 |
| 014 | SDSS J0111+1442 | July 6, 2008 |  | 25 | 38 | 61 | -130.55 | 0.14 | -121.2 |
| 015 | SDSS J0115 + 2637 | July 4, 2008 |  | 10 | 25 | 39 | -113.11 | 0.19 | -114.8 |
| 016 | SDSS J0120-1001 ${ }^{\text {a }}$ | August 22, 2008 |  | 30 | 28 | 45 | -59.23 | 0.15 | -58.7 |
| 017 | SDSS J0126+0607 | July 6, 2008 |  | 25 | 41 | 64 | -274.31 | 0.16 | -260.6 |
| 018 | SDSS J0131-0908 | August 22, 2008 |  | 25 | 34 | 61 | 124.57 | 0.08 | 125.8 |
| 019 | SDSS J0140 + $2344{ }^{\text {a }}$ | July 5, 2008 |  | 10 | 28 | 46 | -200.17 | 0.17 | -191.0 |
| 020 | SDSS J0209 + 2120 | October 6, 2008 |  | 40 | 26 | 42 | -3.12 | 0.42 | -13.8 |
| 021 | SDSS J0254 + 3328 | October 6, 2008 |  | 40 | 29 | 46 | -218.09 | 0.12 | -216.7 |
| 022 | SDSS J0259 + 0057 | October 6, 2008 |  | 25 | 24 | 43 | 35.71 | 0.53 | 37.9 |
| 023 | SDSS J0308 + 0505 | August 22, 2008 |  | 15 | 19 | 35 | 316.08 | 0.25 | 306.7 |
| 024 | SDSS J0317 + 0023 | August 22, 2008 |  | 30 | 28 | 47 | 113.87 | 0.25 | 115.0 |
| 025 | SDSS J0320 + 4143 | August 22, 2008 |  | 18 | 30 | 52 | -115.91 | 0.21 | -92.8 |
| 026 | SDSS J0351 + 1026 | August 22, 2008 |  | 16 | 17 | 31 | 98.68 | 0.33 | 104.9 |
| 027 | SDSS J0414+0552 | August 22, 2008 |  | 25 | 19 | 32 | 97.79 | 0.40 | 102.2 |
| 028 | SDSS J0416+0713 | October 5, 2008 |  | 25 | 15 | 28 | 232.15 | 0.36 | 259.0 |
| 029 | SDSS J0629 + 8303 | October 5, 2008 |  | 15 | 28 | 50 | -122.08 | 0.17 | -101.3 |
| 030 | SDSS J0630 + 2552 | October 6, 2008 |  | 40 | 17 | 30 | 45.55 | 0.66 | 49.3 |
| 031 | SDSS J0711 + 6702 | October 5, 2008 |  | 20 | 30 | 53 | 111.79 | 0.08 | 111.8 |
| 032 | SDSS J0723 + 3637 | October 6, 2008 |  | 15 | 32 | 58 | -51.69 | 0.12 | -51.7 |
| 033 | SDSS J0727 + 1609 | October 5, 2008 |  | 20 | 31 | 51 | -113.25 | 0.23 | -105.3 |
| 034 | SDSS J0741 + 6708 | October 6, 2008 |  | 15 | 28 | 48 | -167.12 | 0.08 | -159.6 |
| 035 | SDSS J0746 + 2831 | October 5, 2008 |  | 20 | 34 | 55 | -32.32 | 0.08 | -43.4 |
| 036 | SDSS J0748 + 1758 | October 5, 2008 |  | 15 | 31 | 49 | -120.97 | 0.10 | -121.3 |
| 037 | SDSS J0749 + 1801 | October 6, 2008 |  | 10 | 39 | 72 | 54.57 | 0.05 | 60.9 |
| 038 | SDSS J0804 + 5153 | March 10, 2008 |  | 25 | 30 | 48 | -260.21 | 0.10 | -256.1 |
| 039 | SDSS J0809 + 0907 | March 8, 2008 |  | 25 | 35 | 54 | 164.78 | 0.26 | 166.4 |
| 040 | SDSS J0814 + 3337 | March 10, 2008 |  | 25 | 34 | 52 | 148.19 | 0.20 | 146.9 |
| 041 | SDSS J0817 + 2641 | March 10, 2008 |  | 20 | 32 | 49 | -1.82 | 0.53 | 67.1 |
| 042 | SDSS J0819 + 3119 | October 5, 2008 |  | 20 | 31 | 49 | 369.05 | 0.13 | 370.1 |
| 043 | SDSS J0821 + 1819 | March 8, 2008 |  | 35 | 28 | 44 | 164.40 | 2.12 | 169.4 |
| 044 | SDSS J0825 + 0403 | March 8, 2008 |  | 40 | 29 | 45 | 10.90 | 0.73 | 15.1 |
| 045 | SDSS J0827 + 1052 | March 8, 2008 |  | 35 | 35 | 52 | 158.97 | 0.28 | 169.1 |
| 046 | SDSS J0840 + 5405 | March 10, 2008 |  | 25 | 34 | 52 | -10.85 | 0.15 | -11.0 |
| 047 | SDSS J0847 + 0121 | March 8, 2008 |  | 15 | 30 | 47 | 199.27 | 0.15 | 201.5 |
| 048 | SDSS J0851 + 1018 | October 6, 2008 |  | 15 | 39 | 62 | 45.17 | 0.15 | 50.0 |
| 049 | SDSS J0858 + 3541 | October 6, 2008 |  | 15 | 37 | 64 | -226.15 | 0.04 | -223.0 |
| 050 | SDSS J0859 + 0402 | October 6, 2008 |  | 20 | 28 | 48 | 155.50 | 0.08 | 155.2 |
| 051 | SDSS J0907 + 0246 | March 8, 2008 |  | 25 | 33 | 52 | 313.15 | 0.15 | 321.9 |
| 052 | SDSS J0912+0216 | October 6, 2008 |  | 15 | 34 | 54 | 137.18 | 0.13 | 131.1 |
| 053 | SDSS J0932 + 0241 | March 8, 2008 |  | 30 | 33 | 51 | 286.30 | 0.22 | 275.8 |
| 054 | SDSS J1004 + 3442 | March 10, 2008 |  | 15 | 55 | 84 | -57.92 | 0.05 | -55.0 |
| 055 | SDSS J1033 + 4001 | March 10, 2008 |  | 20 | 34 | 51 | -133.14 | 0.18 | -130.8 |
| 056 | SDSS J1036+1212 ${ }^{\text {a }}$ | March 8, 2008 |  | 15 | 35 | 55 | -33.54 | 0.13 | -36.6 |
| 057 | SDSS J1106+0343 | March 8, 2008 |  | 30 | 33 | 51 | 159.79 | 0.13 | 165.4 |
| 058 | SDSS J1108 + 1747 | March 8, 2008 |  | 15 | 34 | 52 | -27.93 | 0.55 | -16.7 |
| 059 | SDSS J1120+3027 | March 10, 2008 |  | 15 | 30 | 47 | 47.53 | 0.12 | 50.6 |
| 060 | SDSS J1128 + 3841 | July 5, 2008 |  | 15 | 38 | 58 | -15.88 | 0.39 | -12.8 |
| 061 | SDSS J1147 + 1510 | May 2, 2008 |  | 36 | 34 | 52 | 60.81 | 0.12 | 58.8 |
| 062 | SDSS J1159 + 5425 | March 10, 2008 |  | 20 | 32 | 51 | 175.86 | 0.17 | 182.9 |
| 063 | SDSS J1213+4450 | March 10, 2008 |  | 25 | 37 | 56 | 92.36 | 0.25 | 95.7 |
| $064$ | SDSS J1230+0005 | July 5, 2008 |  | 10 | 37 | 55 | 42.61 | 0.19 | 42.4 |
| 065 | SDSS J1233 + 3407 | July 4, 2008 |  | 40 | 35 | 55 | -261.31 | 0.20 | -256.2 |

Table 2
(Continued)

| ID | Object | Obs. Date (1) | Obs. Date (2) | Exp. Time (minute) | $\begin{gathered} \mathrm{S} / \mathrm{N} \\ (4300 \AA 8) \end{gathered}$ | $\begin{gathered} \hline \hline \mathrm{S} / \mathrm{N} \\ (5180 \AA) \end{gathered}$ | $\begin{gathered} V_{\mathrm{H}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \sigma\left(V_{\mathrm{H}}\right) \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \hline V_{\mathrm{H}}^{\mathrm{SDSS}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 066 | SDSS J1241-0837 | July 6, 2008 |  | 20 | 28 | 48 | 334.23 | 0.11 | 332.3 |
| 067 | SDSS J1242-0336 | July 6, 2008 |  | 10 | 41 | 71 | 92.14 | 0.06 | 92.0 |
| 068 | SDSS J1245-0738 | March 10, 2008 |  | 20 | 27 | 42 | 76.88 | 0.27 | 69.9 |
| 069 | SDSS J1300+2632 | July 5, 2008 |  | 25 | 42 | 63 | -76.45 | 0.50 | -69.4 |
| 070 | SDSS J1303 + 2515 | July 6, 2008 |  | 20 | 39 | 61 | 44.13 | 0.13 | 41.5 |
| 071 | SDSS J1304+3239 | July 4, 2008 |  | 30 | 32 | 51 | 1.07 | 0.11 | 4.7 |
| 072 | SDSS J1312+2450 | May 2, 2008 |  | 25 | 28 | 43 | -93.14 | 0.20 | -90.9 |
| 073 | SDSS J1316+1747 | July 6, 2008 |  | 15 | 34 | 62 | 41.14 | 0.05 | 44.3 |
| 074 | SDSS J1334+0022 | May 2, 2008 |  | 30 | 35 | 59 | -56.30 | 0.10 | -52.6 |
| 075 | SDSS J1338 + 1204 | May 2, 2008 |  | 30 | 43 | 67 | -219.57 | 0.11 | -218.6 |
| 076 | SDSS J1349-0229 | July 5, 2008 |  | 25 | 28 | 44 | 120.21 | 0.51 | 134.7 |
| 077 | SDSS J1400+0753 | July 6, 2008 |  | 35 | 29 | 45 | 202.47 | 0.22 | 202.9 |
| 078 | SDSS J1408 + 6239 | July 4, 2008 |  | 30 | 32 | 48 | 46.58 | 0.24 | 45.7 |
| 079 | SDSS J1410+5350 | March 8, 2008 |  | 25 | 37 | 56 | -138.23 | 0.28 | -155.8 |
| 080 | SDSS J1412+5609 | July 6, 2008 |  | 20 | 34 | 52 | -53.09 | 0.11 | -55.3 |
| 081 | SDSS J1422 + 0031 | July 5, 2008 |  | 40 | 33 | 59 | -120.20 | 0.11 | -126.4 |
| 082 | SDSS J1424 + 5615 ${ }^{\text {a }}$ | July 6, 2008 |  | 20 | 37 | 57 | -0.83 | 0.12 | 4.5 |
| 083 | SDSS J1425 + 1137 | March 8, 2008 |  | 15 | 35 | 54 | -89.63 | 0.10 | -84.2 |
| 084 | SDSS J1425 + 5742 | March 8, 2008 |  | 30 | 39 | 60 | -0.61 | 0.18 | 16.6 |
| 085 | SDSS J1434 + 1036 | July 5, 2008 |  | 40 | 30 | 46 | 66.60 | 0.32 | 70.9 |
| 086 | SDSS J1436+0918 | March 8, 2008 |  | 20 | 36 | 54 | -114.55 | 0.24 | -111.9 |
| 087 | SDSS J1436+0301 | July 5, 2008 |  | 40 | 26 | 42 | -152.78 | 0.33 | -151.5 |
| 088 | SDSS J1437 + 5231 | March 10, 2008 |  | 25 | 32 | 49 | 59.50 | 0.10 | 63.0 |
| 089 | SDSS J1437 + 5837 | March 8, 2008 |  | 20 | 39 | 59 | -55.10 | 0.19 | -53.5 |
| 090 | SDSS J1446+1249 | March 8, 2008 |  | 25 | 38 | 59 | -106.31 | 0.11 | -113.8 |
| 091 | SDSS J1502 + 3113 | July 6, 2008 |  | 20 | 39 | 61 | -278.96 | 0.11 | -270.8 |
| 092 | SDSS J1504+4623 | May 2, 2008 |  | 40 | 33 | 52 | -70.13 | 0.28 | -66.9 |
| 093 | SDSS J1515 + 4503 | March 10, 2008 |  | 25 | 29 | 45 | -25.91 | 0.30 | -20.1 |
| 094 | SDSS J1516+4333 | July 4, 2008 |  | 30 | 32 | 47 | -152.69 | 0.27 | -154.8 |
| 095 | SDSS J1521 + 3437 | May 2, 2008 |  | 41 | 30 | 46 | -32.23 | 0.40 | -23.9 |
| 096 | SDSS J1522 + 3055 ${ }^{\text {a }}$ | March 8, 2008 |  | 30 | 34 | 54 | -354.61 | 0.21 | -351.3 |
| 097 | SDSS J1523 + 4942 | July 6, 2008 |  | 20 | 31 | 50 | -12.94 | 0.20 | -13.7 |
| 098 | SDSS J1528 + 4915 | March 8, 2008 |  | 15 | 34 | 53 | -49.60 | 0.10 | -45.3 |
| 099 | SDSS J1551 + 2521 | May 2, 2008 |  | 30 | 35 | 57 | -122.44 | 0.17 | -115.4 |
| 100 | SDSS J1553 + 2511 | July 4, 2008 |  | 25 | 30 | 47 | -187.28 | 0.25 | -180.6 |
| 101 | SDSS J1603 + 2917 | March 8, 2008 |  | 30 | 32 | 50 | -103.75 | 0.11 | -108.0 |
| 102 | SDSS J1612 + 0421 | October 6, 2008 |  | 20 | 25 | 43 | 20.40 | 0.11 | 19.1 |
| 103 | SDSS J1613+5309 | July 4, 2008 |  | 30 | 30 | 49 | -0.01 | 0.16 | 1.5 |
| 104 | SDSS J1623+3913 | July 4, 2008 |  | 30 | 33 | 52 | -76.18 | 0.32 | -76.5 |
| 105 | SDSS J1626+1458 | July 5, 2008 |  | 40 | 28 | 43 | 25.83 | 0.56 | 20.4 |
| 106 | SDSS J1633+3907 | July 4, 2008 |  | 40 | 34 | 52 | -179.27 | 0.13 | $-178.8$ |
| 107 | SDSS J1640 + 3709 ${ }^{\text {a }}$ | March 10, 2008 |  | 10 | 29 | 44 | -51.14 | 0.25 | -48.6 |
| 108 | SDSS J1646+2824 | July 4, 2008 |  | 15 | 29 | 46 | -18.72 | 0.16 | -21.4 |
| 109 | SDSS J1650 + 2242 | October 6, 2008 |  | 25 | 30 | 48 | -33.08 | 0.29 | -30.9 |
| 110 | SDSS J1659 + 3515 | July 4, 2008 |  | 30 | 30 | 47 | -42.49 | 0.07 | -44.1 |
| 111 | SDSS J1703 + $2836{ }^{\text {a }}$ | July 6, 2008 |  | 10 | 24 | 42 | -174.90 | 0.19 | -174.0 |
| 112 | SDSS J1728 + 0657 | October 6, 2008 |  | 25 | 25 | 40 | -353.37 | 0.22 | -350.4 |
| 113 | SDSS J1734+4316 | October 4, 2008 |  | 25 | 28 | 49 | -211.93 | 0.09 | -209.7 |
| 114 | SDSS J1735 + 4446 | May 2, 2008 |  | 20 | 30 | 54 | -142.26 | 0.06 | -123.4 |
| 115 | SDSS J1736+4420 | October 4, 2008 |  | 20 | 30 | 51 | -310.09 | 0.08 | -305.5 |
| 116 | SDSS J1746+2455 | March 10, 2008 |  | 15 | 27 | 44 | 78.69 | 0.22 | 78.6 |
| 117 | SDSS J1830 + 4141 | May 2, 2008 |  | 26 | 35 | 54 | -270.97 | 0.23 | -273.2 |
| 118 | SDSS J1834+2023 | October 5, 2008 |  | 25 | 23 | 38 | -17.45 | 0.22 | -6.4 |
| 119 | SDSS J1836+6317 | October 4, 2008 |  | 20 | 23 | 45 | -423.25 | 0.22 | -395.9 |
| 120 | SDSS J2005-1045 ${ }^{\text {a }}$ | July 5, 2008 | July 6, 2008 | 60 | 40 | 62 | -55.60 | 0.35 | -51.7 |
| 121 | SDSS J2052 + 0109 | October 5, 2008 |  | 40 | 28 | 45 | -184.23 | 0.12 | -172.3 |
| 122 | SDSS J2104-0104 | July 5, 2008 |  | 30 | 29 | 47 | -110.55 | 0.16 | -112.5 |
| 123 | SDSS J2111+0109 | August 22, 2008 |  | 30 | 25 | 41 | -270.65 | 0.16 | -273.0 |
| 124 | SDSS J2118-0640 | August 22, 2008 |  | 30 | 26 | 43 | -199.71 | 0.83 | -197.7 |
| 125 | SDSS J2123-0820 | July 5, 2008 |  | 40 | 34 | 51 | -167.33 | 0.19 | -164.8 |
| 126 | SDSS J2128-0756 | October 5, 2008 |  | 30 | 30 | 48 | -178.24 | 0.11 | -171.5 |
| 127 | SDSS J2206-0925 | July 4, 2008 |  | 15 | 41 | 71 | 14.85 | 0.09 | 13.2 |
| 128 | SDSS J2207+2017 | October 6, 2008 |  | 40 | 29 | 44 | -150.75 | 0.17 | -149.9 |
| 129 | SDSS J2208 + 0613 | July 4, 2008 |  | 15 | 32 | 50 | -136.46 | 0.23 | -135.6 |
| 130 | SDSS J2213-0726 | July 4, 2008 |  | 15 | 37 | 67 | -392.42 | 0.07 | -391.0 |

