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An account on the origins of cosmic chaos and its physical impact in an open and 
multiply connected universe is given. A new type of cosmic evolution by topological defor- 
mations, unpredicted by Einstein’s equations, is pointed out. The chaotic@ of the galactic 
world-lines provides a mechanism to create the galactic equidistribution. Global metrical de- 
formations of the open and multiply connected spacelike slices induce angular fluctuations in 
the temperature of the microwave background. They cause backscattering of electromagnetic 
fields and particle creation in quantum fields. The topological microstructure of spacetime 
provides a mechanism for CP violation by self-interference. 

1. Introduction 

Our contemporary understanding of the global structure of the Universe is based 
on the assumption of a spacetime continuum, a curved four-dimensional world. The 
observational evidence for this is actually scarce, but it offers at any rate a very sim- 
ple qualitative explanation of the cosmic red-shifts. The second motivation to model 
the Universe as a Riemannian four-manifold is the successful application. of Rieman- 
nian geometry in explaining planetary perihelion shifts, and the deflection of light by 
gravitating bodies. These are local phenomena, which can be explained by introducing 
a Riemannian metric on a single co-ordinate chart. In cosmology, however, we are 
concerned with the global structure, with the topology of the four-manifold [l-3]. 

In local problems of general relativity, on a single co-ordinate chart, Einstein’s 
equations determine completely the evolution of the metric, once the energy-momen- 
tum tensor of the local gravitational sources is known. In cosmology we have to 
consider the evolution of the metric as well as the evolution of the topology of 
spacetime. Einstein’s equations certainly do not give any hint on the topology, and 
the evolution of the metric is likewise undetermined, because we do not really know 
the energy-momentum tensor of the matter distribution in the Universe, nor the 
boundary conditions to be imposed. It is, in my opinion, pointless to hunt for elusive 
laws of cosmic evolution, the modeling employed in such endeavours is always copied 
from finite classical or quantum systems, and there is no reason to assume that the 
Universe is a finite Hamiltonian system like any other. A much more promising 
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approach to cosmology is to figure out possibilities of cosmic evolution, and to think 
over which local physical manifestations they can have. 

The actual question is not so much what is the topology, but rather how does 
it evolve, because otherwise it is difficult to motivate why the 3-space should have 
acquired, once and for all, a particular type of topology and metric. What we will 
advocate here is a cosmology with an open 3-space that evolves by global metrical 
deformations, which can give rise to transitions from one topology to another [4-71. 
We do not know the present topology of the Universe, and so we have to content 
ourselves to figure out possible physical effects of a multiply connected topology. In 
Section 3 we will review some local manifestations of the global 3-space topology, 
but at first I outline a cosmic evolution which goes far beyond the usual scaling of 
the length unit in traditional Robertson-Walker (RW) cosmology. 

2. Topological evolution by global metrical deformations of the 3-space 

In [4-71 a cosmology was introduced in which the 3-space is negatively curved, 
open, and topologically multiply connected. These three conditions allow topological 
evolution by global deformations. The negatively curved spacelike slices must be open 
and multiply connected, otherwise they cannot be deformed without destroying the 
constant curvature. The negative curvature (local hyperbolicity) is necessary to make 
the world-lines unstable, and the multiple connectivity can trap them and confine 
to a finite region, the chaotic nucleus of the open 3-space. This confinement, and 
the local hyperbolicity renders world-lines chaotic (Bernoulli property). The size of 
the nucleus depends on the expansion factor and, above all, on the topology of the 
3-slices. 

Chaoticity is an efficient mechanism to create an equidistribution, but the actual 
problem is to explain the inhomogeneities in the galactic distribution. The time evo- 
lution of the world-lines depends on the expansion and on the global deformations 
that the 3-space undergoes. Concepts like mixing and ergodicity, which are commonly 
used in Hamiltonian dynamics to describe the degree of chaoticity [8, 91, do not re- 
flect the time evolution of the system. They are based on the geometric shapes of 

Figure 1. The horizon at infinity of the Poincare half-space H3, the universal covering space of the 
spacelike 3-sections of the RW cosmology. A spacelike slice (F,r) is realized in H3 as a polyhedron 
F with face-identification. The face-pairing transformations generate a discrete group r which gives, if 
applied to the polyhedron, a tessellation r(F) of H3 with polyhedral images. This tessellation induces 
by continuity also a tiling on the boundary of H3, which is depicted here. The complete tiling of H3 is 
obtained by placing hemispheres onto the circular arcs. This polyhedral tiling of hyperbolic space H3 is 
the covering space construction for the RW geometry. 