Table 2
(Continued)

| ID | Object | Obs. Date (1) | Obs. Date (2) | Exp. Time (minute) | $\begin{gathered} \hline \text { S/N } \\ (4300 \AA) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S} / \mathrm{N} \\ (5180 \AA) \end{gathered}$ | $\begin{gathered} V_{\mathrm{H}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \sigma\left(V_{\mathrm{H}}\right) \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} V_{\mathrm{H}}^{\mathrm{SDSS}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 131 | SDSS J2300 + 0559 | October 4, 2008 |  | 40 | 30 | 47 | -244.68 | 0.24 | -245.5 |
| 132 | SDSS J2308-0855 | August 22, 2008 |  | 50 | 32 | 53 | -111.41 | 0.18 | -112.4 |
| 133 | SDSS J $2309+2308^{\text {a }}$ | July 5, 2008 | July 6, 2008 | 50 | 29 | 49 | -307.47 | 0.57 | -308.7 |
| 134 | SDSS J2334 + 1538 | July 6, 2008 |  | 20 | 25 | 39 | -130.09 | 0.29 | -128.7 |
| 135 | SDSS J2338 + 0902 | July 5, 2008 |  | 10 | 27 | 53 | -156.88 | 0.17 | -145.6 |
| 136 | SDSS J $2349+3832^{\text {a }}$ | August 22, 2008 |  | 30 | 22 | 37 | -87.35 | 1.13 | -84.4 |
| 137 | SDSS J2357-0052 ${ }^{\text {a }}$ | October 4, 2008 |  | 15 | 26 | 47 | -9.40 | 0.15 | -14.5 |

Note. ${ }^{\text {a }}$ Objects that were later observed at higher resolution and higher $\mathrm{S} / \mathrm{N}$.
open circles in Figure 3. The scatter in the $T_{\text {eff }}$ comparison for these stars is 395 K , much larger than that for other stars of similar $T_{\text {eff }}$ having errors smaller than 0.1 in their $K$ magnitudes ( $\sigma=241 \mathrm{~K}$ ).

For the cooler stars $\left(T_{\text {eff }} \lesssim 5500 \mathrm{~K}\right)$, a clear offset (about 140 K ) is found between the $T_{\text {eff }}$ obtained from the ( $V-K)_{0}$-based estimate and that from the SSPP, although the rms scatter is small ( $\sigma=214 \mathrm{~K}$ ). None of the cooler stars have $K$ magnitude errors larger than 0.1 mag.

Estimates of $T_{\text {eff }}$ based on $(g-r)_{0}$ color are made using the colors calculated based on ATLAS model atmosphere provided by Castelli et al. ${ }^{16}$ For the purpose of this calculation, values of $\log g$ are assumed to be 4.0 and 2.0 for turnoff stars and giants, respectively, and the metallicity is assumed to be $[\mathrm{Fe} / \mathrm{H}]=-3.0$. A comparison of these $T_{\text {eff }}$ estimates with those supplied by the SSPP is shown in the middle panel of Figure 3. There is no significant offset between the two estimates for turnoff stars, and the scatter is smaller ( 35 K ) than that found for $(V-K)_{0}$ considered above. Although a zero-point offset is found for the giants, it is smaller ( 74 K ) than that found for $(V-K)_{0}$. The reduced scatter may be a result of smaller reddening effects on the $g-r$ color than on $V-K$, or simply the better photometric precision of the measured $g-r$ colors.

For completeness, the bottom panel of Figure 3 compares the effective temperatures estimated based on the two color indices.

In order to assess the dependence of our $T_{\text {eff }}$ estimates on metallicity, Figure 4 provides comparisons for three metallicity ranges. Note that we have separated this sample using the $[\mathrm{Fe} / \mathrm{H}]$ values derived from the abundance analysis in the present work, as described below. No significant dependence on metallicity is seen.

Given the uncertainties in the $(V-K)_{0}$ based estimates, and the similarity of the $(g-r)_{0}$ based estimates with those from the SSPP, we simply adopt the (spectroscopic) effective temperatures determined by the SSPP for the remainder of our analysis.

### 4.2. Gravity, Metallicity, and Microturbulence

The $\log g$ values for turnoff stars are expected to cover the range from 3.5 (subgiant stars) to 4.5 (main-sequence stars), according to various isochrones for very metal-poor stars (Kim et al. 2002; Demarque et al. 2004). Unfortunately, for these stars, our measurements only yielded a single or a few $\mathrm{Fe}_{\text {II }}$ lines, which provides little opportunity to determine $\log g$ in the traditional manner, by demanding that the same abundance be returned by analysis of the two ionization stages. Hence, the surface gravity for turnoff stars $\left(T_{\text {eff }}>5500 \mathrm{~K}\right)$ is simply set to

[^3]Table 3
Spectral Line Data

| Species | Wavelength <br> $(\AA)$ | $\log g f$ | L.E.P. <br> $(\mathrm{eV})$ | References $^{\mathrm{a}}$ |
| :--- | :---: | ---: | :---: | :---: |

Notes.
${ }^{\text {a }}$ References - (1) Kupka et al. 1999; (2) Fischer 1975; (3) Wiese et al. 1969; (4) Aldenius et al. 2007; (5) Wiese \& Martin 1980; (6) Ivans et al. 2006; (7) Lawler \& Dakin 1989; (8) Blackwell et al. 1982a; (9) Blackwell et al. 1982b; (10) Pickering et al. 2001; (11) Ryabchikova et al. 1994; (12) Martin et al. 1988; (13) Booth et al. 1984; (14) O’Brian et al. 1991; (15) Schnabel et al. 2004; (16) Moity 1983; (17); Biemont et al. (1991); (18) Nitz et al. 1999; (19) Biemont \& Godefroid 1980; (20) Pinnington et al. 1995; (21) Hannaford et al. 1982; (22) Gallagher 1967; (23) Lawler et al. 2001a; (24) Lawler et al. 2001b.
(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding its form and content.)
$\log g=4.0$, and we accept that errors in its determination can be as large as 0.5 dex. We assess the impact of this assumption below.

Figure 5 shows the differences in $[\mathrm{Fe} / \mathrm{H}]$ derived from $\mathrm{Fe}_{\mathrm{I}}$ and $\mathrm{Fe}_{\text {II }}$ for a sample of 88 turnoff stars for which at least one Fe ir line is detected. The average and standard deviation for each 0.2 dex bin of $[\mathrm{Fe} / \mathrm{H}]$ are represented by an open circle and bars, respectively. No significant offset between the $[\mathrm{Fe} / \mathrm{H}]$ abundances from the two species appears for $[\mathrm{Fe} / \mathrm{H}]>-3.3$. The small offset found in the lower metallicity range could be a result of a bias in the sample, arising from the fact that no Fe ir line is detected for a larger fraction of these stars. Indeed, Fe ir lines are detected for only 13 objects among the 24 turnoff stars with $[\mathrm{Fe} / \mathrm{H}]<-3.3$. The $\mathrm{Fe}_{\text {II }}$ lines are weaker due to the generally higher gravities in objects for which the $\mathrm{Fe}_{\text {II }}$ lines are not detected. Excluding this bias, the gravity adopted in our analysis for turnoff stars $(\log g=4.0)$ is well justified, based on this comparison.

The uncertainty in our $\log g$ values is estimated to be 0.5 dex, based on the standard deviation of about 0.2 dex found in $\Delta[\mathrm{Fe} / \mathrm{H}]$ from $\mathrm{Fe}_{\text {I }}$ and $\mathrm{Fe}_{\text {II }}$ (see Section 4.3 and Table 6). We note that the iron abundance measured from $\mathrm{Fe}_{\mathrm{I}}$, which is the metallicity indicator used in this paper, as well as the abundance ratios $[\mathrm{Mg} / \mathrm{Fe}],[\mathrm{Ca} / \mathrm{Fe}]$ and $[\mathrm{Ba} / \mathrm{Fe}]$, which are important for the discussion to follow, are not very sensitive to the $\log g$ values.

We note that the $\log g$ values determined by SSPP for our turnoff stars are lower than 4.0 on average, and those for

Table 4
Steller Parameters

| ID | Object | SSPP |  |  | $\begin{gathered} T_{\mathrm{eff}}(\mathrm{~K}) \\ (V-K)_{0} \end{gathered}$ | $\begin{gathered} T_{\mathrm{eff}}(\mathrm{~K}) \\ (g-r)_{0} \end{gathered}$ | Adopted Parameters |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ | [Fe/H] |  |  | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ | [Fe/H] |
| 001 | SDSS J0002 + 2928 | 6169 | 3.10 | -2.81 | 6328 | 6043 | 6150 | 4.0 | -3.26 |
| 002 | SDSS J0008-0529 | 4938 | 2.51 | -2.78 | 4549 | 4673 | 4950 | 2.0 | -2.66 |
| 003 | SDSS J0018-0939 | 4612 | 3.29 | -2.98 | 4648 | 4628 | 4600 | 5.0 | -2.65 |
| 004 | SDSS J0020-0040 | 6453 | 2.69 | -2.61 | 6055 | 6444 | 6450 | 4.0 | -2.81 |
| 005 | SDSS J0021-0050 | 6654 | 3.31 | -3.09 | 6944 | 6242 | 6650 | 4.0 | -3.16 |
| 006 | SDSS J0023-0003 | 5499 | 2.18 | -3.04 | 5555 | 5618 | 5500 | 4.0 | -3.12 |
| 007 | SDSS J0027 + 1404 | 6270 | 3.68 | -2.88 | 6121 | 6166 | 6250 | 4.0 | -3.03 |
| 008 | SDSS J0027-1909 | 6555 | 3.80 | -3.04 | 6824 | 6529 | 6550 | 4.0 | -2.71 |
| 009 | SDSS J0028-1015 | 6151 | 3.95 | -2.87 | 6581 | 6152 | 6150 | 4.0 | -2.81 |
| 010 | SDSS J0029-1910 | 6499 | 3.75 | -3.39 | 6750 | 6444 | 6500 | 4.0 | -3.15 |
| 011 | SDSS J0033-1859 | 5009 | 2.11 | -2.83 | 4797 | 5016 | 5000 | 2.1 | -2.80 |
| 012 | SDSS J0041-0953 | 5988 | 2.80 | -2.88 | 5959 | 5969 | 6000 | 4.0 | -2.81 |
| 013 | SDSS J0100 + 0049 | 5533 | 3.48 | -2.95 | 5490 | 5562 | 5550 | 4.0 | -3.18 |
| 014 | SDSS J0111 + 1442 | 6330 | 3.70 | -2.61 | 6323 | 6161 | 6350 | 4.0 | -2.80 |
| 015 | SDSS J0115 + 2637 | 5510 | 3.46 | -2.98 | 5495 | 5535 | 5500 | 4.0 | -3.32 |
| 016 | SDSS J0120-1001 | 5801 | 2.77 | -3.18 | 5702 | 5917 | 5800 | 4.0 | -3.45 |
| 017 | SDSS J0126 + 0607 | 6877 |  | ... | 6842 | 6611 | 6900 | 4.0 | -3.01 |
| 018 | SDSS J0131-0908 | 5257 | 2.38 | -2.79 | 4949 | 5050 | 5250 | 2.4 | -2.62 |
| 019 | SDSS J0140 + 2344 | 6103 | 3.37 | -3.57 | 5890 | 5860 | 6100 | 4.0 | -3.65 |
| 020 | SDSS J0209 + 2120 | 6244 | 2.64 | -2.86 | 5954 | 6190 | 6250 | 4.0 | -2.89 |
| 021 | SDSS J0254 + 3328 | 6197 | 3.46 | -2.77 | 6257 | 6311 | 6200 | 4.0 | -2.82 |
| 022 | SDSS J0259 + 0057 | 4550 | 3.92 | -3.62 | 4746 | 4696 | 4550 | 5.0 | -3.31 |
| 023 | SDSS J0308 + 0505 | 5938 | 3.05 | -2.01 | 6136 | 5743 | 5950 | 4.0 | -2.19 |
| 024 | SDSS J0317 + 0023 | 5785 | 3.54 | -3.34 | 5911 | 5913 | 5800 | 4.0 | -3.39 |
| 025 | SDSS J0320 + 4143 | 5966 | 4.25 | -2.94 | 6166 | 6047 | 5950 | 4.0 | -2.92 |
| 026 | SDSS J0351 + 1026 | 5441 | 2.69 | -3.09 | 5645 | 5723 | 5450 | 3.6 | -3.18 |
| 027 | SDSS J0414 + 0552 | 6514 | 3.69 | -2.84 | 7020 | 6534 | 6500 | 4.0 | -2.32 |
| 028 | SDSS J0416 + 0713 | 5956 | 3.20 | -2.19 | 5464 | 5264 | 5950 | 4.0 | -2.59 |
| 029 | SDSS J0629 + 8303 | 5539 | 2.51 | -3.00 | 5542 | 5439 | 5550 | 4.0 | -2.82 |
| 030 | SDSS J0630 + 2552 | 6100 | 3.77 | -3.15 | 7493 | 6185 | 6100 | 4.0 | -3.05 |
| 031 | SDSS J0711 + 6702 | 5338 | 2.32 | -2.57 | 5237 | 5235 | 5350 | 3.0 | -2.91 |
| 032 | SDSS J0723 + 3637 | 5135 | 2.98 | -3.35 | 4992 | 5113 | 5150 | 2.2 | -3.32 |
| 033 | SDSS J0727 + 1609 | 6613 | 4.02 | -2.82 | 6124 | 6276 | 6600 | 4.0 | -2.92 |
| 034 | SDSS J0741 + 6708 | 5201 | 2.40 | -2.94 | 5006 | 5116 | 5200 | 2.5 | -2.87 |
| 035 | SDSS J0746 + 2831 | 6111 | 4.15 | -2.77 | 6313 | 6038 | 6100 | 4.0 | -2.75 |
| 036 | SDSS J0748 + 1758 | 6091 | 3.36 | -2.81 | 6311 | 6176 | 6100 | 4.0 | -2.60 |
| 037 | SDSS J0749 + 1801 | 5098 | 2.85 | -2.80 | 4978 | 5037 | 5100 | 1.8 | -2.64 |
| 038 | SDSS J0804 + 5153 | 5948 | 3.14 | -2.74 | 5693 | 5873 | 5950 | 4.0 | -3.01 |
| 039 | SDSS J0809 + 0907 | 6155 | 3.16 | -3.37 | 6285 | 6214 | 6150 | 4.0 | -3.38 |
| 040 | SDSS J0814 + 3337 | 6454 | 3.34 | -3.14 | 6590 | 6469 | 6450 | 4.0 | -3.28 |
| 041 | SDSS J0817 + 2641 | 6053 | 3.40 | -3.17 | 6277 | 6109 | 6050 | 4.0 | -2.85 |
| 042 | SDSS J0819 + 3119 | 6327 | 4.07 | -2.75 | 6455 | 6385 | 6350 | 4.0 | -2.88 |
| 043 | SDSS J0821 + 1819 | 6269 | 3.80 | -3.25 | 6187 | 6242 | 6250 | 4.0 | -3.70 |
| 044 | SDSS J0825 + 0403 | 6414 | 3.35 | -3.42 | 5653 | 6444 | 6400 | 4.0 | -3.60 |
| 045 | SDSS J0827 + 1052 | 6409 | 3.88 | -3.23 | 6230 | 6365 | 6400 | 4.0 | -3.17 |
| 046 | SDSS J0840 + 5405 | 6152 | 3.45 | -2.92 | 5766 | 6286 | 6150 | 4.0 | -3.25 |
| 047 | SDSS J0847 + 0121 | 6271 | 3.83 | -3.01 | 6199 | 6419 | 6250 | 4.0 | -3.20 |
| 048 | SDSS J0851 + 1018 | 6486 | 3.80 | -2.94 | 6438 | 6281 | 6500 | 4.0 | -2.89 |
| 049 | SDSS J0858 + 3541 | 5192 | 1.99 | -2.76 | 5075 | 5001 | 5200 | 2.5 | -2.53 |
| 050 | SDSS J0859 + 0402 | 5416 | 3.70 | -3.04 | 5188 | 5225 | 5400 | 3.1 | -3.05 |
| 051 | SDSS J0907 + 0246 | 5985 | 2.89 | -3.39 | 6293 | 6066 | 6000 | 4.0 | -3.30 |
| 052 | SDSS J0912 + 0216 | 6127 | 2.55 | -2.85 | 6275 | 5952 | 6150 | 4.0 | -2.68 |
| 053 | SDSS J0932 + 0241 | 6220 | 3.32 | -2.89 | 5910 | 6405 | 6200 | 4.0 | -3.14 |
| 054 | SDSS J1004 + 3442 | 6114 | 3.14 | -3.05 | 6035 | 6076 | 6100 | 4.0 | -3.09 |
| 055 | SDSS J1033 + 4001 | 6582 | 3.83 | -2.90 | 6323 | 6464 | 6600 | 4.0 | -3.06 |
| 056 | SDSS J1036+1212 | 5854 | 3.13 | -3.45 | 5787 | 5917 | 5850 | 4.0 | -3.47 |
| 057 | SDSS J1106+0343 | 6281 | 4.10 | -2.89 | 7010 | 6185 | 6300 | 4.0 | -2.88 |
| 058 | SDSS J1108 + 1747 | 6051 | 3.35 | -2.84 | 6201 | 6024 | 6050 | 4.0 | -3.17 |
| 059 | SDSS J1120 + 3027 | 5750 | 4.32 | -3.02 | 5810 | 5671 | 5750 | 4.0 | -3.14 |
| 060 | SDSS J1128 + 3841 | 6570 | 3.68 | -3.26 | 6621 | 6565 | 6550 | 4.0 | -2.82 |
| 061 | SDSS J1147+1510 | 6499 | 3.70 | -2.98 | 6876 | 6459 | 6500 | 4.0 | -2.96 |
| 062 | SDSS J1159+5425 | 5721 | 3.09 | -3.25 | 5886 | 5702 | 5700 | 4.0 | -3.26 |
| 063 | SDSS J1213+4450 | 6637 | 4.34 | -3.11 | 6230 | 6719 | 6650 | 4.0 | -3.20 |
| 064 | SDSS J1230 + 0005 | 6160 | 2.90 | -3.56 | 6153 | 6271 | 6150 | 4.0 | -3.34 |
| 065 | SDSS J1233 + 3407 | 6325 | 3.61 | -2.64 | 6173 | 6133 | 6300 | 4.0 | -2.87 |

Table 4
(Continued)

| ID | Object | SSPP |  |  |  | $\begin{gathered} T_{\mathrm{eff}}(\mathrm{~K}) \\ (V-K)_{0} \end{gathered}$ | $\begin{gathered} T_{\mathrm{eff}}(\mathrm{~K}) \\ (g-r)_{0} \end{gathered}$ | Adopted Parameters |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ | [Fe/H] |  |  |  | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ | [Fe/H] |
| 066 | SDSS J1241-0837 | 5138 | 2.47 | -2.72 | 4901 | 4956 | 5150 | 2.5 | -2.73 |  |
| 067 | SDSS J1242-0336 | 5130 | 2.63 | -2.86 | 4961 | 5087 | 5150 | 2.5 | -2.77 |  |
| 068 | SDSS J1245-0738 | 6108 |  |  | 6393 | 6142 | 6100 | 4.0 | -3.17 |  |
| 069 | SDSS J1300+2632 | 6464 | 3.30 | -3.26 | 6510 | 6385 | 6450 | 4.0 | -3.53 |  |
| 070 | SDSS J1303 + 2515 | 6141 | 3.74 | -2.71 | 6323 | 6147 | 6150 | 4.0 | -2.85 |  |
| 071 | SDSS J1304 + 3239 | 6054 | 3.62 | -2.96 | 6534 | 6331 | 6050 | 4.0 | -2.90 |  |
| 072 | SDSS J1312+2450 | 6251 | 3.64 | -2.75 | 6069 | 6199 | 6250 | 4.0 | -2.72 |  |
| 073 | SDSS J1316 + 1747 | 4976 | 2.19 | -2.23 | 4579 | 4662 | 5000 | 2.1 | -2.10 |  |
| 074 | SDSS J1334 + 0022 | 5664 | 3.21 | -3.03 | 5555 | 5626 | 5650 | 4.0 | -3.03 |  |
| 075 | SDSS J1338 + 1204 | 6281 | 4.07 | -2.89 | 6445 | 6218 | 6300 | 4.0 | -2.86 |  |
| 076 | SDSS J1349-0229 | 6189 |  | ... | 5725 | 6081 | 6200 | 4.0 | -3.24 |  |
| 077 | SDSS J1400+0753 | 6274 | 3.74 | -2.87 | 5882 | 6276 | 6250 | 4.0 | -2.98 |  |
| 078 | SDSS J1408 + 6239 | 6284 | 4.41 | -2.88 | 6420 | 6340 | 6300 | 4.0 | -2.97 |  |
| 079 | SDSS J1410+5350 | 6102 | 3.40 | -3.15 | 6402 | 6199 | 6100 | 4.0 | -3.42 |  |
| 080 | SDSS J1412+5609 | 6608 | 3.98 | -3.24 | 6420 | 6867 | 6600 | 4.0 | -3.19 |  |
| 081 | SDSS J1422 + 0031 | 5190 | 2.45 | -3.17 | 4865 | 5850 | 5200 | 2.2 | -3.03 |  |
| 082 | SDSS J1424 + 5615 | 6339 | 3.95 | -3.04 | 5971 | 6266 | 6350 | 4.0 | -2.97 |  |
| 083 | SDSS J1425 + 1137 | 6272 | 3.99 | -2.98 | 6292 | 6370 | 6300 | 4.0 | -3.08 |  |
| 084 | SDSS J1425 + 5742 | 6474 | 3.90 | -3.15 | 6345 | 6580 | 6450 | 4.0 | -3.29 |  |
| 085 | SDSS J1434 + 1036 | 6396 | 3.43 | -3.22 | 5397 | 6326 | 6400 | 4.0 | -3.21 |  |
| 086 | SDSS J1436+0918 | 6521 | 3.61 | -3.26 | 6886 | 6385 | 6500 | 4.0 | -3.49 |  |
| 087 | SDSS J1436+0301 | 6175 | 3.04 | -3.22 | 6047 | 6176 | 6150 | 4.0 | -3.60 |  |
| 088 | SDSS J1437 + 5231 | 6292 | 4.02 | -2.99 | 6480 | 6335 | 6300 | 4.0 | -2.90 |  |
| 089 | SDSS J1437 + 5837 | 6460 | 3.47 | -2.77 | 6464 | 6335 | 6450 | 4.0 | -3.02 |  |
| 090 | SDSS J1446+1249 | 6346 | 3.61 | -3.01 | 6024 | 6355 | 6350 | 4.0 | -2.99 |  |
| 091 | SDSS J1502 + 3113 | 6347 | 3.95 | -2.77 | 6404 | 6439 | 6350 | 4.0 | -2.86 |  |
| 092 | SDSS J1504 + 4623 | 6069 | 3.65 | -3.27 | 6206 | 6218 | 6050 | 4.0 | -3.31 |  |
| 093 | SDSS J1515 + 4503 | 6312 | 3.76 | -3.06 | 6508 | 6128 | 6300 | 4.0 | -3.34 |  |
| 094 | SDSS J1516+4333 | 6517 | 3.49 | -2.78 | 6570 | 6596 | 6500 | 4.0 | -2.91 |  |
| 095 | SDSS J1521 + 3437 | 6203 | 3.81 | -2.86 | 6507 | 6109 | 6200 | 4.0 | -2.79 |  |
| 096 | SDSS J1522 + 3055 | 6008 | 2.77 | -3.46 | 5873 | 5908 | 6000 | 4.0 | -3.59 |  |
| 097 | SDSS J1523 + 4942 | 5846 | 3.41 | -2.92 | 5779 | 5791 | 5850 | 4.0 | -3.06 |  |
| 098 | SDSS J1528 + 4915 | 6441 | 3.34 | -3.06 | 6483 | 6555 | 6450 | 4.0 | -2.99 |  |
| 099 | SDSS J1551 + 2521 | 5854 | 3.85 | -3.05 | 5899 | 5961 | 5850 | 4.0 | -3.07 |  |
| 100 | SDSS J1553 + 2511 | 5861 | 2.31 | -2.86 | 5687 | 5679 | 5850 | 4.0 | $-3.30$ |  |
| 101 | SDSS J1603 + 2917 | 6007 | 3.97 | -3.13 | 6432 | 6104 | 6000 | 4.0 | -3.36 |  |
| 102 | SDSS J1612+0421 | 5364 | 2.58 | -2.88 | 5450 | 5371 | 5350 | 3.3 | -2.86 |  |
| 103 | SDSS J1613+5309 | 5333 | 2.51 | -2.80 | 5184 | 5307 | 5350 | 2.1 | -3.33 |  |
| 104 | SDSS J1623 + 3913 | 6369 | 3.81 | -2.79 | 6580 | 6214 | 6350 | 4.0 | -3.19 |  |
| 105 | SDSS J1626+1458 | 6385 | . | . | 5907 | 6390 | 6400 | 4.0 | -2.99 |  |
| 106 | SDSS J1633 + 3907 | 6288 | 3.53 | -2.95 | 5699 | 6171 | 6300 | 4.0 | -2.88 |  |
| 107 | SDSS J1640 + 3709 | 6435 | 3.41 | -3.29 | 6319 | 6350 | 6450 | 4.0 | -3.39 |  |
| 108 | SDSS J1646+2824 | 6109 | 2.78 | -2.71 | 6532 | 5996 | 6100 | 4.0 | -3.05 |  |
| 109 | SDSS J1650 + 2242 | 6577 | 3.90 | -2.96 | 6691 | 6340 | 6600 | 4.0 | -2.56 |  |
| 110 | SDSS J1659 + 3515 | 6073 | 3.17 | -2.93 | 5992 | 6223 | 6050 | 4.0 | -3.24 |  |
| 111 | SDSS J1703 + 2836 | 5119 | 4.37 | -3.48 | 5057 | 5109 | 5100 | 4.8 | -3.21 |  |
| 112 | SDSS J1728 + 0657 | 6333 | 3.62 | -3.08 | 6832 | 6316 | 6350 | 4.0 | -2.85 |  |
| 113 | SDSS J1734 + 4316 | 5196 | 1.33 | -3.01 | 5237 | 5095 | 5200 | 2.7 | -2.51 |  |
| 114 | SDSS J1735 + 4446 | 5266 | 2.95 | -3.14 | 4868 | 5100 | 5250 | 2.0 | -3.29 |  |
| 115 | SDSS J1736 + 4420 | 5475 | 2.96 | -2.83 | 5173 | 5227 | 5450 | 3.0 | -2.93 |  |
| 116 | SDSS J1746 + 2455 | 5358 | 2.47 | -2.85 | 5030 | 5164 | 5350 | 2.6 | -3.17 |  |
| 117 | SDSS J1830 + 4141 | 6571 | 3.87 | -3.08 | 6568 | 6637 | 6550 | 4.0 | -3.01 |  |
| 118 | SDSS J1834 + 2023 | 6528 | 3.18 | -2.72 | 6397 | 6632 | 6550 | 4.0 | -1.98 |  |
| 119 | SDSS J1836+6317 | 5341 | 1.55 | -2.73 | 5575 | 5037 | 5350 | 3.0 | -2.85 |  |
| 120 | SDSS J2005-1045 | 6614 | 3.90 | -3.46 | 6332 | 6380 | 6600 | 4.0 | -3.34 |  |
| 121 | SDSS J2052+0109 | 6067 | 4.30 | -2.68 | 6183 | 6009 | 6050 | 4.0 | -2.80 |  |
| 122 | SDSS J2104-0104 | 5275 | 2.74 | -2.99 | 5379 | 5279 | 5250 | 2.0 | -3.43 |  |
| 123 | SDSS J2111+0109 | 6270 | 3.18 | -2.63 | 6235 | 6271 | 6250 | 4.0 | -2.75 |  |
| 124 | SDSS J2118-0640 | 6651 | 3.92 | -2.78 | 6603 | 6375 | 6650 | 4.0 | -2.91 |  |
| 125 | SDSS J2123-0820 | 6344 | 3.54 | -2.71 | 6100 | 5974 | 6350 | 4.0 | -2.88 |  |
| 126 | SDSS J2128-0756 | 6148 | 3.41 | -2.84 | 5903 | 6214 | 6150 | 4.0 | -2.76 |  |
| 127 | SDSS J2206-0925 | 5084 | 2.62 | -3.08 | 4911 | 5031 | 5100 | 2.1 | -3.17 |  |
| 128 | SDSS J2207 + 2017 | 6192 | 3.49 | -3.05 | 6491 | 6488 | 6200 | 4.0 | -2.42 |  |
| 129 | SDSS J2208 + 0613 | 6432 | 3.56 | -2.78 | 6408 | 6296 | 6450 | 4.0 | -2.85 |  |
| 130 | SDSS J2213-0726 | 5135 | 2.35 | -2.56 | 4724 | 4867 | 5150 | 1.8 | -2.55 |  |