The qualitative structure of the fractal limit set A(r) depends on the topology of the 3-slices, which 
is in turn determined by the covering group [20, 211. In this example the 3-space fibers over an open 
interval, with Riemann surfaces (g = 49) as fibers. 

The chaotic trajectories have covering trajectories with initial and terminal points in the limit set. 
If the end points are outside A(r), but close to it, then the trajectory is regular, but it is shadowed 
by trapped chaotic trajectories over a long period before leaving the chaotic region. The tiling on the 
boundary of H3 is the key to determine this chaotic nucleus of the open 3-space [5, 111. 
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trajectories of infinite length. Here the question is what happens in finite times, and 
with world-lines of finite length [4, 71. Regular trajectories entering the chaotic center 
of the 3-space are shadowed by chaotic ones, before they ultimately diffuse out of 
the center into the open 3-space. The mixing in the center tends to create a uniform 
distribution, but inhomogeneities will always remain in a finite time [lo]. 

The center of the multiply connected 3-space is geometrically determined by the 
convex hull of the limit set of the covering group, its explicit construction is a matter 
of elementary geometry. Regular trajectories are shadowed by chaotic ones whenever 
their covering geodesics have initial or terminal points close to the limit set, cf. Fig. 1. 

The multiple connectivity of the open 3-space provides a new type of cosmic 
evolution by global metrical deformations. ‘Global’ means here a deformation which 
does not locally change the curvature of the 3-space. Two spacelike sections which 
have the same topology and constant curvature (apart from a trivial resealing by 
the expansion factor) may be globally, as 3-manifolds, nonisometric. If the 3-space is 
open and multiply connected, it can be endowed with a variety of metrics, all giving 
rise to the same constant curvature. These metrics are labeled by a finite number 
of independent parameters, the dimension of this parameter space depends on the 
topology of the spacelike slices. The line element of the extended RW cosmology 
is ds* = -c*dt* + u2(t)gij(y(t), x)dzidzj. Here gij(yl,. . . , yn, x) denotes a continuous 
family of hyperbolic metrics of constant negative curvature -1. The parameters yk 
may be chosen to vary in a compact domain of Iw”. The evolution of the 3-space is 
characterized by a time-dependent path y(t) in this deformation space, and by the 
expansion factor u(t). If the path reaches the boundary of the deformation space, a 
topology change occurs, the connectivity of the 3-space can change or it may even 
disintegrate, leaving behind cusp singularities on its newly emerging components. The 
curvature of the 3-space stays constant (apart of the mentioned rescalling) during the 
whole deformation process. For an exactly solvable example of a global deformation 
see [ll, 61. 

Remark: In 1121 we considered local distortions of the constantly curved 3-space 
geometry by gravitational waves. Constant curvature is not really necessary for the 
evolution mechanism described here, it just ensures that this topological evolution 
does not occur at the expense of creating large local inhomogeneities in the curvature. 
If the 3-space metric is uniformly close to a metric of constant negative curvature, 
it will stay so during a global deformation. 

The topology, the dynamics induced by it via global deformations, and the result- 
ing topology changes are not predictable by Einstein’s equations, which nevertheless 
impose restrictions on the speed and size of global deformations, because the energy 
and pressure densities defined by the Einstein tensor must stay positive. 

3. Physical manifestations of the topological 3-space structure 

Objections against open cosmologies are sometimes based on the argument that 
we will not be able to look at infinity and to verify what is happening there. What 
is overlooked here is that the topological structure of the 3-space can manifest it- 
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self locally. We will give now some examples. I also mention here that an entirely 
different approach to the problem of “how to look at infinity” in an open universe 
was suggested in [lo], where tachyonic (i.e. superluminal [13, 141) signal transfer is 
considered in the distinguished Machian frame of reference defined by the galactic 
grid. 