Table 4
(Continued)

| ID | Object | SSPP |  |  |  |  | $T_{\text {eff }}(\mathrm{K})$ | $T_{\text {eff }}(\mathrm{K})$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ | $[\mathrm{Fe} / \mathrm{H}]$ |  | $(V-K)_{0}$ | $(g-r)_{0}$ | $T_{\text {eff }}(\mathrm{K})$ | $\log g$ |
|  |  | 6505 | 3.94 | -2.94 | 6289 | 6326 | 6450 | 4.0 | -2.94 |
| 131 | SDSS J2300+0559 | $650 / \mathrm{Fe}]$ |  |  |  |  |  |  |  |
| 132 | SDSS J2308-0855 | 6086 | 3.55 | -2.90 | 6891 | 6000 | 6100 | 4.0 | -2.74 |
| 133 | SDSS J2309+2308 | 6337 | 3.70 | -3.00 | 6013 | 5904 | 6350 | 4.0 | -3.09 |
| 134 | SDSS J2334+1538 | 6558 | 4.33 | -2.91 | 6510 | 6405 | 6550 | 4.0 | -2.91 |
| 135 | SDSS J2338+0902 | 4889 | 2.33 | -3.23 | 4570 | 4602 | 4900 | 1.9 | -3.12 |
| 136 | SDSS J2349+3832 | 6233 | 3.16 | -3.35 | 5990 | 6550 | 6250 | 4.0 | -3.20 |
| 137 | SDSS J2357-0052 | 5209 | 3.98 | -3.41 | 5105 | 5055 | 5200 | 4.8 | -3.20 |

47 stars are lower than 3.5 . We suspect that the uncertainty in gravity determination by the SSPP for EMP stars is still larger than the errors estimated for the entire SSPP sample (see Section 2.1), and further calibration for the lowest metallicity range is required.

For giants, where greater numbers of Fe II lines are detectable, the $\log g$ values are determined by seeking agreement between the iron abundances derived from the $\mathrm{Fe}_{\mathrm{I}}$ and $\mathrm{Fe}_{\text {II }}$ lines, within measurement errors (Table 4). Note that our sample includes four cool stars ( $T_{\text {eff }} \leqslant 5200 \mathrm{~K}$ ) that exhibit very weak features of ionized species, including Fe II, compared to red giants of similar temperatures, indicating that they are on the main sequence. Two of them (SDSS 1703+2836 and SDSS 2357-0052) have already been studied by Aoki et al. (2010). The surface gravities of these stars are estimated by reading off the value from an isochrone appropriate for low-mass metal-poor stars with ages of 12 Gyr (Kim et al. 2002), as was also done by Aoki et al. (2010). We adopt $\log g=4.8$ for the two stars studied by Aoki et al. (2010), and 5.0 for the other two cooler objects. The high surface gravity for these stars explains the strong features of the Mg i b lines, due to the broader wings, as well as the detectable CH $G$-band, without assuming exceptional overabundances of C and Mg .

The microturbulent velocity, $v_{\text {micro }}$, for turnoff stars is fixed to $1.5 \mathrm{~km} \mathrm{~s}^{-1}$, which is a typical value found by previous studies (e.g., Cohen et al. 2004). Since the abundance measurements for most elements in turnoff stars are based on weak lines, the result is insensitive to the adopted microturbulent velocity. The values for giants are determined from the analysis of $\mathrm{Fe}_{\mathrm{I}}$ lines, by forcing the iron abundances from individual lines to exhibit no dependence on the measured equivalent widths. The $v_{\text {micro }}$ of cool main-sequence stars is assumed to be zero, which best explains the relation between the equivalent widths of $\mathrm{Fe}_{\mathrm{I}}$ lines and the abundances from individual lines. There remains a weak trend in the relation, which can be resolved by assuming negative values for $v_{\text {micro. }}$. This suggests that the line broadening from the Unsöld approximation should not be enhanced, as discussed by Aoki et al. (2010).

The metallicity of the model atmospheres $([\mathrm{M} / \mathrm{H}]=$ $[\mathrm{Fe} / \mathrm{H}])$ is fixed to -3.0 . The temperature/density structure of photospheres, and the chemical abundances derived using model atmospheres, is not very sensitive to the assumed metallicity in such very/extremely metal-poor stars. Exceptions are found for the three stars for which $[\mathrm{Fe} / \mathrm{H}]>-2.5$ was derived; in such cases we iterated the analysis to obtain consistent [ $\mathrm{Fe} / \mathrm{H}]$ values.

Figure 1 shows the $[\mathrm{Fe} / \mathrm{H}]$ abundances determined by the analysis of high-resolution spectra compared with those supplied by the SSPP for SDSS medium-resolution spectra. The upper panel shows the comparison for the estimates from

SDSS spectra which were available when target selection for the Subaru observations was carried out in 2008. This comparison indicates that very/extremely metal-poor stars are efficiently selected from the SDSS measurements. Among the targets for which $[\mathrm{Fe} / \mathrm{H}]$ is estimated to be lower than -2.7 from the SSPP estimate (most of objects in our sample, with few exceptions), only 10 stars have high-resolution determinations $[\mathrm{Fe} / \mathrm{H}]>-2.7$. This demonstrates a clear advantage of using the results of the SDSS survey for picking EMP targets, relative to previous surveys based on low-resolution objective-prism spectra.
On the other hand, the correlation between the two measurements of $[\mathrm{Fe} / \mathrm{H}]$ is weak, as seen in the upper panel of Figure 1. In particular, stars for which the iron abundance is estimated to be $-3.0<[\mathrm{Fe} / \mathrm{H}]<-2.7$ exhibit very large scatter. Since the number of objects that have high $[\mathrm{Fe} / \mathrm{H}]([\mathrm{Fe} / \mathrm{H}]>-2.5$; measured from high-resolution spectra) is small, the large scatter is due to the existence of many EMP $([\mathrm{Fe} / \mathrm{H}]<-3.0)$ stars among them. Moreover, almost all stars for which $[\mathrm{Fe} / \mathrm{H}]<-3$ as derived from the SDSS spectra exhibit lower $[\mathrm{Fe} / \mathrm{H}]$ as obtained from the high-resolution spectra. This comparison indicates that the criterion in the sample selection for the $[\mathrm{Fe} / \mathrm{H}]$ values from SDSS (based on an earlier version of SSPP) provides a homogeneous sample for lower metallicity ( $[\mathrm{Fe} / \mathrm{H}] \lesssim-3$ ), while the selection could be incomplete for stars of higher metallicity.

The lower panel of Figure 1 shows a comparison of $[\mathrm{Fe} / \mathrm{H}]$ abundances derived by our analysis of high-resolution spectra with the SDSS estimates supplied by the latest version of SSPP. In contrast to the upper panel, there is no clear offset between the two estimates. However, the scatter is still larger than preferred for detailed inference of, e.g., the nature of the metallicity distribution function (MDF) at very/extremely low metallicity. We also note that, in particular for metallicities as low as those considered in our present analysis, the effects of interstellar $\mathrm{Ca}_{\text {II }}$ on metallicities calculated from mediumresolution spectra can be large, in particular for warmer stars, which rely almost entirely on the strength of the Ca iI K line for their metallicity estimation. Thus, we are reminded once again that high-resolution spectroscopy is required to obtain accurate metallicity estimates for individual EMP stars.
The $[\mathrm{Fe} / \mathrm{H}]$ values we estimate for the four cool mainsequence stars from our high-resolution spectra are lower than those from the SSPP, by $\sim 0.3$ dex. The gravity estimates for these stars are also significantly higher than reported by the SSPP for the medium-resolution spectra, which may also contribute some to the offset in $[\mathrm{Fe} / \mathrm{H}]$. It should be kept in mind that, due to their low luminosities, cool dwarfs infrequently enter into samples of VMP/EMP stars selected from magnitude limited samples. Nevertheless, future adjustments to the SSPP may be able to better handle such stars.


Figure 3. Comparison of $T_{\text {eff }}$ estimated by the (recent) SSPP and that from $(V-K)_{0}$ (top panel) and from $(g-r)_{0}$ (middle panel). The bottom panel shows the comparison of $T_{\text {eff }}$ between the two color indices. The open circles indicate objects with large errors in their $K$-band photometry.

### 4.3. Abundance Measurements

Standard LTE abundance analyses for measured equivalent widths have been made for other elements. The derived abundances are presented in Table 5. The errors given in the table include random errors and those due to uncertainties of atmospheric parameters. The random errors in the measurements are


Figure 4. Comparison of $T_{\text {eff }}$, estimated by the (recent) SSPP, and those from $(V-K)_{0}$. The sample is separated into three metallicity ranges $([\mathrm{Fe} / \mathrm{H}]<-3.3$ : filled circles, $-3.3<[\mathrm{Fe} / \mathrm{H}]<-3.0$ : open circles, and $-3.0<[\mathrm{Fe} / \mathrm{H}]$ : crosses).


Figure 5. Difference of $[\mathrm{Fe} / \mathrm{H}]$ derived from $\mathrm{Fe}_{\text {I }}$ and $\mathrm{Fe}_{\text {II }}$ for main-sequence turnoff stars (filled squares). The average and standard deviation for each 0.2 dex bin of $[\mathrm{Fe} / \mathrm{H}]$ are represented by open circles and bars, respectively. The standard deviations are about 0.20 dex, which is as small as the random errors in the abundance measurements. The lowest metallicity range likely suffers from a bias, in that no $\mathrm{Fe}_{\text {II }}$ line is detected for a larger fraction of stars than the less metal-poor stars. (See the text for details.)
(A color version of this figure is available in the online journal.)
estimated to be $\sigma N^{-1 / 2}$, where $\sigma$ is the standard deviation of derived abundances from individual lines, and $N$ is the number of lines used. Since the $N$ for most elements other than Fe is small, the $\sigma$ of $\mathrm{Fe}_{\mathrm{I}}\left(\sigma_{\mathrm{FeI}}\right)$ is adopted in the estimates for them (i.e., error is $\sigma_{\mathrm{Fe}_{1}} N^{-1 / 2}$ ). The errors due to the uncertainty of the atmospheric parameters are estimated for a turnoff star and a giant (Table 6), for $\delta T_{\text {eff }}=150 \mathrm{~K}, \delta \log g=0.5$, and $\delta v_{\text {micro }}=0.5 \mathrm{~km} \mathrm{~s}^{-1}$ ). These errors are added in quadrature to the random errors to derive the total errors given in Table 5.

### 4.4. Carbon Abundances

Carbon abundances are determined for 28 stars in our sample, based on the $\mathrm{CH} G$-band (the Q branches of $\mathrm{CH} \mathrm{A}-\mathrm{X}$ system at $\sim 4320 \AA$ ), as well as the $C_{2}$ Swan $0-0$ band at $5165 \AA$. Examples of the spectra of the CH band are shown in Figure 6.

Table 5
Chemical Abundances Results

|  | $\mathrm{Fe}(\mathrm{Fe} \mathrm{I})^{\mathrm{a}}$ | $\mathrm{Fe}\left(\mathrm{Fe}_{\mathrm{II}}\right)$ | Na | Mg | Ca | Ti | Sr | Ba | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | SDSS J0002+2928 |  |  |  |  |  |  |  |  |
| $\log \epsilon$ | 4.24 | 4.59 | 3.97 | 4.70 | 2.87 | 2.49 | -0.12 | 0.75 | 7.80 |
| [ $\mathrm{X} / \mathrm{Fe}$ ] | -3.26 | 0.35 | 1.00 | 0.36 | -0.20 | 0.80 | 0.27 | 1.84 | 2.63 |
| $\sigma_{\text {tot }}$ | 0.21 | 0.30 | 0.24 | 0.16 | 0.21 | 0.27 | 0.29 | 0.27 | 0.22 |
| $N$ | 11 | 2 | 1 | 2 | 1 | 4 | 1 | 2 |  |
| 002 | SDSS J0008-0529 |  |  |  |  |  |  |  |  |
| $\log \epsilon$ | 4.84 | 4.86 | 3.79 | 5.18 | 3.77 | 2.61 | 0.24 | 0.35 | $\ldots$ |
| [ $\mathrm{X} / \mathrm{Fe}$ ] | -2.66 | 0.02 | 0.21 | 0.24 | 0.09 | 0.32 | 0.03 | 0.83 | $\ldots$ |
| $\sigma_{\text {tot }}$ | 0.34 | 0.34 | 0.24 | 0.16 | 0.18 | 0.30 | 0.35 | 0.39 | $\ldots$ |
| N | 64 | 6 | 2 | 5 | 9 | 17 | 1 | 2 |  |

Note. ${ }^{\text {a }}[\mathrm{Fe} / \mathrm{H}]$ value is given for $[\mathrm{X} / \mathrm{Fe}]$.
(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 6
Abundance Changes by Changing Atmospheric Parameters

| SPECIES | Giant |  |  |  |  | Turnoff |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta T_{\text {eff }}$ | $\delta \log g$ | $\delta[\mathrm{Fe} / \mathrm{H}]$ | $\delta v_{\text {micro }}$ | r.s.s. | $\delta T_{\text {eff }}$ | $\delta \log g$ | $\delta[\mathrm{Fe} / \mathrm{H}]$ | $\delta v_{\text {micro }}$ | r.s.s |
| $\mathrm{Fe}\left(\mathrm{Fe}_{\mathrm{I}}\right)$ | 0.19 | -0.10 | 0.00 | -0.26 | 0.33 | 0.13 | -0.04 | 0.01 | 0.14 | 0.20 |
| Na | -0.03 | 0.03 | 0.00 | -0.12 | 0.13 | -0.03 | 0.03 | 0.00 | -0.12 | 0.13 |
| Mg | -0.01 | -0.10 | -0.01 | 0.03 | 0.10 | -0.02 | -0.05 | 0.00 | -0.02 | 0.06 |
| Ca | 0.05 | -0.14 | 0.00 | 0.03 | 0.15 | -0.02 | -0.01 | 0.00 | -0.04 | 0.04 |
| Ti ( $\mathrm{Ti}_{\text {II }}$ ) | -0.11 | 0.24 | 0.00 | 0.13 | 0.30 | -0.07 | 0.21 | -0.01 | -0.12 | 0.25 |
| Fe ( Fe II) | -0.16 | 0.25 | 0.00 | 0.13 | 0.32 | -0.11 | 0.21 | -0.01 | -0.12 | 0.26 |
| Sr | -0.05 | 0.19 | 0.00 | -0.04 | 0.20 | -0.05 | 0.19 | 0.00 | -0.04 | 0.20 |
| Ba | -0.07 | 0.25 | 0.00 | 0.22 | 0.34 | -0.04 | 0.20 | 0.00 | -0.11 | 0.23 |

The molecular data are the same as those used in Aoki et al. (2007).

The CH $G$-band is detected for 14 stars among the 25 giants, and for all four of the cool main-sequence stars. Nine giants are carbon-enhanced ( $[\mathrm{C} / \mathrm{Fe}]>+0.7$ ). The $\mathrm{C}_{2}$ band is used to determine the carbon abundances of four stars, because the CH $G$-band in these objects is almost saturated. The detection limit of the CH $G$-band in a red giant with $T_{\text {eff }}<5500 \mathrm{~K}$ is approximately $[\mathrm{C} / \mathrm{H}] \sim-2.5$ for spectra of snapshot quality ( $\mathrm{S} / \mathrm{N} \sim 30$ ). Hence, stars for which the $\mathrm{CH} G$-band feature is not detected are unlikely to be CEMP stars. The fraction of CEMP stars in our sample is $9 / 25 \sim 36 \%$, which is in agreement with the estimate by Carollo et al. (2012) for $[\mathrm{Fe} / \mathrm{H}] \sim-3$, i.e., at the limit of their sample.
None of the four cool main-sequence stars in our sample are carbon enhanced. The CH $G$-band is detected for such objects because of their low temperatures and the high pressure of their atmospheres. Among the four stars, the lowest carbon abundance ratio is found for SDSS J0018-0939 ([C/Fe] = -0.7 ). Although the $\mathrm{CH} G$-band of this star is weak and the measurement is uncertain, a conservative upper limit is $[\mathrm{C} / \mathrm{Fe}]<-0.3$, which is already lower than the carbon abundances found in other cool main-sequence stars. A weak CH $G$-band could alternatively be explained by assuming a lower gravity. However, the weak features of ionized species such as Fe il cannot be accounted for if this object is assumed to be a red giant $(\log g<3)$. Thus, the underabundance of carbon in this star is a robust result, although a higher quality spectrum is required to derive an accurate estimate of its abundance.

In contrast to the giants, the $\mathrm{CH} G$-band is detected for only 10 stars among the 108 turnoff stars. All of these objects are highly
carbon enhanced $([\mathrm{C} / \mathrm{Fe}] \gtrsim+2)$. The detection limit of the CH $G$-band for a turnoff star with $T_{\text {eff }} \sim 6000 \mathrm{~K}$ is $[\mathrm{C} / \mathrm{H}] \sim-1.5$ ( $[\mathrm{C} / \mathrm{Fe}] \sim+1.5$ for $[\mathrm{Fe} / \mathrm{H}] \sim-3$ ), indicating that the CH $G$-band is not measurable even for the mildly carbon-enhanced $(+0.7<[\mathrm{C} / \mathrm{Fe}]<+1.5)$ stars in our sample. Hence, the fraction of CEMP objects for the turnoff stars $(10 / 108 \sim 9 \%)$ should be regarded as a lower limit.

### 4.5. Analysis of the Comparison Star G 64-12

In order to examine the reliability of the abundances determined from our snapshot spectra, we obtained a spectrum of the well-studied EMP turnoff star G 64-12, using the same instrumental setup and integrating to a similar $\mathrm{S} / \mathrm{N}$ ratio as for the bulk of our sample, employing a short (five minute) exposure time. The chemical composition of this object was reported on by Aoki et al. (2006), using a high-resolution, high-S/N spectrum. The abundance analysis for this object was conducted adopting the same model atmosphere used in Aoki et al. (2006), that is, the ATLAS model including convective overshooting (Kurucz 1993) for $T_{\text {eff }}=6380 \mathrm{~K}, \log g=4.4$ and $[\mathrm{Fe} / \mathrm{H}]=-3.2$. The results are compared in Table 7. The $[\mathrm{Fe} / \mathrm{H}]$ and $[\mathrm{X} / \mathrm{Fe}]$ values are calculated adopting the solar abundances of Asplund et al. (2009) for both cases. The agreement is fairly good for most species: the differences of the two measurements ( $\log \epsilon$ values) are within 0.12 dex, which are as small as the random errors in the present analyses. An exception is the Sr abundance, which is determined from the Sr II resonance lines in the blue range, where the data quality is relatively low. Another exception is Na , for which only a preliminary result was provided in Aoki et al. (2006). The Na abundance was determined from the same


Figure 6. Spectra of the $\mathrm{CH} G$-band $/ 4323 \AA$ band and the $\mathrm{C}_{2}$ Swan band at $5165 \AA$, for the stars labeled in each panel (filled circles). The three synthetic spectra are calculated by changing [ $\mathrm{C} / \mathrm{Fe}$ ] by 0.3 dex (dashed and dotted lines) around the adopted values (solid line).
(A color version of this figure is available in the online journal.)

Table 7
Chemical Abundances of G 64-12

| Element | Species | This Work |  | Aoki et al. (2006) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\log \epsilon$ | [ $\mathrm{X} / \mathrm{Fe}$ ] | $\log \epsilon$ | [ $\mathrm{X} / \mathrm{Fe}$ ] |
| Fe | $\mathrm{Fe}_{\mathrm{I}}$ | 4.36 | -3.14 | 4.25 | -3.25 |
| Fe | Fe II | 4.24 | -3.26 | 4.38 | -3.12 |
| Na | Na I | 2.82 | -0.28 | $2.74{ }^{\text {a }}$ | ... |
| Mg | Mgi | 4.79 | 0.33 | 4.80 | 0.45 |
| Ca | CaI | 3.50 | 0.30 | 3.62 | 0.53 |
| Ti | Ti II | 2.27 | 0.46 | 2.20 | 0.50 |
| Sr | Sr II | -0.35 | -0.08 | -0.10 | 0.28 |

Note. ${ }^{\text {a }}$ Value adopted from Aoki et al. (2009).
spectrum to be $\log \epsilon(\mathrm{Na})=2.74$ by Aoki et al. (2009), adopting slightly different atmospheric parameters (Table 7), which agrees well with the Na abundance measured by the present work $(\log \epsilon(\mathrm{Na})=2.82)$.


Figure 7. Spectra around the Mg b lines of double-lined and triple-lined spectroscopic binaries: SDSS J1410+5350 (the top panel), SDSS J0817+2641 (second and third panels), and SDSS J1108+1747 (the lower two panels). The filled triangles indicate the primary Mg I b lines for each star, while the open triangles show the secondary ones.

### 4.6. Double-lined Spectroscopic Binaries

Three stars in our sample clearly exhibit two (or three, in the case of one star) sets of absorption features with distinct Doppler shifts, suggesting these objects to be double-lined spectroscopic binaries or multiple systems. The region of the spectra around the Mg b lines of these objects is shown in Figure 7.

SDSS J0817+2641 was already studied by Aoki et al. (2008). The spectrum obtained in their study (on 2007 February 9) is shown in the second panel of Figure 7. The second component of the absorption features is not obvious in their spectrum, while it is clearly seen in our new spectrum shown in the third panel. Aoki et al. (2008) reported a discrepancy in the radial velocities measured from the SDSS medium-resolution spectrum and their Subaru high-resolution data. The discrepancy is most likely a result of the large Doppler shifts of both components, or possibly due to the uncertainty of the measurements from the mediumresolution spectrum, which was incapable of resolving the two components. This also suggests that, given the overall excellent quality of the SDSS stellar velocity determinations (especially for the brighter stars one naturally targets for high-resolution spectroscopic follow-up), as described in Section 3.2, that obtaining even a single-epoch snapshot quality high-resolution spectrum is an efficient way to identify at least high-amplitude binary variations in a sample of stars.

The spectrum of SDSS J1108+1747, obtained on 2008 March 7 (fourth panel of Figure 7) exhibits triple spectral features, indicating that this system consists of at least three stars of similar luminosity. A significant change of the spectral features is found in its March 9 spectrum (fifth panel), in which only two components appear. The correspondence between the features of the two spectra is still unclear because of the limited quality of our spectra. This is, to our knowledge, the most metal-deficient multiple ( $n \geqslant 3$ ) system yet discovered ( $[\mathrm{Fe} / \mathrm{H}] \sim-3$ ).

In order to accurately measure the chemical compositions of these objects, we need to determine the contribution of each component to the continuum light. This is only possible by determining the mass ratios from long-term radial velocity monitoring. However, the ratios of the apparent strengths of the Mg b lines (depths of the absorption lines) are at most three or four, suggesting that the components have comparable luminosities. The objects have $T_{\text {eff }}$ around 6000 K . Hence, the spectral features can be modeled by adding the spectra of two or three main-sequence stars that have slightly different mass (mass ratios of 1.2 or smaller; see Goldberg et al. 2002), which have similar strengths of the (partially saturated) Mg b lines. For a rough estimate of the contribution of each component to the continuum light, we assume that the contribution is in proportion to the depth of the Mg b absorption lines. The primary components of the Mg b lines identified by the present work are indicated by the filled triangles in Figure 7. The contributions of the primary components estimated by this method are $75 \%$, $80 \%$, and $40 \%$ in SDSS J1410+5350, SDSS J0817+2641, and SDSS J1108+1747, respectively. The equivalent widths measured for the primary components by Gaussian fitting are divided by these factors for carrying out the abundance analyses.