Angular fluctuations in the temperature of the microwave background radiation [15, 161 

If one studies the impact of global deformations of the open 3-space on the 
free photon gas [4], one has to take two time scales into account: cosmic time as 
defined by the expansion factor, and the time scale on which the deformations take 
place. The latter is determined by the time parametrization of the path y(t), which 
determines the metric on the spacelike sections. Only if the scale on which noticeable 
variations of gij(y(t), ) x occur is much larger than the time scale determined by the 
expansion factor, one has a really uniform expansion. 

In the following we assume that gij(y(t),x) adiabatically varies on the time scale of 
the cosmic expansion. We use the universal covering space construction as sketched in 
the Caption of Fig. 1. A global metrical deformation of the 3-space is realized by de- 
forming the Poincare metric & of the covering space H3, cf. [4] for details. We con- 
sider a small adiabatic deformation of this metric, gij(y(t), x) = &(x) + hij(t, x), hij is 
a symmetric tensor field periodic with respect to the covering group r, i.e., hij(t,x) = 
h,,,,(t,$x))[y’x]~[y’xj?, for all y E r; [y’x] denotes the Jacobian of the transfor- 
mation y, The idea 1s simply to calculate, semiclassically, via the eikonal equation 

SRW~V+&” = 0 (with the extended RW metric gkw = -c2, gtw = a2(t)gij(y(t),x), 

gtw = 0), frequency shifts induced by the deformation hij(t, x). The perturbed eikonal 

for rays issuing at a point q_at infinity of the covering space H3 is $I = $ + x(t, x, r]), 

with 1c, a solution of 2jRwc”“$,p$,V = 0. Here $y is defined, like g:y, with gij re- 

placed by cij. The frequencies are shifted by v - u + &8x/&. In the Planck 
distribution, pdv = 8rhcA3v3(exp(hv/kT) - l)-‘dv, these shifts can be absorbed by 

introducing a new temperature variable F M T(l - &v-‘dx(t, x, rj)/at). This amounts 
to a weak angular dependence 77 of the temperature. 

Particle creation in quantum fields and backscattering of electromagnetic radiation 

In simply connected Robertson-Walker cosmologies the variation of the expan- 
sion factor leads to particle creation. However, this cannot happen in neutrino or 
electromagnetic fields, because in the solutions of the corresponding wave equations 
the expansion factor scales out with a simple power law. But global metrical defor- 
mations of the 3-space do create particles and backscattering even in conformally 
coupled fields [4, 61. The point here is that during a deformation the wave equa- 
tion is not time separable, and a wave initially composed of positive frequencies will 
acquire negative frequency modes. So, antiparticles emerge in quantum fields, and 
backscattered wave trains in classical fields. 
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Topological CP violation by self-interference 

The reasons for CP violation are as yet not really understood. This is so despite, 
or perhaps because, this extraordinary phenomenon could be easily incorporated into 
particle physics by adding symmetry breaking interactions to the Lagrangians. The 
space-reflection symmetry is of course always present in classical mechanics, its vi- 
olation is a pure quantum effect [17]. In [4] it was therefore suggested to explain 
parity violation as a topological interference phenomenon, by adopting Weyl’s idea 
to associate elementary particles with the microstructure of the 3-space [18, 191. A 
space-reflected wave can wrap around a microscopic geodesic loop, and this causes 
self-interference [ll], which destroys the antiunitarity of the parity operator. Thus 
parity is a broken symmetry already on the level of free wave equations. 

Some open research problems in extended RW cosmology are outlined in [lo]. 
In [22] perihelion shifts are explained in terms of a scalar gravitational field and a 
permeability tensor representing the physical substance of space-the ether. 

I have tried to show here that the topology and the topological dynamics of an 
open universe may have very concrete physical manifestations, and that the topology 
of spacetime is a dynamical object, able to evolve like the metric in local problems 
of general relativity. 
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