The abundance analyses for the primary components of these objects are made as for other single-lined stars. We adopt the $T_{\text {eff }}$ determined by SSPP with no modification; the $T_{\text {eff's }}$ estimated from colors agree with the SSPP results. The colors of the (integrated) system should be similar to the colors of the primary component-if the primary is distinctively warmer than the other components, it should dominate the system luminosity, while the primary should have similar $T_{\text {eff }}$ to the other components if it does not dominate the system luminosity.

## 5. DISCUSSION

### 5.1. Carbon-enhanced Metal-poor Stars

Previous studies of CEMP stars have clearly demonstrated that they are separable into at least two primary classes: CEMP stars exhibiting large enhancements of s-process elements (CEMP-s), and those with no excess of neutron-capture elements (CEMP-no) (Beers \& Christlieb 2005). Note that recent studies of CEMP-s stars split this class even more granularly (e.g., Bisterzo et al. 2011). The fraction of CEMP-no stars among all CEMP stars is $\sim 20 \%$, and increases with decreasing stellar metallicity (Aoki et al. 2007; Hollek et al. 2011). The distribution of the $[\mathrm{C} / \mathrm{H}]$ ratios also appears to be different between the two classes-most of the CEMP-s stars exhibit quite high values $([\mathrm{C} / \mathrm{H}]>-1)$, while the CEMP-no class exhibits a wide distribution of values (Aoki et al. 2007).
Among the nine CEMP red giants in our sample, only two possess large excesses of $\mathrm{Ba}([\mathrm{Ba} / \mathrm{Fe}]>+1$ : SDSS J1836+6317 and SDSS J1734+4316). One exhibits a moderate excess of Ba $([\mathrm{Ba} / \mathrm{Fe}]=+0.8:$ SDSS J0711+6702). Four stars have solar or lower Ba abundance ratios $([\mathrm{Ba} / \mathrm{Fe}] \lesssim 0$ ), hence are classified
as CEMP-no stars. Although Ba is not measured for the other two CEMP red giants, they could also be CEMP-no, given the detection limit of Ba in red giants $([\mathrm{Ba} / \mathrm{Fe}] \sim-0.5$ at $[\mathrm{Fe} / \mathrm{H}] \sim-3$ ). Hence, six objects among the nine CEMP giants in our sample are CEMP-no stars. This result suggests that a high fraction of CEMP-no stars exists in this metallicity range $(-3.4<[\mathrm{Fe} / \mathrm{H}]<-2.5)$.
Possible progenitors for the CEMP-no class include massive, rapidly rotating, mega metal-poor $([\mathrm{Fe} / \mathrm{H}]<-6.0)$ stars, which models suggest have greatly enhanced abundances of CNO due to distinctive internal burning and mixing episodes, followed by strong mass loss (Hirschi et al. 2006; Meynet et al. 2006, 2010a, 2010b). Another suggested mechanism for the production of the material incorporated into CEMPno stars is pollution of the interstellar medium by so-called faint supernovae associated with the first generations of stars, which experience extensive mixing and fall back during their explosions (Umeda \& Nomoto 2003, 2005; Tominaga et al. 2007). This model well reproduces the observed abundance pattern of the CEMP-no star BD $+44^{\circ} 493$, the ninth-magnitude $[\mathrm{Fe} / \mathrm{H}]=-3.7$ star (with $[\mathrm{C} / \mathrm{Fe}]=+1.3,[\mathrm{~N} / \mathrm{Fe}]=+0.3$, $[\mathrm{O} / \mathrm{Fe}]=+1.6$ ) discussed by Ito et al. (2009). The recently reported high redshift $(z=2.3)$, extremely metal-poor damped Ly $\alpha$ (DLA) system by Cooke et al. (2011: $[\mathrm{Fe} / \mathrm{H}] \sim-3.0$ ) exhibits enhanced carbonicity $([\mathrm{C} / \mathrm{Fe}]=+1.5)$ and other elemental abundance signatures that Kobayashi et al. (2011) also associate with production by faint supernovae. In addition, a fraction of CEMP-no stars might belong to binary systems and have been formed by mass transfer from asymptotic giant branch (AGB) stars that yielded no s-process elements but enriched carbon (e.g., Suda et al. 2004).

Eight of the 10 CEMP turnoff stars exhibit large enhancements of Ba . Although the metallicities of these stars are similar to those of the CEMP giants, the fraction of CEMP-s stars is apparently higher among the turnoff stars than for the red giants. The carbon overabundances of all the CEMP turnoff stars are much larger than the average overabundances of the CEMP giants, presumably because the detection limit of the CH $G$-band is higher for these warmer stars. As shown by previous studies of CEMP stars (e.g., Aoki et al. 2007), the [C/H] distributions are quite different between the two classes of CEMP stars: a large fraction of CEMP-s stars have higher [C/H] values. Hence, the high fraction of the CEMP-s stars among the CEMP turnoff stars could be simply due to this bias in the sample. In other words, one can assume that many additional CEMP-no stars could be included among the turnoff stars of our sample, but they have not yet been identified as CEMP stars.
We comment here on five CEMP stars that have remarkable features in their chemical compositions or stellar parameters.

SDSS J1036+1212 - a CEMP-s star with $[\mathrm{Fe} / \mathrm{H}]=-3.5$ and a Spite plateau Li abundance. This extremely metal-poor turnoff star $\left(T_{\text {eff }}=5850 \mathrm{~K}\right)$ exhibits excesses of carbon ([C/Fe] $=+1.5)$ and $\mathrm{Ba}([\mathrm{Ba} / \mathrm{Fe}]=+1.3)$. The $[\mathrm{Sr} / \mathrm{Ba}]$ ratio is very low ( $[\mathrm{Sr} / \mathrm{Ba}]=-2.1$ ), suggesting the contribution of the s-process even at extremely low metallicity, which efficiently produces heavy elements due to the high ratio of neutrons to seed nuclei (e.g., Busso et al. 1999). The Lii resonance line is clearly detected for this star, even in our snapshot spectrum with a moderate $\mathrm{S} / \mathrm{N}$ ratio. The equivalent width of the Li line is $52 \mathrm{~m} \AA$, resulting in $\log \epsilon(\mathrm{Li})=2.2$. This value agrees with the Li abundances typically found for metal-poor turnoff stars (the so-called Spite plateau value, e.g., Spite \& Spite 1982;

Meléndez et al. 2010). The excesses of carbon and barium in such stars is usually interpreted as the result of mass transfer from a companion AGB star. If the amount of mass transferred from the AGB star was large, and the Li was depleted on the surface of the AGB star, the Li should also be depleted in the star we are currently observing. Thus, more accurate determinations of the Li abundance of this star will provide an upper limit on the mass transferred from the AGB star. We have already obtained a higher- $\mathrm{S} / \mathrm{N}$ spectrum of this object, and a detailed study will appear in a separate paper in this series.
SDSS J1613+5309 - a CEMP-no star with an Mg excess. This object is an EMP $([\mathrm{Fe} / \mathrm{H}]=-3.3)$ giant that exhibits a moderate excess of $\mathrm{Mg}([\mathrm{Mg} / \mathrm{Fe}]=+0.9)$, but no excess of Ba. Two previously identified CEMP stars are known to possess large excesses of $\alpha$-elements (CS 22949-037 and CS 29498-043: McWilliam et al. 1995, Aoki et al. 2002a, 2002b), and are referred to as CEMP- $\alpha$ stars (Beers \& Christlieb 2005). Although the excess of the $\alpha$-elements of SDSS J1613+5309 is not as clear as for the two previous objects, this star is likely a new member of the CEMP- $\alpha$ class. We note in passing that enhanced $\alpha$-elements are often (though not always) associated with the CEMP-no class.
SDSS J1836+6317 and SDSS J1245-0738 - CEMP-s stars with large excesses of Na and Mg . These are typical CEMP-s stars, having $[\mathrm{Ba} / \mathrm{Fe}]>+2.0$. They exhibit large excesses of $\mathrm{Na}([\mathrm{Na} / \mathrm{Fe}]>+1.3)$ and moderate excesses of $\mathrm{Mg}([\mathrm{Mg} / \mathrm{Fe}]$ $\sim+0.8$ ). Similar overabundances of Na and Mg are also found in several previously studied CEMP-s stars, e.g., LP 625-44 (Aoki et al. 2002a). Although the source of the Na and Mg in such objects is not well understood, nucleosynthesis in AGB stars that yielded the large overabundances of neutron-capture elements may also be related to the production of these light elements. For instance, the s-process models by Bisterzo et al. (2011) suggest dependence of Na production by ${ }^{22} \mathrm{Ne}(n, \gamma)^{23} \mathrm{Ne}$ (and $\beta$-decay of ${ }^{23} \mathrm{Ne}$ ) on stellar mass.
SDSS J0126+0607 - a "hot" CEMP-s star. The $T_{\text {eff }}$ of this object is the highest $(6900 \mathrm{~K})$ in our sample, and the excesses of carbon and Ba are also the highest $([\mathrm{C} / \mathrm{Fe}]=+3.1$ and $[\mathrm{Ba} / \mathrm{Fe}]=+3.2$ ). Such CEMP-s stars could be formed by accretion of significant amounts of carbon-enhanced material from an AGB star across a binary system. Some previously known hot ( $T_{\text {eff }} \sim 7000 \mathrm{~K}$ ) CEMP-s stars (e.g., CS 29497-030: Sivarani et al. 2004, Ivans et al. 2005; CS 29526-110: Aoki et al. 2008) exhibit variations of radial velocities with short timescales (less than one year). Future monitoring of the radial velocity for this object, as well as more detailed chemical-abundance studies, will provide new insight for the formation mechanism of such hot CEMP-s stars.

### 5.2. The $\alpha$-elements

### 5.2.1. Abundance Scatter and Outliers

Figure 8 shows the abundance ratios of $[\mathrm{Mg} / \mathrm{Fe}],[\mathrm{Ca} / \mathrm{Fe}]$, and [ $\mathrm{Mg} / \mathrm{Ca}$ ] for turnoff stars (filled circles) and cooler stars (open circles). The average and standard deviation of the abundance ratios for each 0.2 dex bin of $[\mathrm{Fe} / \mathrm{H}]$ are indicated by large open circles and bars, connected by a solid line. The average and standard deviation of the abundance ratios determined by previous studies, which are taken from the SAGA database (Suda et al. 2008), are also shown by crosses and a dashed line, for comparison. The standard deviations of $[\mathrm{Mg} / \mathrm{Fe}]$ and $[\mathrm{Ca} / \mathrm{Fe}]$ of our sample are $0.25-0.35 \mathrm{dex}$, as small as the


Figure 8. Abundance ratios of $[\mathrm{Mg} / \mathrm{Fe}]$ (top panel), $[\mathrm{Ca} / \mathrm{Fe}]$ (middle panel), and $[\mathrm{Mg} / \mathrm{Ca}]$ (bottom panel), with respect to $[\mathrm{Fe} / \mathrm{H}]$. The filled and open circles indicate main-sequence turnoff and giant stars, respectively. CEMP stars ( $[\mathrm{C} / \mathrm{Fe}]>+0.7$ ) are shown by overplotting open squares. Large open circles and bars, connected by a solid line (red), represent the average and standard deviation of the abundance ratios, respectively, for each metallicity bin of width 0.2 dex for our SDSS sample. The standard deviations are $0.20-0.25$ dex, which are as small as the random errors in the abundance measurements. Crosses and bars, connected by a dashed line, indicate those for the SAGA sample (see the text).
(A color version of this figure is available in the online journal.)
measurement errors. Hence, no clear intrinsic scatter of the abundance ratios is found in these diagrams.

Non-LTE effects on abundance measurements for extremely metal-poor stars were investigated for Mg by Andrievsky et al. (2010), and for Ca by Mashonkina et al. (2007) and Spite et al. (2012). The non-LTE corrections for Mg are positive, and the size is $0.1-0.3$ dex, according to Andrievsky et al. (2010). The corrections are systematically larger for dwarf stars than for giants. Hence, the Mg abundance ratios could be systematically higher than those derived by our LTE analysis. The non-LTE corrections for Ca abundances measured from neutral species are dependent on spectral lines: the correction is largest for measurements based on the CaI $4226 \AA$ line, which is used in our analysis for a portion of the sample. The corrections are estimated to be $0.0-0.2$ dex by Spite et al. (2012). Hence, the effects are not significant when other lines (such as the subordinate lines) of Ca I are available, as in the case of analyses for giants in our sample. We note that the abundance results taken from the SAGA database are based on LTE analyses.

We would like to comment on possible outliers in Mg abundances as candidate $\alpha$-element-enhanced or $\alpha$-deficient stars. Although some apparent outliers exist in $[\mathrm{Ca} / \mathrm{Fe}]$, the Ca abundances are determined from only one feature at $4226 \AA$ in many cases, for which the $\mathrm{S} / \mathrm{N}$ ratios are not as high as in the red range, and which could be affected by contamination from the CH features in carbon-enhanced objects. Hence, the Ca abundances are discussed only for comparison purposes.

There are seven stars that have $[\mathrm{Mg} / \mathrm{Fe}]>+0.8$. Two of them are CEMP stars, as discussed above. Three objects (SDSS J0840+5405, SDSS J1623+3913, and SDSS J2104-0104) also exhibit some excess of $\mathrm{Ca}([\mathrm{Ca} / \mathrm{Fe}]>+0.7)$, suggesting that their excesses of the $\alpha$-elements are real.
The Mg abundance ratios of the other two stars (SDSS J1412+5609 and SDSS J1424+5615) are also very high ( $[\mathrm{Mg} / \mathrm{Fe}] \sim+0.9$ ), while their Ca abundances appear normal. If this result is real, this suggests scatter of chemical-abundance ratios produced by the progenitor massive star and its supernova explosion.

There are four stars that have $[\mathrm{Mg} / \mathrm{Fe}]<-0.2$. One of the four stars is a cool main-sequence star (SDSS J0018-0939: $[\mathrm{Mg} / \mathrm{Fe}]=-0.44)$. The Mg abundance is determined from the Mg ib lines, which are rather sensitive to the adopted broadening parameter. However, the non-detection of other Mg I lines (e.g., $5528 \AA$ ) results in an upper limit of $[\mathrm{Mg} / \mathrm{Fe}] \sim 0.0$, indicating a deficiency of Mg in this star. The $[\mathrm{Ca} / \mathrm{Fe}]$ ratio of this star is also below the solar value. Moreover, the carbon abundance of this object is very low $([\mathrm{C} / \mathrm{Fe}]=-0.7)$, as mentioned in Section 4.4. The Na is also significantly underabundant $([\mathrm{Na} / \mathrm{Fe}]=-1.0)$. Further detailed abundance study of this object is desirable, as a candidate VMP star revealing a peculiar nucleosynthesis episode in the early chemical enrichment of the Galaxy.
Another object (SDSS J0254+3328: $[\mathrm{Mg} / \mathrm{Fe}]=-0.3$ ) also exhibits a relatively low Ca abundance $([\mathrm{Ca} / \mathrm{Fe}]=0.0)$ for a star at this very low metallicity $([\mathrm{Fe} / \mathrm{H}]=-2.8)$, and could be an $\alpha$-element-deficient star. The other two stars, SDSS J1241-0837 and SDSS J1633+3907, have normal Ca abundances for halo stars, and the deficiency of the $\alpha$-elements in general is unclear.
Excluding such outliers, no clear scatter of the $[\alpha / \mathrm{Fe}]$ ratios is detected, within the measurement errors, in our sample. This indicates that there is no large scatter in the abundance ratios of these elements even at very low metallicity, as suggested by previous studies (François et al. 2004; Arnone et al. 2005; Andrievsky et al. 2010). Higher quality spectra are required to
investigate the small size of the abundance scatter, if any, which will provide useful constraints on the early chemical enrichment of the Galaxy by supernovae and subsequent mixing in the interstellar medium.

### 5.2.2. Abundance Trends

The averages of $[\mathrm{Mg} / \mathrm{Fe}]$ and $[\mathrm{Ca} / \mathrm{Fe}]$ clearly exhibit overabundances of these elements in EMP stars, as have been found by numerous previous studies (e.g., Ryan et al. 1996; McWilliam 1997; Cayrel et al. 2004). There is no clear increasing or decreasing trend of the $[\mathrm{Mg} / \mathrm{Fe}]$ and $[\mathrm{Ca} / \mathrm{Fe}]$ abundance ratios in the sample taken from the SAGA database, as shown by the dashed lines in Figure 8. This is also the case for stars with $[\mathrm{Fe} / \mathrm{H}] \leqslant-2.8$ in our sample; the average values of $[\mathrm{Mg} / \mathrm{Fe}]$ and $[\mathrm{Ca} / \mathrm{Fe}]$ are +0.4 and +0.3 , respectively, in agreement with those reported by many previous studies (e.g., Lai et al. 2008; Andrievsky et al. 2010).

However, the abundance ratios at $[\mathrm{Fe} / \mathrm{H}]=-2.6$ $(\langle[\mathrm{Mg} / \mathrm{Fe}]\rangle=+0.08$ and $\langle[\mathrm{Ca} / \mathrm{Fe}]\rangle=-0.04)$ are lower than these averages for the stars with $[\mathrm{Fe} / \mathrm{H}]<-2.8$. Although the standard deviations are as large as 0.25 dex, the difference is statistically significant, given the sample size ( 11 objects) in this bin. Indeed, the null hypothesis that the $[\mathrm{Mg} / \mathrm{Fe}]$ for stars in the bin $(-2.7<[\mathrm{Fe} / \mathrm{H}] \leqslant-2.5)$ and for the lower metallicity stars $([\mathrm{Fe} / \mathrm{H}] \leqslant-2.7)$ are drawn from the same parent population is rejected by the Mann-Whitney rank-sum test at high significance ( $p<0.001$ ).

This metallicity bin includes a relatively large fraction of giants (six giants among the 11 stars). However, there is no significant difference in the average $[\mathrm{Mg} / \mathrm{Fe}]$ between giants and turnoff stars in our entire sample (the difference is less than 0.01 dex$)$. Moreover, the average $[\mathrm{Mg} / \mathrm{Fe}]$ for the six giants in the metallicity range $-2.7<[\mathrm{Fe} / \mathrm{H}] \leqslant-2.5$ $(\langle[\mathrm{Mg} / \mathrm{Fe}]\rangle=+0.16)$ is rather higher than for the five turnoff stars in the bin $(\langle[\mathrm{Mg} / \mathrm{Fe}]\rangle=-0.03)$. Hence, the relatively large fraction of giants in this bin is unlikely to be the reason for the low $[\mathrm{Mg} / \mathrm{Fe}]$.

The $[\mathrm{Mg} / \mathrm{Ca}]$ ratio is almost constant over the full metallicity range in our sample, as found by previous studies. Hence, the abundance trend of our sample suggests a decreasing trend of the $\alpha$-elements at $[\mathrm{Fe} / \mathrm{H}] \sim-2.5$.

Recent abundance studies of halo stars with available full space motions suggest different trends in the $[\alpha / \mathrm{Fe}]$ abundance ratios depending on kinematics (Zhang et al. 2009; Ishigaki et al. 2010; Nissen \& Schuster 2010). These studies mostly include less metal-poor stars $([\mathrm{Fe} / \mathrm{H}] \gtrsim-2.0)$ than our sample. Further investigations of the kinematics, as well as their chemical abundance ratios, for significantly more metal-poor stars, such as those included in our present sample, is desired to understand the early formation processes of the Galactic halo system.

### 5.3. Sr and Ba

Figure 9 shows the abundance ratios of $[\mathrm{Sr} / \mathrm{Fe}],[\mathrm{Ba} / \mathrm{Fe}]$, and [ $\mathrm{Sr} / \mathrm{Ba}$ ] as a function of metallicity. The results are compared with those obtained by previous studies, also taken from the SAGA database (Suda et al. 2008), which are shown by open circles (carbon-normal stars) and asterisks (carbon-enhanced stars).

Non-LTE effects on Sr and Ba abundance determinations were investigated by Andrievsky et al. (2011) and Andrievsky et al. (2009), respectively. The abundance corrections for Ba are positive, hence our LTE analyses could systematically


Figure 9. Abundance ratios of neutron-capture elements $([\mathrm{Sr} / \mathrm{Fe}],[\mathrm{Ba} / \mathrm{Fe}]$, and $[\mathrm{Sr} / \mathrm{Ba}]$ ) as a function of $[\mathrm{Fe} / \mathrm{H}]$. The filled squares and circles (red) indicate main-sequence turnoff and giant stars, respectively. CEMP stars $([\mathrm{C} / \mathrm{Fe}]>+0.7)$ are overplotted by large open circles (blue). Small open circles and asterisks indicate the abundance ratios of carbon-normal and carbon-rich stars, respectively, measured by previous studies, which are taken from the SAGA database.
(A color version of this figure is available in the online journal.)
underestimate the Ba abundances, though the correction would be at most 0.3 dex. The correction for Sr abundances determined from the $\mathrm{Sr}_{\text {II }} 4077$ and $4215 \AA$ lines could be positive and
negative, depending on the stellar parameters. The corrections are, however, at most 0.2 dex. Since these effects are much smaller than the scatter found in the Sr and Ba abundance ratios, our discussion here is not significantly affected by the non-LTE effects.

The $[\mathrm{Sr} / \mathrm{Fe}]$ ratios (top panel) exhibit a scatter of about one order of magnitude. Interestingly, this scatter is much smaller than that found by previous studies at $[\mathrm{Fe} / \mathrm{H}] \sim-3$ (e.g., McWilliam et al. 1995; Ryan et al. 1996; Honda et al. 2004; Aoki et al. 2005; François et al. 2007). However, this could be the result of a bias in the sample, since the $\mathrm{Sr}_{\text {II }}$ lines are in the blue range (where the spectral data quality is not high), and are only detected in stars having high Sr abundance. Indeed, the objects in our sample distribute in the range of $[\mathrm{Sr} / \mathrm{Fe}] \gtrsim-1$, below which many stars are found in the SAGA sample. In other words, there are likely to be many stars having lower [ $\mathrm{Sr} / \mathrm{Fe}$ ] ratios in our sample for which the Sr lines are not detected.

Although the situation is similar for the $[\mathrm{Ba} / \mathrm{Fe}]$ ratios (middle panel), the scatter is much larger than for [ $\mathrm{Sr} / \mathrm{Fe}]$. This is mostly due to the large excesses of Ba in carbon-enhanced stars (the CEMP-s stars), which are shown by overplotting large open circles. This is clear from the comparison with previous studies: carbon-enhanced objects in the SAGA sample are shown by asterisks in Figure 9. The s-process at low metallicity is known to yield larger amounts of heavy neutron-capture elements, such as Ba , compared to lighter elements such as Sr (e.g., Busso et al. 1999; Bisterzo et al. 2011). This is clearly seen in the [ $\mathrm{Sr} / \mathrm{Ba}$ ] ratios (bottom panel), where most of the CEMP stars exhibit low $[\mathrm{Sr} / \mathrm{Ba}]$ ratios. There is one exception, at $[\mathrm{Fe} / \mathrm{H}]=-3.0$, that has a very high $[\mathrm{Sr} / \mathrm{Ba}]$ ratio $([\mathrm{Sr} / \mathrm{Ba}]=+2.2)$. This star, SDSS J1422+0031, exhibits no excess of $\mathrm{Ba}([\mathrm{Ba} / \mathrm{Fe}]=-1.0)$, and is classified as a CEMP-no star.

Excluding the CEMP-s stars, four other stars have $[\mathrm{Ba} / \mathrm{Fe}]>+0.5$. Among them, SDSS J2357-0052 is a highly r-process-enhanced (r-II) star, reported on in detail by Aoki et al. (2010). This object is the first example of a cool EMP mainsequence star with large excesses of r-process elements. The metallicity is the lowest, and the excess of Eu is the highest ( $[\mathrm{Eu} / \mathrm{Fe}]=+1.9$ ), among the r-II stars known to date. We note that the Fe abundance of this object derived in the present work $([\mathrm{Fe} / \mathrm{H}]=-3.2)$ is slightly higher than the result of Aoki et al. (2010), because the $T_{\text {eff }}$ adopted here is slightly higher.

SDSS J0932+0241 is another EMP star exhibiting a large excess of $\mathrm{Ba}([\mathrm{Ba} / \mathrm{Fe}]=+1.2)$. Because of the limited quality of our spectrum and the star's high temperature ( $T_{\text {eff }}=6200 \mathrm{~K}$ ), the abundances of most other heavy elements are not determined. We note that the $[\mathrm{Sr} / \mathrm{Ba}]$ ratio of this star $([\mathrm{Sr} / \mathrm{Ba}]=$ -0.3 ) is significantly higher than the values found in CEMPs stars, suggesting the origin of these heavy elements are attributable to the r-process, rather than to the s-process. If this is confirmed, this object is the first clear example of r-II stars at the main-sequence turnoff (Sneden et al. 2008). Further detailed abundance study is desirable for this object to firmly establish the origin of the excess in Ba .

The other two stars, SDSS J0008-0529 and SDSS $\mathrm{J} 2128-0756$, exhibit $[\mathrm{Ba} / \mathrm{Fe}]$ ratios of +0.6 and +0.8 , respectively. If the origin of the Ba in these stars is the r-process, the $[\mathrm{Eu} / \mathrm{Fe}]$ values are expected to be higher than +1 . Measurements of the heavy elements in these objects, based on higher quality spectra, are also desirable for further studies of r-II stars.

Another interesting object is SDSS J0140+2344, which has a large overabundance of $\mathrm{Sr}([\mathrm{Sr} / \mathrm{Fe}]>+1)$ with no clear excess of Ba. Though many metal-poor stars having high $\mathrm{Sr} / \mathrm{Ba}$ ratios
are known (e.g., Honda et al. 2004; François et al. 2007), this object is unique because of its low metallicity $([\mathrm{Fe} / \mathrm{H}]=-3.7)$. Further detailed abundance study is desired to understand the implication of the Sr overabundance in this object.

## 6. SUMMARY

We have determined stellar parameters and chemical compositions, based on high-resolution spectra obtained with the Subaru/HDS, for 137 very/extremely metal-poor stars selected from SDSS/SEGUE. Comparisons of the Fe abundances derived by the present work with the estimates by the recent pipeline analyses for the SDSS spectra (SSPP) exhibit no significant offset, even in the lowest metallicity range $([\mathrm{Fe} / \mathrm{H}]<$ -3 ), while scatter in the comparisons indicates that highresolution spectroscopy is required to determine accurate metallicity for individual stars. The abundance ratios of carbon, the $\alpha$-elements, and the neutron-capture elements derived from our high-resolution spectra will provide useful calibrations for the estimates from SDSS spectra.

The fraction of carbon-enhanced objects and the abundance ratios of $\alpha$-elements and neutron-capture elements are discussed for the overall sample. More detailed abundance patterns will be studied based on higher-resolution, higher-S/N spectra for selected objects, in particular those having the lowest metallicity ( $[\mathrm{Fe} / \mathrm{H}] \lesssim-3.5$ ).

Our sample includes three double-lined spectroscopic binaries (including a triple system), for which chemical compositions of the primary stars are estimated taking the veiling by the secondary into consideration. Follow-up studies for these binaries will be useful for understanding low-mass star formation at low metallicity in the early era of the Galaxy.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-PlanckInstitute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.
W.A. was supported by the JSPS Grants-in-Aid for Scientific Research (23224004). T.C.B. and Y.S.L. acknowledge partial funding of this work from grants PHY 02-16783 and PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. M.T.-H. is grateful for a support by the JSPS Grants-in-Aid for Scientific Research (22540255).

Facilities: Sloan, Subaru


Figure 10. Spectra of objects not analyzed in the present work, in the region of the Mgi b lines. The line positions of the triplet are shown by vertical dotted lines.

## APPENDIX

OBJECTS NOT ANALYZED
The six objects observed, but not analyzed, in the present work are listed in Table 8. The spectra around the wavelengths of $\mathrm{Mg}_{\mathrm{I}} \mathrm{b}$ lines and $\mathrm{H} \alpha$ are shown in Figures 10 and 11.
Two objects (SDSS J0004-0340 and SDSS J1150 + 6831) are included in the list of white dwarfs reported by Debes et al. (2011). They exhibit broad and shallow $\mathrm{H} \alpha$ absorption lines and no clear $\mathrm{Mg}_{\mathrm{I}} \mathrm{b}$ lines (Figures 10 and 11). SDSS J1250 + 1021 and SDSS J2045 + 1508 also show broad or shallow $\mathrm{H} \alpha$ absorption features with weak $\mathrm{Mg}_{\mathrm{I}} \mathrm{b}$ lines. They could be relatively cool white dwarfs, though further confirmation is required.

Table 8
List of Objects Not Analyzed

| ID | Object | Object Name | Object ID | $g_{0}$ | $(g-r)_{0}$ | $V_{0}$ | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U1 | SDSS J0004-0340 | SDSS J000410.42-034008.6 | $2624-54380-458$ | 16.762 | 0.131 | 16.685 | LP 644-30, WD |
| U2 | SDSS J0446+1137 | SDSS J044655.70+113741.3 | $2669-54086-593$ | 16.376 | 0.248 | 16.232 |  |
| U3 | SDSS J0607+2406 | SDSS J060740.48+240651.3 | $2887-54521-537$ | 13.690 | 0.470 | 13.422 | close to NGC 2168 |
| U4 | SDSS J1150+6831 | SDSS J115052.32+683116.1 | $0492-51955-523$ | 15.337 | 0.230 | 15.204 | WD $^{\text {a }}$ |
| U5 | SDSS J1250+1021 | SDSS J125005.10+102156.4 | $2963-54589-474$ | 16.276 | 0.257 | 16.128 | 16.107 |
| U6 | SDSS J2045+1508 | SDSS J204524.04+150825.5 | $2250-53566-249$ | 16.358 | 0.441 | 169 |  |

Note. ${ }^{\text {a }}$ White dwarfs listed by Debes et al. (2011).


Figure 11. Same as Figure 10, but for the $\mathrm{H} \alpha$ region. The line position is shown by a vertical dotted line. Sky emission features are not fully removed in this region.

SDSS J0607 +2406 is a bright object, but exhibits an emission feature of $\mathrm{H} \alpha$, and is clearly not a normal metal-poor star. This object is close to the cluster NGC 2168, and identification with objects reported by previous studies is not straightforward.

SDSS J0446+1137 is likely a metal-poor star, though the $\mathrm{S} / \mathrm{N}$ ratio of the current spectrum is not sufficient for abundance analyses.

## REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
Aldenius, M., Tanner, J. D., Johansson, S., Lundberg, H., \& Ryan, S. G. 2007, A\&A, 461, 767
Allende Prieto, C., Sivarani, T., Beers, T. C., et al. 2008, AJ, 136, 2070
Alonso, A., Arribas, S., \& Martínez-Roger, C. 1999, A\&AS, 140, 261
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2009, A\&A, 494, 1083
Andrievsky, S. M., Spite, M., Korotin, S. A., et al. 2010, A\&A, 509, A88
Andrievsky, S. M., Spite, F., Korotin, S. A., et al. 2011, A\&A, 530, A105
Aoki, W., Barklem, P. S., Beers, T. C., et al. 2009, ApJ, 698, 1803
Aoki, W., Beers, T. C., Christlieb, N., et al. 2007, ApJ, 655, 492
Aoki, W., Beers, T. C., Honda, S., \& Carollo, D. 2010, ApJ, 723, L201
Aoki, W., Beers, T. C., Sivarani, T., et al. 2008, ApJ, 678, 1351
Aoki, W., Frebel, A., Christlieb, N., et al. 2006, ApJ, 639, 897
Aoki, W., Honda, S., Beers, T. C., et al. 2005, ApJ, 632, 611
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C., \& Ando, H. 2002a, PASJ, 54, 427
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C., \& Ando, H. 2002b, ApJ, 576, L141
Arnone, E., Ryan, S. G., Argast, D., Norris, J. E., \& Beers, T. C. 2005, A\&A, 430, 507
Asplund, M., Grevesse, N., Sauval, A. J., \& Scott, P. 2009, ARA\&A, 47, 481
Barklem, P. S., Christlieb, N., Beers, T. C., et al. 2005, A\&A, 439, 129
Beers, T. C., \& Christlieb, N. 2005, ARA\&A, 43, 531
Beers, T. C., Preston, G. W., \& Shectman, S. A. 1985, AJ, 90, 2089
Beers, T. C., Preston, G. W., \& Shectman, S. A. 1992, AJ, 103, 1987
Bessell, M. S., \& Norris, J. 1984, ApJ, 285, 622
Biemont, E., Baudoux, M., Kurucz, R. L., Ansbacher, W., \& Pinnington, E. H. 1991, A\&A, 249, 539
Biemont, E., \& Godefroid, M. 1980, A\&A, 84, 361
Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S., \& Käppeler, F. 2011, MNRAS, 418, 284
Blackwell, D. E., Menon, S. L. R., Petford, A. D., \& Shallis, M. J. 1982a, MNRAS, 201, 611
Blackwell, D. E., Petford, A. D., Shallis, M. J., \& Leggett, S. 1982b, MNRAS, 199, 21
Bonifacio, P., Sbordone, L., Caffau, E., et al. 2012, A\&A, 542, A87
Bonifacio, P., Spite, M., Cayrel, R., et al. 2009, A\&A, 501, 519
Booth, A. J., Blackwell, D. E., Petford, A. D., \& Shallis, M. J. 1984, Obs, 104, 265
Bromm, V., \& Larson, R. B. 2004, ARA\&A, 42, 79
Busso, M., Gallino, R., \& Wasserburg, G. J. 1999, ARA\&A, 37, 239
Caffau, E., Bonifacio, P., François, P., et al. 2011, Natur, 477, 67
Carollo, D., Beers, T. C., Bovy, J., et al. 2012, ApJ, 744, 195
Casagrande, L., Ramírez, I., Meléndez, J., Bessell, M., \& Asplund, M. 2010, A\&A, 512, A54
Castelli, F., \& Kurucz, R. L. 2003, Modelling Stellar Atmos, 210, 20P
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A\&A, 416, 1117
Christlieb, N. 2003, RvMA, 16, 191
Christlieb, N., Bessell, M. S., Beers, T. C., et al. 2002, Natur, 419, 904
Christlieb, N., Schörck, T., Frebel, A., et al. 2008, A\&A, 484, 721
Ciardi, B., \& Ferrara, A. 2005, SSRv, 116, 625
Cohen, J. G., Christlieb, N., McWilliam, A., et al. 2004, ApJ, 612, 1107
Cooke, R., Pettini, M., Steidel, C. C., Rudie, G. C., \& Jorgenson, R. A. 2011, MNRAS, 412, 1047

Debes, J. H., Hoard, D. W., Wachter, S., Leisawitz, D. T., \& Cohen, M 2011, ApJS, 197, 38
Demarque, P., Woo, J.-H., Kim, Y.-C., \& Yi, S. K. 2004, ApJS, 155, 667
Fischer, F. C. 1975, CaJPh, 53, 189
François, P., Depagne, E., Hill, V., et al. 2007, A\&A, 476, 935
François, P., Matteucci, F., Cayrel, R., et al. 2004, A\&A, 421, 613
Frebel, A., Aoki, W., Christlieb, N., et al. 2005, Natur, 434, 871
Frebel, A., \& Norris, J. E. 2011, arXiv:1102.1748
Gallagher, A. 1967, PhRv, 157, 24
Goldberg, D., Mazeh, T., Latham, D. W., et al. 2002, AJ, 124, 1132
Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332
Hannaford, P., Lowe, R. M., Grevesse, N., Biemont, E., \& Whaling, W. 1982, ApJ, 261, 736
Hirschi, R., Frölich, C., Liebendorfer, M., \& Thilemann, F.-K. 2006, RvMA, 19, 101
Hollek, J. K., Frebel, A., Roederer, I. U., et al. 2011, ApJ, 742, 54
Honda, S., Aoki, W., Kajino, T., et al. 2004, ApJ, 607, 474
Ishigaki, M., Chiba, M., \& Aoki, W. 2010, PASJ, 62, 1369
Ito, H., Aoki, W., Honda, S., \& Beers, T. C. 2009, ApJ, 698, L37
Ivans, I. I., Simmerer, J., Sneden, C., et al. 2006, ApJ, 645, 613
Ivans, I. I., Sneden, C., Gallino, R., Cowan, J. J., \& Preston, G. W. 2005, ApJ, 627, L145
Kim, Y.-C., Demarque, P., Yi, S. K., \& Alexander, D. R. 2002, ApJS, 143, 499
Kobayashi, C., Tominaga, N., \& Nomoto, K. 2011, ApJ, 730, L14
Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C., \& Weiss, W. W. 1999, A\&AS, 138, 119
Kurucz, R. 1993, ATLAS9 Stellar Atmosphere Programs and $2 \mathrm{~km} / \mathrm{s}$ Grid, Kurucz CD-ROM No. 13 (Cambridge, MA: Smithsonian Astrophysical Observatory)
Lai, D. K., Bolte, M., Johnson, J. A., et al. 2008, ApJ, 681, 1524
Lawler, J. E., Bonvallet, G., \& Sneden, C. 2001a, ApJ, 556, 452
Lawler, J. E., \& Dakin, J. T. 1989, JOSAB, 6, 1457
Lawler, J. E., Wickliffe, M. E., den Hartog, E. A., \& Sneden, C. 2001b, ApJ, 563, 1075
Lee, Y. S., Beers, T. C., Allende Prieto, C., et al. 2011, AJ, 141, 90
Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008a, AJ, 136, 2022
Lee, Y. S., Beers, T. C., Sivarani, T., et al. 2008b, AJ, 136, 2050
Martin, G. A., Fuhr, J. R., \& Wiese, W. L. 1988, Atomic Transition Probabilities. Scandium through Manganese (New York: American Institute of Physics (AIP) and American Chemical Society)
Mashonkina, L., Korn, A. J., \& Przybilla, N. 2007, A\&A, 461, 261
McWilliam, A. 1997, ARA\&A, 35, 503
McWilliam, A., Preston, G. W., Sneden, C., \& Searle, L. 1995, AJ, 109, 2757
Meléndez, J., Casagrande, L., Ramírez, I., Asplund, M., \& Schuster, W. J. 2010, A\&A, 515, L3
Meynet, G., Ekström, S., \& Maeder, A. 2006, A\&A, 447, 623

Meynet, G., Hirschi, R., Ekström, S., et al. 2010a, in IAU Symp. 265, Chemical Abundances in the Universe: Connecting First Stars to Planets (Cambridge: Cambridge Univ. Press), 98
Meynet, G., Hirschi, R., Ekström, S., et al. 2010b, A\&A, 521, A30
Moity, J. 1983, A\&AS, 52, 37
Nissen, P. E., \& Schuster, W. J. 2010, A\&A, 511, L10
Nitz, D. E., Kunau, A. E., Wilson, K. L., \& Lentz, L. R. 1999, ApJS, 122, 557
Noguchi, K., Aoki, W., Kawanomoto, S., et al. 2002, PASJ, 54, 855
Norris, J. E., Bessell, M. S., Yong, D., et al. 2012, ApJ, in press (arXiv:1208.2999)
Norris, J. E., Christlieb, N., Korn, A. J., et al. 2007, ApJ, 670, 774
O’Brian, T. R., Wickliffe, M. E., Lawler, J. E., Whaling, W., \& Brault, J. W. 1991, JOSAB, 8, 1185
Pickering, J. C., Thorne, A. P., \& Perez, R. 2001, ApJS, 132, 403
Pinnington, E. H., Berends, R. W., \& Lumsden, M. 1995, JPhB, 28, 2095
Press, W. H., Teukolsky, S. A., Vetterling, W. T., \& Flannery, B. P. 1992, Numerical Recipes in FORTRAN. The Art of Scientific Computing (2nd ed.; Cambridge: Cambridge Univ. Press)
Ryabchikova, T. A., Hill, G. M., Landstreet, J. D., Piskunov, N., \& Sigut, T. A. A. 1994, MNRAS, 267, 697
Ryan, S. G., Norris, J. E., \& Beers, T. C. 1996, ApJ, 471, 254
Schlegel, D., Finkbeiner, D., \& Davis, M. 1998, ApJ, 500, 525
Schnabel, R., Schultz-Johanning, M., \& Kock, M. 2004, A\&A, 414, 1169
Sivarani, T., Bonifacio, P., Molaro, P., et al. 2004, A\&A, 413, 1073
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Smolinski, J. P., Lee, Y. S., Beers, T. C., et al. 2011, AJ, 141, 89
Sneden, C., Cowan, J. J., \& Gallino, R. 2008, ARA\&A, 46, 241
Spite, M., Andrievsky, S. M., Spite, F., et al. 2012, A\&A, 541, A143
Spite, F., \& Spite, M. 1982, A\&A, 115, 357
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., \& Iben, I., Jr. 2004, ApJ, 611, 476
Suda, T., Katsuta, Y., Yamada, S., et al. 2008, PASJ, 60, 1159
Tominaga, N., Umeda, H., \& Nomoto, K. 2007, ApJ, 660, 516
Tsuji, T. 1978, A\&A, 62, 29
Umeda, H., \& Nomoto, K. 2003, Natur, 422, 871
Umeda, H., \& Nomoto, K. 2005, ApJ, 619, 427
Wiese, W. L., \& Martin, G. A. 1980, NSRDS-NBS, 68
Wiese, W. L., Smith, M. W., \& Miles, B. M. 1969, NSRDS-NBS (Washington, DC: US Department of Commerce, National Bureau of Standards)
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377
Yong, D., Norris, J. E., Bessell, M. S., et al. 2012, ApJ, in press (arXiv:1208.3003)
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
Zhang, L., Ishigaki, M., Aoki, W., Zhao, G., \& Chiba, M. 2009, ApJ, 706, 1095
Zhao, C., \& Newberg, H. J. 2006, arXiv:astro-ph/0612034


[^0]:    ${ }^{13}$ Present address: Department of Astronomy, New Mexico State University, Las Cruces, NM 88 88003, USA.

[^1]:    14 After our work is completed, a series of papers on a large sample of metal-poor stars by Norris et al. (2012) and Yong et al. (2012) have appeared. Their sample includes some EMP stars discovered by SDSS.

[^2]:    15 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.

[^3]:    ${ }^{16} \mathrm{http}: / / \mathrm{www}$ user.oat.ts.astro.it/castelli/colors/sloan.html

